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Abstract

We introduce a new measure of the discrepancy in strategiegdetween the social welfare
in a Nash equilibrium and in a social optimum, that we califishness level It is the smallest
fraction of the social welfare that needs to be added to thgept’ payoffs to ensure that a Nash
equilibrium of the resulting game is also its social optimurhis notion is unrelated to that of price
of stability. We compute the selfishness level for some setegames. In particular, the selfishness
level of finite ordinal potential games is finite, while thdtoCournot competition oligopoly game
and Tragedy of the Commons game is infinite. We also providestimate on the selfishness level
of linear congestion games and fair cost sharing games.
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1 Introduction

1.1 Motivation

The discrepancy in strategic games between the social iealiaa Nash equilibrium and in a so-
cial optimum has been long recognized by the economists. dDtiee flagship examples is Cournot
competition, a strategic game involving firms that simuttaunsly choose the production levels of a
homogeneous product. The payoff functions in this gameriesthe firms’ profit in the presence
of some production costs, under the assumption that the pfithe product depends negatively on
the total output. It is well-known, see, e.g., [3, Section2],0that the price in the social optimum is
strictly higher than in the Nash equilibrium, which showattthe competition between the producers
of a product drives its price down.

In computer science the above discrepancy led to the inttamuof the notions of th@rice of
anarchy see [10], and thprice of stability see [17], that measure the ratio between the social welfare
in a worst and, respectively, a best Nash equilibrium andc@abkoptimum. This originated a huge
research effort aiming at determining both ratios for sfie@strategic games that possess (pure) Nash
equilibria.

These two notions ardescriptivein the sense that they refer to an existing situation. In this
paper we propose another notion that measures the discyepatween the social welfare in a Nash
equilibrium and a social optimum, whichri@rmative in the sense that it refers to a modified situation.
It draws on the concept @fitruistic gamegsee, e.g., [11] and more recent [12]). In these games each
player’s payoff is modified so that it also depends posijivei a fraction of the social welfare in the
considered joint strategy.

In our approach the minimal fraction for which such a modtfaaof the original game yields the
price of stability 1 is viewed as theelfishness levedf the game. That is, the selfishness level of a
game is the smallest fraction of the social welfare that agede offered to each player to achieve
that a social optimum is realized in a Nash equilibrium.

So in a finite game, if some Nash equilibrium of the game is alsmcial optimum, then its
selfishness level is 0. Otherwisedf> 0 is the smallest fraction of the social welfare that needsto
added to the players’ payoffs to ensure that a Nash equifibdf the resulting game is also its social
optimum, then the selfishness levebis If such ana does not exist, then the selfishness level of the
game iseo. For infinite games one needs additionally to consider thssipdity that a minimum of a
set ofas may not exist.

1.2 Related work

On an abstract level, the proposed approach is discusséy] in Ehapter “How to Promote Coopera-
tion”, from where we cite (see page 134): “An excellent waptomote cooperation in a society is to
teach people to care about the welfare of others.”

There are only few articles in the algorithmic game theatréiture that study the influence of
altruism in strategic games [7, 9, 8, 5, 6]. In these worksuetic player behavior is modeled by
altering each player’s perceived payoff in order to accalsu for the welfare of others. The models
differ in the way they combine the player’s individual paywith the payoffs of the other players.
All these studies are descriptive in the sense that they ainm@erstanding the impact of altruistic
behavior on specific strategic games.

Closest to our work are the articles [8] and [6]. Elias et 8].study the inefficiency of equilibria
in network design games with altruistic (or, as they calkdgcially-aware) players. As we do here,
they define each player’s cost function as his individuat pbss a times the social cost. They derive
lower and upper bounds on the price of anarchy and the prisbility, respectively, of the modified



game. In particular, they show that the price of stabilitgtisnost(Hn+ a)/(1+ a), wheren is the
number of players.

