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Abstract

We introduce a new measure of the discrepancy in strategic games between the social welfare
in a Nash equilibrium and in a social optimum, that we callselfishness level. It is the smallest
fraction of the social welfare that needs to be added to the players’ payoffs to ensure that a Nash
equilibrium of the resulting game is also its social optimum. This notion is unrelated to that of price
of stability. We compute the selfishness level for some selected games. In particular, the selfishness
level of finite ordinal potential games is finite, while that of a Cournot competition oligopoly game
and Tragedy of the Commons game is infinite. We also provide anestimate on the selfishness level
of linear congestion games and fair cost sharing games.
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1 Introduction

1.1 Motivation

The discrepancy in strategic games between the social welfare in a Nash equilibrium and in a so-
cial optimum has been long recognized by the economists. Oneof the flagship examples is Cournot
competition, a strategic game involving firms that simultaneously choose the production levels of a
homogeneous product. The payoff functions in this game describe the firms’ profit in the presence
of some production costs, under the assumption that the price of the product depends negatively on
the total output. It is well-known, see, e.g., [3, Section 10.2], that the price in the social optimum is
strictly higher than in the Nash equilibrium, which shows that the competition between the producers
of a product drives its price down.

In computer science the above discrepancy led to the introduction of the notions of theprice of
anarchy, see [10], and theprice of stability, see [17], that measure the ratio between the social welfare
in a worst and, respectively, a best Nash equilibrium and a social optimum. This originated a huge
research effort aiming at determining both ratios for specific strategic games that possess (pure) Nash
equilibria.

These two notions aredescriptivein the sense that they refer to an existing situation. In this
paper we propose another notion that measures the discrepancy between the social welfare in a Nash
equilibrium and a social optimum, which isnormative, in the sense that it refers to a modified situation.
It draws on the concept ofaltruistic games(see, e.g., [11] and more recent [12]). In these games each
player’s payoff is modified so that it also depends positively on a fraction of the social welfare in the
considered joint strategy.

In our approach the minimal fraction for which such a modification of the original game yields the
price of stability 1 is viewed as theselfishness levelof the game. That is, the selfishness level of a
game is the smallest fraction of the social welfare that needs to be offered to each player to achieve
that a social optimum is realized in a Nash equilibrium.

So in a finite game, if some Nash equilibrium of the game is alsoa social optimum, then its
selfishness level is 0. Otherwise ifα > 0 is the smallest fraction of the social welfare that needs tobe
added to the players’ payoffs to ensure that a Nash equilibrium of the resulting game is also its social
optimum, then the selfishness level isα. If such anα does not exist, then the selfishness level of the
game is∞. For infinite games one needs additionally to consider the possibility that a minimum of a
set ofαs may not exist.

1.2 Related work

On an abstract level, the proposed approach is discussed in [1], in chapter “How to Promote Coopera-
tion”, from where we cite (see page 134): “An excellent way topromote cooperation in a society is to
teach people to care about the welfare of others.”

There are only few articles in the algorithmic game theory literature that study the influence of
altruism in strategic games [7, 9, 8, 5, 6]. In these works, altruistic player behavior is modeled by
altering each player’s perceived payoff in order to accountalso for the welfare of others. The models
differ in the way they combine the player’s individual payoff with the payoffs of the other players.
All these studies are descriptive in the sense that they aim at understanding the impact of altruistic
behavior on specific strategic games.

Closest to our work are the articles [8] and [6]. Elias et al. [8] study the inefficiency of equilibria
in network design games with altruistic (or, as they call it,socially-aware) players. As we do here,
they define each player’s cost function as his individual cost plusα times the social cost. They derive
lower and upper bounds on the price of anarchy and the price ofstability, respectively, of the modified
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game. In particular, they show that the price of stability isat most(Hn + α)/(1+ α), wheren is the
number of players.

In an independent work, Chen et al. [6] introduce a frameworkto study therobust price of anarchy,
which refers to the worst-case inefficiency of more general solution concepts such as coarse correlated
equilibria (see [16]), of altruistic extensions of strategic games. In their model, playeri’s perceived
cost is a convex combination of(1−βi) times his individual cost plusβi times the social cost, where
βi ∈ [0,1] is the altruism level ofi. If all players have a uniform altruism levelβi = β , this model
relates to the one we consider here by settingα = β/(1− β ). Although not being the main focus
of the paper, the authors also provide upper bounds of 2/(1+ β ) and(1−β )Hn + β on the price of
stability for linear congestion games and fair cost sharinggames, respectively.

