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In this introductory paper we introduce and illustrate some notions and 
problems from Topological Dynamics. This discipline originated from the qualita­
tive theory of differential equations (work of Poincare, Lyapunov, Birkhoff and 
others). This paper concerns "abstract" Topological Dynamics: there is no direct 
relationship with differential equations (cf, [4], [2], [9]). After the necessary 

definitions (Sections 1, 2, 3) we consider the problems when QX = EX for a flow 
l!;, and when the equality EK = X x X implies that K is weakly mixing. In the Sections 
4 and 5 we state and prove, that the answer to both problems is affirmative if K 
has an invariant measure. 

1. FLOWS, HOMOHORPHISl1S AND FACTORS 

Let T be a topological group, arbitrary but fixed. A fZ.ow is a pair X := <X,ir> 
where x is a compact Hausdorff space and rr is an aetion of T on X, i.e. a continuous 
mapping 11 : (t,x) >-+ tx: TxX + X (so we write alternatively 11(t,x) or tx or even t.x), 

sntisfying the fol lowing conditions: 

PX = x; t(sx) = (ts)x for t,s T and x c X. 

EXAMPLES. 
~. ~' Ip: x ~ x a homieomorphism and n.x ;= <jinx for n E 'll, x E X (discrete flow)• 

So evl?ry homeomorphism generates a discrete flow. Important examples: 
(:i) x = $l = {z e q: c lzi = I} and cp(z) := z exp(2'rie) for z € $ 1 (rot~tion). It 

is well-known, that the or>bit {~nz: n c ZZ.i of <:'Very point z of S is dense 

in ~l iff fl is irrational. 
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(b) X = {0,1}2L, the space of all 2-sided infinite sequences of O's and I's, 

with the ordinary product topology. Let a: X + X be given by (ox)i := xi+I 

(the sequence ••• x_ 1x0x1x2 ••• is shifted one position to the left). 
I I 2. T • :a, X • S xs (the 2-torus) and rr: TXX + X defined by 

It follows readily from Example la that if e is irrational, then every orbit 

{t.(z1,z2) : t e lR) is dense in the torus (Kronecker). 

If ! • <X,1r> and X = <Y ,cr> are flows, then a homomorphism from z. to ! is a 

continuous mapping $: X + Y such that $ov(t,-) = cr(t,-)0$ for all t € T (thus, 

+(ec) = tq>(x) for all t € T and x € X). Notation: •P: A+ x_. If $: ! ->-I is a 

h01110111orphism and $: X-> Y is ahomeomorphism of X onto Y, then $ is called an 

isomoPphiam. A homomorphism$• 1$.+ X such that$: X + Y is a surjection is aallen 

an eztension of X (also!. will be called an extension of X); in that case, I is 

called a faatoP of .ll,, and q. is also called a factor mapping. 

EXAMPLES, 
_!.If!,= <X,n> is a flow and Y is a closed subset of X which is inva?'"iant, i.e. 

ty € y for all t € T"and ye· Y, then o(t,y) := 1r(t,y) forte T, y.: Y defines 

an action cr of T on Y, and the inclusion mapping Y + X is a homomorphism of flows 

from I to A.· (X. is called a aubflow of A. in this case.) 

i• If ~and X are flows, then a flow AxX may be defined by t,(x,y) := (tx,ty) for 

t € T and (x,y) E: X x 'l. The projections are homomorphisms from ! x ! onto 

! and 1, respectively, su !.. and X. are factors of ! x J. in this sense defined 

above. 

2_. Let l be a flow and R an invariant closed equivalence relation in X, i.e. ns a 

subset of XxX the set R is closed and invariant with respect to the coordinate­

wise action of T on XxX (compare with Example 4 above). Then the quotient space 

X/R turns out to be a compact Hausdorf f space (because R is closed), and an action 

of T on X/R can be defined by the· rule 

t.R(x) := R(tx) for t € T and x € x. 

Because R is inv~riant, this definition is unambiguous; since the quotient 

mapping R[-): X ..,. X/R is perfect, this action is easily seen to be continuous. 

