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We present a short introduction to complexity theory and the fundamental
questions on complexity classes, like P=NP, NP =co — NP, etc. We discuss
the link between these questions and the problem of propositional inferencing,
and illustrate their impact on Artificial Intelliigence.

1. TRIUMPH AND DEFEAT

The area of symbolic computation includes a number of different subjects. At
the same time symbolic computation can be used as a stage to illustrate the
current developments of complexity theory. We clearly observe here the
difference in speed and extent to which progress occurs in science. On the one
hand we witness the major breakthroughs in the field of polynomial arithmetic,
where due to the discovery of the Lovasz Lattice Reduction Algorithm the
complexity of polynomial arithmetic has been brought down from exponential
to polynomial level. At the same time we are also faced with the discouraging
state of affairs that our knowledge on the subject of the complexity of proposi-
tional inferencing is about as poor as about twenty years ago. We don’t know
whether it is reasonable to assume that an inference engine, even if 1t is just
faced with the simple job of performing propositional inferences, will be capa-
ble of performing such inferences within a reasonable amount of time. As 1t
turns out we even are ignorant with respect to the question of whether there
exist any short proofs the inference engine should be looking for, either in the
logical formalism for which it is designed or in any formalsm at all. The two
problems above, in fact, are nothing but incarnations of the two notorious
open questions in elementary complexity theory: the P= NP? and the
NP =co —NP? problems.

The two complexity theory problems above have been among us now for
about 18 years; their interpretation in the terminology of propositional infer-
ence has been understood as such for long. Still, the fact that these problems
still are unsolved does not imply that there has been no progress on this sub-
ject in the context of inferencing. Quite to the contrary the theory has yielded
a number of results along two marching roads for attacking the problems:
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establishing the insufficiency of proposed inference methods and providing
short proofs for hard propositional formulas.

[he present paper is inspired by the recent appearance of one more result in
the latter area. In [1] SAMUEL R. Buss shows that a set of propositional formu-
las which expresses the truth of the well-known pigeon-hole principle can be
proven using short proofs in a standard Hilbert-like proof system. Rather than
explaining how this result was proved, I would like to use the opportunity of
being invited to contribute to the special issue of the CWI-quarterly on sym-
bolic computation to explain what this result is about and what it has to say to
those researchers who should worry the most on the complexity aspects of
inferencing, but who in practice seem to care least about it: the designers of Al
systems.

This paper is organized as follows. I will present a short introduction to
complexity theory and to the fundamental problems on complexity classes like
P.NP, and co —NP. Next I will explain the link between these fundamental
questions and the unknown complexity status of the problem of propositiona;
inferencing. The paper concludes by indicating some recent results on the com-
plexity of inferencing and their impact on Artificial Intelligence in general and
for the viability of the well-known resolution proof strategies wi ich are highly
popular among Al researchers in particular.

2. WHAT CONSTITUTES COMPLEXITY THEORY

In order to explain what the two fundamental problems in complexity theory
mentioned above involve I must first explain how complexity theory is brought
about. This theory deals with the complexity of computations based on some
machine model. So we first should select our favourite model of a (sequential)
machine, like the Turing Machine or RAM. Subsequently we select our natural
time/space measures, say atomic steps of the Turing machine as a measure for
time and tape squares used during the computation as a measure for space. In
order to have these machines do something useful we must make it possible for
them to solve problems; therefore we must invent some natural method of
encoding problems using a finite alphabet, and using for example binary nota-
tion of numbers and so on. We must explain what it means for some machine
to solve a problem. Having done so we stipulate a basic assumption, based on
the collective experience of the programmers of this world, which was for the
first time stated explicitly by EDMONDs [3]: All that we can hope to achieve In
Practice is solving problems which are good. In this assumption the word good
is explained by the following definition:

Problem X is good if there exists a deterministic algorithm M and a constant k
such that M solves any instance x of X in time <k. x|¥, where |x| denotes the
length of the encoding of x.

Solving a problem can mean providing a yes/no answer (decision problem),
evaluating a function (functional problem) or finding a proof (theorem prov-
Ing), etc... .

