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ABSTRACT 

Let Pn(x) and Qn(x) denote the Legendre polynomial of degree n and the usual second 
solution to the differential equation, respectively. Din showed that J1__ 1 Qn(x) P m(x) P1(x) dx vanishes when 
11-m I < n < l+m, and Askey evaluated the integral for arbitrary integral values of l, m and n. We extend 
this to the evaluation of J1__ 1 D~(x) Ci,(x) Cf(x) (l -x2) 2•- 1 dx, where C~(x) is the ultraspherical polynomial 
and D~(x) is the appropriate second solution to the ultraspherical differential equation. A q-extension is 
found using the continuous q-ultraspherical polynomials of Rogers. Again the integral vanishes when 
I l-m I < n < l + m. It is shown that this vanishing phenomenon holds for quite general orthogonal 
polynomials. A related integral of the product of three Bessel functions is also evaluated. 

1. Introduction 

Legendre polynomials Pn are orthogonal polynomials of degree non (-1, I) with 
constant weight function and with normalization Pn(l) = 1. Corresponding Legendre 
functions of the second kind Qn are defined on the cut (-1, I) by the principal value 
integral 

Qn(X) = ~ 11 p ~t; dt, L1x -1 < x < 1, (1.1) 

cf. [26, (4.9.12) and (4.62.9)]. 
In a very surprising paper Din [9] showed that 

[
1 
Qn(x)Pm(x)P1(x)dx = 0 (l.2) 

when I l-m I< n < l+m. Part of the surprise was the vanishing and part was the fact 
that such an attractive result did not seem to have been found before. Askey [3] 
evaluated (1.2) for general integers l, m and n. Besides the trivial result 

[
1 
Qn(x) P m(x) Pz(X) dx = 0 

when l+m+n is even, he showed that 

-f 1 Qz+m+i+21(x) P m(x) P1(x) dx = [ 1 Qm(x) Pz+m+i+2i(x) P1(x) dx 

ru+n ru+1+ 1) ru+m+ 1) ru+i+m+~) 
= 2ru+ 1)rU+1+uru+m+nru+1+m+2) 
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when j = 0, 1, 2, .... (The two integrals in (1.4) were not evaluated simultaneously 
in [3].) 

After preprints of an earlier version of the present paper were circulated, 
J. Boersma in Eindhoven wrote that (1.2)-(1.4) were known. The integral 

f 1 Qn(x) P m(x) P1(x) dx 

was written as a sum by Benthem [7], see Stelling VII attached to [7], and he showed 
that (1.2) holds. Boersma, in the spring of 1961, summed the series and so obtained 
(1.4). He did not publish this result, but showed it to the first author in the fall of 
1969. In the intervening time Askey forgot this. Boersma also called our attention to 
a paper of Shabde which contains the same series, see [22]. 

Formulas (1.2)-(1.4) should be compared with the classical result of Adams and 
Ferrers (cf. Hsii [15]) 

J1 ( )P ( ) ( )d O>s-zms-mWs-ns!2 
-1 Pn x m x Pix x = (s-/)!(s-m)!(s-n)!(!)s(2s+ 1) 

(1.5) 

and this is zero unless l+m+n = 2s is even and a triangle with sides/, m, n exists, 
that is, 11-m I ::; n::; I+m. Here the shifted factorial (a)" is defined by 

(ah= r(a+k)/r(a) = a(a+ 1) ... (a+k-1). 

The fact that the integral in (1.5) vanishes when the triangle condition 

II-ml~ n::; l+m 

(1.6) 

fails is a simple general property of orthogonal polynomials. Let Pn be the n-th 
degree orthogonal polynomial with respect to some positive measure dr:t. on IR. Then 

f~<XJ Pn(x) Pm(x) Pi(x) dr:t.(x) = 0 (1.7) 

if 11-m I::; n::; l+m fails. 
In §3 we shall give proofs of the vanishing in (1.3) and the equality of the two 

integrals in (1.4) in the framework of general orthogonal polynomials. In order to do 
that, we need the analogue of Qn for general orthogonal polynomials Pn· For 
convenience, assume that the orthogonality measure dr:x. has support within a finite 
interval [a, b] and that, on [a, b], 

da.(x) = w(x) dx, (1.8) 

with WE C1((a, b)) n L2([a, b]). Define a function of the second kind qn outside the cut 

by qn(z) = fb Pn(t) w(t) dt, z EC, z ~[a, b], (1.9) 
aZ-t 

and on the cut by 

qn(x) = limi(qn(x+iy)+qn(x-iy)) = fb Pn(t) w(t)dt, a< x <b. (l.10) 
y+o a x-t 

Note that qn on the cut is the finite Hilbert transform on (a, b) of the function wpn-

Let fb 
l(n, m, I) = a qn(x) Pm(x) p1(x) w(x) dx. (1.11) 
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We shall show in §3 that 

I(n, m, I)= -I(m, n, !) if l:::;; m+n. (1.12) 

For [ l-m I ~ n ~ l+m this implies that 

I(n, m, l) = 0 (1.13) 

(a nice complement to ( 1. 7) ), while the cases n > l + m and n < J l - m I of J(n, m, l) 
are related to each other by (1.12). Indeed, (l.12) holds if n > l+m, and we have 
n > I+ m if and only if m < I n -11 and n ~ I. 

