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Many phenomena that occur in nature and technology exhibit a stochastic
behaviour. When the stochastic element is relevant, it has to be included in the
modeling of such phenomena. We shall discuss models with a deterministic
component and a small stochastic component. The short term behaviour of
these models is determined mainly by the deterministic component, whereas
the long term behaviour is influenced considerably by the stochastic com-
ponent. For the description of the long term behaviour, deterministic stability
concepts (stable, neutral equilibrium) are inadequate and have to be replaced
by stochastic stability concepts (the expected exit time from a region contain-
ing such a deterministic equilibrium). In the study of so-called exit problems we
consider a domain in the state space of a stochastic system and try to deter-
mine statistical quantities (such as mean exit time, distribution of exit points
over the boundary of the domain, etc.) related to leaving this domain. We will
treat the exit problems from an asymptotic (in the limit for small noise) point of
vView.

Note. This paper is dedicated to Prof. H.A. Lauwerier on the occasion of his
65th birthday.

1. INTRODUCTION

In this contribution we study some aspects of stochastic dynam

ical systems
that have a deterministic part (referred to as ‘the determunistic system’) and a

small stochastic part consisting of Gaussian white noise (referred to as ‘sto-
chastic fluctuations’).

In some of these systems, the dynamical characteristics of interest are dom-
inated by the deterministic system, while the stochastic fluctuations are only of
secondary importance, in the sense that the omission of the stochastic fluctua-
tions does not essentially alter these characteristics. This 1s demonstrated, for
example, by a ‘diffusion with the flow’, see Figure la. Starting at a point in a
bounded domain D, the trajectories of the stochastic dynamical system leave

D with probability close to one in the same time as the determ

the domain Nis-
tic trajectory through that point. The probability density function defined on
the boundary 0D, describing the point of exit from D of the stochastic
cal system, is concentrated near the deterministic exit point. Stochastic systems
of this type will not be considered here.

In other stochastic dynamical systems, the stochastic fluctuations, though
small compared to the deterministic system, are of great importance to the
dynamical characteristics of interest. Without stochastic fluctuations these
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FiGURE 1. Illustration of diffusion (a) with, (b) across and (c) against the
flow
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Ve will concentrate on a few statistical characteristics related to the problem
of exit from a domain, like the expectation value of the time of first exat
(which provides a measure for the stability of the stochastic system), and the
distribution of exit points over the boundary of the domain.

. THE EQUATIONS
A stochastic syste m i equently described euher In te
differential equation (that, as an exiensmn to an ordin
ains stochastic terms) [1], or in terms of a Kolm OZOTOV €C juation. In the
[INICT C4S€C, an Cgi nvalent descﬁ D tion 1n terms of a Kolmo gorov equauon 1S
often possible. In this section we formulate the forward and backward Kolmo-
gorov equations [19,55], which form the starting point of our analysis.
We consider a stochastic dynamical system that has been defined on the n-
dimensional domain D in the state space. Let v(x,?)dx denote the probab 1 ty
that the system is in the infinitesimal subregion (x, x +dx)eD at time ¢. Th
function satisfies the forward (Kolmogorov) equation (also called the Fokker-
Planck equation)

v
ot

where the dif

ms of a stochastic
differential equation,

] V . X & D, (2 - 1 )

erential 0pemtor V. 15 defined by

o (bi(x)y) + 5,
ax: 21-—-1 _/

Equation (2.1) has to be supplemented with the relevant imitial and boundary
conditions. The first term on the right side of (2.2) represents the determunistic
part of the dynamical system, b is called the deterministic or drift vector. The

(a;;(x)v). (2.2)

ax, ax
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function, sy 8(x Xo), and t
to the solution of the system

dx;

dr
with mnitial conditions

x(0) = xo. (2.3b)

(his system 1s defined as the detern inistic system corresponding to the sto-
chastic dynamucal

In order to determun
expected time of fi
Let p(x,y) dS, be the probability of exit at dS,€dD
ime ¢ =0, 1.e. p is the exit density.