In an independent work, Chen et al. [6] introduce a framewmstudy theobust price of anarchy
which refers to the worst-case inefficiency of more genesfalteon concepts such as coarse correlated
equilibria (see [16]), of altruistic extensions of strategames. In their model, play&s perceived
cost is a convex combination ¢f — ;) times his individual cost plu; times the social cost, where
Bi € [0,1] is the altruism level of. If all players have a uniform altruism lev] = (3, this model
relates to the one we consider here by setting: 3/(1— 3). Although not being the main focus
of the paper, the authors also provide upper bounds/ @f 2 8) and(1— 3)Hn + 3 on the price of
stability for linear congestion games and fair cost shagiages, respectively.

Note that in all three cases the price of stability approach@sa goes too. This seems to
suggest that that the selfishness level of these games ksowever, this is not the case: We derive
a characterization result that allows us to determine tHeslseess level of a strategic game. Using
this characterization, we can show that the selfishnestdéfiaite potential games is finite, thereby
showing that the selfishness level of the games mentionedeabdinite. We also derive explicit
bounds on the selfishness level of linear congestion gantefaarcost sharing games (which include
network design games as a special case) that do not depehd parnber of players.

1.3 Ouitline of the paper

In what follows we provide in Section 3 the definition of théfisaness level and show that the self-
ishness level of a finite game can be an arbitrary real nunhidéig unrelated to the price of stability.
Then in Section 4 we provide a characterization that allosvwetermine when the selfishness level
of a game is finite. In the case of finite games this boils dowagimple test, namely the existence of
a specific social optimum that we catible In particular, the selfishness level of a finite game with a
unigue social optimum is finite.

Finally, in Section 5 we compute the selfishness level foressalected games. In particular, the
selfishness level of the-players Prisoner’s Dilemma game ig(2n — 3), and that of the Traveler’s
Dilemma game i%. We also show that the selfishness level of finite ordinalt@egames is finite,
while those of Cournot competition forfirms (an example of an infinite ordinal potential game) and
of a Tragedy of the Commons game are infinite. Finally, we jglan estimate on the selfishness
level of linear congestion games and fair cost sharing games

2 Preliminaries

A strategic game(in short, a gamels = (N, {S}ien, {pi}ien) is given by a seN = {1,...,n} of
players, a non-empty set efrategiesS for every playeii € N, and apayoff function p; for every
playeri € N with pi : S x ... x §;—R. The interpretation is that every playie N aims at choosing
a strategys € S so as to maximize his individual payqff(s), wheres = (s, ...,S).

We call s § x... xS a joint strategy denote itsith element bys, denote
(s1,--,S5-1,S+1,---,51) by s and similarly with S. Further, we write (5,s_i) for
(s1,---,8-1,5,S+1,---,5), where we assume thgte S. Sometimes, when focussing on player
we write (s,S_i) instead of.

A joint strategys aNash equilibriumif forall i € {1,...,n} ands € §

pi(s,s-i) > pi(S,s-).

Further, given a joint strategywe call the sunSW(s) := 3], pj(s) thesocial welfareof s. When
the social welfare o§is maximal we calk a social optimum



3 Selfishness level

Given a strategic gam& := (N, {S}ien,{pi}lien) and a > 0 we define the gam&(a) =
(N, {S}ien, {ri}ien) by putting
ri(s) := pi(s) + aSWs).
So whena > 0 the payoff of each player in th8(a) game depends on the social welfare of the
players.G(a) is then an altruistic version of the garGe

Suppose now that for sonte> 0 a Nash equilibrium o6(a) is a social optimum o&(a ). Then
we say that is a-selfish We define now theelfishness levedf a game by a case analysis.

If for no a > 0, G is a-selfish, then we say that its selfishness leved.idf for somea > 0, G is
a-selfish and

min (G is a-selfish

acRy
exists, then we call this minimum ttselfishness levadf G, and otherwise we stipulate that the self-
ishness level o6 is undefined.

Of course, when the gang&is finite and for somer > 0, G is a-selfish, the above minimum does
exist. We show below (Theorem 2) that this does not need théedse whef is infinite, that is, for
some games their selfishness level is undefined.

