
Simple Mathematical Models for Cannibalism: 
A Critique and a New Approach 

0. DIEKMANN 

Centrum l'Oor Wiskunde en lnformatica. Kruis/mm 413. 1098 SJ Amsterdam. the 1V1:1ha!ands 

R. M. NISBET AND W. S. C. GURNEY 

Depanment of Applied Physics. Uniuersin· of Strwhc!rde, 107 Rotte11row. Glasgow G 4 ONG. 

Scotland, U.K. 

AND 

F. van den BOSCH 
Centrum voor Wiskunde en fnjormatica, Kruislaan 413. 1098 SJ Amsterdam. the Netha!und.1· 

Received 28 Januarv 1985; revised 21Ju/v1985 

ABSTRACT 

We show how to incorporate a functional response in recent models of Gurtin, Levine, 

and others for egg cannibalism. Starting from a relatively complicated model with vulner

ability spread over an age interval of finite duration(, we arrive at a much simpler model 

by passing to the limit £ t 0. It turns out that survivorship through the vulnerable stage is 

implicitly determined by the solution of a scalar equation. Subsequently we study the 

existence and stability of steady states, and we find (analytically in a simple case, 

numerically in more general situations) curves in a two-dimensional parameter space where 

a nontrivial steady state loses its stability and a periodic solution arises through a Hopf 

bifurcation. 

1. INTRODUCTION 

The incorporation of age or stage structure into mathematical models for 
the dynamics of biological populations creates the possibility of describing 
complicated inter- and intraspecific interactions. But the roads to realistic 
models and to tractable models are seldom parallel, and the would-be 
modeler is confronted with conflicting forces. Thus computer simulations of 
truly realistic quantitative models may be supplemented by analytic studies 
of relatively simple strategic models in order to enhance a qualitative 
understanding. 

In a successful attempt to keep the analytic complexity of an age-depen
dent prey-predator model within bounds, Gurtin and Levine [7] have intro-
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duced a rather clever idea. They translate the observation that some species 
only eat those individuals of a prey population which are in an early stage of 
their life cycle (e.g., eggs or larvae) into the mathematical assumption that 
predation only affects the rate of recruitment of the prey population. So if 
b(t) denotes the rate of prey offspring production and P(t) the size of 
the predator population, the rate of prey recruitment is given by 
b(t)R(b(t), P(t)), where R denotes the fraction of newborns that survive 
predation during an instantaneous (i.e., infinitesimally short) interaction with 
the predator population. In a subsequent publication [8] they identify the 
prey and the predator population so as to consider the qualitative effects of 
cannibalism. Under various ad hoe mathematical assumptions on the func
tion R, they studied the existence and stability of steady states and the 
existence of periodic solutions. In a follow-up, Frauenthal [4] has, among 
other things, tried to specify R starting from a saturating functional response 
as it arises from well-known mechanistic submodels for the predation process 
propounded by Holling [9, 10] and others. This is not an easy fill-in exercise, 
because these mechanistic submodels produce a predation rate that depends 
on prey number (or, more precisely, number per unit of area), whereas b(t) 
describes the rate at which potential victims of cannibalism are produced 
(per unit of area). Frauenthal ignores this difficulty and ends up with an 
unconvincing specification, where, in order to avoid negative rates of recruit
ment, he has to add an extra ad hoe rule. Gurtin and Levine [7] also neglect 
this problem, while Thompson, DiBiasio, and Mendes [13] suggest a modifi
cation that, although negative rates of recruitment are no longer possible, still 
does not solve the basic problem. 

This difficulty has prompted us to investigate the rationale of Gurtin and 
Levine's approach in some more detail. We first formulate a mathematical 
model of density-dependent cannibalism in which the young of age 0 ,,;; a ,,;; E: 

are potential victims and subsequently take the limit t: ! 0. Since a functional 
response is easily built into the original model (although there are several 
ways to fill in the details; moreover, the whole construction presupposes that 
the predation process has a time scale which is very short relative to E: ), we 
obtain a limiting model which admits a precise interpretation. Surprisingly, 
the determination of the survivorship through the vulnerable stage involves, 
in the limit, the (implicit) solution of a scalar equation. A posteriori this 
equation is easily interpreted as a consistency condition. 

For the sake of clarity we present our approach in the context of one 
specific model, viz., a cannibalism model. It should be clear, however, that 
the method of deriving a functional response relation for instantaneous 
interaction applies more generally. We intend to elaborate other examples in 
future publications. 