= bi(x), 2,...,1 (2.32)

1f we started at xeD on
We define the func tion u,(x) as follows:

u(x) = [f(y)p(x.y) ds,, (2.4)
oD

where fis a function on 3D that can be chosen arbitrari
the 1indicator function

1 on d,D, where 9D CoD,
f —

. With f defined as

0 ond,D = dD\ 9D, (2.5)
ug(x) is the probability of exit at d,D, given that we started at x€D on time
t =0. The function u; 1s the solution of the stationary backward equation

qus — 03 XED, (2.63)
subject to the boundary condition

= f(x), xe€dD, (2.6b)
where the differential operator L, 1s defined by

Lu= Eb(x)--—-———- + = 2 Za,j(x) ax,ax (2.7)

i=1 9x; 2 /Si=

and @ and b are the same functions as above.
We consider the time-dependent backward equation

qu _ .
8t L 14 (2.83)

as well. With the boundary condition
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where f 1s the indicator function (2.5), and the initial condition

u(x,0) = 0, xebD, (2.8¢)

u(x,t) 1s the probability that exit occurs at 9, D
given that we started at xeD on time ¢ =0.

et T(x) be the expected time of first exit from
on time ¢ =0:

T'(x) = mnf {t | x(t)edD, x(0) = xeD}.

[he function T 1s the solution of the boundar

Equation (2.10a) is known as the Dynkin equation.
['he reader interested in the details of the equations and the corresponding
conditions that we have given here, and related material, is referred to the

iterature [19,55]. In later sections we will be concerned with the asymptotic
all e.

solution of (2.1), (2.6), (2.8) and (2.10) for sn
ferential operators L, and M, defined above

[he backward and forward dif
are formal adjoints, which means that the following relation holds [438]:

| [0Leu — uMy)dx = [P¢ dS,, (2.11)
D dD

on the time interval (0,7],

D, given that we started at x

(2.9)

(2.10a)
(2.10b)

where P 1s the vector with components

— .E__ lr a!j Y, .._a..t_‘._ — U M. + bl 174, . l o 1 . 2 yosos 14 (2 . l 2)

2 axj ax]

and £ denotes the outward normal on 0D.

3. THE BOUNDARY

In the study of exit problems, the behaviour of the stochastic system at and
near the boundary of the domain deserves special attention, since the domain
is left via the boundary. For a given stochastic system we must verify whether
the boundary can actually be reached from the interior domain.

In many practical situations the type of the boundary is determined by the
drift vector and the diffusion matrix. For one-dimensional stochastic systems
there is a classification of such boundaries originating from Feller [16]. In a
semi-group approach to adjoint forward and backward equations he dis-
tinguished the regular, exit, entrance and natural boundaries. In Table 1 we
have repeated schematically the boundary classification as 1t has been
described in [54]). The type of boundary depends on the integrability at the
boundary point of some of the following integrals:

I(x) = exp {-—-—- %jb(r)/a(t) dt},
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TaBLE 1. Boundary classification for one-dimensional stochastic systems.
Five boundary types are defined according to the integrability of
some of the integrals Iy to I4. The last two columns indicate
whether the boundary is attainable from the interior domain and
whether the interior domain 1s attainable from the boundary.

In other situations we dispose of a stochastic system, defined by a dnit vec-
tor and a diffusion matrix on a domain D, and we want to erect a boundary of
a desired type at any place in D, thereby restricting the domain to a sub-
domain D’ of D. Examples of such boundaries are absorbing and reflecting
boundaries [19]. On reaching an absorbing boundary from the internnor domain
D’, the system 1s taken apart (1s absorbed) so that this domain cannot be
entered again, comparable with an exit boundary. At a reflecting boundary no
probability can pass, so that exit at this boundary i1s impossible. With respect
to the solution of the forward equation an absorbing boundary implies the
boundary condition v(x,z)=0, where x €dD’, and a reflecting boundary implies
the condition &J(x,t)=0, where x €dD’, £ 1s the outward normal on dD’ and J
1s the probability current, 1.e. the vector with components
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Ji(x,t) = bilx)y — = 2