Note that the social welfare of a joint strategyn G(a) equals(1+ an)SW(s), so the social
optima of G andG(a) coincide. Hence we can replace in the above definition ttezeate to a social
optimum ofG(a) by one to a social optimum @. This is what we shall do in the proofs below.

The above definitions refer to strategic games in which elsfep maximizes his payoff function
pi and the social welfare of a joint strategjs given bySW(s). These definitions obviously apply to
strategic games in which every playieminimizes his cost function; and the social cost of a joint
strategysis defined asSQ(s) := y_; ¢j(s).

Intuitively, a low selfishness level means that the shard@fbcial welfare needed to induce the
players to choose a social optimum is small. This share candveed as an ‘incentive’ needed to
realize a social optimum. Let us illustrate this definitiontbree simple examples.

Example 1. Prisoner’s Dilemma

C D C D
C | 22 | 03 C | 66 | 36
D [ 30 [ 11 D | 63 | 33

Consider the Prisoner’s Dilemma ga@don the left) and the resulting gar®a) for a = 1 (on
the right). In the latter game the social optimui@,C), is also a Nash equilibrium. One can easily
check that fora < 1, (C,C) is also a social optimum d&(a) but not a Nash equilibrium. So the
selfishness level of this game is 1.

Example 2. Battle of the Sexes

F B
F 2,1 0,0
B 0,0 1,2

Here each Nash equilibrium is also a social optimum, so thislseess level of this game is 0.

Example 3. Matching Pennies

H T
H 1,-1 | -1, 1
T [ -1 1 1,-1




Since the social welfare of each joint strategy is 0, for emdhe gameG(a) is identical to the
original game in which no Nash equilibrium exists. So thdislehess level of this game ¢s. More
generally, the selfishness level of a constant sum game i B a Nash equilibrium and otherwise
it is co.

Recall that, given a finite gam@ that has a Nash equilibrium, itgrice of stability is the ratio
SW(s)/SW(S') wheresis a social optimum andl is a Nash equilibrium with the highest social welfare
in G. So the price of stability is 1 iff the selfishness level®fs 0. However, in general there is no
relation between these two notions. The following obséowadlso shows that the selfishness level of
a finite game can be an arbitrary real number.

Theorem 1. For every finitea > 0 and3 > 1 there is a finite game whose selfishness level @&d
whose price of stability i§.

Proof. Consider the following generalized form of the PrisonerieBma games to which we refer
by PD(a, B):

C D

C 1,1 0,x+1
11
D x+1,0 55

wherex = z%.

In this game and in each gar@y) with y > 0, (C,C) is the unique social optimum. To compute
the selfishness level we need to consider a gafyg and stipulate thaiC,C) is its Nash equilibrium.
This leads to the inequality- 2y > (y+ 1)(x+ 1), from which it follows thaty > %, i.e.,y > a.
So the selfishness level &fis a. Moreover, its price of stability if. O

We now use the above gamB®(a, ) to establish the following result showing that for some
games the selfishness level is undefined.

Theorem 2. There exists a game thatasselfish for everyr > 0, but is not 0-selfish.

Proof. We construct a strategic garf®e= (N, {S }ien, { pi }ien) with two playersN = {1,2} by com-
bining, for an arbitrary but fixe@8 > 1, infinitely manyPD(a, 3) games witha > 0 as follows:
For eacha > 0 we rename the strategies of tR®(a,3) game to, respectively{g(a) andD(a)
and denote the corresponding payoff functionspgdy The set of strategies of each playef N is
S ={C(a) | a > 0}U{D(a) | a > 0} and the payoff of is defined as

pf(s,s-i) if {s,s-i} C{C(a), D(a)} for somea >0

0 otherwise

pi(s,s-i) :—{

Every social optimum o6 is of the form(C(a),C(a)), wherea > 0. (Note that we exploit that
B > 1 here.) By the argument given in the proof of TheoreniCla),C(a)) with a > 0 is a Nash
equilibriumin the gam&(a) because the deviations frddia) to a strateg¥(y) or D(y) with y # o
yield a payoff of 0. ThusG is a-selfish for everya > 0. Finally, observe tha6 is not 0-selfish
because every Nash equilibrium@fis of the form(D(a),D(a)), wherea > 0. O

4 A characterization result

We now characterize the games with a finite selfishness [@gehis end we shall need the following
notion. We call a social optimumistableif for all i € N ands € S the following holds:

if (§,s-i) is a social optimum, thepi(s,s-i) > pi(§,S-i).