Our study of the cannibalism model concentrates on the existence and the 
stability of steady states. There appears to be a unique positive steady state 
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for relevant parameter values. We establish complementary regions in a 
two-dimensional parameter space where this steady state is stable or unsta
ble. The transition from one region to the other is characterized by a pair of 
complex conjugate roots of the characteristic equation crossing the imaginary 
axis and, consequently, by the (Hopf) bifurcation of a periodic solution. Thus 
our findings confirm the belief that cannibalism may promote oscillations. 

Finally, we address the question of the biological relevance of our limiting 
model. Egg cannibalism has been extensively studied in stored-product 
organisms (see, for instance, Fujii [5] and the references given there), where a 
vulnerable egg stage may last a few days out of a life cycle of several weeks. 
We therefore investigate whether the results for our mathematically simple 
"limiting model" will remain valid for small positive values of t. In Appen
dix I we present a formal proof that the processes of local linearization and 
taking the limit £ ,j, 0 are interchangeable, thereby guaranteeing that, except 
close to the stability boundary, (in)stability in the limiting model guarantees 
(in)stability for t: positive but small. 

2. THE MODEL OF EGG CANNIBALISM AND ITS 
SIMPLIFICATION 

Let n(t, ·)denote the age distribution of a biological population at time t. 

The time evolution of this distribution is described by the McKendrick 
equation 

a a 
-;- n( t, a)+ - n ( t, a) = - µ,( t, a) n ( t, a) at aa (2.1) 

provided with the boundary condition 

n(t,O)=b(t). (2.2) 

Formulation of a dynamical model amounts to a specification of the age
specific death rate µ, and the birth rate b. We assume a density-independent 
reproduction process and take 

b(t) =J 00 B(a)n(t,a) da, 
0 

(2.3) 

where B(a) is the expected number of births to an individual of age a per 
unit of time. In order to incorporate cannibalistic effects we assume that 

µ,(t,a) =v(a)+C(a)k(t)<D(c(t)), (2.4) 
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where 

v (a) is the age-specific "natural" death rate, 
C (a) is the attack rate as a function of the age of the victim, 
k ( t) is the effective number of cannibals, 
c(t) is the effective number of potential victims of cannibalism, 

cl> ( c(t)) is the correction factor for density-dependent effects. 

The functional response (i.e. the number of prey eaten per predator per unit 
of time) is given by 

f° C(a)n(t,a) da4>(c(t)). 

Introducing furthermore 

K (a). a dimensionless age-specific index of cannibalistic activity, 
Q (a). the "handling" time as a function of the age of the victim, 

we choose c and k to be given by 

c(t) = {''c(a)Q(a)n(t,a) da, 

k(t) = fo~K(a)n(t,a) da, 

(2.5) 

(2.6) 

and we interpret a posteriori the words "effective number" to be a shorthand 
for these weighted averages. Thus our formulation includes an age-dependent 
version of Holling's [9] "secretary" model, and we may take for <I> the 
well-known type II factor <I>( c) = 1/(1 + c). If, on the other hand, the 
functional response is determined by limitations of the digestive capacity 
(Holling [10], Metz and van Batenburg [ll]), we may use Q to describe the 
digestion time as a function of the age of the victim. Note that, since only the 
products CQn and k«l>Cn occur in the equation, one may normalize the 
functions (and even choose their dimensions) in various ways. We will 
assume that 4>(0)=1 and limc_ 00 c<I>(c)=l (the latter is effectively a 
normalization of c). 

A basic feature of these assumptions is that the influence of the age of the 
aggressor on the interaction is completely described by the index K entering 
in the definition (2.6) of k. In Appendix II we briefly discuss a more general 
setup. 

Equations (2.1), (2.2) can be supplemented with an initial condition 

n(O,a)=o/(a) (2.7) 

which determines the solution in the region a > t. However, for our present 
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purposes it is better to neglect initial conditions and view n as being 
determined by (2.1)-(2.2) with - oo < t < + oo. Thus we can express n 
explicitly in terms of b, k, and c: 

n(t,a)=b(t-a)exp{-flv(a)+k(t-a+a) 

x<I>(c(t-a+a))C(a)]da}, (2.8) 

where the factor 

exp{-fk(t-a+a)<l>(c(t-a+cr))C(a)da} (2.8a) 

accounts for the effects of cannibalism. The basic idea now is to let the 
support of the attack rate C shrink to the point a = 0, while at the same time 
the integral of C remains bounded away from zero [so as to prevent the 
factor (2.8a) from converging to one, corresponding to cannibalism becoming 
negligible]. In other words, we let the age interval in which the young suffer 
from cannibalism become infinitesimally short, but at the same time increase 
the risk per unit of time of falling victim to cannibalism in such a way that 
the total risk remains positive. We choose for C a fixed multiple of a 
o-function approximation: 

where h is some nonnegative function with support in [O, l] such that 

{h(a)da=O, 
0 

(2.9) 

(2.10) 

The dimensionless parameter 8 is the "product" of the attack rate and the 
length of the vulnerable stage. So it can be considered as a vulnerability 
index. 