In the case of Jacobi polynomials, that is, a= -1, b = 1, w(x) = (1-x)o:(l +x)P, 
Pn(x) = P;t·/f)(x), PnCl) = (oc+ I)n/n !, it is convenient to define functions of the second 
kind as second solutions of the Jacobi differential equation. Thus, outside the cut, one 
takes 

(1.14) 

with qn given by (1.9) (cf. Szego [26, (4.61.4)]). However, our above considerations 
show that Szego 's definition [26, ( 4.62.9)] 

Q':JJ)(x) = HQ~·.Bl(x+iO)+Q~·.Bl(x-iO)), 

is not the most appropriate choice for a Jacobi function of the second kind on the 
cut. We rather define 

Q':·.Bl(x) = l(l -x)-ix (l +x)-Pqn(x), -1 < x < 1, (1.15) 

with qn given by (1.10). Hence, Q~,,8) on the cut is expressed in terms of QC:·.Bl outside 
the cut by 

Q':·{f)(x) = i(eino:Q~·.Bl(x+iO)+e-i"o:Q~·.Bl(x-iO)), -1 < x < 1. (1.16) 

This function was introduced by Durand [12] and was dictated by the natural form 
of the Nicholson-type integral formula. Earlier, Durand [11] had used these functions 
when oc = [J. In this case the polynomials are called ultraspherical polynomials, and 
they are written in a different way. It is usual to take a= -1, b = 1, w(x) = (1-x2)'--1, 
Pn(x) = C~(x), Pn(l) = (2A.)n/n!, SO 

C'-(x) = (2l)n J>!l-l,;.-b(x) 
n (Jc+i)n n . 

( 1.17) 

For D~(x), the ultraspherical function of the second kind on the cut we follow 
Durand's convention 

where qn(x) is given by (1.10). 
Formula (1.7) now holds with the left-hand side replaced by 

[
1 
C~(x) C~(x) Cf(x) (l -x2);.-i dx, 

while (1.12) and (1.13) are, in particular, valid with 

(1.18) 

(1.19) 

J(n, m, l) = I;.(n, m, l) = [
1 
D~(x) Ci,(x) Cf(x)(l-x2) 2;.- 1dx, 2 > 0. (l.20) 
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For general l, m, n the integral (1.19) can be evaluated as a quotient of products of 
gamma functions, as was stated by Dougall [10] and proved by Hsii [15]. In § 2 we 
shall show that l;.(n, m, I) can be evaluated in a similar way. In particular, (1.12) and 
(1.13) in the ultraspherical case will be obtained in §2 by explicit computations. 

Two more degrees of freedom can be added and still have results that are simple 
enough to be useful. One is to replace D~(x)(I -x2)-'--i by D~(x)(l -x2)µ-i in (1.20) 

and consider the integral 

1µ,;.(n,m,l)= t
1 
D~(x)C;,.(x)Cf(x)(1-x2)A.+µ- 1dx, A.>max{-!, -µ}. (1.21) 

When I = 0 this integral can be evaluated in terms of gamma functions. In the 
general case it is a single sum. If one just expands the functions under the integral 
the resulting series would be a triple sum. Whenever there is a reduction in the number 
of sums in the evaluation of an integral there is usually something interesting 
happening. A reduction from a triple sum to a single sum is even more surprising, 
and in the case whenµ = A. the resulting sum can be evaluated as a quotient of gamma 
functions, and it vanishes when 11-m I ~ n ~ l + m. The remaining degree of freedom 
that can be added comes from replacing the ultraspherical polynomials by the 
continuous q-ultraspherical polynomials introduced by Rogers [20], and defining an 
appropriate function of the second kind. 

The integral (1.19) of Dougall arises from the linearization formula 
n+m 

C~(x) C~(x) = I: a(l, m, n) Cf(x) (1.22) 
!-In-ml 

via orthogonality. Surprisingly Rogers [20] had found the coefficients in the q-extension 
of (1.22) more than twenty years before Dougall [10] independently rediscovered the 
special case (1.22), in which q = I. This strongly suggests that (1.21) can be extended 
to the q case, and it can. 

Rather than carry out the same derivation twice, in §2 we shall give the details 
for the continuous q-ultraspherical polynomials, and then state the results for the 
limiting case of ultraspherical polynomials. By taking a further limit we shall obtain 
the Hermite polynomial case. In §3 (1.12) and (1.13) will be proved in general. This 
section can be read independently of §2. Finally, in §4, we shall first derive a formal 
limit case for Bessel functions of the evaluation of l;.(n, m, l) and next give an 
independent proof of this limit case. 

For the classical orthogonal polynomials there is a strong duality between them 
as functions of x and as functions of n. This was mentioned by Dougall and he gave 
a dual result to the evaluation of (1.19). There is also a dual series to the integral ( 1.20). 

This was treated by Rahman and Shah [17]. Further series were considered by Rahman 
and Shah [18] and van Haeringen [28]. 

2. Ultraspherical polynomials and their q-extensions 

Take a fixed parameter q, with I q I < 1. The q-binomial theorem is 

[ax]oo = ~ [aJn xn I xl < 1, 
[x]oo n-o [qJn ' 

where 00 

[aJoo = rr (1-aqn), 

and 
n-o 

(2.1) 

(2.2) 

(2.3) 
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We shall also use (2.3) when n < 0. There are many proofs of the q-binom.ial theorem 
(2.1). See Slater [23, §3.2.2] for a simple proof. Andrews has recently given a very 
interesting series of Regional Conference Lectures on q-series. These will be published 
by the American Mathematical Society. The reader should look at these lectures to 
get some idea why q-series extensions of classical results can be very important. 