4



In other words, a social optimum is stable if no player is dxetiff by unilaterally deviating to
another social optimum.

Lemma 1. Consider a strategic game & (N, {S }ien,{pi }ien) anda > 0.

(i) If s is both a Nash equilibrium of @) and a social optimum of G, then s is a stable social
optimum of G.

(i) If s is a stable social optimum of G, then s is a Nash ebuiilim of G a) iff for alli € N and
s € R(i,s)
q> Pil8:8)—pi(s,s)
~ SW(s,s-i) —SWs,s-i)

where
R(,9):={5€S | pi(g,si) > pi(s,si) and SWs,s.i) > SM,s-i)}.

Proof.
(i) Suppose thatis both a Nash equilibrium d&(a) and a social optimum db. Consider some joint
strategy(§,s-i) that is a social optimum. By the definition of a Nash equilibni

pi(S,Si) + aSWs,s-i) > pi(S,s-i) + aSWS,s ),

sopi(s,s-i) > pi(,s-i), as desired.
(i) Suppose thas is a stable social optimum @. Thensis a Nash equilibrium o6(a) iff for all
ieNands €S
pi(s,si)+aSWs,s i) > pi(§,si) + aSWM,s ). (1)
If pi(s,s_i) > pi(§,s-i), then (1) holds for alr > O sincesis a social optimum. Ifi(s,si) >
pi(s,s-i), then, sincesis a stable social optimum @&, we haveSWs,s_;) > SWMS,s_).
So (1) holds for all € N andg € § iff

pi(s,s-i) — pi(s,s)
az SW(s,s i) —SWMS,s-i)

holds for alli € N ands € R(i,s). O

This leads us to the following result.
Theorem 3. Consider a strategic game & (N, {S }ien, {pi }ien)-

(i) The selfishness level of G is finite iff a stable socialmptn s exists for which

. pi(§:S-i) — pi(s,s-i)
als) = ieN,mqgé(i,s> SW(s,s.i) — SWMS,s i)

is finite.
(ii) If G is finite, then its selfishness level is finite iff itsha stable social optimum. In particular, if
G has a unique social optimum, then its selfishness levelts.fin

(iii) If G is finite and has a stable social optimum, then itéfiseness level equal®ing.ssoa (s),
whereSSOis the set of stable social optima.

(iv) If B > a >0and G isa-selfish, then G i§-selfish.



Proof. (i) and(iv) follow by Lemma 1ii) by (i) and(iii ) by (ii) and Lemma 1. O

Using the above theorem we now exhibit a class of games fdayers for which the selfishness
level is unbounded. In fact, the following more general ligsolds.

Theorem 4. For each function £ N— R there exists a class of games for n players, whereT
such that the selfishness level of a game for n players eqqa)s f

Proof. Assumen > 1 players and that each player has two strategies, 1 and @t®bpl the joint
strategy in which each strategy equals 1 and bythe joint strategy of the opponents of playen
which each entry equals 1. The payoff for each playedefined as follows:

0 ifs=1
pi(s) ;=< f(n) if s=0andvj<i, sj=1
—% otherwise

So whens# 1, pi(s) = f(n) if i is the smallest index of a player with= 0 and otherwise;(s) =

—%. Note thatSW(1) = 0 andSW(s) = —1if s# 1. Solis a unique social optimum.

We havep;(0,1_;) — pi(1) = f(n) andSW(1) — SW(0,1_;) = 1. So by Theorem(@ii ) the selfish-
ness level equalk(n). O

5 Examples

We now use the above characterization result to determinerapute an upper bound on the selfish-
ness level of some selected games. First, we exhibit a wellvk class of games (see [13]) for which
the selfishness level is finite.