Next we calculate limits when f ,J..O. We use the suffix f to express the 
dependence on E: explicitly in our notation. Assuming that b,, c,, and k, 
converge to b0 , c0 , and k0 when < ,J.. 0. we find for each fixed a > 0 

limn,(t,a) =limb,(t-a)exp{- {v(a)da- f 1'k,(t-a+<T) 
<tO <tO 0 0 

X <!> ( c, ( t - Q + (T)) h ( T) dT} 

= b0 ( t - a) exp{ - Ok 0 ( t - a) <I> ( c0 ( t - a)) - f v( a) d a}. 
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Since n,(t,O) = b,(t)-> b0 (t) as € J,O, we observe nonuniform convergence: 
the limits E: J, 0 and a J, 0 are not interchangeable. Indeed, as E: J, 0, n, ( t, ·) 
develops a discontinuity at a= 0 which corresponds precisely to the reduc
tion of the rate of production of offspring b0 (t) to the rate of recruitment 
b0 (t)exp{ - Bk0 (t)<l>(c0 (t))}. In the integrals (2.3) and (2.6) the developing 
discontinuity of n,(t, ·)is harmless and we can safely pass to the limit. But 
in the integral (2.5) the kernel C blows up in precisely the region where 
n, ( t, ·) becomes discontinuous, so we have to be careful. From 

c,(t)= [h(a)Q(rn)b,(t-€a) 
() 

Xexp{-J((Jv(r)dr-{k,(t-rn+Er) 
() 0 

X <I> ( c, ( t - rn + € r)) h ( r) d r} d <J 

we derive 

c0 ( t) = Q ( 0) b0 ( t) f h ( a) exp{ - k 0 ( t) <I> ( c0 ( t)) f h ( r) d r} d <J 

Q( 0) b0 ( t) 
( ) ( . ( ) ) { 1 - exp [ - e k 0 ( t) <I> ( c0 ( t)) ]} . k 0 t <I> c0 t 

We now drop the suffix nought and summarize and discuss our conclu
sions. By formal calculations we have found that in the limit € J, 0 the age 
distribution is completely independent of the function h and given by 

n ( t, a) = b( t _ a) e- Bk( r- u 1<1>( c(I- u 11 e - /,~•'I a 1 do, (2.11) 

where b and k are still given by the formulas (2.3) and (2.6), but c is 
implicitly determined as a function of b and k by the nonlinear scalar 
equation 

c<I> ( c) 1 
-- = -b(l- e-Ok<l>(c)). 
Q(O) k 

(2.12) 

The left-hand side is the formal limit of the functional response 
<l>(c)j0ccC(a)n(·,a)da, and the right-hand side is, indeed, the number of 
young eaten per unit of time per cannibal. Thus one can interpret (2.12) as a 
consistency condition. 

Of course the form of <I> has to ensure that, given b(t) and k(t), c(t) is 
uniquely determined by (2.12). Assuming that c<I> ( c) is increasing for c > 0, 
while <I>( c) is nonincreasing for c > 0, we see that c is uniquely found as the 
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intersection of an increasing and a nonincreasing curve (with opposite 
ordering of the endpoints, i.e. for c = 0 and for c = + oo ). In view of our 
interpretation of Cl>, these assumptions are very reasonable indeed. 

Finally we prefer to scale k and K with a factor 0 and to introduce 

(2.13) 

Effectively this amounts to putting 0 = 1 in the formulas above while 
replacing (2.12) by 

1 
acct>(c)=-b(l-e Act>«>). 

k 

As a side remark we note that (2.11) is equivalent to 

a a 
-n(t,a)+-:--n(t,a) =-v(a)n(t,a), at aa 

n( t ,0) = b( t) e-k\t)<l>\<\t)). 