We have now achieved the point where we can introduce the protagomst in
the tragedy of complexity theory: P denotes the class of decision problems
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in the above sense.
introduction of the antagonist in our tragedy requires the concept of a
mputation. This concept is far less intuitive than the con-
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rmine that the certificate y 1s not a good wi

nstance x , O ﬁﬁ

nstance x is solvable then there exists a certificate y which
if the instance x i1s not solvable then al

rminism is quite unnatural I explamn :

of factorizing an integer n. Ou

ouessing a trial divisor d and

rime number there

hine may guess as a certificate of

the fact that n is composite. But if the number 7 1s prime then no proper divi-
the trial division will fail whatever d 1s proposed.

Now it is crucial to observe that although the deterministic subcomputation,
i.e.. the trial division, can be performed by a good (polynomial time bounded)
algorithm we have no deterministic good algorithm for solving the factoriza-
tion problem. This problem represents the main irritating open problem of ele-
mentary number theory (it was already recognized as a problem by Gauss).
The above nondeterministic algorithm is however good in the sense that it con-
sumes polynomial time.

This brings us to the next definition: NP denotes the class of decision prob-
lems X for which there exists a nondeterministic solution which runs i poly-
nomial time. A consequence of this definition is that for a problem in NP the
certificate y which establishes the solvability of a solvable instance x must have
length which is polynomially bounded by |x|. Otherwise the machine will not
be able to see the whole certificate during its deterministic subcomputation.

The classes P and NP belong to a much larger hierarchy of fundamental
complexity classes:

LOGSPACECNLOGSPACECPCNPC

but the other classes in this hierarchy are not relevant for our present paper.



At this point I must explain something which should have bothered the

I-trained, mathematical reader. I start with the selection of some machine
model with. complexity measures and next I define the property of an algo-

hm of being good in terms of the running time of algorithms on such
machines. Consequently everything defined so far 1s machine model dependent.
It turns out, however, that the above hierarchy of fundamental complexity
classes is machine independent, provided the right choices have been made n
selecting your machine model, complexny measures and encoding. This 1s
consequence of the so-called invariance thesis which states that all reasonable
models of sequential computation simulate each other with polynomually
bounded overhead in time and constant factor overhead in space. The stan-
dard models which are used in complexity theory obey this thesis, at least if
they are presented with sufficient care; for more detail

s on this question [ refer
to my chapter in the forthcomming handbook of theoretical computer science
[11].

What i1s more relevant for our present considerations is the fact that all
inclusions represent an unsolved problem: Is the inclusion pmper or not? So 1n
particular we face the problem of whether » = NP? or not. We do know how-
ever that somewhere in the hierarchy proper inclusions must occur since
Ps=EXPTIME and LOGSPACE #=PSPACE.

[here exists a third role in our tragedy which so-far has not been intro-
duced: the class co —NP. Let me just state for the moment that this class con-
sists of all set-theoretical complements of sets in NP; a set belongs to co —NP
in case there exists a good nondeterministic algorithm which decides that ele-
ments x don’t belong to the language. For example, the trnial division algo-

rithm for detecting nondeterministically composite numbers illustrates the fact

that the set of prime numbers belongs to co —NP.

As an aside I can mention at this point that there exists also a nondeter-
ministic algorithm based on certificates for primality of polynomial bounded
length; this algorithm establishes that the set of primes belongs to NP (and
consequently that the set of composite numbers belongs to co —NP). The
required polynomal estimate on the length of these primality certificates was

given by PRATT [10]. The set of prime numbers therefore 1s a member of
NP Nco —NP.

3. PROPOSITIONAL LOGIC

Next we will indicate the connection between the above fundamental problems
on complexity classes and propositional logic. I first give a short description of
propositional logic.

The traditional language of propositional formulas is obtained as follows:
we have constants (truth values) and (propositional) variables. Furthermore
there are auxihiary symbols, like connectives and parentheses, for syntactic
disambiguation. From these basic objects we define formulas (not to be con-

served with the formulas from predicate logic as defined in the paper of Marc
Bezem) by an mductive definition:
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Form ulas:
Variables and ants are formulas

If fand g are formulas then so are (—f),(f\Vg),(fAg),(f=g).(f=g)

[he formulas in propositional logic are subsequently provided with a semantics
which, given an assignment of truth values O or 1 to the vanables 1n a formula,
yields rmula by use of the traditional truth table

only if there exists a truth value
assignment to its variables mak: . The formula fis valid (in which case
f 1s cal ment to its vari-

led a tautology) if and only if every truth value assign
ables makes 1t true.