This flow on X/R will be denoted X/R, Clearly, R(-J: ! ..,. '1,./R is a factor mapping 

in the sense above, and !/R is a factor of A• 

REMARK. Every factor arizes in the way, described in Example 5. Indeed, let 

~: ! ..,. X. be a factor mapping of flows. Then 
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is easily seen to be a closed invariant equivalence relation in X. The space X/R 
~ 

is homeomorphic to Y and this homeomorphism establishes an isomorphism betwP.en 

!/R$ and X in such a way, that R$[-] corresponds to ~: 

2. MINIMAL FLOWS; EQUICONTINUITY 

A flow !, is called minimaZ whenever it has no proper closed invariant subsets, 

Equivalently, a flow! is minimal whenever each orbit Tx(:•{tx:t ET}) i:or x £ X is 

dense in X. By Zorn' s lemma, every flow contains at least one minimal sub flow, 

(As such a minimal subflow M is the closure of the orbit of any of its points, i.e1 

M • TX fot each x EM, it is often called a minimaZ orbit aZosure.) 

In the study of minimal sets it is convenient to restrict oneself to subclass~ 

which have a richer structure. An example of such a subclass is the class of all 

equicontinuous minimal flows, An (arbitrary) flow K is called equiaontinuous when­

ever the group of homeomorphisms {irt i t E: T} is (uniformly) equicontinuous with 

respect to the (unique!) uniformity U for X, that is, 

It is straightforward to show that in an equicontinuous flow X all orbit closures 

are minimal (indeed, if x 1 E Tx2 then one shows x2 £ 'iS'i"), hence the orbit closure1 

form a partition of the space X. 

The equicontinuous minimal flows are fairly well understood. For example, if 

:K i~ an equicontinuous minimal £low and X is metrizable, then X carries an invarim 

metric. Indeed, the closure G :.: {irt : t e T} of the given group of homeomorphisms 

in XX is a compact topological group of homeomorphisms of X, acting continuously 

on X; it is quite easy to show that if a compact group acts on a metric space, 

then there is an invariant metric, 

Another fact is, that every equicontinuous minimal flow has an invariant 

measure (see below for the precise definition). This follows easily from the 

existence of Haar measure on compact Hausdorff groups and the structure of such 

flows, which will be described in Theorem I below. 

EXAMPLES. 

~· The flows, described in Examples la (with e irrational) and 2 (also with 6 
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irrational) are minimal and equicontinuous, 

J_. In the example of lb, the points x with minimal orbit closure are easy to 

characterize. This follows from a result wbich is known as l'IIRKHCfff' s n.icurr."n"'· 
Theorem); see for exalllple [2J, 2,5, Using thi~, one can easily show that a point 

x in the shift dynamical systlllll has minilllBl orbit closure if£ for every finite 

block in x (i.e. every finite seginent l\.•••l\.+j in x) there exists a natural 
number ~ such that every block of length t in x contains a copy of the given 
block, A famous point with minimal orbit closun is the followbg (the MORSE 

minimal sequence): x • iB, where i denotes the mirror•illlage of B, and 

B .. 0110100110010110. . .. 
jit'aj I I 
112~ 

. B3 

where each Bn+I is obtained as the concatenation of Btl and the dual B~ of Bn. 

!• Let v: T ~ G be a coiitinuous homomorphism of topological groups with G compact 
Rausdorff and v[T] dense in G. Let R be a closed subgroup of G, and let X be the 

(compact Rausdorff!), space of left coset~ gll of H in G. Define an action n of T 

on X by the rule 

rr(t,gH) 1• ~(t)gH for t £ T, g c G, 

Then ! 1• <X,n> turii.s out to be an equlcontinuoua mlnilla1 flow, 

The EX8lllple 8 above gives a ~thod to Obtain aii equicontinuo~s minimal flows; 

TR!J:OREM I • Let & be an equia,)ntinucus nrt.ri'tma'L ft0t;1, 7'1um there e!l:i8ts a c/1.l)Md 

~(!1'cup H of the Bohro corrrpaotifiaati.on l>f <Jf !t euoh that 1 iv ioorr.wphic to th<' 

fio"'-' on bT/H, defined acco:rdin{I to E:i:ampZe 8 aboi.t•• 
(The proof is a rather eaay con'tleq\Mlnce of what wae rellUlrked earlier, viz. 

that the cl.oaure of {ntl t " T} in i"' is a compact topological. flrOup, llor d!1t•1i 1,, 

aud references, cf. (IOJ, Tneorem 2.4,) ln vartieula;, U 't • 7l or T • R, th''" 

an equicondnuous min '.mal flow 1 has the 1tructure of a compact monot.het i(" resp. 

solenoidel, topological group. 