3. LOCAL STABILITY OF STEADY STATES 

( 2 .14) 

(2.15) 

The simplified model takes the form of a system of two Volterra convolu
tion integral equations involving an implicitly defined nonlinear function: 

b(t)=y{'0 g(a)b(t-a)e k(t a)<l>(c(I a))da, 
0 

k( t) = P f'\( a) b( t- a) e-A\1-a)<l>(c(t-a)) da, (3.1) 

ac(t)<I>(c(t)) = b(t) (1-e A(l)<l>(c(lll). 

k( t) 

Here y and p are chosen such that the functions 

1 
g(a) =-B(a)e f<lv\a)da 

y 
( 3.2) 

and 

1 
h(a) =-K(a)e 11~•'\a)da ( 3.3) 

p 

have integral one. Thus y is the expected number of offspring of a newly 
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recruited individual (i.e., an individual which is at the beginning of its life but 
has already escaped from the danger of cannibalism), and p is an indicator 
for the strength of the cannibalistic interaction (recalling the scaling of K, we 
note that p =BK, where () is the vulnerability index and " is the expected 
time to be spent on cannibalistic activities by newly recruited individuals 
during their entire future life span). 

We refer to Diekmann and van Gils [2] for a detailed account of a 
qualitative theory of such systems, including a discussion of the incorpora
tion of initial conditions, the principle of linearized stability, and the Hopf 
bifurcation theorem. 

Steady states are found from 

b = ybe k<l>(cl 

k = pbe-k<l><cl, 

b 
ac<D( c) = -(1- e-k<l><cl) k . 

(3 .4) 

This system admits the trivial solution b = k = c = 0 (for k = 0 we interpret 
the third equation as ac = b ). Non trivial solutions have to satisfy 

1 
e-k<l>(c) = - , 

y 

b y 

k p 

y-1 
c<D(c)=--. 

ap 

( 3 .5) 

From our assumptions on c<D(c) it follows that the third equation has a 
unique positive solution c = c* provided that 

1 < y <l + ap. ( 3.6) 

Since a=l/OQ(O) and p =OK, the product ap equals the quotient K/Q(O) 
of the expected time spent on cannibalistic activities and the handling time. 
Hence this quantity is the maximal number of young eaten during the entire 
lifetime, and y - K/Q(O) is the minimal net contribution to the recruitment. 
Clearly the population will grow without bound if this contribution exceeds 
one, and thus the restriction (3.6) has a straightforward biological interpre
tation. Of course the restriction will disappear if one introduces an extra 
density-dependent effect so as to bring about a "carrying capacity" even in 
the absence of cannibalism, but we will not do so here (see Frauenthal [4]). 
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In the special case 

we find explicitly 

1 
<P(c)=

l+c 

y-1 
c*=----

ap - y + l 

29 

( 3 .7) 

( 3.8) 

Given c*, we find k from the first equation and subsequently b from the 
second: 

lny ap In y 
k* =--- =---c* 

<I>(c*) y-1 
( 3.9) 

y In y ay In y 
b*= =---c* 

p<P( c*) y -1 
( 3 .10) 

The trivial steady state is stable for 0 < y < 1 (in fact global) and unstable 
for y > 1. The nontrivial steady state is stable for y slightly larger than one. 
The question arises whether or not the nontrivial steady state loses its 
stability as y is further increased and/or other parameters are varied. 

Linearization about the nontrivial steady state leads to the characteristic 
equation 

( q + y ln y - y + 1) g( >..) - q In y h (;\) = q + 1 + ln y - y, ( 3 .11) 

where 

<I>2( c*) 
q = - ap <I>'( c*) 

and a bar denotes the Laplace transform 

With <I> given by (3. 7) one finds 

" q=ap=Q(O)' 

(3.12) 

(3.13) 

(3.14) 

and consequently we interpret q as yet another measure for the strength of 
the cannibalistic interaction. 
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Our plan is now to study for given functions g and h the curve in the 
(y, q)-plane which separates the stability domain, where all roots of (3.11) lie 
in the left half plane, from the instability domain, where some roots lie in the 
right half plane. Exploiting the fact that (3.11) is linear in q we can write 

( y In y - y + 1) g( A.) + y - 1 - In y 

q = 1 +In y h (A.) - g(A.) 

The condition for the right-hand side to be real is, for y '=/:- 1, 

[Im g( A.) Reh (A.) - Reg( A.) Im h (A.)] ( y In y - y + 1) 

+ Im h ( A.) (In y - y + 1) + Im g ( A.) ( y - 1) = 0, 

and under this condition we have 

( y In y - y + 1) Reg( A.) + y -1- ln y 

q = 1 +In y Reh (A.) - Re g( A.) 

if 1 + lny Re h(A.) = - Re g(A.) '=/:- 0, and 

( y In y - y + 1) Im g( A.) 
q= 

In y Im h (A.) - Im g( A.) 

