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Ship-steering, ore-crushing, and telephone switching are examples of opera-
tions that require control mechanisms. In these situations the characteristics of
the process to be controlled slowly change in time. Adaptive control is the
topic in the research area of system and control theory in which control prob-
lems for such situations are studied. A synthetic procedure for adaptive control
that has been proposed and applied is selftuning control. The purpose of this
expository paper is to discuss synthesis and analysis of selftuning controllers.

I. INTRODUCTION

Nowadays many production processes and operations in industry require
sophisticated control mechanisms. An example i1s the production of glass
tubes in which the wall thickness and the diameter need to be controlled.
Similar problems occur in other fields such as the operation of satellites or air-
craft. Often 1t suffices to use a controller, in the form of a computer program,
which does not change during its lifetime. Sometimes however one does not
know precisely how the process will evolve in the long run, for example when
steering a ship under varying conditions such as the weather. In such a case it
1S necessary to let the controller adapt continuously to the new situation. In a
4-year project, concluded 1 1987, several aspects of adaptive control theory
were studied at the CWI.

2. MOTIVATION OF ADAPTIVE CONTROL

Control problems arise in, for example, electrical or mechanical engineering.
A specific example 1s the motion of a robot arm. An engineer faced with the
problem of designing a controller first develops an engineering model, the
plant. From this he extracts a mathematical model, called a dynamical system,
or just a system. A control signal, called the inpur, may influence the plant, for
example the signal for a motor driving the robot arm. Measurements per-
formed on the robot arm are called outputs.

The control problem may then be formulated as follows: construct an input
such that if this input 1s applied to the dynamical system, the behaviour of the
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system satisfies certain control objectives. In the example of the robot arm a
function is to grasp and move an object. In this task the control objective
could be that it is done with minimal energy and in a smooth way. Usually
the input 1s based on the output of the dynamical system, and the function
that maps outputs to inputs is called a feedback law or, 1if 1t 1s a dynamical sys-
tem, a compensator. In either case one calls it a controller. Several procedures
have been developed to synthesize controllers. One approach is to formulate

an optimization criterion, like the energy used to move the robot arm that 1s to
be mlﬂi

zed, and then determine a controller that will achieve it. The con-
troller may be programmed on a computer and is connected to the object to
be controlled, say the robot arm. The arm is now continuously controlled and
1s then said to operate in closed-loop. Controllers designed 1n this way work
satisfactorily in widely different settings, such as windmills, steam boilers and
electricity networks.

However, a limitation of this approach shows up if there is uncertainty
about the process to be controlled, or if the characteristics of the process
slowly change in the course of time. For example, the steering of a ship in
quiet sea 1s rather different from that in rough sea. Similarly, control of the
flows of material in an ore crusher should be adjusted on the basis of ore size.
Another example 1s a robot arm that has to lift objects of varying weights.
Here an approach such as the one mentioned above does not in general yield a
practical solution. The controller should be able to adapt itself continuously
to the characteristics of the process. An ideal adaptive controller would be
able to control a dynamical system on the basis of observations only and
hence could be connected to every dynamical system. However, it is very
doubttul whether this 1deal will ever be reached. Anyway, research activities in
adaptive control have increased tremendously during the last fifteen years, and
successful applications have been reported in connection with ship-steering and
ore-crushing. The implementation of adaptive controllers has become feasible
due to the availability of relatively cheap, fast and reliable digital computers.

3. SELFTUNING CONTROL

An important and well-known synthesis procedure of adaptive control is
selftuning control. It was introduced by K.J. Astrom and B. Wittenmark in [2].
A selftuning controller 1s a combination of a recursive parameter estimator and
a controller. These concepts are described below.

A dynamical system 1s a mathematical model for a phenomenon. Consider
the behaviour of a ship at sea. An engineering model of such a ship, the plant,
consists of a mass that is affected by the waves. The dynamical system that
models the ship’s movements may then be derived by use of the laws of
mechanics, and by use of a stochastic model for the wave spectrum. In gen-
eral, for a phenomenon to be modelled one proposes a class of systems that is
called the model class. The elements in this class are described by a parametri-
zation. 'The vanables in this parametrization are called parameters. In the
example of a ship, parameters are the mass of the ship and the dominating fre-
quencies 1n the wave spectrum. For later use an elementary example of a



dynamical system is introduced by the representation

X, +1 = ax, + bu, xy, (1)

_yt — Xts (2)

in which x, 1s the state at ttme t €7 ={0,1,...}, x:T—R, u, the input at time 1,
v, the output at time ¢, and a,b €ER are the parameters. This 1s called a
discrete-time, first order, finite-dimensional, linear system.