The continuous q-ultraspherical polynomials are defined by the generating 

function [.8 un [8 -ilh oo 
re Joo re -Joo _ ~ ( ·p n 
[ i9] [ -i9] - ""' Cn x, I q) r , re 00 re 00 n-o 

(2.4) 

x = cos e. This is easily seen to be equivalent to the recurrence relation 

2x(1-pqn) Cn(x;PI q) = (1-qn+l)Cn+i(x;PI q)+(l-pqn-l)Cn_1(x;PI q). (2.5) 

The q-binomial theorem and (2.4) imply the explicit formula 

Cn(cosfJ;Plq) = i nknn-k cos(n-2k)fJ. 
k-o q k q n-k 

For ordinary ultraspherical polynomials we have 

11. _ ~ (A.)k (A.)n-k ( -2k) () 
Cn(cosfJ) - ""' k'( -k)' cos n , 

k-o · n · 

cf. Szego [26, (4.9.19)]. It follows from (2.6), (2.7) that 

lim Cn(x; q" I q) = Ci(x). 
q-+l 

Rogers [20] extended (2.6) to 

(2.6) 

(2.7) 

(2.8) 

. _ [in] k [.By-l]k IP.ln-i 1 -yqn-2k) . 
Cn(x,filq)- k~/ [q]k[qy]n-k(l-y) Cn-2k(x,ylq). (2.9) 

One special case of this is 

1 [tn] k[y-l]dqJn-k(l-qn)(l-yqn-2k) . 
Tn(x)=2k~/ [q]k[qy]n-il-qn-k)(l-y) Cn-2k(x,ylq), n = 1, 2, ... , 

since 
1. (1-qn) Cn(x;,BI q) = T. ( ) 
tm 2(l-p) n x, n = 1, 2, ... 

P-+ i 

with Tn (cos())= cosnfJ. 
When - 1 < ,B, q < 1 the orthogonality relation is 

with 

and 

[
1 

Cn(x;fil q) Cm(x;,BI q) wp(x)dx = ~m.n/hn 

oo [ 1-2(2x2-1) qk+q2k J 
wp(x) = wp(xl q) = (l-x2)--i k'f!-o 1 _ 2(2x2 - l),Bqk+pq2k 

hn = (1-pqn) [q]n [q]oo [.82]00 • 
2n( 1 - p) [.82]n [.B]oo [,Bq]oo 

It is easy to see that 
lim wq1 (x I q) = 22"(1-x2)1.-l, 
q-+ l 

compatible with (2.12) and (2.8). 

(2.10) 

(2.11) 

(2.12) 

(2.13) 

(2.14) 

(2.15) 
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See [4, 5, 6] for various proofs of the orthogonality (2.12). A direct proof of (2.10) 
using orthogonality is given in [5], and then (2.6) and (2.10) are combined to give (2.9). 
A proof of (2.9) by induction was given by Rogers [20]. 

Once the explicit orthogonality relation has been found, (2.9) can be inverted to 
obtain ro 

wp(x I q) Cn(x;,B I q) = L a(k, n) Cn+2k(x; y I q) wy(x I q), 
k-0 

(2.16) 

where 

a(k n) = ,8k[yp-1h [q]n+2k [82Jn [Yln+k(l -yqn+2k)[y2Joo fP1oo [Bq]oo IP I < I, 
' [q]k [y2]n+2k [q]n [Bq]n+k(l -y) [Y]ro [yq]oo [,82]00 ' 

cf. [5, (4.20)]. 
When y = q this gives, with 1,8 I < 1, 

00 

wp(cos81q)Cn(cos8;,Blq)=4 l: b(k,n;,B)sin(n+2k+1)8, (2.17) 
k-o 

where 
b(k n' ,8) =,Bk [q,B-l]k [,82Jn [q]n+k fP1ro [,BqJoo 

' ' [q]k [q]n [,Bq]n+k [82]ro [q]oo . 

Here we have used the fact that 

Wq (cos 8 I q) = (l -cos2 8)-! (l -2(2 cos2 8-1)+1) = 4 sin e. 

The limit case of (2.17) with ,B = q;. as q ~ l is 

( . 8)2J.-1c;.( 8) 2f(A.+i)(2A-)n ~ (1-A.)k(n+k)! . ( 2k 1)8 sm n cos = 1 "- sm n + + , 
f(A.+l)f(2)n! k-o k!(A.+l)n+k 

see [25; 26, (4.9.22)] for an independent derivation. 

(2.18) 

A.> 0, 

(2.19) 

We define the q-ultraspherical functions of the second kind, Dn(x;,81 q), by 
(l.10) with nw(x)Dn(x) = qn(x), that is, 

wp(xlq)Dn(x;,Blq)=n- 1f1 wp(ylq)Cn(y;,Blq) dy, -1<x<1. (2.20) 
-1 x-y 

It follows from (2.17), (2.20) and the properties of the Hilbert transform that the 
left-hand side of (2.20) can be expanded as the conjugate series of the one in (2.17): 

CJJ 

wp(cos81q)Dn(cos8;,Blq)=4 l: b(k,n;,B)cos(n+2k+l)B, I.BI< l. (2.21) 
k-0 

The formula for Di(x) (cf. (1.18)) corresponding to (2.21), is 

. e 2).-1 ). - 2f(A.+!) (2,1,)n 00 (1-A.h(n+k)! 
(sm) Dn(cos8)-f(A.+l)f(!)n!k~o k!(A.+l)n+k cos(n+2k+l)B, A.>0. 