(3.15) 

(3.16) 

( 3 .17) 

(3.18) 

otherwise [unless In y Im h(A.)-Im g(A.) = 0 as well, in which case the right
hand side is not defined]. In search for purely imaginary roots we put A. = i w, 

w E IR. The idea now is to solve (3.16) for w for given values of y (in general 
there are many solutions) and subsequently determine the corresponding 
value of q from (3.17) or (3.18). In the next section we present results 
obtained by a numerical implementation of this idea, but in the rest of this 
section we restrict ourselves to the special case h = g (if both B and K are 
step functions, this condition simply means that an individual practises 
cannibalism if and only if it is reproductive). 

If h = g, (3.16) simplifies to the y-independent equation 

Img(A.) = 0. (3.19) 

Given a root A.= iw, the formula (3.17) defines q as a function of y [note 
that the denominator of (3.18) is always zero now; consequently zeros of the 
denominator of (3.17) correspond to true singularities of q ]. Defining 

z =Reg( iw) (3.20) 
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and 

( z(ylny-y+l)+y-1-lny 
H y) =---------

1+ z(lny-l) ' 

31 

(3.21) 

we rewrite (3.17) as q = H(y). Clearly y = e<=-!Vz is a singular point of H. 
The biologically relevant region of parameter space is defined by the 

inequalities 1 < y < 1 + q [in view of (3.14) and (3.6), the second is obvious 
when <I> is given by (3.7), but it can be derived under the less restrictive 
assumption that c<I> ( c) is strictly increasing]. Some straightforward but 
lengthy calculations show that with q = H(y): 

(1) these constraints are not satisfied whenever z;;;., 0, or z < 0 and 
1 < y < e<:-1)/z; 

(2) the constraints are satisfied when z < 0 and e<=- 1>!= < y < oo; in this 
case H"(y)>O, H(y)t+oo for yie<=- 1ll=, and H(y)=y-1/z+o(l) 
for y--. + oo. 

Of course, there may be many solutions to Im g( i w) = 0 such that 
Re g(iw) < 0. From 

d ln2 y 
-H(y) = , > 0, 
dz (1-z(l-lny)J-

( 3 .22) 

we conclude that the curves q = H(y) are nested (in particular they do not 
intersect) and that the outer one corresponds to the minimal value of z. We 
summarize our results in the following 

THEOREM 

Let g = h, and assume that z < 0, where 

z = min{ Re g(iw) !Im g(iw) = O}. 

The stability boundary of the nontrivial steady state is given by q = H( y ), 
e~=- 1 >!= < y < oo, where His the convex function defined in (3.21). 

We refer to Figure l(c) for the graph of H when z"" -0,44. 
Now consider a path in (y, q) parameter space which intersects the 

stability boundary transversally. Along this path a pair of conjugate simple 
roots of (3.11) crosses the imaginary axis at ± iw with positive speed, and all 
other.roots of (3.11) lie in the left half plane. The Hopf bifurcation theorem 
implies that the loss of stability of the steady state is accompanied by the 
"creation" of a periodic solution. Locally this periodic solution may either 
live subcritically (i.e., for parameter values in the stability domain) or 
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supercntirnl!r (i.e., for parameter values in the instability domain). The 
principle of the exchange of stability implies that the periodic solution will he 
unstable in the first case and stable in the second. Again we refer to 
Diekmann and van Gib [2] for a detailed formulation and derivation of these 
results. In Appendix III we present an explicit formula for the direction of 
bifurcation and we apply this formula with <P given by (3.7) and a special 
L'.hoice of g. 

Althnugh the stability boundary depends only on y and the product 
c/ ap and not on p itself, the coefficients in the Taylor expansion of the 
periodic solution do depend on p. However, numerical evaluation of the 
formula shows that for all value;. of p supercritical bifurcation to a stable 
periodic solution occurl'.. See Appendix JI I. 

4. NUMERICAL RESULTS: SOME ILLUSTRATIVE EXAMPLES 
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side appears to be rather robust. A phenomenon not shown in Figure 1, but 

found in the numerical analysis, is that the period of the bifurcating periodic 

solutions along this part of the boundary increases with increasing T,. 