Note that in all three cases the price of stability approaches 1 asα goes to∞. This seems to
suggest that that the selfishness level of these games is∞. However, this is not the case: We derive
a characterization result that allows us to determine the selfishness level of a strategic game. Using
this characterization, we can show that the selfishness level of finite potential games is finite, thereby
showing that the selfishness level of the games mentioned above is finite. We also derive explicit
bounds on the selfishness level of linear congestion games and fair cost sharing games (which include
network design games as a special case) that do not depend on the number of players.

1.3 Outline of the paper

In what follows we provide in Section 3 the definition of the selfishness level and show that the self-
ishness level of a finite game can be an arbitrary real number that is unrelated to the price of stability.
Then in Section 4 we provide a characterization that allows us to determine when the selfishness level
of a game is finite. In the case of finite games this boils down toa simple test, namely the existence of
a specific social optimum that we callstable. In particular, the selfishness level of a finite game with a
unique social optimum is finite.

Finally, in Section 5 we compute the selfishness level for some selected games. In particular, the
selfishness level of then-players Prisoner’s Dilemma game is 1/(2n− 3), and that of the Traveler’s
Dilemma game is12. We also show that the selfishness level of finite ordinal potential games is finite,
while those of Cournot competition forn firms (an example of an infinite ordinal potential game) and
of a Tragedy of the Commons game are infinite. Finally, we provide an estimate on the selfishness
level of linear congestion games and fair cost sharing games.

2 Preliminaries

A strategic game(in short, a game)G = (N,{Si}i∈N,{pi}i∈N) is given by a setN = {1, . . . ,n} of
players, a non-empty set ofstrategiesSi for every playeri ∈ N, and apayoff function pi for every
playeri ∈ N with pi : S1× . . .×Sn→R. The interpretation is that every playeri ∈ N aims at choosing
a strategysi ∈ Si so as to maximize his individual payoffpi(s), wheres= (s1, . . . ,sn).

We call s ∈ S1 × . . . × Sn a joint strategy, denote its ith element by si , denote
(s1, . . .,si−1,si+1, . . .,sn) by s−i and similarly with S−i. Further, we write (s′i ,s−i) for
(s1, . . .,si−1,s′i ,si+1, . . .,sn), where we assume thats′i ∈ Si. Sometimes, when focussing on playeri
we write(si ,s−i) instead ofs.

A joint strategysaNash equilibrium if for all i ∈ {1, . . . ,n} ands′i ∈ Si

pi(si ,s−i) ≥ pi(s
′
i ,s−i).

Further, given a joint strategyswe call the sumSW(s) := ∑n
j=1 p j(s) thesocial welfareof s. When

the social welfare ofs is maximal we callsa social optimum.
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3 Selfishness level

Given a strategic gameG := (N,{Si}i∈N,{pi}i∈N) and α ≥ 0 we define the gameG(α) :=
(N,{Si}i∈N,{r i}i∈N) by putting

r i(s) := pi(s)+ αSW(s).

So whenα > 0 the payoff of each player in theG(α) game depends on the social welfare of the
players.G(α) is then an altruistic version of the gameG.

Suppose now that for someα ≥ 0 a Nash equilibrium ofG(α) is a social optimum ofG(α). Then
we say thatG is α-selfish. We define now theselfishness levelof a game by a case analysis.

If for no α ≥ 0, G is α-selfish, then we say that its selfishness level is∞. If for someα ≥ 0, G is
α-selfish and

min
α∈R+

(G is α-selfish)

exists, then we call this minimum theselfishness levelof G, and otherwise we stipulate that the self-
ishness level ofG is undefined.

Of course, when the gameG is finite and for someα ≥ 0, G is α-selfish, the above minimum does
exist. We show below (Theorem 2) that this does not need to be the case whenG is infinite, that is, for
some games their selfishness level is undefined.

Note that the social welfare of a joint strategys in G(α) equals(1+ αn)SW(s), so the social
optima ofG andG(α) coincide. Hence we can replace in the above definition the reference to a social
optimum ofG(α) by one to a social optimum ofG. This is what we shall do in the proofs below.

The above definitions refer to strategic games in which each playeri maximizes his payoff function
pi and the social welfare of a joint strategys is given bySW(s). These definitions obviously apply to
strategic games in which every playeri minimizes his cost functionci and the social cost of a joint
strategys is defined asSC(s) := ∑n

j=1c j(s).
Intuitively, a low selfishness level means that the share of the social welfare needed to induce the

players to choose a social optimum is small. This share can beviewed as an ‘incentive’ needed to
realize a social optimum. Let us illustrate this definition on three simple examples.