(2.22) 

Formula (2.22) can also be obtained from [13, 3.5(3); 11, (7)]. It follows from (2.21) 
and (2.22) that 

Jim Dn(x;q;. I q) = Di(x), -1 < x < 1, A.> 0. (2.23) 
Q-+ 1 
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We are now in a position to state the integral that extends (l.21) and the Din-Askey 
integral (1.2), (1.4): 

Mv,p(n, m, II q) = [ 1 Dn(x; v I q) Cm(x;,81 q) Ci(x;,81 q) wp(x I q) wv(xl q)dx (2.24) 

when 1.81 < 1, I v I < 1. This integral vanishes when I+ m + n is even, since 

Cn(-x;p I q) = (- Ir Cn(x;,81 q), 

Dn(-x;,81 q) = (- l)n+i Dn(x;,81 q). 

(2.25) 

(2.26) 

The strategy for our evaluation of the integral in (2.24) is as follows. First evaluate 

(2.24) for I= 0, and consequently n+m odd, which will be written as 

lv,p(n, m) = [ 1 Dn(x; v I q) Cm(x;,81 q) wp(x I q) wv(x I q) dx (2.27) 

when I.BI < 1, Iv I< 1. This yields a single sum (a very well-poised 6<1>5), which can 
be summed. Next use Rogers's linearization formula 

min(m, !) 

Cm(x;,Blq)Ci(x;,Blq)= L a(k,l,m)C1+m-2k(x;,Blq), (2.28) 
k-o 

where 
a(k, [, m) = [q]l+m-2k [.B]k f.Bh-k [.B]m-k [.82h+m-k(l -,8ql+m- 2k). 

[.82]z+m-2k [q]k [q]l-k [qJm-k [,Bq]l+m-k(l -,8) 

Proofs are given in [8, 20]. Substitution of (2.28) into (2.24) and application of the 

evaluation of (2.27) will again yield a single sum, which can be simplified to a 4<1>3 

and which becomes trivial if v = p. 
The basic hypergeometric series p+i<l>p is defined by 

"" [a0, •• ., aP. J _ ~ [ao]n .. · [ap]n n 
p+1""'p 'q, x - ~ x . 

h1,. . ., bp n-o [q]n [b1Jn ··· [bp]n 
(2.29) 

It is well poised if a0 q = a1 b1 = ... = aP b P' and very well poised if a 1 = qb1, a2 = - a1. 
Use (2.21) to get 

00 fl lv,p(n, m) = 4 k~o b(k, n; v) _
1 

Tn+2k+1(x) Cm(x;,B I q) wp(x I q) dx. (2.30) 

Now use (2.10) to replace Tn+ 2k+i(x) by a sum of Cj(x;,Blq), and then use the 

orthogonality relation (2.12). The result of this is 

I p( ) = 4 [v] 00 [vq]oo [.B]oo [.Bq]oo. [v2Jn [.82]m 
v, n, m n [q]2.:, [v2Joo [.82]00 [vq]n [q]m 

. (1-qn+l)[,B-l]!<n-m+l) [q~(n+m+l) [f,<n-m+l) 
[q]!<n-m+l) [,BqJi(n+m+I) (I -q!<n+m+l)) 

00 [qn+IMI-qn+I+2k)[ql<n+m+l)]k[q/vh[.8-lq!<n-m+l)]k V k 

· k~o [qMI-qn+1)[qt<n-m+a>]dvqn+1]k [,Bq!<n+m+a>]k ( fl) · 

This series can be summed by a result of Jackson [16] which sums the very well-poised 

6<1>5 (see also [23, (3.3.l.3)]): 

~ [aMl -aq2k)[bh [eh [d]k (!!:!!_)k _ [aq] 00 [aq/be] 00 [aq/bd] 00 [aq/edJ 00 

k-o [qMl -a)[aq/b]daq/e]k [aq/d]k bed - [aq/b] 00 [aq/clxi [aq/d] 00 [aq/ bed] 00 • 
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As Jackson remarked [16, p. 104] Rogers found this formula in 1894. The result is 

l p( ) = 4 [v]~ rPJoo [,Bq]oo [ v2Jn LB2Jm. [,8-1hcn-m+l) [q]icn+m-1) pl<n-m+l) (2.3 l) 
v, n, m TT. [v2]00 [,82] 00 [q]~ [q]n [q]m [vJtcn-m+i) [,8vJtcn+m+1) . 

Observe that 
lv,ln, m) = -lp,v(m, n). (2.32) 

Use of (2.28) and (2.31) in (2.24) leads to 

M ..I I I ) 4 [ V ]~ [,8J oo [,Bq loo [ v2Jn [,8Jz IP.Im 
v,fJ\n, m, q = TT. [q]~ [v2]00 LB2loo [q]n [q]i [q]m 

. [,82Jz+m [,8-1hcn+1-l-m) [qJtcn+m+!-1) pl<n+H-m) 
(,8Jz+m [vJtcn+H-m) [,Bv]j(n+m+!+i) 

min (!, m) [,8-lq-l-m],, (1-p-1q2k-!-m) [q-l]k [q-m]k (p- lqi(n+H-m)]k 
. k~O [q]k (l -p-1q-l-m) [q1-mp-1]k [q1-zp-1]k [(/l<H-m-n>]k 

(2.33) 

Certain expressions may become indeterminate as 0/0. These are interpreted by 
treating one of the parameters /, m or n as a continuous parameter and taking a limit 
as it approaches an integer. 