Modelling the behaviour of a ship at sea can now be phrased as: how can
one fit a dynamical system to observed data? Suppose that the engineer has
selected a model class and a parametrization of this model class. The problem
of fit can then be rephrased as: determine a system in the model class that best
fits the data. Solution of this question requires a measure for misfit and a
measure for complexity of systems in the model class. The misfit 1s the
difference between the data and what the model specifies about the observa-
tions. A model that always models the data exactly 1s all of the data. But this
model is rather complex. Hence a measure of complexity, say the order of a
system, 1S necessary. Once these measures are defined, one can determine a
system in the model class that minimizes a combination of the musfit and the
complexity. One way to perform this minimization 1s to determine those
parameter values that minimize a likelihood criterion. Such a procedure 1s
called parameter estimation. This topic, that forms part of the research area of
system identification, will not be explored here any further; for a reference see
[13].

Adaptive control 1s intended for control problems in which the object to be
modelled i1s constantly changing. Therefore there 1s a need for a model that i1s
appropriate for all circumstances. By continuously adapting the parameter
values of a dynamical system, one may achieve this objective. An algorithm
that continuously estimates the parameters in a recursive way 1s called a recur-
sive parameter estimator. It 1s indicated in section 5 how one can construct a
parameter estimator. For the mathematical example introduced above and the
parameters a,b €ER a recursive parameter estimator 1S given by

A o y (1) A N
@+ = a0 + 5 Eam DAy O-bauOL O
; — 1 .___.___u_ggl_.__ — L+ |
b(t+1) = b(t) + yz(t)+u2(t) (@ +1D—a@)y@)—b()u(r)) (4)
The control part of a selftuning controller 1s derived as in regular control
synthesis. Given a dynamical system and a control objective, a control law
can be derived. Consider again the above introduced example and the control
objective of pole placement. (The notion of a pole will not be formally defined
here. It 1s illustrated in the example given below.) Suppose that the pole must
be placed at the value c €R. The input should then be taken as

u = ==, (5)
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and the feedback law as

f(a,b) = < -;a ~ (6)

This feedback law applied to the system (1,2) yields the closed-loop system
X(+1 = CXpy Xo, (7)
Vi = Xt (3)

Thus the pole of the system is placed at the value ¢. Note that the feedback

law 1s dependent on the parameters a,b of the system.

I'he synthesis procedure of selftuning control now prescribes that at any time:

- one estimates the values of the parameters given available observations of
inputs and output;

- one applies a feedback law assuming that the current parameter estimates
are the true ones.

At any tme mstant this cycle 1s repeated. For the example used above, a

selftuning controller 1s then given by the recursive parameter estimator (3,4)
and the mput

i1 = [ @a1,bie1) Vi (9)

A selftuning controller is thus based on a simple cybernetic principle. It can
be derived by combining well-known results of control theory and system
identification. Applications of selftuning controllers showed that they work
surprisingly well in widely varying control situations.

Once a selftuning controller had been proposed and applications had esta-
blished its usefulness, theoretical questions were formulated. Selftuning con-
trol leads to the following questions: Does a selftuning controller satisfy the
original control objective? What is the asymptotic behaviour of a system con-
trolled by a selftuning controller? A selftuning controller consists of a combi-
nation of a particular recursive parameter estimator and a particular feedback
law. Hence the question, which recursive parameter estimator should be com-
bined with which feedback law?