In the second figure we consider the effect of an upper bound for the 

cannibalistic age interval by fixing T_, at 1 and taking for T4 respectively 5 

and 3 [note that Figure l(c) corresponds to T4 = oo]. It appears that the 

instability domain expands when T4 is decreased. [Caution: when inter

preting this result one should keep in mind that the parameter p, i.e. the 

integral of K (a )exp[ - f ~ v (a) d a], is kept fixed when q is fixed and that K 

was scaled with the vulnerability index O.] 
In the third series the length ~ - T:i of the cannibalistic age interval is 

fixed at 0.5, while T3 is reduced from 0.25 to 0.01 in order to investigate the 

effect of cannibalistic activities of immature individuals. The stability domain 

expands considerably. A remarkable feature, not shown in the figure, is that 

the frequency w increases from w = 6 for T1 = 0.25 to w = 50 for T3 = 0.01. 

In order to test, confirm, and extend the results obtained from the analysis 

of the characteristic equation, we have done some numerical studies of the 

dynamical behavior. When the kernels are given by (4.1), one can reduce the 

system (3.1) of Volterra integral equations to a system of delay differential 

equations. Indeed, with T1 = 1 and T4 = oo the equation for b can be 
rewritten as 

f r-1 
b(t) =y g(t-a)b(a)e-k(a)<P(c(a))da, 

- 00 

( 4.2) 

and, since g' (a)= - v g( a) for a> 1, one obtains upon differentiation 

b'(t)=yvb(t-l)e-k(r l)<ll(c(r l))_vb(t). ( 4.3) 

Similarly one finds 

k'(t) =pvb(t-T3)e-k(t-T3)<P(c(1-T1ll _vk(t) (4.4) 

when T4 = oo, and 

( 4.5) 
- e- vT4 b( t - T4) e -k (I- T4 )c!>( c(I - T4)) } - v k ( t) 

when ~ < oo. Figures 4, 5, and 6 present solutions of the system (4.3)-(4.4) 

with initial data b(t)=k(t)=O for t<O, and a short input pulse of 

newborn individuals immediately after t = 0, for various values of the param

eters and with «l>(c)=l/(l+ c).These solutions were obtained by means of 
the program SOLVER [14]. 
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In the first series (Figure 4) we took v = 1, T3 =1, a= 2, p = 60 and 
varied y. This corresponds to a horizontal transect at q = ap = 120 in the 
parameter space of Figure l(c), and we see, indeed, the transitions from 
stability to oscillations and then back to stability. 

Figure 5 corresponds to a diagonal transect q = 30 + y in the parameter 
space of Figure l(c): we took v = 1, T3 =1, a= 2, and y = 2p - 30. The 
results suggest that the periodic solution remains stable and that further 
bifurcations leading to more complicated dynamical behavior do not occur. 
However, we have done far too little numerical work to warrant this 
conclusion, and the repertoire of dynamical behavior in the "unstable" 
region of parameter space is not yet known. 

In the third series (Figure 6) we took v =l, ~ = 0.975, a= 2, and p = 45 
and varied y. This again corresponds to a horizontal transect, but now in the 
parameter space of Figure l(d) at q = ap = 90, where we expect to see a 
repeated transition from stability to oscillations. The results are clearly in 
agreement with this expectation. 

A distinctive feature found in all numerical studies [except the one shown 
in Figure 6(d)] is that the oscillations of b and k reach their maxima and 
minima almost simultaneously and that, as a consequence, the quantity c 
remains almost constant. 

5. CONCLUDING REMARKS 

The infinitesimally short "vulnerable" age interval in the Gurtin-Levine 
model is both the reason for its tractability and the source of difficulties and 
confusion in choosing a concrete survival function. If constructing a practical 
model of cannibalism in any specific situation, we would almost certainly 
drop this assumption, include a short (but finite) stage through which 
individuals are vulnerable, and model feeding in a realistic manner. However, 
if we want "strategic" models capable of elucidating the dynamic conse
quences of cannibalism on very young individuals (or eggs), we do not want 
to complicate the mathematics with an extra stage. This work has the aim of 
establishing a consistent framework within which models with both a mecha
nistic description of feeding and an infinitesimally short vulnerable stage 
may be studied. 