Next we can introduce the following two problems on propositional formu-
las:
SATISFIABILITY the pl‘ oblem of determinis
satisfiable;
TAUTOLOGY: The problem of decidus
cal and finding a proof for its vahdity.

g whether a given formula is

g whether a given formula 1s tautologi-

The fundamental link between propositional logic and complexity theory 1s
based on the following observations:

FACT 1: The problem SATISFIABILITY belongs to NP.

[his is an easy consequence of the fact that any satisfying truth assignment
represents a certificate for satisfiability; it is not hard to see that the deter-
ministic subcomputation which evaluates the formula is a good algorithm.

FACT 2: The problem SATISFIABILITY is a hardest problem for the class NP.

This fact, which is known as Cook’s theorem [6], is far more difficult to estab-
lish. It is shown by proving that any other problem in NP can be translated
with polynomial bounded size overhead in polynomial time into SATISFIA-
BILITY by encoding complete records of machine computations into proposi-
tional variables. A complete record of a computation can be represented by a
two-dimensional array of characters, which, in turn, can be encoded by a bit-
string. This bit-string can be seen as a value assignment to a large collection of
propositional variables (as many as the length of the string). The necessary
conditions guaranteeing the correctness of the encoding and the fact that the
machine computation described represents an accepting computation are
locally testable conditions on individual bits expressible by reasonably short
propositional formulas; the conjuction of these formulas for all instances of
these local conditions now expresses the existence of an accepting computation

and becomes the transformed version of the given instance of the original NP
problem.




ne p ropeny that the resul tmg PIropo S1 thIl al formula is
ble 1f and only if the instance of the given NP-problem is solvable. Eor
he 1nstance is solvable a witness exists and therefore also some accepting
mputation record, and its encoding as a bit-string provides the value assign-
ment which will satisfy all local conditions and consequently the. entire fox:-
mula. Conversely, from an assignment of truth values to the propositional vari-
ables 1n this formula which makes the formula true the ori ginal accepting com-
putation and consequently the witness of solvability of the original instance
can be reconstructed.

FACT 3: Formula f is satisfiable if and only if —f is not a tautology.

T'his observation indicates, to some extent, that for a mathematician SATISFI-
ABILITY and TAUTOLOGY represent the same problem. However, the
second nentation involved in this translation shows that TAUTOL-
OGY belongs to the class co —NP of complements of NP problems rather
than to the class NP itself. In this class it is a hardest problem due to the NP-
completeness of SATISFIABILITY. Also the role of the witnesses becomes
different. A satisfying value assignment is a witness for the satisfiability of a
formula and, similarly, a falsifying assignment is a witness for its non-validity.
Witnesses for validity of a formula in mathematics are of a different nature;
we know such witnesses under the name of proofs. The completeness theorem
tor propositional logic which states that the valid formulas and the provable

formulas coincide, implies that proofs can be used as witnesses for validity and
conversely.

FACT 4: P=NP if and only if SATISFIABILITY and recognizing tautologies
are good problems.

FACT 5: NP=co—NP if and only if tautologies have polynomially bounded
proofs.

These last two facts are based on very general observations on the reducibili-
ties 1nvolved in the proof of Cook’s theorem. They show that two fundamental
problems in elementary complexity theory have equivalent expressions in terms

of problems on formulas in propositional logic. Both problems have been open
for almost two decades.

The connection with work in artificial intelligence can be explained as fol-
lows. A basic requirement on intelligent behaviour is that a machine should
not need to have everything explained to it. Having been told some basic facts,
the machine should be able to infer the trivial consequences itself. Since the
fact that formula f is a consequence of the facts g1,--,8k 18 equivalent to the
validity of the implication (§1/\.-.Age)=f this latter formula should be a tau-
tology and the machine should be able to recognize it as such. Moreover the
machine should be able to justify its behaviour by providing explanations on
request and these explanations must entail the validity of the above implica-
tion. These explanations should better be proofs for this implication. Even if
its validity has been obtained mitially by the machine by throwing dices we
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Al researchers of

y [8 9] . W eI 4 D (1 D L)
umptions on factoring of integers or other number
one-way functio which

hich are nonexistent in

keeps both oups supp orted.