An analysis of selftuning control algorithms turned out to be quite difficult.
The first result, proven in [2], applies to stochastic systems with a particular
selftuning controller. It says that if the system generating the observations is
in the model class, and if the parameter estimates converge to the true values,
then the resulting controller is asymptotically the same as that associated with
the true parameter values. Further progress was made by P. Varaiya and V.
Borkar [6]. They considered selftuning control for a finite-state Markov chain,
since reduced complexity facilitates the analysis. They showed that even if the
parameter estimates converge, they may not converge to the true values. In a
later paper P.R. Kumar and co-workers [4] showed for a specific selftuning
controller that even if the parameter estimates do not converge to the true

values, the controller may be asymptotically identical to the one associated
with the true parameter values.
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4. CLOSED-LOOP IDENTIFICATION IN SELFTUNING CONTROL

From the above quoted investigations it was clear that the issue of closed-loop
identification in selftuning control needed proper attention. J.W. Polderman.
in a 4-year project on adaptive control at CWI, has explored this question.
Below are summarized some of his findings, see [14].

'he main problem 1s this: does a selftuning controller lead asymptotically to
the controller that would have been used if the parameter values of the system
generating the data had been known? If the answer to this question is positive
then the selftuning controller is said to be selftuning. Note that the usage of
this term 1s such that a selftuning controller may or may not be selftuning.
'he above mentioned problem can be investigated by way of the following two
questions.

T'he first question 1s: can all the parameters be determined if parameter esti-
mation takes place 1n closed-loop? To discuss this question some terminology
and notation 1s introduced. Consider again the example of Section 3. Replace
x by y. Assume that the system that generates the data is in the model class,
and that 1t 1s represented by the parameter values ag, by, called the true
parameter values. 'The system is then represented by

YVi+1 = aqgy: T bou,. (10)

The input for the pole placement objective and associated with the true param-
eter values 1s

C —Ady
Ur — b V- (11)

Consider a selftuning controller for the system (10). Assume that the con-
troller has been operating for a while and that the parameter estimates have
converged to the values a, . The input associated with these values is

y = 24y, (12)
The resulting closed-loop system is
e = [ao+bo=—=1, (13)

However, the engineer designing this system is unaware of the values of ag, by.
The engineer therefore supposes that the dynamical system is

Yi+1 = ay, + bu,, (14)

because the values a, b are known to him from the recursive parameter estima-

tor. This system, combined with the feedback law (12), yields the closed-loop
system

Yi+1 — Oy (15)

Because the output y 1s observed, the equations (13) and (15) lead to the con-
clusion that
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C —dad .
d0+b0 — C,

or

¢ —dy C —d

.. 17
b 7 (17)

Let

oy », ¢ T40 ¢ —a
G = {(a,0)ER” b ; }-

Then G contains all parameter values that cannot be distinguished from the
pair (ag,by) when selftuning control is used. Note that in the above example,
in which ay, by and ¢ are fixed, G is a line in the plane. The conclusion is
thus that recursive parameter estimation in the presence of feedback may lead
to parameter values that differ from the true parameter values. The implica-
tions of this conclusion for selftuning control are explored below. For other
classes of systems the set G may be characterized by, for example, rational
functions. Its analytic form may be hard to describe explicitly.

The second question is: which parameter values yield the same control law
as the parameter values associated with the system generating the data? Con-

sider again the above example. The control law associated with the system
generating the data is

c—a
f@0,b) = — =5 (18)
0
while that associated with the parameter values (a,b) is
flab) = == (19)

Define the set

H = {(a,b)ER?| f (a,b)=f(ag,by)).

Thus H 1s the set of all parameter values that lead to the same feedback law as
the true parameter values. In the above example H is a line in the plane.
With this notation the closed-loop identification issue in adaptive control can
be explored.

The main problem of this section, about the asymptotic behaviour of

selftuning controllers, can now be formulated mathematically as whether the
relation

GCH (20)

holds. Suppose that in selftuning control the parameter estimates converge to
the values (a,b). As argued before (a,b) € G, hence these values cannot be dis-
tinguished from (ag,b(). However, if (20) holds then (a,b) € H and the selftun-
ing control law associated with (a,b) is identical to the confrol law associated
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with the true parameter values (ag,bp). Hence relation (20) in
selftuning holds.