Our analytical results on periodic solutions are based on the local Hopf 
bifurcation theorem and therefore only yield information for parameter 
values near the stability boundary. Gurtin and Levine [8] consider special 
kernels, which allow them to reduce the problem to a three-dimensional 
system of ordinary differential equations, and subsequently they prove the 
existence of periodic solutions without such restrictions on parameters. The 
implicitly defined survival function, which we derived in this paper, fits into 
their Model C, but unfortunately their assumption (5.2)( b) is not satisfied. 
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So the global (with respect to parameters) existence and stability of periodic 
solutions remains an open problem, although some preliminary conclusions 
can be drawn from the numerical work presented in Figures 4-6. 

Several possibly important aspects of cannibalism are not included in our 
model. We have neglected the positive effects of the consumed young for the 
growth, health, and/or fecundity of the cannibals. Since we use age and not 
size to distinguish the individuals from each other, we are not able to 
incorporate density-dependent individual growth rates as in Botsford [l], 
Diekmann et al. [3], Gurney and Nisbet [6], and Nisbet and Gurney (12]. In 
fact we have neglected all other types of density dependence and thus studied 
the effects of cannibalism in isolation; but the subtle ways in which nonlin
earities can interact to produce multiple stable steady states could be 
interesting and important (Botsford [l], Frauenthal [4]). 

Periodic rates of recruitment are propagated through the population age 
density as traveling waves. Near the Hopf bifurcation these look like 

n(t,a):::: e-•a{ C1 + C2 cosw(t-a)}, 

where C1 and C2 are constants. We found that the frequency w can be rather 
high when cannibalism is practiced by immature individuals. Such short-term 
fluctuations will be strongly damped in the adult population, since this is 
obtained from n(t, a) by integration over the relevant age interval. We refer 
to Fujii [5] for related observations. 

APPENDIX I. THE INTERCHANGEABILITY OF LINEARIZATION 
AND THE LIMIT ( J,. 0 

Consider the model defined by (2.8), (2.3), (2.5), and (2.6). It turns out 
that the calculations can be made much more explicitly if we make the 
reasonable assumption that for some 8 > 0 the support of C is contained in 
[O, 8) whereas the supports of B and K are contained in [ 8, oo ). Moreover, 
we normalize C so that ftC( a) da = 8 = 1. The steady-state equations are 
now 

1 = ye-k<l>(c)' 

k = pbe-k<l>(c), 

c = b 100 C( a) Q( a) e- !8•(a1 Jae-k<1><clf8C!ol Jo da. 
0 

By partial integration we can transform the third equation into 

c<I>( c) = ~ { Q(O)- Q( 8) e- Jgv(a)Jae-k<l><cl 

+ 1/l ~ ( Q( a) e- f/:v(a)do) e-k<l>(clf8C<a)da da}. 
o da 
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Upon substitution of k<P(c)=lny and b/k=y/p, the right-hand side is 
independent of b, k, and c, and we arrive, as before, at the conclusion that 
there exists a unique solution c* precisely when the righthand side belongs to 
the range of the monotone function ccJ> ( c ). Given c*, we find k* = 

(In y )/<P( c*) and b* = ( y In y )/pcl>( c* ). 
By straightforward but tedious calculations it can be shown that the 

linearized problem has a solution of the form e"'1 times a fixed vector if and 
only if one of the eigenvalues of the matrix 

~(X) 

ylny _ 
--g(X)C(-X) 

p 

-lny li(X)C(-X) 

y In y 
--11(X) 

p 

- b*k*<P'( c*) g( X) C( - X) 

-( k*) 2 <P'( c*) li(X)C( - X) 

- b*k*<P'( c*)'IJ(A.) 

equals one. Here 

~(a) := C( a) Q( a) e- J8v(a) dae-(lny)f8C(a) do 

11(X) == {0~(a)e->..a[e"'°C(a) dada. 
0 0 

If we now let C( a)= (1/ t:)h (a /t: ), it easily follows that both the steady-state 
equation and this matrix converge as t: i 0 to their respective counterparts, 
which are derived by first taking the limit t: ! 0 in the dynamical model 
equations. In particular one finds that the condition that one of the eigenval
ues of the limiting matrix 

g(X) 
ylny 

--g(X) 
p 

- b*k*<P'(c*)g(X) 

~h(X) -lnyh(X) -(k*)2 <P'(c*)h(X) 
y 

y-1 lny-y+l ( Q(O)b* _ c*) 4i'(c*) 
y lny p lny y 41( c*) 

should equal one, is precisely the characteristic equation (3.11). 
Standard perturbation arguments now imply that the roots of the char

acteristic equation depend continuously on t:. Hence, if all roots lie in the left 
half plane for t: = 0, the same has to be true for t: > 0 sufficiently small, and 
if some root lies in the right half plane for t: = 0, it remains there if t: is 
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slightly increased. Of course the precise location of the stability boundary in 
parameter space depends on t:, but in a continuous manner. 