XAMPLE OF DIFFUSION ACROSS THE FLOW
Ple examp le of diff usﬁon across the flow. Consider
ga that 1s su l to a stochastic forcmg

luced here si ce n - to a ma 1stic model,
reach a critical level
oy at ch the osmHa.-

the oscillator. ] ensmnaj form
for this problem 1s [53]

% 4 eax + x = Veg(x)t (4.1)

where x 1s the dewviation from the equilibrium position, the dot denotes
differentiation with respect to the time #,¢ is a small positive parameter, and e
1s a non-negative O(e) damping constant. The right side of (1) represents a
Gaussian white noise process with intensity eg (x) The function g 1S approxi-
mated by the first two terms of its Taylor expansion around x =0:

(4.2)

1al equation (4.1) can be written as the system of

ﬁrst order equations:

dx
dt

dsi
dt

'he undisturbed (e=0) system (4.1) 1s an undan oscillator, whose dynam-
ics are described by closed trajectories around the origin in the (x,x)-phase
space. Each trajectory corresponds to an energy level. The energy 1s larger for
orbits farther away from the origin. The effect of a nonzero € is that the tra-
jectories tend to spiral slightly inwards to approach the ongin as a conse-
quence of damping if a0, and contain stochastic fluctuations in the x-
direction. The backward equation corresponding to (4.3) reads [19]:

2
au — .Z’C“gy“ — (6&X‘|")C)“"‘“""’" + “""""(ﬁo +B1}C)2 : u

at 09X Jx 8x

with u defined as in Section 2. This equation is studied asymptotically for
small € and on the time scale of O(e~!). With

— i
(4.3)
= — (eax +x) + \/6_(180 + Bi1x)5s.

(4.4)
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t =tle, u=u' +eu + -, (4.5)

and the transformations (x,x)—(r,6) defined by

= \/—i—r COS X = \/‘i—r @, (46)

btain to leading order 1n

— 0,, (4.7)

implying that u° is a function of r and ¢ only. 7 _.

root of the dimensionless energy of the undismrbed (€=0) system. The non-

corresponds to r? E thus re(0,1]. To the next - €T 1N € we obtain

tion with respect Eo @ from 0 to 2 and the additi

periodic in @ with period 27. The resulting equation for u
ou’ ag du’ 0%’

= = (--;— + ayr) . + (ag+a;r?) o2

I'he vanable r 1s the square

reads:

(4.8a)

with
ag = B§/8, a; = B3/16, a, = 3B%/16—a/2. (4.8b)

[he description to this order in € includes the effects of damping and stochas-
uc fluctuations. If, as a consequence of the latter effect the critical energy
=1 18 reached 1n finite time with probability one, starting from re[0,1], the
lator 1s said to be stochastically unstable. In that case, the stability of the
oscillator 1s measured by the expected time of exit from the unit interval at 1.
In the present discussion we only consider the case |Byl, |81|>O(€!’?), so
that ay and al do not vanish 1n the asymptotics leading to equanon (4.8a) and
thus appear in this equation indeed. The boundary r =0 is then an entrance
boundary and at r =1 we adopt an absorbing boundary in order to model the
breakdown of the oscillator at the critical energy. Thus exit from the unit
nterval can take place only at r=1. Let u,(r) be the probability of exu at
r =1, given that we started at r on time ¢ =0. The leading order term u2(r) in
the expansion of u(r) m powers of e is obtained by solving the statlonary
equation (4.8a) with boundary condmon u3(1)=1. The only relevant solution
(ie. yielding values ud(r)€[0,1]) is u%(r)=1. There is no freedom to specify an
arbitrafy boundary condition at r =0. We conclude that if we start somewhere
on the interval [0,1], exit at r =1 will occur with probability one, so that the
oscillator is stochastically unstable. Next we consider the expected exit time
I'(r), starting from a pomnt r. Similar to the time scaling in (4.5) we put
[=T/¢_ and smmlar to the ,Xxpansion of u in (4.5) we put T=