_THE COMPLEXITY OF PROPOSITIONAL INFERENCING
: “ finitely not the proper place to inform the reader about all the
hich has been performed in the attempts of solving the
co — NP problems. The reader is referred to the monograph
HNSON [6] and the subsequent updates by Johnson in the Jour-

What I want to discuss in this paper is the work n this

nal of Algorith. -
problem area wh ich is specifically connected to the expression of these funda-

mental problems in problems about propositional logic. Work in this area has

proceeded along two lines of attack:

I. Establish of a given proof procedure that it must yield exponential size
proofs on well designed tautologies.

[he work by TSEITIN & GALIL [4,5] on Resolution proof procedures

described below is a prime example of this approach.
II. Establish ‘difficult’ classes of formulas for which still short proofs exist.

will illustrate with the work by COOK & R
R. Buss’s [1] work on the propositional Pigeonhole

Principle.
Let us first introduce the resolution proof method which has become very
popular for Al work since it bases theorem proving on a single proof rule.
Resolution proof techniques operate on formulas in Disjunctive Normal Form
(DNF); this is a class of propositional formulas which is defined as follows:

A DNF formula is the conjunction of a set of clauses.
A clause is a disjunction of hiterals.
A literal is a variable or a negated vanable.

An example of a DNF formula: (p[0]v—p[1]Vp[10DA(—p [0]v—p[10)).

It can be shown that every propositional formula can be transformed into
an equivalent formula in DNF. A straightforward translation procedure which
does not introduce new propositional variables may produce an exponential
blow-up of the formula size, in particular when the DNF expan sion involves
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many applications of the distributive laws or when the connecuve = or the
exclusive-or operator has to be expanded. But if we are willing to introduce
fresh propositional variables the transformation can be performed in such a
way that the length of the formula is multiplied by at most a constant factor;
moreover, the number of fresh va abies requil ed for thls transformation 1s

m king theorem provers
n use 1n the Al an be - as follows:

F rom cﬁauses p[z [\Y% f and —pli]Vvg infer the new clause fVvg provided the for-
mulas / and g have no other con plementary pair of literals.

A Resolution proof of a formula 1s obtained as follows:

In order to prove that fis a tautology express —f as a DNF formula (conjunc-
tion of clauses). Apply to the resulting set of clauses the resolution rule in
order to see whether the empty clause can be derived. This empty clause
represents contradiction. The resulting refutation 1s structured as a resolution
proof tree.

In the language of resolution proofs the full complexity of theorem proving
remains visible:

FACT 6: Satisfiability of formulas in DNF remains NP-complete (even if clauses
are assumed to have length at most 3).

FACT 7: Refutation of formulas in DNF (ie., finding existence of resolution
proofs) is complete for co —NP.

The resolution rule itself doesn’t tell you how to select the pairs of clauses on
which 1t should be applied, and in which order these pairs should be selected.
Finding resolution proof trees 1s a nondeterministic procedure. However, given
a candidate tree 1ts validity as a resolution tree can be established in time pro-
portional to 1its size. So if for every refutable DNF formula a short resolution
refutation exists the set of unsatisfiable DNF formula’s will become a member
of NP, from which 1t will follow that NP =co — NP.

The algont m of applying the resolution rule in order to find a proof 1s a
nondeterministic procedure, which easily leads to fruitless or even non-
terminating computations. In order to prevent the theorem prover from
attempting resolution steps which don’t lead to any profit various ways of con-
trolling this procedure have been proposed. Some of the proposed heuristics
are:

David-Putnam Procedure: eliminate all literals in some order.

Regular resolution: Never remntroduce a literal which has been resolved away
before on that branch in the proof tree.

k-Bounded resolution: Never generate clauses mvolving more than k literals (for
some constant k).