Example 1. Prisoner’s Dilemma
C D

C 2,2 0,3
D 3,0 1,1

C D
C 6,6 3,6
D 6,3 3,3

Consider the Prisoner’s Dilemma gameG (on the left) and the resulting gameG(α) for α = 1 (on
the right). In the latter game the social optimum,(C,C), is also a Nash equilibrium. One can easily
check that forα < 1, (C,C) is also a social optimum ofG(α) but not a Nash equilibrium. So the
selfishness level of this game is 1.

Example 2. Battle of the Sexes

F B
F 2,1 0,0
B 0,0 1,2

Here each Nash equilibrium is also a social optimum, so the selfishness level of this game is 0.

Example 3. Matching Pennies

H T
H 1,−1 −1, 1
T −1, 1 1,−1
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Since the social welfare of each joint strategy is 0, for eachα the gameG(α) is identical to the
original game in which no Nash equilibrium exists. So the selfishness level of this game is∞. More
generally, the selfishness level of a constant sum game is 0 ifit has a Nash equilibrium and otherwise
it is ∞.

Recall that, given a finite gameG that has a Nash equilibrium, itsprice of stability is the ratio
SW(s)/SW(s′) wheres is a social optimum ands′ is a Nash equilibrium with the highest social welfare
in G. So the price of stability is 1 iff the selfishness level ofG is 0. However, in general there is no
relation between these two notions. The following observation also shows that the selfishness level of
a finite game can be an arbitrary real number.

Theorem 1. For every finiteα > 0 andβ > 1 there is a finite game whose selfishness level isα and
whose price of stability isβ .

Proof. Consider the following generalized form of the Prisoner’s Dilemma gameG to which we refer
by PD(α,β ):

C D
C 1,1 0,x+1

D x+1,0 1
β , 1

β

wherex = α
α+1.

In this game and in each gameG(γ) with γ ≥ 0, (C,C) is the unique social optimum. To compute
the selfishness level we need to consider a gameG(γ) and stipulate that(C,C) is its Nash equilibrium.
This leads to the inequality 1+ 2γ ≥ (γ + 1)(x+ 1), from which it follows thatγ ≥ x

1−x, i.e., γ ≥ α.
So the selfishness level ofG is α. Moreover, its price of stability isβ . 2

We now use the above gamesPD(α,β ) to establish the following result showing that for some
games the selfishness level is undefined.

Theorem 2. There exists a game that isα-selfish for everyα > 0, but is not 0-selfish.

Proof. We construct a strategic gameG= (N,{Si}i∈N,{pi}i∈N) with two playersN = {1,2} by com-
bining, for an arbitrary but fixedβ > 1, infinitely manyPD(α,β ) games withα > 0 as follows:
For eachα > 0 we rename the strategies of thePD(α,β ) game to, respectively,C(α) and D(α)
and denote the corresponding payoff functions bypα

i . The set of strategies of each playeri ∈ N is
Si = {C(α) | α > 0}∪{D(α) | α > 0} and the payoff ofi is defined as

pi(si ,s−i) :=

{

pα
i (si ,s−i) if {si ,s−i}⊆{C(α), D(α)} for someα > 0

0 otherwise.

Every social optimum ofG is of the form(C(α),C(α)), whereα > 0. (Note that we exploit that
β > 1 here.) By the argument given in the proof of Theorem 1,(C(α),C(α)) with α > 0 is a Nash
equilibrium in the gameG(α) because the deviations fromC(α) to a strategyC(γ) or D(γ) with γ 6= α
yield a payoff of 0. Thus,G is α-selfish for everyα > 0. Finally, observe thatG is not 0-selfish
because every Nash equilibrium ofG is of the form(D(α),D(α)), whereα > 0. 2

4 A characterization result

We now characterize the games with a finite selfishness level.To this end we shall need the following
notion. We call a social optimumsstableif for all i ∈ N ands′i ∈ Si the following holds:

if (s′i ,s−i) is a social optimum, thenpi(si ,s−i) ≥ pi(s′i ,s−i).
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In other words, a social optimum is stable if no player is better off by unilaterally deviating to
another social optimum.

Lemma 1. Consider a strategic game G:= (N,{Si}i∈N,{pi}i∈N) andα ≥ 0.

(i) If s is both a Nash equilibrium of G(α) and a social optimum of G, then s is a stable social
optimum of G.