T° + T + - .-, so that T=T"/e+T + - An approximation for T 18
found by solving the Dynkin equation

-0 2
aT ~+ (do“"dﬂ’ )a T
or or?
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(4.11)

magnitude of the results
be derived later for
s. The cases that either By or By are of order
nping 18 larger than a L value the oscmamr 1S stochastlca]ly
stable on the time scale under consideration. This means that on this tin

scale the probabty of exit 1s less than one, in contrast with the result above
A more detail | ' m for oscillators as described
here can be found in [53]. The stochastic stability of oscillators with a dif
type of damping (as cubic damping) or noise (red, dichotomic, etc.) and with
a forcing described by a potential function has been treated in [l14]. 'The
asymptotics that we have used in this example to arrive at equation (4.8) are
well established and are known under the names of averaging techmque
[3,31,35,50,56] and adiabatic elimination of fast variables [19].

that if te d

5. DIFFUSION AGAINST THE FLOW

In this section we discuss the exit problem for systems that are of diffusion
against the flow type. First we treat a one-dimensional system, then a multi-
dimensional potential system that can be treated with essentially the same
means, and we will conclude with more general multi-dimensional systems.

5.1. A one-dimensional system

Consider the stochastic system defined on [a,B], where a<<0 and >0, with
drift coefficient b (x) satistying

> 0, x€la,0),
b(x){=10, x =0, (5.1.1)
< 0, x€(0, B],

so that x =0 is an attractor, and diffusion coefficient ea(x)/2, 0<e<1, with
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a(x)>0, xela, B] (5.1.1)

d 1 Section 2,

(5.1.2a)

u (@) = cqr () = cp, (5.1.2b)

where ¢, and cg are gwen constants.
non (5 E 2a)

I'he reduced equaﬂon (3.1 2a) L.e. equa-

.. conda uons (5.1 2b) ca m b & sausﬁe d. W
a and b have the Taylor series exP ansions
a(x) = a(a) + a'(a)(x —a) + -
b(x) = b(a) + b'(a)}(x —a) + - - A
a(x) = a(B) + '(BYx —B) + -+ nearx = B, (5-1.3)
b(x) = b(B) + b'(B)Y(x—pB) +--- mnearx = L.
As an abbreviation we use the notation I;(x)=2b (x)/a(x). It follows from
(5.1.1) that b(a)>0 and b(B)<<0. A boundary layer analysis near x =« and

x=/f shows the presence of O(¢) boundary layers near these points. An
asymptotic expression for u; to leading order in e that is uniformly valid on

[a, B] 1s given by
u(x) ~ cg + (cyu—cop) exp[-—-l;(a)(x —a)/ €] (5.1.4)

+ (cg—co) expl—b(B)x — B)/¢]

Note that the constant ¢ 1s left undetermined by the given asymptotics. To
find ¢ we utilize a varational formulation of the boundary value problem

(5.1.2), following [23], see also [61]. After multiplication by the factor

g(x) = exp [fwds} . - (515)

ea(s)

equation (5.1.2a) can be written as the Euler equation
dF,
dx

— F, =0, (5.1.6)

with F :-i-—(u’s)zag. Consequently, the solution of (5.1.2) corresponds to an
extremal of the functional

:
Jlu] = | i(u’s)zag dx, (5.1.7)

with respect to functions u; satisfying the boundary conditions (5.1.2b), see
[5,9,46,47]. The expression (5.1.4) for u; is substituted into the integral in
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(5.1.8)

hall henceforth assume that

b'(x)<0, xela, B (5.1.9)

g out the above | mcedure We then ﬁn d Ehat gest contributions to
in (5.1.7) are from tb oh and S, and ¢ 1s given

oo Cabl@expl=I@/d=cgb(Blexpl—1(B)/] 51,10

b(a)exp] —I(a)/e]—b(B)expl —I(B)/€]

where I(x) 1s defined as:

I(x) = — fg(s) ds, (>0 for xs£0). (5.1.11)
0

[he result (5 1. 10) stmplif]

Cas if 1(e)<I(B),

Cg, if 1(8)<I(a), (5.1.12)
cab(e)—cpb(B)
© b(@—b(B)
Thus, in the limit e—0, if we start outside O(e)-neighbourhoods of the boun-
daries a and B, exit will occur with probability one at the boundary with the

smallest value of I. If I(a)=I1(B) and if we start outside O (¢)-neighbourhoods
of the boundaries, the probabilities of exit at « and B are constants with values

between zero and one, depending on b(a) and b(B). The above asymptotic
result is found alternatively by the evaluation for small € of the exact solution
of the boundary value problem (5.1.2).

Next we derive an expression for the expected time T of exit from the inter-
val [a, B]. The function T satisfies the inhomogeneous equation

-S-a(x) d’T
2 dx?

with the conditions
T(a) =0, T(B) = 0. (5.1.13b)

The approach to this boundary value problem is largely the same as above, the

only additional difficulty is the appearance of the inhomogenous term in

> 1f I(a)=1(B).

+b(x)%£—-= —1, (5.1.132)
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I'(x) = col€e)iix), (5.1.14a)

on x, and satisfies

1/¢co(e) = o(e), e—O0. (5.1.14b)

Expression (5.1.14a) is substituted into (5.1.13), and the corresponding boun-
dary value problem is asymptotically solved to obtain 7. For T we find:

T(x) ~ co(e){l —exp| — b(a)(x —a)/€]—exp[—b(B)(x — B)/c]} | (5.1.15)

to leading order in ¢ uniformly on [a,B]. Again the unknown constant ¢ is

determined from a variational principle. Equation (5.1.13a) is multiplied by

the factor g defined in (5.1.5). The solution of the boundary value problem
(5.1.13) then corresponds to an extremal of the functional

Bl

J[T] = f-Z*(T) a—T

A d

g dx , (5.1.16)

with respect to functions 7'(x) satisfying the boundary conditions (5.1.13b).
This functional is evaluated by substitution of (5.1.15) into (5.1.16), and appli-
cation of the method of Laplace. The major contributions to the integral in

(5.1.16) are from neighbourhoods of a and B and from a neighbourhood of
x =0. From (5.1.8) it 1s found that

4
to = = a) V _ (5.1.17)
b(e)exp| —I(a)/ €] —b(B)exp[— 1 (B)/ €]
Thas result simplifies to:
= 1 expl/ (a)/€], if I (a)<<I(B),
| b
TE ] : -
=4\ /) —. - Q 5.1.18
=4\ o | TiE @ HIB<I@. 6L
] e .
g PR, i@ = 16

Thus, 1n the limit e—0, if we start outside an O (¢)-neighbourhood of the boun-
daries a and B, the expected exit time equals one of the constants given in

(5.1.18), depending on the magnitude of /(a) and I(B). Note that in the first
order asymptotics to u, and 7, the position of the starting point is of impor-
tance only if we start in O(e)-neighbourhoods of « and B.

Other asymptotic approaches to the type of problem we encountered in this
subsection can be found in de Groen [24], who used an eigenfunction expan-

sion method, in Jiang Furu [26], who used the two-scale method, and in
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1e nts vanish, lir
| 1n [25,59,60}.

in the pﬁ‘e 10US Secuon ES . on tr 3 mm

subsection we shall see th m f or multi- d
faCEOI g cms@s y EOE‘ a class of so-calles

dim 1en sional stocl asm system
sUC tmjemomes enter 0. | M‘SE we study the asymp
n be shown [19 55] that this solution 1s vals

. 1d oms 1de an
ochbourh D. We assume that 9D 1s smooth For points xeD near
BD We muoduce n —1 new coordinates along 0D, and the new coordinate

=|x —x’|, where x’ is the projection of x on 0D. Using the stretching
transformation

Z = €p (5.2.1)
we then obtain from (2.6a) the boundary layer equation
9% u,
dz°
with @ and b defined as