The problem now 1s whether inclusion (20) holds. A modification of (20)
can be proved for the pole placement control objective applied to discrete-time,
single-input-single-output, finite-dimensional, linear systems. The modification
says that if the outputs of the systems (10) and (14) are identical, then the
inputs (11) and (12) are identical. In the example given above, it follows from
(17,18,19) that G=H. Therefore one can expect that selftuning control based
on this control objective works quite well. Another control objective 1s linear-

quadratic control in which for a linear system the quadratic cost function

plies that

s =0

with ¢, r €(0,00), 1s to be mumimized. For this control objective one can show
that the intersection G N H 1s a negligible set of G. Negligible here means that
the set GNH is an embedded manifold of a strictly smaller dimension than
that of G. Therefore selftuning control based on this objective will almost
always not yield selftuning.

A related problem i1s: for which control objectives, or feedback laws, does
one have that

GCH?

For first order systems and under certain smoothness conditions, the answer to
this question 1s that only the pole placement control objective satisfies this con-
dition. For systems of order higher than one this question is not yet settled
completely. On the basis of partial results, the conjecture is that the same con-
clusion holds. With hindsight this conclusion is not that surprising to experts
in the field. Pole placement is a control objective that can be verified from the
iputs and outputs of a controlled system. This is not true for linear-quadratic
control.

The conclusion of this section is that for the selftuning control synthesis pro-
cedure defined in Section 3, selftuning control by pole placement achieves
selftuning. At least for first order systems, pole placement is the only control
objective that leads to selftuning.

. ADAPTIVE CONTROL ALGORITHMS
Selftuning control consists of a recursive parameter estimator and a controller.
It has been shown in the previous section that if the pole placement control
objective 1s used and if the parameter estimates converge, then the limiting
feedback law equals the one associated with the true parameter values. The
question 1s now: how to synthesize a recursive parameter estimator that will
produce converging parameter estimates?

A recursive parameter estimator may be designed by using orthogonal pro-
jection. Given a parameter estimate, the next parameter estimate may be
determined as the projection of the current parameter estimate on a plane in
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tion through the true parameters. By this orth ogonal projectlon construction,
eter estimates m every step of the recursion get closer to the true
parameter values. It can be proved that they will eventually converge to the
set G.

Special care should be taken so that the parameter estimates lie inside the
subset of the parameter space on which the function, that assigns to every
parameter value a controller, 1s defined. In the example, the feedback law

flab) = C;“ (21)

is defined only if b540. To ensure convergence, most known adaptive control
algorithms require a condition of the form |b|>e for some ¢>0. For the
class of systems considered, a fairly general method was developed in order to
modify an algonthm in such a way that the estimates always belong to the
required subset of the parameter space. For the example only the condition
b0 1s needed for convergence. The method is too involved to be reproduced
here.

6. CONCLUSION AND OPEN PROBLEMS

The main contribution of [14] is an analysis of the limitations of selftuning
control due to the fact that parameter estimation takes place in closed-loop. A
selftuning controller for adaptive pole placement and an adaptive controller
for inear quadratic control have been proposed and analyzed.

Several open problems in adaptive control require further attention. The
selituning synthesis procedure must be investigated also for stochastic systems,
and for other classes of dynamical systems. If the property of selftuning does
not hold, then modifications of the selftuning synthesis procedure must be con-
sidered. Adding excitation to the input process is such a modification. Not
only asymptotic properties, but also transient properties of adaptive controllers
are of 1nterest. Questions are: what is the convergence speed of adaptive con-
trol algorithms? How can one improve the tracking ability of algorithms for
slowly changing parameters? Active learning of the parameters should be
explored. In this approach the input process is used to improve the quality of
future parameter estimates. A totally different question is: what happens in
adaptive control if the system generating the data is not in the model class?

Another open problem is to propose a criterion that can be applied 1n decid-
ing when to apply adaptive control and when to apply robust control. In
robust control, a fixed or non-adaptive controller is to be determined that will

achueve a control objective for a specified model class with a set of parameter
values.

7. FURTHER READING
Material on system theory may
[16-18]. Books on control theor

be found in the books [7,9] and in the papers
ycare |3, 12].
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Adaptive control at an introductory level i1s presented in the books
[3,8, 11, 13]. Survey papers are [l, 10]. Applications are reported in [1,5, 15].
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