(ii) If s is a stable social optimum of G, then s is a Nash equilibrium of G(α) iff for all i ∈ N and
s′i ∈ R(i,s)

α ≥
pi(s′i ,s−i)− pi(si ,s−i)

SW(si ,s−i)−SW(s′i ,s−i)

where

R(i,s) := {s′i ∈ Si | pi(s′i ,s−i) > pi(si ,s−i) and SW(si ,s−i) > SW(s′i ,s−i)}.

Proof.
(i) Suppose thats is both a Nash equilibrium ofG(α) and a social optimum ofG. Consider some joint
strategy(s′i ,s−i) that is a social optimum. By the definition of a Nash equilibrium

pi(si ,s−i)+ αSW(si ,s−i) ≥ pi(s
′
i ,s−i)+ αSW(s′i ,s−i),

so pi(si ,s−i) ≥ pi(s′i ,s−i), as desired.

(ii) Suppose thats is a stable social optimum ofG. Thens is a Nash equilibrium ofG(α) iff for all
i ∈ N ands′i ∈ Si

pi(si ,s−i)+ αSW(si ,s−i) ≥ pi(s
′
i ,s−i)+ αSW(s′i ,s−i). (1)

If pi(si ,s−i) ≥ pi(s′i ,s−i), then (1) holds for allα ≥ 0 sinces is a social optimum. Ifpi(s′i ,s−i) >
pi(si ,s−i), then, sinces is a stable social optimum ofG, we haveSW(si ,s−i) > SW(s′i ,s−i).

So (1) holds for alli ∈ N ands′i ∈ Si iff

α ≥
pi(s′i ,s−i)− pi(si ,s−i)

SW(si ,s−i)−SW(s′i ,s−i)

holds for alli ∈ N ands′i ∈ R(i,s). 2

This leads us to the following result.

Theorem 3. Consider a strategic game G:= (N,{Si}i∈N,{pi}i∈N).

(i) The selfishness level of G is finite iff a stable social optimum s exists for which

α(s) := max
i∈N, s′i∈R(i,s)

pi(s′i ,s−i)− pi(si ,s−i)

SW(si ,s−i)−SW(s′i ,s−i)

is finite.

(ii) If G is finite, then its selfishness level is finite iff it has a stable social optimum. In particular, if
G has a unique social optimum, then its selfishness level is finite.

(iii) If G is finite and has a stable social optimum, then its selfishness level equalsmins∈SSOα(s),
whereSSOis the set of stable social optima.

(iv) If β > α ≥ 0 and G isα-selfish, then G isβ -selfish.
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Proof. (i) and(iv) follow by Lemma 1,(ii) by (i) and(iii ) by (ii) and Lemma 1. 2

Using the above theorem we now exhibit a class of games forn players for which the selfishness
level is unbounded. In fact, the following more general result holds.

Theorem 4. For each function f: N→R+ there exists a class of games for n players, where n> 1,
such that the selfishness level of a game for n players equals f(n).

Proof. Assumen > 1 players and that each player has two strategies, 1 and 0. Denote by1 the joint
strategy in which each strategy equals 1 and by1−i the joint strategy of the opponents of playeri in
which each entry equals 1. The payoff for each playeri is defined as follows:

pi(s) :=











0 if s= 1
f (n) if si = 0 and∀ j < i, sj = 1

− f (n)+1
n−1 otherwise.

So whens 6= 1, pi(s) = f (n) if i is the smallest index of a player withsi = 0 and otherwisepi(s) =

− f (n)+1
n−1 . Note thatSW(1) = 0 andSW(s) = −1 if s 6= 1. So1 is a unique social optimum.
We havepi(0,1−i)− pi(1) = f (n) andSW(1)−SW(0,1−i) = 1. So by Theorem 3(iii ) the selfish-

ness level equalsf (n). 2

5 Examples

We now use the above characterization result to determine orcompute an upper bound on the selfish-
ness level of some selected games. First, we exhibit a well-known class of games (see [13]) for which
the selfishness level is finite.

5.1 Potential games

Given a gameG := (N,{Si}i∈N,{pi}i∈N), a functionP : S1× . . .Sn→R is called anordinal potential
function for G if for all i ∈ N, s−i ∈ S−i andsi ,s′i ∈ Si

pi(si ,s−i) > pi(s
′
i ,s−i) iff P(si ,s−i) > P(s′i ,s−i).

A game that possesses an ordinal potential function is called anordinal potential game.