5.1 Potential games

Given a gamés ;= (N, {S}ien, {pi tien), @ functionP : §; x ...S;— R is called arordinal potential
function for Gifforallie N,s_j € S jands,5 € S

pi(s,s-i) > pi(s,si) iff P(s,s.i) > P(s,5-4).
A game that possesses an ordinal potential function isccal@rdinal potential game
Theorem 5. Every finite ordinal potential game has a finite selfishnegslle
Proof. Each social optimum with the largest potential is a stabtéasoptimum. So the claim follows

by Theorem 8ii). O

In particular, every finite congestion game (see [15]) hasitefselfishness level. We shall derive
explicit bounds for two special cases of these games in@exch.7 and 5.8.

5.2 Prisoner’s dilemma forn players

We assume that each player N = {1,...,n} has two strategies, 1 (cooperate) and 0 (defect). We put

pi(s) = 1—s+225j.
J#



Proposition 1. The selfishness level of the n-players Prisoner’s DiIemnnaegiaﬁ.

Proof. Denote byl the joint strategy in which each strategy equals 1. In thisgais the unique
social optimum, with for eache N, pi(1) = 2(n— 1) andSW1) = 2n(n—1).

Consider now the joint strategyn which playei deviates froni to the strategy 0, while the other
players remain at 1. We have ther{s) =2(n— 1) +1 andSW(s) =2(n— 1)+ 1+2(n—1)(n—2).

Hence
pPEe-pm@ _ 1
SW1)—-SWs) 2n-3

The claim now follows by Theorem(ili ). In particular, fom = 2 we get, as already argued in Exam-
ple 1, that the selfishness level of the original Prisoneife®ma game is 1. O

5.3 Traveler’s dilemma

This is a strategic game discussed in [2] with two play¢es {1, 2}, strategy se§ = {2,...,100} for
every playet, and payoff functiorp; for everyi defined as

S ifs=s;
pi(s) ;=< s+2 ifs<s;
s_j—2 otherwise

Proposition 2. The selfishness level of the Traveler’s Dilemma gan%e is

Proof. The unique social optimum of this game(lK00, 100), while (2,2) is its unique Nash equilib-
rium.

If playeri deviates from the social optimum to a stratefgy. 99, while the other player remains at
100, the respective payoffs becosje- 2 ands — 2, so the social welfare becomes.ZSo

pi(5,100) — pi(100100) _ §-98
SW(100,100) — SW(§,100) _ 20025

The maximum%, is reached wheg = 99. So the claim follows by Theorentili). O

5.4 War of attrition

This is a strategic game, see, e.g., [14, Section 3.4], withpayersN = {1,2}, strategy se§ =R
for every playeii, and payoff functiorp; for everyi defined as follows, whenre> 0
-5 if § <sj
pi(s) =4 sv—s ifs=s;
Vv—S_j otherwise

Proposition 3. The selfishness level of the war of attrition gam@. s

Proof. A joint strategysis a Nash equilibrium iff eithes; = 0 ands, > vors, =0 ands; > v. So for
each Nash equilibriurawe haveSW(s) =, i.e., each Nash equilibrium is a social optimum. O



5.5 Cournot competition

We consider a symmetric oligopoly Cournot competition vilile same linear cost function for all
players. We assume that each playemN = {1,...,n} has a strategy s& = R and payoff function

pi(s) :i=s (a— bilsj) —cCs

for some givera, b, c, wherea > candb > 0.

The price of the product is represented by the expreaierb;?:lsj and the production cost
corresponding to the production levglby cs. In what follows we rewrite the payoff function as
pi(s) :=s(d—by]_;sj), whered :=a—c.

Proposition 4. The selfishness level of the n-players Cournot competitmmegsco.

Intuitively, this result means that in this game no mattewhouch we ‘involve’ the players in
sharing the social welfare we cannot achieve that they efélct a social optimum.