The series is a very well-poised 8<1>7, and so can be transformed to a balanced 4<1>3 

series by Watson's transformation [29, 23, 1]. Transforming the 4<1>3 series by Sears's 
formula [21, (8.3)1, also see [6, (1.28)], and simplifying the coefficients we finally obtain 
(assume m ~ I without loss of generality) 

M p(n m 11q)=4n [vloo [vq]oo rP1oo [pq]oo [v2Jn [,82]1 LB2lm 
v, ' ' [v2loo LB21oo [q]oo [qloo [q]n [q]i [qlm 

[vl [ ] rn-11 °*<n-m-l+l) . l<n+m+Z+l) q !<n+m-l-1) II' l<n-m-!+l) W 
[,8vJicn+m+z+i) [ vqJi<n+m-!-1) [ vllcn-m+!+i) 

l [q-ll [ -m] ri:n rR -11 k . l:; [ ...l(n-m-l+2k+l)] k q k ll'lk ll'V k q (2 34) 
k-o 11• l-k [v-1(/l<-n-m-l+l)]k [,82]k [qlk · · 

In the special case when v = p the series is equal to [ql<n-m-z+l)]1, and so we have, 
with m ~ /, n+m+I odd, 

M (n m 11 q) = 4n [,BJ~ [,Bql~ LB2ln LB2l1 LB21m IP.licn+m+1+1) 
p,p ' ' [,82]~ [ql~ [qln [q]z [q]m LB2lt<n+m+l+l) 

. [qJtcn+m-!-1) [,8-lh<n-m-l+i) [ql<n-m-l+l]z!Jl<n-m-l+l) 

[pqJtcn+m-1-1) rP11cn-m+z+1) 
From (2.35) we conclude that 

(2.35) 

M ..1 II )-(-Mp,pf_m,n,llq) 
p,fJ\n, m, q -1 0 

if n > l+m, m ~ !, l+m+n odd, (2.36) 

ifO ~ m-1 < n < m+l. (2.37) 

Thus we have a complete evaluation of Mp,pf_n, m, II q), and (1.12) and (1.13) are valid 
for the q-ultraspherical polynomials. It follows from (1.21), (2.8), (2.15), (2.23), (2.24) 
that 

Iµ,;.(n, m, /) = 2- 2;.- 2µ lim Mrt,i(n, m, II q). 
q--+ 1 

(2.38) 



PRODUCTS OF ULTRASPHERICAL FUNCTIONS 141 

To find this limit replace v, P by qµ, cl in (2.34) and rewrite it using the q-gamma 
function [27, 2] 

r (x) = [q]oo (1- )1-x 
q [qZJoo q , lim r q(x) = r(x). 

q-> 1 

Thus (m ~I, n+l+m is odd) 

I ( m l) = r(µ +!) r(A. +!)(2µ)n (2A)z(2A.)m 
µ,;. n, ' r(µ+ 1) f(A.+ l)n!/!m! 

. (µ)!<n+m+l+l) (!(n+m-/-1)! (-A.)j(n-m-1+1) 

(A.+µ)lcn+m+z+1) (µ+ l)t(n+m-1-1) (µ)lcn-m+z+1) 

(2.39) 

. ± (i(n-m-1+ l)+k)1-k(-l)k(-m)k(A.)k(A.-µ)k (2.40) 
k-o (-µ-i(n+m+l- l)i2A.hk! 

I ( /) = [r(A.+i)]2 (2A.)n (2A.}z(2A.)m 
A. n, m, [r(A.+ 1)]2n!/!m! 

. (A.)j(n+m+z+i) (i(n+m-/-1))! (-A.)l<n-m-1+1) (!(n-m-l+ 1))1 

(2A.)1cn+m+l+1) (A.+ l)i<n+m-l-1) (.-1.)icn-m+z+1) 
(2.41) 

From (2.41) we see that (1.12), (1.13) hold in this case. Also note that (2.41) reduces 
to Askey's formula (1.4) when we set .-1. = t· (Recall that Dt(x) = 2n-1Qn(x).) 

A further limit can be taken to obtain a result for Hermite polynomials. Define 
the Hermite polynomials and Hermite functions of the second kind by 

Hn(x) = (2x)n 2Fo(-in, i(l-n); - ; -x-2) 

2-n ni Gn(x) =-sin (nin) r(!(n+ l))1£i( -in; i;x2) 

(2.42) 

+ 2x cos (n!n) r(l(n+ 2))1Fi.Ci(l -n); t; x2), (2.43) 

see [26, (5.5.4); 11, (47)]. The limits needed are [11, (51)] 

Hn(x) = n! lim ;.-inc~(xA.-!), 
A. ... 00 

Gn(x) = n! lim ,t-inD~(xA.-i). (2.44) 
). ... 00 

Using these limits in (2.41) gives 

(2.45) 

when l+m+n is even or when lm-/1 < n < m+l, and 

J:
00 

Gm+l+i+2k(x) Hm(x) Hi(X) e-2x 2dx 

= - f:
00 

Gm(x)Hm+l+i+2ix)H1(x)e-2x2dx 

=(-l)k+l2k+l+m(k+l)m(k+l)!, k=O, 1, .... (2.46) 
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3. General orthogonal polynomials 

Let {pn(x)} be a set of polynomials orthogonal with respect to a positive measure 
da(x) on the real line having support within a finite interval [a, b]. Define a function 

of the second kind by 
qn(z) = fb Pn(t) da(t), z ~[a, b]. (3.1) 

a z-t 
Then, by using 

l I ( t tn-i) in 1 
-=- l+-+ ... +- +---, 
z-t z z zn-1 zn+It-t/z 

we obtain 
I fb Pn(t) tn 

qn(z) = zn+1 a 1- t/z da(t). 