3. EQUICONTlNUOUS FACTORS 

Let l5. be a minimal flow, Cleatly, A has equico11tinuous factors, vhi. the 
trivial flow (•), conslst.!119 of a one-point space witb the obvious action of Ton 
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it. Since there can be only a set of isomorphy classes of equicontinuous factors, 
there is a ma3:imaZ equiaontinuous factor (sometimes called universaZ equicontinuous 
factor). This is an equicontinuous factor of A over which every possible equicon­
tinuous factor of! factorizes. In order to prove its existence, consider a set 

{.pa: X + X0 }aeA of representatives of such equivalence classes. Let <P: X+ a~A Ya 

be the induced mapping, and Y :• .p[X]. Then Y is a closed invariant subset of 

a~A Ya. Moreover, the flow I is equicontinuous because the full product 11 Xa is so, 
and X is minimal, because it is a factor of the minimal flow !· So 4>: ~ + !. is a 
factor such that !. is equicontinuous and minimal. Now let ~: ! + ~ be any factor 
of ! with Z equicontinuous and minimal~ This factor is isomorphic to one of the 
<P 0 : ! + Ia· From this, it follows that there is a homomorphism 'iii: I + Z such that 
~ • ijio.p (corresponding to the pro3·ection Y + Y ). Since <P is surjective, iP is - -a 
unique. 

As I is well-understood, in order to say something about !. one would like to know 
something about the factor mapping $: ! + !, or, what amounts to the same (see the 
final remark in Section I), about the equivalence relation R<P. It should be observed 
that a maximal equicontinuous:minimal factor of a given minimal flow! is unique 
up to isomorphism, so that the corresponding equivalence relation in ~ is uniquely 
determined: 

The closed, invariant equivalence relation in X, corresponding to the maximal 
equicontinuous factor of ! is called the equicontinuous struature reZation, and .it 
is denoted by EX. (or, if no confusion arises, just E). 

THEOREM 2. Let ! be a minimal f'Low~ and 1-et the subset Q! of xxx be defined as 

Qv :" n Ta, 
.. ad) 

' ~ ' ' 
Then Q! is a cfosed invariant subset of xxx, and EA is the, .smaZZest aZosed in-
variant equivaZ.enae relation on X in !JJhich QK is incZuded. ' 
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~· It is easy to see, that Ql is closed and invariant in xxx, Moreover, if 

w: ! + ! is a factor, then uniform continuity of t1J implies, that tlJxw[Q!J .5. ~· If 

! is equicontinuous, then it is obvious that ~- ~· hence wxw[Q!.] =. "Y.• that is, 

QX .5. Rtll. Fr,om this it follows that Ql £ El!:° So if s0 denotes the smallest closed 
invariant equivalence relation in X in which QXis included, then s0 .s. ~· 
In order to prove the converse inclusion it is sufficient to show that 41s0 is 

equicontinuous: then the universal property of the maximal equicontinuous factor 

X/El implies, that l + !/S0 factorizes over X+ 1/E!., so that~ .5. s0• The proof 

that !/S0 is equicontinuous is rather deep, and uses ELLIS' joint continuity 

theorem, See [2], 4"20, 0 

~· In the above proof of the following was used: if I is a flow, then 

I is equicontinuous iff ~ • Ay• The proof of this is straightforward. 

In examples, the set Q!. is often fairly easy to determine. Helpfull is the following 

description: for a point <x,,x2> € xxx one has cx,,x2) € ~ iff there are nets 

(x1 (A))>.d and (x2(A))>.d in X and (tA)Ad in T such that 

EXAMPLES, 

~· Let T be the free group on two generators t 1 and t 2• Define an action of T on s1 

as follows 

t 1,z :• z exp(2wi0) for z € s1 

t 2.exp(2wir;) :• exp(2wit2) for r; € [0;1), 

If e is irrational, then the flow is minimal. Using the tranformstion t 2 and its 

iterates one sees readily, that t~(z 1 ,z 2 ) .... (1,1) if n-+ ~.Hence Q • s1xs 1• 

10. Same as above, but now 

Now it is a good exercise to show, that 

for r; € [O;i] 

for r; € Cl;!J 
for r; € [l;lJ 0 

for t € Cl; I J 
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oth@r ntr"'~ h, that Ql .. X•l!:. hi that cas!', also • X•X, so ., (*); 

COOH<iJ<Hmtly, ! h411 no llOtl-trivL!ll equ!.continimu~ fact"'r~. Of couru, thi~ h mho 

minia.;.1 fl<>W ! is call11"i 11!"'.;;:;fri;; wh111ncvor ~·~ is topolo:gkd ly "rgodl.c, 

th<1t t., inv&ri£nt subseu of xxx an d ther d111nse or nmmere <kiu;<r (io if A X•I 

ls cl,,s.,d, non-<M•!pty int"1:rior and is inv11dant, then A a l('XI. l f l( L$ 

utric, then thh property i$ oquivalent to X•X having a point "'ith a deruie orhH. 