Proof. We first determine the stable social optima of this game. Hiirat strategys and lett :=
2?:151-. ThenSW(s) = t(d — bt). This expression becomes maximal precisely whenzib. So this
game has infinitely many social optima and each of them idestab
Take now a stable social optimusn Soy]_;sj = 2%. FixieN. Letu:=73;,sj. Forevery
strategyz of playeri
pi(zs) = —bZ+ (d — bu)z

and
SW(zs) = —bZ + (d — 2bu)z+ u(d — bu).
Denote nows by y and consider a strategyof playeri such thatp;(x,s-i) > pi(y,s-i). Then
u+x# &, SOSWY,s i) > SWX,S.i).
We have
Pi(x,5-i) = pi(y,5i) = —b(x* —y?) + (d — bu) (x—y)
= —b(x—y)(x+y+u-§) = ~bx—y)(x~ §).
where the last equality holds sinae- % =—(y+ %) on the account of the equality-y = 2%.
Further,
SW(Y.S-i) — SWx,s-i) = b(x—y)*— (d — 2bu) (x—y)
= b(x—y)(x+y+2u—§) = b(x—y)?,

where the last equality holds since2 4 = —2y on the account of the equality+y = %.
We havex #y. Hence

_ Pixsi)—pi(yisi) _ X=z _ . Y~
= SWY,s-i) —SW(X,s.i)  X—-y 1+ y—X '

Since .
pi(% 5-1) = Pi(y:5-1) = bly—x) (x— %)

we havep;(x,s_i) — pi(y.S.i) > 0iff y<x< L ory>x> &. Buty < &, sinceu+y= &. Sothe
conjunction ofp;(x,s_;) > pi(y,s-i) andSW(x,s_i) > SW(y,s i) holds iffy < x < 2%.
Now
max f(x) = co.
y<x< S

But swas an arbitrary stable social optimum, so the claim follbw3heorem 8). O



5.6 Tragedy of the commons

Assume that each playee N = {1,...,n} has the real intervgD, 1] as its set of strategies. Each
player’s strategy is his chosen fraction of a common resauret (see also [14, Exercise 63.1] and
[18, pages 6-7]):

n
pi(s):=max(0,s(1—-Y s)).
(05(1-55))

This payoff function reflects the fact that player's enjoyrmef the common resource depends
positively from his chosen fraction of the resource and tieglg from the total fraction of the common
resource used by all players. Additionally, if the totalcian of the common resource by all players
exceeds a feasible level, here 1, then player’s enjoymeheafesource becomes zero.

Proposition 5. The selfishness level of the n-players Tragedy of the Comgaone isw.

Proof. We first determine the stable social optima of this game. Hbira strategys and lett :=
Y018 If t > 1, then the social welfare is 0. So assume thatl. ThenSW(s) =t(1—-t). This
expression becomes maximal precisely when% and then it equalé. So this game has infinitely
many social optima and each of them is stable.

Take now a stable social optimusn So z'j‘:lsj = % Fix i € {1,...,n}. Denotes by a and
consider a strategyof playeri such thaipi(x,s-i) > pi(a,s-i). Theny . sj+x# % soSW(a,s i) >
SW(X,s ).

We havepi(a,s i) = § andSWa,s i) = %1. Further,pi(x,s-i) > pi(a,s-i) impliesy jjsj +x< 1
and hence 1

pi(X,s_i) = x(a—i— 5 x)
and 1 1
SWX,S_i) = (é - a+x) (1— > +a—x) =-—(a—x)>
Also x # a. Hence
pi(xsi)—piasi) _ (@a=x)(x=3) x—

1
"= SWas)—SWxs)  (@a-x? =ax= Lt

Since

pi(x,s-i) — pi(a,s-i) = (@a—Xx) (X_ %)

we havepi(x,s_i) > pi(a,s i) iff a<x< 3 ora>x> 3. Buta< 3, sincey4sj+a= 3. So the
conjunction ofpi(x,s-i) > pi(a,s_i) andSW(x,s_) < SW(a,s_;) holds iffa < x < .
Now
max f(x) = co.
a<x<}