Hence qn(z) = O(lzl-n-l) (3.2) 

uniformly as I z I -+ oo. Consider 

en, m, z = f c qn(z) qm(z) Pz(Z) dz, (3.3) 

where C is a simple closed curve containing the interval [a, b] in the inside and 
integration on C is in the counterclockwise direction. Blowing up the contour and 
using (3.2) gives 

en,m,l = 0 if l ~ m+n. (3.4) 

Now make the further assumption that drx(t) = w(t)dt, where wELP([a, b]), for 

some p, with 1 < p < oo. Then, for xE IR, 

lim qn(x+iy) = qn(x+iO), lim qn(x-iy) = qn(x-iO), 
y-+ o+ y-+ o+ 

in the LP sense, where qn( · +iO) and qn( · -iO) are in LP(IR) and 

a< x < b, (3.5) 

if the right-hand side is continuous at x. The right-hand side of(3.5) should be replaced 
by the average of the right- and left-hand limits when the function has a simple jump 
at x, and 

qn(x+iO)-qn(x-iO) = 0, when x <a or x >b. 
For 

. . ·fb p (t)w(t)edt 
qn(x+1e)-qn(x-1e) = -2z t )2 2 

a x-t +e 

and the above conclusions are well known. 
Define a function qn(x) of the second kind on the cut (a, b) by 

qn(X) = i[qn(x+iO)+qn(x-iO)]. (3.6) 

Since qn(x) E LP, we assume that p = 2 so that qn(x) qm(x) will be integrable. 
Contracting the contour e in (3.3) to the cut [a, b] gives 

en,m,z = J: [qn(x-iO)qm(x-i0)-qn(x+iO)qm(x+iO)]p1(x)dx. 

Hence, by using (3.5) and (3.6) we obtain 

en, m,l = 2ni J: [qn(x)pm(X) +qm(x)pn(x)]pz(x) w(x) dx. (3. 7) 
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It follows that 

l(n, m, !) = I: qn(x) Pm(x) Pi(x) w(x) dx = 4~i [Cn, m, 1 + Cn, t, m -Cz, m, nJ. (3.8) 

Hence, because of (3.4), we obtain the following. 

THEOREM. Let w be a square integrable weight function on (a, b ), let p 0 , p1, p 2, ••• 

be the corresponding orthogonal polynomials and let qn be defined on (a, b) by (3.6), (3.1). 
Let In, m, l be defined by (1.11). Then (l.12) and (1.13) are valid. 

Note that (1.13) implies, by orthogonality, that 

qn(x) Pm(x)- qm(x) Pn(x) 

is a polynomial of degree at most In - m I - 1 in x. 
A slight extension of (3.7) and (3.4) is 

f: [qn(x; W1)Pm(x; W2) w2(x)+ qm(x; w2)Pn(x; w1) w1(x)] x 1dx = 0 (3.9) 

when I~ m + n, w1 E LP([a, b]), w2 E Lq([a, b]), p-1 + q-1 ~ 1. The proof is the same. 
The case I = 0 of (3.9) explains (2.32). 

Formula (3.9) implies that 

f: qn(x; w1) Pm(x; w2) pz(x; W1) w2(x) dx = - f: qm(x; w2) Pn(x; w1) p1(x; w1) w1(x) dx 

(3.10) 

when I~ m+n and w1, w2, p, q are as before. Combination of (3.10) and (2.34) makes 
it possible to evaluate 

[
1 

Dn(x; v I q) Cm(x;PI q) Cz(x; v I q) wv(x; q) wp(x;q)dx = -Mpjm, n, /I q) 

ifl~m+n. (3.11) 

The theorem also holds for the Jacobi weight function Wa:,p(x) = (1-x)a: (I +x)P, 
a, fJ > -l Formula (3.10) holds for the Jacobi weight functions w1 = wa:,/J• w2 = wy,o• 
a+y > -1, fJ+<5 > -1. However, explicit evaluation of these integrals in the 
non-vanishing cases remains open. 

4. Bessel function integrals 

In one of the early treatments of the linearization problem for ultraspherical 
polynomials Hsii [15] showed how to go from the integral 

f 
1 
C~(x) C1n(x) Cf(x) (l-x2)A-t dx 

to the corresponding integral of Bessel functions: 

f ~ Jv(at) Jv(bt) Jv(ct) t1-vdt 

= {~v-1L\v-t(abc)-v 
vnT(v+U 

if a, b, c are not sides of a triangle, 

if a, b, c are sides of a triangle of area M. 
(4.1) 
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Here Rev> -§and 

Li= fs[(h+c)2 -a2] [a2 -(b-c)2]. (4.2) 

See [30, p. 411] for another derivation of this result of Sonine. 
Hsii used the limit formulas 

lim n1- 2J. c~ (i -4) = n! 2i-J. y!<1-2l)J;.-j(y!) 
n-+ a:> 2n r(.~.) 

(4.3) 

(cf. [26, (8.1.1)]), 
( ( y )2).l.-i nl~a:i n2.l.-i 1- 1-2n2 = y.<-!, (4.4) 

where ye(O, co). If one applies (4.3) and (4.4) to the orthogonality relations for the 
polynomials C~, with A. = v+§, one formally obtains 

Ja:i J.((ay)i) Jv((by)!) y•dy = 4b-•<J(a-b) 
0 (ay)l• (by)i• ' 

a,b >0, (4.5) 

which is a symbolic way of writing the inversion formula for the Hankel transform, 
cf. for instance [30, § 14.4]. Thus the functions p~ (a > 0), defined by 

t > 0, (4.6) 

form a generalized orthogonal system on (0, oo) with respect to the measure t•dt. We 
deliberately wrote the Bessel functions in the unusual form (4.6) in order to preserve 
the full analogy with the orthogonal polynomial case. 