Theorem 5. Every finite ordinal potential game has a finite selfishness level.

Proof. Each social optimum with the largest potential is a stable social optimum. So the claim follows
by Theorem 3(ii). 2

In particular, every finite congestion game (see [15]) has a finite selfishness level. We shall derive
explicit bounds for two special cases of these games in Sections 5.7 and 5.8.

5.2 Prisoner’s dilemma forn players

We assume that each playeri ∈ N = {1, . . . ,n} has two strategies, 1 (cooperate) and 0 (defect). We put

pi(s) := 1−si +2∑
j 6=i

sj .
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Proposition 1. The selfishness level of the n-players Prisoner’s Dilemma game is 1
2n−3.

Proof. Denote by1 the joint strategy in which each strategy equals 1. In this game1 is the unique
social optimum, with for eachi ∈ N, pi(1) = 2(n−1) andSW(1) = 2n(n−1).

Consider now the joint strategys in which playeri deviates from1 to the strategy 0, while the other
players remain at 1. We have thenpi(s) = 2(n−1)+ 1 andSW(s) = 2(n−1)+ 1+ 2(n−1)(n−2).
Hence

pi(s)− pi(1)

SW(1)−SW(s)
=

1
2n−3

The claim now follows by Theorem 1(iii ). In particular, forn = 2 we get, as already argued in Exam-
ple 1, that the selfishness level of the original Prisoner’s Dilemma game is 1. 2

5.3 Traveler’s dilemma

This is a strategic game discussed in [2] with two playersN = {1,2}, strategy setSi = {2, . . .,100} for
every playeri, and payoff functionpi for everyi defined as

pi(s) :=







si if si = s−i

si +2 if si < s−i

s−i −2 otherwise.

Proposition 2. The selfishness level of the Traveler’s Dilemma game is1
2.

Proof. The unique social optimum of this game is(100,100), while (2,2) is its unique Nash equilib-
rium.

If player i deviates from the social optimum to a strategys′i ≤ 99, while the other player remains at
100, the respective payoffs becomes′i +2 ands′i −2, so the social welfare becomes 2s′i . So

pi(s′i ,100)− pi(100,100)
SW(100,100)−SW(s′i ,100)

=
s′i −98

200−2s′i

The maximum,12, is reached whens′i = 99. So the claim follows by Theorem 1(iii ). 2

5.4 War of attrition

This is a strategic game, see, e.g., [14, Section 3.4], with two playersN = {1,2}, strategy setSi = R+

for every playeri, and payoff functionpi for everyi defined as follows, wherev > 0

pi(s) :=







−si if si < s−i
1
2v−si if si = s−i

v−s−i otherwise.

Proposition 3. The selfishness level of the war of attrition game is0.

Proof. A joint strategys is a Nash equilibrium iff eithers1 = 0 ands2 ≥ v or s2 = 0 ands1 ≥ v. So for
each Nash equilibriumswe haveSW(s) = v, i.e., each Nash equilibrium is a social optimum. 2
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5.5 Cournot competition

We consider a symmetric oligopoly Cournot competition withthe same linear cost function for all
players. We assume that each playeri ∈ N = {1, . . . ,n} has a strategy setSi = R+ and payoff function

pi(s) := si

(

a−b
n

∑
j=1

sj

)

−csi

for some givena,b,c, wherea > c andb > 0.
The price of the product is represented by the expressiona− b∑n

j=1sj and the production cost
corresponding to the production levelsi by csi . In what follows we rewrite the payoff function as
pi(s) := si(d−b∑n

j=1sj), whered := a−c.

Proposition 4. The selfishness level of the n-players Cournot competition game is∞.

Intuitively, this result means that in this game no matter how much we ‘involve’ the players in
sharing the social welfare we cannot achieve that they will select a social optimum.

Proof. We first determine the stable social optima of this game. Fix ajoint strategys and lett :=
∑n

j=1sj . ThenSW(s) = t(d−bt). This expression becomes maximal precisely whent = d
2b. So this

game has infinitely many social optima and each of them is stable.
Take now a stable social optimums. So ∑n

j=1sj = d
2b. Fix i ∈ N. Let u := ∑ j 6=i sj . For every

strategyzof playeri
pi(z,si) = −bz2 +(d−bu)z

and
SW(z,si) = −bz2 +(d−2bu)z+u(d−bu).