But swas an arbitrary stable social optimum, so the claim follbw3heorem 8i). O

5.7 Linear congestion games

In a congestion game (see [18) = (N,E,{S}ien, {de}ece) We are given a set of playeid =
{1,...,n}, a set of facilitie€ with a delay functiorde : N — Q for every facilitye € E, and a strategy
setS C 2F for every playei € N. For a joint strategg € S; x --- x S, definexe(s) as the number of



players using facilitye € E, i.e.,xe(s) = |{i € N: e s}|. The goal of a player is to minimize his indi-
vidual costCi (S) = Y ecs de(Xe(S)). The social cost function is given I8Q(s) = 3L, ¢i(s). In alinear
congestion game, the delay function of every facibity E is of the formds(X) = aex+ be, where
ae, be € Q1 are non-negative rational numbers. Using standard scaliggments, we can assume
without loss of generality thats, be € N.

Given a linear congestion game, we defineas the maximum number of facilities that any
player can choose, i.eL, := maxcn, scs |S|- Moreover, letAmay := MaXck (ae + be) and Amin :=
MiNeck (ae + be).

Proposition 6. The selfishness level of a linear congestion game is at é{hst&max— Amin—1).
Note that|L| < |E|, so the exhibited bound does not depend on the number ofrglaye

Proof. Let s be a stable social optimum. Note thaéxists by Theorems(8) and 5. Because we
consider a cost minimization game here the condition in Térad3(i) reads
ci(s,s i) —ci(§,s-

als) = ie{1,..., n}a;’(eRls SC(%/ S.i) SC(S,&|) @

where
R(i,s) :={5 €S | ci(5,s.i) <ci(s,s-i) andSA§,s_i) > SAs,5-i)}.
Fix some player and lets' = (5,s_i) for somes € R(i,s). We usexe andx; to refer toxe(s) and
Xe(9), respectively. Note that
xe+1 ifeeg\s,
Xe=<{X—1 ifees\g|, 3)
Xe otherwise

Exploiting (3), we obtain

Ci(s,s-i) — Gi(S,5-i) (BeXe+De) — 3 (BeXe+ be)

eezs ecs
=2

(AeXe+ be) — ; ae(Xe+ 1) + be).
ecs\s

ecs\g
Similarly,
Sc(#a&i)—SC(s,&i)ng&ae&ﬂLbe EEXe(ane-i‘be)
= Y (et D)(Belxe+ 1) + be) — XelBeXe+ be)
ecs\s
+ Z (Xe — 1)(@e(Xe — 1) + be) — Xe(@eXe + be)
ecs\s
= Y (Ae(Xe+1)+Dbe)— 5 (Be(2xe—1)+be).
ecs\s ecs\g

Given a congestion vectar= (Xe)ect, defineP(X) 1= F ecq\g (BeXe+ be) aNdQ(X) 1= Fece\5 (Be(Xe+
1)+ be). Note thatP(x) andQ(x) are integers becauseg,be € N for every facilitye € E. Note that
with these definitions?(1) = Y ecs\ ¢ (8 + be) aNdQ(0) = F ecs\ g (e + be). We have

Gi(s,S-i) —Ci(s,Si) _ P(x) —Q(X)
SAs,s-i) —SAs;si)  2Q(X) —Q(0) — 2P(x) + P(1)’




Becauses € R(i,s), we know thaP(x) > Q(x) and )(x) — Q(0) > 2P(x) — P(1). So we obtain

Q(x) +1 < P(x) < Q(x) + 5(P(1) —Q(0) - 1).
Exploting these inequalities, we obtain
P(x) —Q(x)
2Q(x) — Q(0) — 2P(x) + P(1)

< Q)+ 5(P(1) - Q0) - 1) - Q)

~lra-oo-1)

=5 (e +be) — (8e+be) —1
2 (eeg\q ee%\s >

< 5(3\]- e 1§\ 8] B — 1),

Note thats \ s| > 1; otherwises C s and thusSC§,s_i) < SQ(s) which contradicts] € R(i,s). The

above expression is thus at most

1
E(L'Amax—Amin— 1)-

Because this bound holds for every playands € R(i,s), we conclude by Theorem(i# ) that the
selfishness levet is at most%(L - Dmax— Dmin — 1). O