In a similar way as Hsii derived (4.1) we can obtain a Bessel function limit case 
of (2.40), (2.41) by using (4.3), (4.4) and 

Jim n1- 2.i. D~ (1-4) = -~ 2!-.< yH.l. Y.i.-i(yi) 
n-+ a:> 2n r(A.) 

(4.7) 

(cf. [19, Chapter V, (55); 11, (41)] for (4.7)). First we shall indicate how the function 
Y. is conceptually related to (4.6). It follows from [30, 13.6(2), 3.7(8)] that 

n-iJa:i J.((at)i) t•dt = -im1>((az)i) z• = •(z) 
0 (at)l• z-t (az)t• qa ' 

-1 < v <I, 0 < argz < 2n, a> 0, (4.8) 

where the last equality defines the function q~, analogous to (1.9). Here and in the 
following it is good to keep in mind the asymptotic expansions as I z I -+ oo : 

Jv(z) = e-V1!i J.(ze1ti) 

= (2/n)!z-! cos(z-§vn-ln)(l +O(lzl- 1)), -n < argz < n, (4.9) 

Y.(z) = (2/n)lz-! sin(z-§vn-!n)(l +O(jzj- 1)), -n < argz < n, (4.10) 

m1>(z) =(2/n)tz-lei<z-lv7t-!7tl(l+O(lzl- 1)), -n < argz < 2n, (4.11) 

cf. [30, 7.2(1), 7.21(1), (2)], while, as lzl-+0, J.(z) is O(jzj•), Y.(z) and Hi1>(z) are 
O(jzj-1•1) (or O(logjzj- 1) if v = 0). We shall repeatedly make silent use of these 
asymptotic formulas in justifying convergence and deformation of integrals. 
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From (4.8), (4.6) and [30, 3.61(3), 3.7(8)] we derive the following equalities, the 
first one being a definition: 

q~(x) = limi(q~(x+iy)+q~(x-iy)) 
y,),O 

Yv((ax)l) 1 foo ( ) tv dt 
= (ax)tv xv=~ 0 p~tx-t' XE(O,oo),-l<v<~,a>O. (4.12) 

This is analogous to (1.10). Both ( 4.12) and ( 4. 7) indicate that the correct analogue 
of (1.21) is 

J~ q~(x) Pb(x) p~(x) xvdx 

or, equivalently, 

l'[j', v (a, b, c) = J~ Yµ(ax) lv(bx) J/cx) xµ+i dx, ( 4.13) 

which converges if a -:I I b ± c I, µ < l and v > -1 +max {0, -µ}. The analogues of 
(2.19) and (2.22), 

pv •(x2) (x2)v = (t2 - a 2)-v-! sin (tx) dt 2v+1 Jro 
a r(!-v)ni a ' 

(4.14) 

2v+1 Joo 
q~•(x2) = - 1 (t2 -a2)-v-!cos(tx)dt 

r(!-v)n• a 
(4.15) 

( cf. [30, 6.13(3), ( 4))), are valid for -! < v < l-
In the rest of this section we shall first show that, for -l < v < !, 

l~v(a, b, c) = 0 if lb-cl< a< b+c, (4.16) 

l~v(a, b, c) = -l~v(b, a, c) if c < a+b, (4.17) 

byamethodanalogousto§3.Nextweshallevaluate(4.13)withµ = vforalla, b, c > 0 
by considering it as a (formal) limit of (l.20) and then using (2.41). Since this proof 
is not rigorous we shall end with a proof completely in terms of Bessel functions. 

As suggested by (3.3), consider 

I c q~(z) qt(z)p~(z) dz 

over a contour C from -ir;+oo to i17+00 in the complex plane with cut [O, oo). 
Equivalently consider 

fy+oo 

. H<~> (az)H~1>(bz)Jv(cz)zv+ 1 dz = 0, 
y-oo 

y > 0, v < l, c < a+b, (4.18) 

where the vanishing follows by letting y--+- oo, with use of (4.9), (4.11). Now Jet y ~O 

in (4.18). Then, for -! < v < l, c < a+b, 

0 =I~ m1>(ax)H~1>(bx)Jv(cx)xv+ 1 dx-J~ H~2>(ax)H~2>(bx)Jv(cx)xV+1dx 

= 2i I~ (Jv(ax) Yv(bx)+J.(bx) Yv(ax))J/cx)x•+idx. 

This is (4.17). By cyclic permutation and by choice of a suitable linear combination, 
as in (3.8), we now arrive at (4.16). 
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Next we shall take a limit of the integral (1.21), with n+m+l odd, written in the 
form 

Iµ,in, m, I)= 2 f :2 D~(l -iJl2) Cii(l -iJ.'2) Ct{l -ty2) (l -(l -ty2) 2);.+µ-i ydy. (4.19) 

Fix natural numbersp1,p2,p3, q, put a= (2p1 -l)/q, b = (2p2 - l)/q, c = (2pa- I)/q, 
let N run through the set q, 3q, Sq, ... and make in (4.19) the substitutions n =Na, 
m =Nb, I= Ne, y = N-1 x. Then (4.19) becomes 