~· For every t1 E u, ii is clouad, invariant has non-empty interior, so T:i: " X·~. 

Q!J!STIO!I lo l.llld.ar "'hieb additional C'l1'.ditions for 11 minimal flow! is it true, that 

if ::I: hu no non-trivial equicontinoous f4ctors then ! h -akly mixing? (Note, that 

l!:iu1mple 10 shwa th"t in 1eneral the converse of Theorem 3 is not true: Ql ia a c,loud 

invariant subset of X<X which baa non-f!ll!pty interior and is not equal to X•X.) 
Seveul people have studied thi1 proble:11; cL [7J and the referencu giv~n then, 

and also rn. 

gm:STI'!.J., l'lelatotd ill the qwntfon: under which conditions for a miniNl flow l 
is Q.l!. an eq&ivalence relation, i.e. El • Qll.? Also to this ?roblem much research he5 
baen devot.,d; see for instanclll [!)) end Chapter VIII in [ 12]. 

In t~e next section, e partial answer to these question vill be described, 

L@t ! be ~ flow, and let M(X) denote the set of probability measures on X, 
en~0wed !<ith the weak topology, So either M(X) :" {µ' Cu(X)' ! µ ~ & IJ( =I), 

a dosed convex nt of the (comp'1ct~) unit ball in C11(X)' with its weak topology, 
or, alternatively, M(X) is the set of all regular llorel measures µ in X with total 

m.s.u µ(X) " I, 

The action of T on X induces an action of I on M(X). l'hh action is g:lveu 

either by 
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for a Borel set A in X. A measure µ on X is called invariant whenever µ e M(X) and 

tµ = µ for all t e T. The following result is a special case of a theorem in [7]. 

It generalizes results from [3], [6] and [8], 

THEOREM 4. Let !. be a minimai f7,01'J, and Let ]!; have an invar··iant meaaure" Then Q! is 

an equiPaLenee 1'efo.tion, that is', EX = Qx• 

Moreover, if!. has no non-t:riviai equiao-;;_tinuous faators, that is, ifE! = xxx, then 

!. is weak.Zy mfa:·ing. 

~· Below, some details will be given. D 

~· There are also several results of this nature which do not require an 

invariant measure, See for instance (5]. The "relativation" of the above result will 

be described in (II]. 

5. THE PROOF OF THEOREM 4 

Let !. be a minimal flow with invariant measure µ. The proof of the theorem will 

be given by providing a suitable 'class of continuous invariant pseudometricson· 

X. Indeed, if p is such a pseudometric and 

then DP is a closed and invariant equivalence relation in X. Hence the flow !/DP is 

well-defined. Since p is an invariant pseudometric on x, p induces an invaI>iant 

metric on X/D • It is easy to show that thic metric is compatible with the (compact D 
p 

quotient-topology of X/DP. Since T acts on X/DP by isometrics, the flow !/DP is 

equicontinuous. So 

by the definition of Ell. We shall now indicate a construction 'Which will produce 

a set S of continuous invariant pseudometrics such that 

DX := n DP .S. Q!° 
- pcS 

This completes the proof of the first part of the theorem: QX.s.E.lks.D1£.Q!,soQ~=Rz." 
The construction of S is as follows. Let for every subset N ;;f xxx and every point 

x • X the section of N at x be denoted by 

N[x) := {x' c X : (x,x') c N}. 
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Clearly, if I is a cl<>t1ed subset of XxX, then ll[x] is cloaed in X, and we will •ee 

below, that if I i• noo-e.pty, clo1ed aud invariant, then N[xJ ; f. 