Denote nowsi by y and consider a strategyx of player i such thatpi(x,s−i) > pi(y,s−i). Then
u+x 6= d

2b, soSW(y,s−i) > SW(x,s−i).
We have

pi(x,s−i)− pi(y,s−i) = −b(x2−y2)+ (d−bu)(x−y)
= −b(x−y)(x+y+u− d

b) = −b(x−y)(x− d
2b),

where the last equality holds sinceu− d
b = −(y+ d

2b) on the account of the equalityu+y= d
2b.

Further,
SW(y,s−i)−SW(x,s−i) = b(x−y)2− (d−2bu)(x−y)

= b(x−y)(x+y+2u− d
b) = b(x−y)2,

where the last equality holds since 2u− d
b = −2y on the account of the equalityu+y= d

2b.
We havex 6= y. Hence

f (x) :=
pi(x,s−i)− pi(y,s−i)

SW(y,s−i)−SW(x,s−i)
= −

x− d
2b

x−y
= −1+

y− d
2b

y−x
.

Since

pi(x,s−i)− pi(y,s−i) = b(y−x)
(

x−
d
2b

)

we havepi(x,s−i)− pi(y,s−i) > 0 iff y < x < d
2b or y > x > d

2b. But y≤ d
2b, sinceu+y = d

2b. So the
conjunction ofpi(x,s−i) > pi(y,s−i) andSW(x,s−i) > SW(y,s−i) holds iff y < x < d

2b.
Now

max
y<x< d

2b

f (x) = ∞.

But swas an arbitrary stable social optimum, so the claim followsby Theorem 3(i). 2
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5.6 Tragedy of the commons

Assume that each playeri ∈ N = {1, . . . ,n} has the real interval[0,1] as its set of strategies. Each
player’s strategy is his chosen fraction of a common resource. Let (see also [14, Exercise 63.1] and
[18, pages 6–7]):

pi(s) := max
(

0,si

(

1−
n

∑
j=1

sj

))

.

This payoff function reflects the fact that player’s enjoyment of the common resource depends
positively from his chosen fraction of the resource and negatively from the total fraction of the common
resource used by all players. Additionally, if the total fraction of the common resource by all players
exceeds a feasible level, here 1, then player’s enjoyment ofthe resource becomes zero.

Proposition 5. The selfishness level of the n-players Tragedy of the Commonsgame is∞.

Proof. We first determine the stable social optima of this game. Fix ajoint strategys and lett :=
∑n

j=1sj . If t > 1, then the social welfare is 0. So assume thatt ≤ 1. ThenSW(s) = t(1− t). This

expression becomes maximal precisely whent = 1
2 and then it equals14. So this game has infinitely

many social optima and each of them is stable.
Take now a stable social optimums. So ∑n

j=1sj = 1
2. Fix i ∈ {1, . . .,n}. Denotesi by a and

consider a strategyx of playeri such thatpi(x,s−i) > pi(a,s−i). Then∑ j 6=i sj +x 6= 1
2, soSW(a,s−i) >

SW(x,s−i).
We havepi(a,s−i) = a

2 andSW(a,s−i) = 1
4. Further,pi(x,s−i) > pi(a,s−i) implies∑ j 6=i sj +x< 1

and hence

pi(x,s−i) = x
(

a+
1
2
−x

)

and

SW(x,s−i) =
(1

2
−a+x

)(

1−
1
2

+a−x
)

=
1
4
− (a−x)2.

Also x 6= a. Hence

f (x) :=
pi(x,s−i)− pi(a,s−i)

SW(a,s−i)−SW(x,s−i)
=

(a−x)(x− 1
2)

(a−x)2 =
x− 1

2

a−x
= −1+

a− 1
2

a−x

Since

pi(x,s−i)− pi(a,s−i) = (a−x)
(

x−
1
2

)

we havepi(x,s−i) > pi(a,s−i) iff a < x < 1
2 or a > x > 1

2. But a≤ 1
2, since∑ j 6=i sj + a = 1

2. So the
conjunction ofpi(x,s−i) > pi(a,s−i) andSW(x,s−i) < SW(a,s−i) holds iff a < x < 1

2.
Now

max
a<x< 1

2

f (x) = ∞.

