LIFE SCIENCES (MAC4)

Modeling for systems biology

- Joke Blom (JB)
- Frank Bruggeman (FB,)
- Roeland Merks (RM)

Combinatorial and statistical algorithms

- Leen Stougie (LS,)
 - Alexander Schönhuth (AS)
- Gunnar Klau (GK)

Neuroinformatics

Sander Bohte (SB)

COMPOSITION AND FUNDING 2011

Mathematical and computational techniques Modeling, analysis and simulation of biological processes

In close cooperation with partners from biology and medicine

RESEARCH ACTIVITIES & CHALLENGES

Multiscale modeling of multicellular systems (Merks)

- core modeling group of NCSB
- models, simulation tools and model definition languages to answer biological questions
- applications: angiogenesis, plant development, gut microbiota

Results

- stochastic cell motility induces blood vessel sprouts
- amplitude determines sprout width

[Merks et al. PLoS Comp. Biol., 2008]

RESEARCH ACTIVITIES & CHALLENGES

Multiscale modeling of multicellular systems (Merks)

Challenges

- couple metabolism and gene regulation to multicellular structure and function
- model extracellular matrix accurately

Long term goals

- explanatory, 3D models of development
- models at the bench to guide experiments

Highlight

NWO Vidi grant 2010

RESEARCH ACTIVITIES & CHALLENGES

Classification of cancer (Klau/Schönhuth)

- Functional modules (phenotypic)
 - understand disease mechanisms
 - develop robust markers for classification

Results

- density-constrained bi-clustering
- optimal subnetworks

Highlight

best paper award ISMB 2008

CWI RESEARCH ACTIVITIES & (

Classification of cancer (Klau/Schönhuth)

- Structural variations (genotypic)
 - analysis of next-gen. sequencing data
 - combined statistical and combinatorial approach illum

Challenges

- how do networks help predict?
- data integration, network statistics, evaluation standards

Long term goals

 integrate genotypic and phenotypic events
increased role
research

SWOT ANALYSIS, STRATEGY

Strengths. Good funding record. Diversity

Weaknesses. Diversity. Junior group

Opportunities. More collaborations. European funding

Threats. Interdisciplinary funding may dry out. Become "service" department

Strategy

- more cooperations, joint research
- keep focus on fundamental contributions

Successes

- first joint projects (even crossdiscipline)
- first new kind of students