"LE(X f)

= 0, (5.2.2a)

n n

a(x’) =

a;(x V&€, bx') = —

bi(x")&;, (5.2.2b)
| = 1 j =1 '

where § denotes the outward normal on dD. Equation (5.2.2a) 1s solved with
the conditions (2.6b) and lim,_, , u; =c(. In the original vanable x we find:

us(x) ~ cog + (f(x’)—co)exp[“b(x’)lx---x’|/e], (5.2.3)

uniformly on D, where b(x")=2b(x")/a(x’). We intent to determune the
unknown constant ¢, from a varnational principle again. In general the back-
ward operator L, defined in (2.7) is nonself-adjoint. A factor g(x) 1s sought
such that gl . 1s self-adjoint. This requirement leads to the following expres-
sion.:

alogg Zaml

=V, 1,2,....n (5.2.4)
dX;

where a;; -1 denotes the inverse of the diffusion matrix (we assume that this

>



& Vector
12 fun cﬁon ¢ aS

v, = — == (5.2.5)

be resmcied to such systems. In
rotational independent of the value of €, We

a_lySlS in this subsecuon
order for the vector field V to be 1
assume 1n addition that

From (5.2.4), (5.2.5) and (5.2.6) it follows for g that

g(x) = exp[—ag(x)/€e + ¢1(x)], (5.2.7a)
with:
$o(x) = 8xk —L dx,. (5.2.7b)

The integrals 1n (5.2.7b) are functions of x that are independent of the path of
integration. The integrals equal zero at the point x(, which is chosen to coin-
cide with the position of the deterministic equilibrium. Using the relationship
(5.2.4) with the matrix a brought to the left side, we find that equation (2.6a)
multiplied by g can be written as the Euler equation

(5.2.8a)

(5.2.8b)

In these expressions we suppressed the subscript s of u for the reason of clar-

ity. Thus, the solution of the boundary value problem (2.6) corresponds to an
extremal of the functional

= [F dx, (5.2.9)
D

taken over functions u satisfying the boundary condition (2.6b). Expression
(3.2.3) for u, 1s substituted into the integral in (5.2.9), which subsequently is
evaluated for small € by the method of Laplace. To be definite, we assume
that the dnft vector and the diffusion matrix are such that the major contribu-

tions to this integral come from the boundary 9D. From (5.1.8) we then find:
L, S0b)4p) expl—gn(y)/e+ 1 (y)] dS,
fan(V)‘f(Y) expl —¢o(y)/ e+ ¢1(y)] ds,
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near € boun dar
there 1S a unig

lgure 2. Then (5 2. 11)

(5.2.12)

t e—>0 the exit density

pxy) = o(y —y7), (5.2.13)

that 1s, exit occurs with probability one at y~

¢p on dD i1s attained on a set larger than

the literature [41].

An asymptotic expression for the expected time of exit from a region, for

systems of the potential type considered above, can be derived as in Subsection
1. Thais 1s left as an exercise for the reader.

one it, the reader 1s referred to

oD

FIGURE 2. Contours on which ¢, attains a constant value.
higher for contours farther away from x,. The
on dD 1s attained at y~.

lowest value of ¢y

J.3. More general multi-dimensional systems

As we have seen 1n Section 5.2, the method to determine ¢y described in Sec-
tion 5.1 for one-dimensional stochastic systems is applicable to multi-
dimensional systems only if they are of a particular potential type. In the
present section we give a brief outline of the approach to more general multi-
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rmination of the
relationship between the backward operator (2.7) and the adjoint for-
ward operator (2.2). To this aim, we first construct a solution of the stationary
which assumes that this solution is of the form:

v(x) = w(x) exp[—Q(x)/¢€], (5.3.1a)

all e, where

ization. Substitution of (5.3.1a) into (2.1) with

The condition on w is a normal
the left side set equal to zero yields to leading order in e the eikonal equation

0 _, (5.3.2)

432 + b,

e
j .