We conclude that our results indeed describe the stability of the steady 
state for small positive t:. 

APPENDIX II. A STILL MORE GENERAL MODEL 

If the interaction of aggressor and victim depends in a general way on the 
ages of both, we may take for the age-specific death rate 

with 

µ(t,a) =P(a)+ ['0 n(a,a')<P(c(t,a'))n(t,a') da' 
0 

c( t, a')={" D(a, a')£( a, a') n( t, a) da 
0 

Here D is the attack rate, E the handling time, c an effective number and <P 
a functional response factor (which does not depend on a' explicitly). The 
reasonable factorization assumption 

D( a, a')= C(a) K( a'), 

E(a,a') =Q(a)M(a') 

leads to some (but not much) simplification. (Note that, given D and £, the 
factors are unique up to a multiplicative constant only.) However, if we 
assume 

K( a') M( a') =constant, 

we are back to the model introduced in Section 2, since then c becomes 
independent of a'. Since Kand M describe how, respectively, the attack rate 
and the handling time depend on the age of the aggressor, this assumption 
seems not too unreasonable 

APPENDIX III. THE DIRECTION OF HOPF BIFURCATION 

In [2] a formula is derived for the direction of Hopf bifurcation (for 
systems of Volterra convolution equations) which is explicit apart from the 
inversion of two N X N matrices, where N is the dimension of the system. 
Here we restrict ourselves to the simplest case, viz. N = 1. 

We consider the equation 

b ( t) = fo00 g( a) f ( b ( t - a)) da, 
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where the kernel g is normalized to have integral one, and where both g and 
the nonlinear function f depend on parameters (which, however, are sup
pressed in the notation). Linearization around a steady state b* leads to the 
characteristic equatic.n 

l=f'(b*)g(A), 

and the condition for Hopf bifurcation is 

Img(iw) =0, 

f'(b*) = [Reg(iw)r 1 . 

Given parameter values and w such that these conditions are satisfied, we 
define 

i r [ r c b*) 12 u,, c b* ) r g( 2 i w) } 
Ci = - 2[f'( b* )]2 g'(iw) \ f "' ( b*) +2 1- /'( b*) + -1---/'-(-b*-)-g(-2-iw-) . 

TIIEOREM 

Consider a path in parameter space along which a root of the characteristic 

equation crosses the imaginary axis at w from left to right. If Re c1 < 0, the 

bifurcating periodic solution exists supercritical/y, whereas it exists subcritically 

if Re c1 > 0. 

So determining the direction of bifurcation amounts to determining the 
sign of Re c1 . 

Now let 

f( b) = ybe-<Ph)h<P(c), 

where c is the function of b defined by 

and 

ac<I>( c) = 2'.(1- e·-(p/y)h<l>(cl) 

p 

1 
<I>(c)=-. 

l+ c 

Moreover, we take g(a)=e·<a-I) for a;;iol and g(a)=O for a<l. Let w 

be such that sinw = - w cos w, then Im g(iw) = O. With b* = ( ay ln y )/( ap 



F< 1Ci CANNIBALISM 

·- y + l) we find, after long and tedious calculations, 

1 
f'( h*) = -·-·-····· cos w 

w2 (o:p-y+l)2 
/"( h*) = ----- -----·---·· 

y In y a( ap - y + 1 + In y) 

f '" ( h*) = ~~~~ir/} (co::: 1 
(( l - ( ap ~o;: ~/co~:) 

X (' 3(1 +cos w) + ( ap - y + 1)(1+2cos w) 

. a w a.cos w 

and, up to a positive factor, 

Re c = l /\ .. /· '" ( h* ) 
I j'(h*) 

+ " h* -c 2[/"(h*)]~ J} 
I - f' ( h* ) [ f ( ) ] Q , 

where 

2w2 
• J 

- -·- -, Slff W 

2 + w" Q=----------------
[J'(h*)+lf+4w2 4f'(b*)(l +2w2 )cos:~w 

f'( h*) 1 + 2( l + 2 w1 ) cos: w 

45 

At anv point of the stability boundary, y and ap ~=it have a specific value. 

hut WL' may cbnose p arbitrary. Numerically it is found that in all points 
Re c 1 is a negative (and decreasing) function of p. So we conclude that the 

bifurcating pcrirn . .lit: solution exists supm.:ritically and is stabk. 
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