But swas an arbitrary stable social optimum, so the claim followsby Theorem 3(i). 2

5.7 Linear congestion games

In a congestion game (see [15])G = (N,E,{Si}i∈N,{de}e∈E) we are given a set of playersN =
{1, . . . ,n}, a set of facilitiesE with a delay functionde : N → Q for every facilitye∈ E, and a strategy
setSi ⊆ 2E for every playeri ∈ N. For a joint strategys∈ S1×·· ·×Sn, definexe(s) as the number of

9



players using facilitye∈ E, i.e.,xe(s) = |{i ∈ N : e∈ si}|. The goal of a player is to minimize his indi-
vidual costci(s) = ∑e∈si

de(xe(s)). The social cost function is given bySC(s) = ∑n
i=1ci(s). In a linear

congestion game, the delay function of every facilitye∈ E is of the formde(x) = aex+ be, where
ae,be ∈ Q+ are non-negative rational numbers. Using standard scalingarguments, we can assume
without loss of generality thatae,be ∈ N.

Given a linear congestion game, we defineL as the maximum number of facilities that any
player can choose, i.e.,L := maxi∈N, si∈Si |si |. Moreover, let∆max := maxe∈E(ae+ be) and∆min :=
mine∈E(ae+be).

Proposition 6. The selfishness level of a linear congestion game is at most1
2(L ·∆max−∆min−1).

Note that|L| ≤ |E|, so the exhibited bound does not depend on the number of players.

Proof. Let s be a stable social optimum. Note thats exists by Theorems 3(ii) and 5. Because we
consider a cost minimization game here the condition in Theorem 3(i) reads

α(s) := max
i∈{1,...,n}, s′i∈R(i,s)

ci(si ,s−i)−ci(s′i ,s−i)

SC(s′i ,s−i)−SC(si,s−i)
, (2)

where
R(i,s) := {s′i ∈ Si | ci(s′i ,s−i) < ci(si ,s−i) andSC(s′i ,s−i) > SC(si,s−i)}.

Fix some playeri and lets′ = (s′i ,s−i) for somes′i ∈ R(i,s). We usexe andx′e to refer toxe(s) and
xe(s′), respectively. Note that

x′e =











xe+1 if e∈ s′i \ si ,

xe−1 if e∈ si \ s′i ,

xe otherwise.

(3)

Exploiting (3), we obtain

ci(si ,s−i)−ci(s
′
i ,s−i) = ∑

e∈si

(aexe+be)− ∑
e∈s′i

(aex
′
e+be)

= ∑
e∈si\s′i

(aexe+be)− ∑
e∈s′i\si

(ae(xe+1)+be).

Similarly,

SC(s′i ,s−i)−SC(si,s−i) = ∑
e∈E

x′e(aex
′
e+be)− ∑

e∈E
xe(aexe+be)

= ∑
e∈s′i\si

(xe+1)(ae(xe+1)+be)−xe(aexe+be)

+ ∑
e∈si\s′i

(xe−1)(ae(xe−1)+be)−xe(aexe+be)

= ∑
e∈s′i\si

(ae(2xe+1)+be)− ∑
e∈si\s′i

(ae(2xe−1)+be).

Given a congestion vectorx = (xe)e∈E, defineP(x) := ∑e∈si\s′i
(aexe+be) andQ(x) := ∑e∈s′i\si

(ae(xe+

1)+ be). Note thatP(x) andQ(x) are integers becauseae,be ∈ N for every facilitye∈ E. Note that
with these definitions,P(1) = ∑e∈si\s′i

(ae+be) andQ(0) = ∑e∈s′i\si
(ae+be). We have

ci(si ,s−i)−ci(s′i ,s−i)

SC(s′i ,s−i)−SC(si,s−i)
=

P(x)−Q(x)

2Q(x)−Q(0)−2P(x)+P(1)
.
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Becauses′i ∈ R(i,s), we know thatP(x) > Q(x) and 2Q(x)−Q(0) > 2P(x)−P(1). So we obtain

Q(x)+1≤ P(x) ≤ Q(x)+
1
2
(P(1)−Q(0)−1).

Exploting these inequalities, we obtain

P(x)−Q(x)

2Q(x)−Q(0)−2P(x)+P(1)
≤ Q(x)+

1
2
(P(1)−Q(0)−1)−Q(x)

=
1
2
(P(1)−Q(0)−1)

=
1
2

(

∑
e∈si\s′i

(ae+be)− ∑
e∈s′i\si

(ae+be)−1

)

≤
1
2
(|si \ s′i | ·∆max−|s′i \ si | ·∆min−1).

Note that|s′i \si | ≥ 1; otherwise,s′i ⊆ si and thusSC(s′i ,s−i)≤SC(s) which contradictss′i ∈R(i,s). The
above expression is thus at most

1
2
(L ·∆max−∆min−1).