N3-2;. Iµ,;.(aN, bN, cN) = 2N3-4;.- 2µ 

· f~V2 D~N(1- 2~) CiN(l- 2~) C~N( 1-;~) 
( 

x2 );.+µ-1 
. 1-4N2 x2l+2µ-1 dx. (4.20) 

Write the integral on the right-hand side of ( 4.20) as an integral over (0, oo) with the 
integrand vanishing for x > N y'2, let N-+ oo and suppose that we may interchange 
limit and integration. Then, by use of (4.3), (4.7) we should obtain 

lim N3-2J.. Iµ, ;.(aN, bN, cN) = 
N-oo 

with (a, b, c) in a dense subset of IR+ x IR+ x IR+ as specified earlier. An application of 
Stirling's formula to (2.41) easily evaluates the left-hand side of ( 4.21) in the case when 
µ=A.. Finally, by continuity ofboth sides of(4.2l)ina, b, c, we arrive at (4.16), (4.17) 
together with 

00 _ (abc)V . 
lv,.(a, b, c) - 2v+ir(i-v)nl(-~y+l 1f a> b+c. (4.22) 

Observe that (4.21) is not the (formal) limit of the full integral (1.20) but rather 
of the analogous integral associated with Jacobi polynomials and Jacobi functions of 
the second kind of order (A.-i, i), (µ-i, i), respectively, obtained from the ultra­
spherical case by quadratic transformation, just as ( 4.1) is a limit of the linearization 
formula for Jacobi polynomials .P<,t-!.-l>(x), rather than for ultraspherical 
polynomials. 

We now tum to a direct proof of (4.22). Our starting point is the integral [30, 
13.46(6)] 

Joo ie-µiri aµ ! 
0 

Kµ(at)lv(bt)lv(ct)tµ+ldt = - (2n)l (bct+i (%2-1)-W-!Q~~!(X), (4.23) 

where X = (a2 +b2 +c2)/2bc; b, c > O; Rea> O; v > -1 +max{O, -µ}.Here Q~~j is 
defined as in [13, 3.2(5)]. In Watson's formula [30, 13.46(6)], Barnes's notation for 
Q~~j is used, cf. [30, §5.71, p. 156; 13, §3.16]. It is interesting to note that Watson's 
evaluation of (4.23) is completely analogous to our derivation of (2.34). First the case 
c = 0 of (4.23) is derived, that is, 

J~ Kµ(at) lv(bt) tµ+v+ldt, 

which becomes a 21\ that can be elementarily evaluated, and next the left-hand side 
of (4.23) is written as an integral of the above expressions by writing lv(bt)Jv(ct) in 
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(4.23) as an integral over d offunctions Jv(dt) (Hankel inversion of (4.1) and analogue 
of (2.28)). Substitution of [30, 3.7(8)] and change of a into ae-ii11: in (4.23) yields that 

f co 21 e-2µni aµ 

0 
flil)(at)Jv(bt)Jv(ct)tµ+ldt = nl (bc')!Hl (..¥2-1)-iµ-tQe_:l:t(X), (4.24) 

where X = (-a2 +b2 +c2)/2bc; b, c > 0, Ima> O; v > -1 +max{O, -µ}.If, more­
over,µ< l then (4.24) remains valid for a, b, c > 0, a# lb±cl. (Use (4.9), (4.11).) 
By (30, 3.6(1)] and (4.13) we see that I~ vis the imaginary part of the left-hand side 
of (4.24). Thus/~ v can be expressed in terms of Legendre functions, where one has 
to distinguish between the cases X > 1, - 1 < X < 1 and X < - 1, corresponding, 
respectively, to a< lb-cl, lb-cl< a< b+c and a> b+c. We leave the explicit 
computations to the reader (see also (14, §3]) and specialize now to the case in which 
µ=v. 

By [13, 3.2(37)] we get 
l 

Q~:'.:i(z) = ei(v+f)11: 2v-! r(v+ i) (z2 -1 )-iv-!, 

and ( 4.2) gives 

It follows from (4.24), (4.25), (4.26) that 

zfj;(-oo,1], (4.25) 

(4.26) 

f~ H!}l(at)Jv(bt)Jv(ct) tv+i dt = -2-v- 1 ie-vni n-i r(v+})(abc)"(-L\)-v-! (4.27) 

if b, c > 0, Im a > 0, v > -l If, moreover, v < }, then we may take the limit in ( 4.27) 
for a approaching positive real values. If 0 <a< lb-cl then (4.27), with 
-! < v < i, remains unchanged. Finally, if we take imaginary parts in (4.27), we 
obtain (abc)V 

l~v(a,b,c)= 2v+lr(!-v)nt(-~)v+l ifO<a<lb-cl. (4.28) 

Formulas (4.22) and (4.16) follow in a similar way, but (4.28) is sufficient, since we 
already had proved (4.16), (4.17) in a different way. 

It would be interesting to treat (4.13) by Abel summability to see if the convergence 
condition at infinity (Reµ < U can be removed. Probably it can be removed. For the 
integral ( 4.1 ), Szego (24] treated the Gibbs phenomena. This should be done for ( 4.13). 

In an earlier version of this paper we derived (4.28), (4.22), (4.16) by starting with 
a formula expressing the product Kv(z) Kv(w) as an integral of a single function Kv. 
From this we derived a similar integral representation for mi>(x) H~2>(y). The result 
then followed by taking imaginary parts and applying Hankel inversion. 

Acknowledgment. We are indebted to J. Boersma, who very carefully read an 
earlier version of our manuscript and suggested the formal evaluation of l~v(a, b, c) 
by use of the limit formula (4.21) and the rigorous evaluation starting with (4.23). 
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