- (5.3.3)

The functions Q and w are solutions of equations (5.3.2) and (5.3.3). The rela-
tion (2.11) 1s evaluated with the function v defined by (5.3.1), (5.3.2), (5.3.3)
and the expression (5.2.3) for . In the limit e—0 we obtain

f,of Db GYED) w(y) expl—Q(y)/e] S,
fwb(y)-{-(y) w(y) exp[—Q(y)/e] dS,

Following the argument of the previous subsection, we find that for small ¢ the
exit density p is peaked near the boundary point(s) with the lowest value of Q.
Thus, the role played by the potential ¢y in Section 5.2 is taken over here by
the function Q. The potential ¢, was expressed explicitly in terms of the drift
vector and the diffusion matrix by (5.2.7b). Except in some special cases, no
such explicit expression exists for Q. In practice this function is obtained
through numerical integration of the eikonal equation by the ray method [37].
Such an imntegration scheme may include the transport equation as well in
order to determine w. The method described in the present section is powerful
in the sense that it can be applied to a large class of problems in arbitrary
dimension. However, the asymptotics to the stationary forward equation (2.1)
are not (yet) supported by a solid mathematical background. The asymptotic
method described above is similar to an asymptotic method used frequently in
geometrical optics and diffraction theory. For the latter method a more or less
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kers [7,3 0]
Maslov [39], Maslov & !

d to exM prob—

dwig [37]

(5.3.5b)

(5.3.5¢)

1s the umque (by
) with the lowest
value of Q.

Now that we have ed expressaons for the expected exit tume for a
diffusion across the flow in Section 4 and for st the flow 1n Sec-

(] [usions agai
tion 5, 1t 18 mteresE ng to compare them in their dependence on the small
L1T] For the former type of dif

fusion this dependence 1s algebraic,
for the Eauer 1t 18 exponenh . Thus, these results express the quantitative
1§ n Stoc asuc stability between systems of each type where the
diffusions against the flow are the more stable ones (conform intuition, I hope).
In the stochastic systems under consideration the determu stic flow 1s
directed inward at the boundary of the domain. Other systems, in which the
determin: comcides with the boundary, have been

1stic ﬂow at the boundan
analyzed in [42] and [43]. In the first paper there are no critical points of the

deterministic syste located on this boundary, whereas in the second paper
there are.

In the present papcr we stud

led exit problems using formal asymptotic
methods. The same subject has been studied by Ventcel & Freidlin [17,58],
Friedman [18] and others from a probabilistic point of wview. Rigorous
mathematical methods have been used by Day [11,12], Evans & Ishu [15],
Kamin [27,28] and others.

[he stochastic systems that we considered have a continuous domain. In
chemistry, physics, biology and other areas one meets processes with a discon-
tinuous domain, for example birth or birth-death processes. For these
processes, asymptotic methods that resemble the method described in this sub-
section have been presented in [32,33,34,44].

61



6 SOME APPLICATIONS
models have a wide variety of appls

hem. There are appl wﬂons in p opulatlo geneucs see for exar ple Crow &
Kimura [10], who d + al popula-
tions by means of a -
corresponds to the fixation of a gene See also Maruyam
[20]. Another application in biology 1s the desc: of
chastic populatlons hl such applications, exit corresponds to exﬂncﬂon of a
species. b ples can be found 1n Richter-Dyn [21], Lu - [37], M
[45], N lsb et & Gurn e y [49] Roozen [51,5 2] gard en [5 4]

niibrium 1ally hk he diffusion across the flow mo dEE or the
ds usion ag nst the flow model that have been studied in this paper.
chastic domain can be chosen as the domain in which the system 1s kn
function properly. Exit corres nonds to a break down of the system. 1k
expected exit time is a measure for the reliability of the system. See for exam-
ple Grasman [22}, Katz & Schuss [29], Roozen [53]. For an application of an
exit model to the dynamics of the atmospheric circulation, see De Swart &
Grasman [57]. The expected exit times predict the lifetimes of alternative circu-
lation types. Other applications of exit models can be found in the hiterature.
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