TSEITIN & GALIL [4,5] have shown that none of the above heuristics yields a
good resolution proof strategy: Either the strategy fails to solve correctly some
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the statement that for all i
ment 1s false.

uses of k literals, and ant.
nd Galil that each resolution refutation which
ed any oth ar resolution strategy
requires th s corresponding to all connected subgraphs of
the given graph. Since there are exponentially many of those connected sub-
graphs this yields an exponential lower bound for the size of a proof tree. At
ame time it can be shown that the strategy of k-bounded resolution
(which by definition can produce at most a polynomially bounded number of
clauses) will fail to produce a resolution refutation at all for these evidently
false formulas. So the proposed strategies either fail to work or they require
exp Onen ﬂa] Tunnm _ g t e,

resolution
e exponential size proofs. Th

In defence of resolution it must be mentioned that up to now not all
proof strategies have been shown to requi:
tegy of Extended resolution is still a viable candidate for doing th
polynomially bounded proof tree. This technique is based on the introductio
of mew concepts by abbreviation: fresh variables are introduced by throwin
new clauses which contain these variables and which define the meaning of
these variables as a propositional expression in the original ones. A set of
clauses will never become inconsistent by this process of addin g defined con-
cepts, and therefore a refutation of the extended set of clauses will only be
found if the original set already could have been refuted. However, the refuta-
tion of the larger set may turn out to be much shorter than that of the original
one.

L' his phenomenon could be invoked as a justification for the everyday prac-
tice of mathematicians: the introduction of defined notions. One occasionally
hears the formalistic objection against mathematics that nothin g 1s created in
mathematics since the truth of the theorems already is determined when the
axioms are formulated; everything else is a direct consequence which could be
reduced by standard methods to the application of trivial man ipulations of a
logical nature. (Let the symbols do the work!) This objection however over-
looks the impact of the introduction of defined concepts. They might be elim-
inated from the proofs of all theorems but presumably this would blow up the
size of the proofs in mathematics to such an extent that no human being could
understand what is happening. Moreover these new concepts are the inspiring
part of mathematics; mathematicians survive by inventing new concepts.
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f ound [he f act that extended rsolutlon proof s may be short won’t hel P
as long as nobody provides us with the correct definitions for the new varn
ables. None of the proposec strategies for standard resolution seems to work

since the same ob servations migh
cedures as well, where examp altern aﬁve proof procedures are provided
by the Hilbert style proof systems known from classical logic textbooks or
natural deduction proofs.
ith respect to this issue that the results of Haken, Cook & Reckh
Buss provide us with more bad news for the resolution method

and 1ts believers. These authors consider another example of a class of bad
al formulas, the propositional pigeonhole principle, which is
obtained as follows:

Consider the evidently true statement: If kK +1 objects are mapped into k
slots some slot will contain at least two objects. Letting the literal p[i,j] denote

the fact that object i 1s mapped onto slot j this statement is expressed by the
following formula:

No<isk(VMo<j<k @l D))= Vosj<k(Vo<i<m<k@Pli,j1/p [m,j ).

The negation of this formula can be transformed easily into standard DNF
and 1n this transformation the generalized conjunctions and disjunctions can
be expanded with a constant factor overhead in size.

HAKEN [7] has shown that standard resolution proofs for this formula
require exponential size, but polynomial size extended resolution proofs exist.
Cooxk & RECKHOW [2] provide polynomial size proofs in an Extended Hilbert-
ike system where introduction of new variables by abbreviation is allowed.
I he new result by SAMUEL Buss [1] shows how to get polynomial size proofs
even without this extension feature. His proof technique is based on ideas
which onginate from the design of computer hardware: it can be argued that
the core of the problem amounts to efficient counting and adding small
numbers, and this is performed by a similar method as the one used in carry-
look ahead addition.

These results therefore indicate that indeed resolution after all rmght not be
the powerful proof procedure on which all AI work could be based. The pro-
positional pigeonhole principle provides us with an example where extension is
required for providing short resolution proofs, but Buss has shown that short
proofs mm a Hilbert style exist even without the use of the extension mechan-
1sm. So Hilbert systems seem to be more powerful than resolution.

On the other hand these results are still far away from solving the real fun-
damental problems from complexity theory: P=NP? or NP =co —NP? In all

cases above the specific instances of tautologies considered still had a short
proof for some ad hoc proof strategy.
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