Because this bound holds for every playeri ands′i ∈ R(i,s), we conclude by Theorem 3(iii ) that the
selfishness levelα is at most12(L ·∆max−∆min−1). 2

Proposition 6 is tight for certain values ofL, ∆max and∆min. As an example, it yields an upper
bound ofn− 1 for L = 1, ∆max = 2n and∆min = 1, which is tight as the following example shows.
Consider a symmetric congestion game with 2n players and two facilitiese1 ande2 with delay func-
tionsx and 2n, respectively. Clearly, a socially optimal strategy profile s splits the 2n players evenly
among the facilities and has costSC(s) = n2+2n2 = 3n2. Consider a playeri that uses facilitye2. We
haveci(s) = 2n. If i switches to facilitye1, we obtainSC(s′i ,s−i) = (n+1)2+2n(n−1) = 3n2+1 and
ci(s′i ,s−i) = n+1. Thus

α ≥
ci(s)−ci(s′i ,s−i)

SC(s′i ,s−i)−SC(s)
= n−1.

5.8 Fair cost sharing games

In a fair cost sharing game players allocate facilities and share the cost of the used facilities in a
fair manner. Formally, a fair cost sharing game is given byG = (N,E,{Si}i∈N,{ce}e∈E), whereN =
{1, . . . ,n} is the set of players,E is the set of facilities,Si ⊆ 2E is the set of facility subsets available to
playeri, andce∈ Q+ is the cost of facilitye∈ E. As for congestion games, we letxe(s) be the number
of players using facilitye∈ E in a joint strategys∈ S1×·· ·×Sn. The cost of a facilitye∈ E is evenly
shared among the players using it. That is, the cost of playeris defined asci(s) = ∑e∈si

ce/xe(s). The
social cost function is given bySC(s) = ∑n

i=1ci(s). Using standard scaling arguments, we can assume
without loss of generality thatce ∈ N.

Given a cost sharing game, we defineL as the maximum number of facilities that any player can
choose, i.e.,L := maxi∈N, si∈Si |si |. Moreover, letcmax := maxe∈E ce.

Proposition 7. The selfishness level of a fair cost sharing game is at most1
2L ·cmax−1.

Note that|L| ≤ |E|, so the exhibited bound does not depend on the number of players.
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Proof. Let s be a stable social optimum. Note thats exists by Theorems 3(ii) and 5. Fix some player
i and lets′ = (s′i ,s−i) for somes′i ∈ R(i,s). We usexe andx′e to refer toxe(s) andxe(s′), respectively. It
is not difficult to verify that

SC(s′i ,s−i)−SC(si,s−i) = ∑
e∈s′i :x

′
e=1

ce

x′e
− ∑

e∈si :xe=1

ce

xe
.

By definition, we have

ci(si ,s−i)−ci(s
′
i ,s−i) = ∑

e∈si

ce

xe
− ∑

e∈s′i

ce

x′e
.

Thus

ci(si ,s−i)−ci(s′i ,s−i)

SC(s′i ,s−i)−SC(si,s−i)
=

∑e∈si :xe≥2
ce
xe
−∑e∈s′i :x

′
e≥2

ce
x′e

SC(s′i ,s−i)−SC(si,s−i)
−1.

Note that the denominator is at least 1 becauses′i ∈ R(i,s) and eachce belongs toN. We conclude

ci(si ,s−i)−ci(s′i ,s−i)

SC(s′i,s−i)−SC(si,s−i)
≤ ∑

e∈si :xe≥2

ce

xe
−1≤

1
2

L ·cmax−1.

The claim follows by Theorem 3(iii ). 2

6 Conclusions

We presented in this paper a new discrepancy measure betweenthe social welfare in a Nash equilib-
rium and in a social optimum, that we call the selfishness level. In contrast to the concepts of price of
anarchy and price of stability this measure is normative in that it indicates by what fraction of altruism
the original game needs to be modified to achieve a desired situation.

The proposed measure can be also used for other games and for other solution concepts, for in-
stance extensive games and subgame perfect equilibria. As an example consider the six-period version
of the centipede game (see, e.g., [14]) depicted in Figure 1.

1 2 1 2 1 2
(6,5)

(1,0) (0,2) (3,1) (2,4) (5,3) (4,6)

C C C C C C

S S S S S S

Figure 1: A centipede game.

In its unique subgame perfect equilibrium each player choosesS in every period and the resulting
payoffs are(1,0). Since 5+ (6+ 5)α ≥ 6+ (4+ 6)α holds iff α ≥ 1, we can conclude that the
(appropriately adapted) selfishness level for this game is 1.
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