LB'.MMA. Ld I bti a non~ty ol.oadd ~t: auba•t of X><X, and dllfine the ma~ 

pN: Ixl + Ji+ by 

~· It is atraightforward to check· that pN is an invariant pseudometric on X•X. 

lbe proof that pN ie continuous on xxx is in several steps • 

.!.• For every x £ X, N[x]; f. This follows from the fact that the image of N under 

the projectiOG of Xxl 0t1to the first coordiD&te (this projection is a bomolllorphi .. 

of flows) i1 a lliOll-empty clo~ed invariant subset of X. So by ISinimality of l• thia 

i.Jaege is all of X, i.e. for all x ~ X there is a point of the form (x,x') in N, hence 

x' 'l(x) >j. II, 
!low let 21 denote the space of all closed, non-e111pty subsets of X, endowed with 

the Vietori1 topology. We claia: 

!• The upping x ... N[x]: X .,. 21 is upp11r semicontinuous, that is, for every x ( X 

and every open nbd U of the closed set N(x] in X there exists a nbd V of x such 

that N(x1 ] =.. U for all x' £ V. The easy proof of this claim is left to the reader • 

.!· If x1,x2 ' X, then u(ll[x1J) • µ(N(x 2J). 
To prove this, let c > O, and let U be an open nbd of N[x2J in X such that 

µ(U) < u(N[x2J) + c (regularity of u). By !_, there is a nbd V of x2 such that 

lft:x'J s;. U for all x' e V. Since x1 has a dense orbit (minimality of Jr.), there is 

t « T such that tx1 « V, hence N(tx1J £. u. Using invariantness of µand N we 

obtain 

This holds for every c > O, so µ(ll[x 1J) s µ(N[x2)), The converse inequality is 

proved in a ailSilar fashion. 

!• For all x1,x2 e X, we have 

.where 6 denotes as usual the symnetric difference. The straightforward proof 
follows from the observation, thn µ(N[x 1 ]\N[x2J) • µ(N[x 1 ]) - µ(N[ x 1 ]nN[ x2 ]) , in which 

equality the x1 and x2 11Sy be interchanged by .!· 
1• In order to show that pN is continuous on xxx, it is sufficient to show that for 

every x1 e X the mapping 



is continuous in the point x 1 of X. So let & > o. Let Ube an open nbd of N[x1J in 

X such that µ(U} < µ(N[x 1J) ~ €/2 (again, regularity ofµ), and let V be a nbd of 

x1 such that N[x] .s;. U for all x r V (cf. 1,). Then for all x • V: 

Now it follows from !, that for all x E: V 

The collection S of continuous invariant pseudometrics. referred to above, is 

S :• {pN i N ; 0 a closed invariant subset of xxx}, 

We now show that D! :a pQS DP i:. Q!. 

Let Cx1,x2) E: D4• Then for every closed non-empty invariant subset N of XxX 

we have µ(N[x 1JAN[x2J) • O. Now the following observation is crucial: for every 

open subset U of X, U ; 0, one has µ(U) > O. (Indeed, as µ is invariant, t supp µ • 

supp (tµ) • supp µ for every t £ T, so supp µ is a non-empty closed invariant 

subset of X; so supp µ • x, because ! is minimal.) In particular, if U is a non­

empty open subset of X and U s.N[x1J, then also U .s. N[x2l (otherwise U\NCx2J would 

be a non-empty open subset of N[x1 ]LIN[x2l, which has measure zero). This observation 

will be used below. 

We want to show that for arbitrary a £ fi, (x1,x2) E: Ta. To this end, introduce 

N :• 'fu. a 

Clearly, Na is a non-empty closed invariant subset of xxx. Let Ube an open nbd of 

x 2 , U .s. a[x2J. Then U E. N0 [X;i]• hence by the observation above, U ,SN0 [x1l. In par­

ticular, it follows that x2 e N0 [x1J, i.e. (x1,x2)E:N0 •Ta. Here aE:lt is arbitrary, 

so (x1 ,x2) <: a2n Ta • q1• So indeed, n! s. Qlr D 

~· The proof above originated ~s follows. Generalising [7), the second author 

obtained a number of new results (see [12] and also [!]). From his proofs, T-S. 

Wu extracted the above proof for this special case. This re!Dllrk also applit>s to the 

following proof. 



The proof of th<1 ~e1~cml part of the tl112orm "~"'$ th@ S&M trick "1.U WH uH"I 

alxw®. 

£ D~ for every continuous invariant p$eud01Htric 

m X•X for ..WilrJI douid inv&dant 00111-cmpty $ub11:.<t N of X'X. 

l!lllnce ~ 0 for dl x 1 ,x2 X. 

y., "'<ilnt to show that Ji. ; wakly mixing, that b, that for each op<l'n s:ibsl/!t 

0 of XwX th.112 ~et TO i~ ;i;;snwe in X"l. So l~t !or i•l ,2, Ui and Vi be open in X; Wt\? 

have to show that 

w :~ UJ 
2 

Consequently, W £ N[x1J. Since W +~and W is open, this implies (same trick as above) 

that 11 £ N[ x 2], that is 
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