Proposition 6 is tight for certain values bf Amax andAmin. As an example, it yields an upper
bound ofn—1 for L = 1, Apax = 2n andApin = 1, which is tight as the following example shows.
Consider a symmetric congestion game withpkayers and two facilities; ande, with delay func-
tionsx and 2y, respectively. Clearly, a socially optimal strategy peodikplits the 2 players evenly
among the facilities and has c®@(s) = n? 4+ 2n? = 3n?. Consider a playeirthat uses facility,. We
havec; (s) = 2n. If i switches to facilitye;, we obtainSQs,s i) = (n+1)2+2n(n—1) = 3n’4 1 and
Ci(§,s-i) =n+1. Thus

a > G(S)-G(§,8i) _ n—1.

~ Sqs,si)—-SAs)

5.8 Fair cost sharing games

In a fair cost sharing game players allocate facilities dmafre the cost of the used facilities in a
fair manner. Formally, a fair cost sharing game is giverGoy (N, E, {S }ien, {Ce}ece), WhereN =
{1,...,n} is the set of players is the set of facilitiesS C 2F is the set of facility subsets available to
playeri, andce € Q. is the cost of facilitye € E. As for congestion games, we bef(s) be the number
of players using facilitye € E in a joint strategys € S; x - -- X §,. The cost of a facilitye € E is evenly
shared among the players using it. That is, the cost of playaefined ag; (s) = ¥ ecq Ce/Xe(S). The
social cost function is given b8Q(s) = ', ci(s). Using standard scaling arguments, we can assume
without loss of generality thag, € N.

Given a cost sharing game, we deflnas the maximum number of facilities that any player can
choose, i.el :=maxcn, scs |S|. Moreover, letmax := MaXcE Ce.

Proposition 7. The selfishness level of a fair cost sharing game is at r%iostmax— 1.

Note thatL| < |E|, so the exhibited bound does not depend on the number ofrglaye
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Proof. Letsbe a stable social optimum. Note tteagxists by Theorems(8) and 5. Fix some player
i and lets' = (5,s_i) for somes € R(i,s). We usexe andx; to refer toxe(s) andxe(s'), respectively. It
is not difficult to verify that

Ce Ce
Sags)-SAss)= 5 -y 2
By definition, we have

c
CI(S7&|)_CI(511’&')_e€z$X_e eeq’x_le.
Thus

Gi(S,Si) —Gi(s,Si) _ Secsiner2x ~ Desgo2X

Sds,s-i) — Sds;,s-) Sds,s-i) — SAs,s-)

Note that the denominator is at least 1 becaiseR(i,s) and eactte belongs taN. We conclude

Ci(s,S-i) —Gi(S,S-i) Ce 1
< ——1<-L-Cmax— 1.
SOE,5i)—SOS,51) ~ esgoz¥e 2
The claim follows by Theorem(8i). O

6 Conclusions

We presented in this paper a new discrepancy measure betiaesaocial welfare in a Nash equilib-
rium and in a social optimum, that we call the selfishnesd.lémecontrast to the concepts of price of
anarchy and price of stability this measure is normativ@at it indicates by what fraction of altruism
the original game needs to be modified to achieve a desingatisin.

The proposed measure can be also used for other games artidoisolution concepts, for in-
stance extensive games and subgame perfect equilibrian &snple consider the six-period version
of the centipede game (see, e.g., [14]) depicted in Figure 1.

1 C 2 C 1 C 2 C 1 C 2

¢ (67 5)

S S S S S S

(1:0) (0:2) (3:1) (2:4) (5:3) (4:6)

Figure 1: A centipede game.

In its unique subgame perfect equilibrium each player ces8# every period and the resulting
payoffs are(1,0). Since 5+ (6+5)a > 6+ (44 6)a holds iff a > 1, we can conclude that the
(appropriately adapted) selfishness level for this game is 1
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