
A Coalgebraic Perspective on Minimization,
Determinization and Behavioural Metrics

Filippo Bonchi
ENS de Lyon

France

Mathias Hülsbusch and Barbara König
Universität Duisburg-Essen

Germany

Alexandra Silva
Centrum Wiskunde & Informatica

The Netherlands

Abstract—Coalgebra offers a unified theory of state based sys-
tems, including infinite streams, labelled transition systems and
deterministic automata. In this paper, we use the coalgebraic view
on systems to derive, in a uniform way, abstract procedures for
checking behavioural equivalence in coalgebras, which perform
(a combination of) minimization and determinization.

First, we show that for coalgebras on categories equipped with
factorization structures, there exists an abstract procedure for
equivalence checking. For instance, when considering epi-mono
factorizations in the category of sets and functions, this procedure
corresponds to the usual minimization algorithm and two states
are behaviourally equivalent if and only if they are mapped to
the same state in the minimized coalgebra.

Second, motivated by several examples, we consider coalgebras
on categories without suitable factorization structures: under cer-
tain conditions, it is possible to apply the above procedure after
transforming coalgebras with reflections. This transformation can
be thought of as some kind of determinization.

Finally, we show that the result of the procedure also induces
a pseudo-metric on the states, in such a way that the distance
between each pair of states is minimized.

I. INTRODUCTION

Finite automata are one of the most basic structures in
computer science and much research has been devoted to
studying their properties. One particular interesting problem
is that of minimization: given a (non-)deterministic finite
automaton is there an equivalent one which has a minimal
number of states? Minimization is relevant in many areas of
computer science such as model checking, concurrency theory,
language theory and formal verification.

For deterministic automata (DA’s), minimization algorithms
are well-known ([1]) whereas for non-deterministic automata
(NDA’s) the situation is less clear. There have been algorithms
proposed to minimize an NDA modulo bisimilarity [2] but
when it comes to language equivalence it is known that
the minimal automaton is not unique. In order to obtain
a unique minimal automaton corresponding to an NDA, a
determinization step is needed converting it into a DA. Min-
imization procedures are even less clear when one moves
to more elaborate versions of automata, such as weighted
automata [3], which are becoming popular nowadays due to
their applicability in several areas of computer science, such
as image recognition or speech processing.

It is the main aim of this paper to take a step towards a
clearer understanding of minimization algorithms for a large
class of automata, including the ones mentioned above. This

encompasses two things: (i) cast the automata and the intended
equivalence in a general framework; and (ii) use the general
framework to devise algorithms to minimize (and determinize)
the automata. To study all the types of automata mentioned
above (and more) in a uniform setting we use coalgebras.

Coalgebras provide a general framework for the study of
dynamical systems such as infinite streams, deterministic and
non-deterministic automata. For a functor F : C → C, an
F -coalgebra is a pair (X,α), where X is an object of C
representing the “state space” of the system and α : X → FX
is an arrow of C defining the “transitions” of the states. We
call the functor F the type of the system. For instance, DA’s
can be readily seen to correspond to coalgebras of the functor
2× IdA : Set→ Set and NDA’s to coalgebras of the functor
A × Id + 1: Rel → Rel, where Set is the category of sets
and functions and Rel the category of sets and relations.

The strength of the coalgebraic modeling lies in the fact that
many important notions, such as canonical representatives of
behaviour (the so-called final coalgebra) and equivalence, are
determined uniquely by the type of the system. Under mild
conditions, functors F have a final coalgebra (unique up to
isomorphism) into which every F -coalgebra can be mapped
via a unique so-called F -homomorphism. The final coalgebra
can be viewed as the universe of all possible F -behaviours:
the unique homomorphism into the final coalgebra maps every
state of a coalgebra to its behaviour. This provides a general
notion of behavioural equivalence: two states are equivalent iff
they are mapped to the same element of the final coalgebra.
In the case of DA’s, the final coalgebra is P(A∗) (the set of all
languages over input alphabet A) and the unique morphism is
a function mapping each state to the language that it accepts. In
the case of NDA’s, as shown in [4], the final coalgebra is A∗

(the set of all finite words on A) and the unique morphism
is a relation linking each state with all the words that it
accepts. In both cases, the induced behavioural equivalence is
language equivalence. The base category chosen to model the
system plays an important role in the obtained equivalence. For
instance, NDA’s can alternatively be modelled as coalgebras of
the functor 2×P(Id)A : Set→ Set, where P is the powerset
functor, but in this case the induced behavioural equivalence
is bisimilarity (which is finer than language equivalence).

For a functor F on Set, the image of a certain F -coalgebra
through the unique morphism is its minimal representative
(with respect to the induced behavioural equivalence) that,

in the finite case, can be computed via ordinary partition
refinement algorithms [5], [6]. For functors on categories not
equipped with proper image factorization structures (such as
Rel, for instance) the situation is less clear-cut. This general
observation instantiates to the well-known fact that for every
DA there exists an equivalent minimal automaton, while for
NDA’s the uniqueness of minimal automata is not guaranteed.

It is our aim to, on the one hand, offer a procedure
to perform ordinary partition refinement for categories with
suitable factorization structures (such as Set, wherein DA’s are
modelled). On the other hand, we want to offer an alternative
procedure for categories without proper factorization struc-
tures: we describe a general setting for determinizations and
show how both can be combined to yield a single algorithm
that does determinization and minimization simultaneously.

Our work was motivated by several examples, considering
coalgebras in various underlying categories. In this paper, we
take one example in Set and three examples in K`(T), the
Kleisli category for a monad T . More precisely, we consider
DA’s in Set and NDA’s in Rel, which is K`(P), where P is
the powerset functor. Moreover, we consider linear weighted
automata (LWA), over vector spaces for a field F, which can
also be seen as a Kleisli category. For DA’s, we recover the
usual minimization algorithm. Instantiation to NDA’s gives us
(a part of) Brzozowski’s algorithm [7]: the obtained automaton
is backwards-deterministic, that is, each state has only one
incoming transition labeled by the same letter and there is only
one final state. It also has the nice property that the languages
recognized by the states form a partition of the set of all words.
For LWA’s, we obtain Boreale’s minimization algorithm [8] as
a special case.

As a new example we consider transition systems labelled
with conditions that have similarly been considered in [9],
[10]. We model these automata in K`(T), for T = XA

the so-called input monad. Consider the following transition
system where transitions are decorated with conditions a, ā,
where intuitively ā stands for “not a”. Labelled transitions are
either present or absent, depending on whether a or ā hold.
Unlabelled transitions are always present (they can be thought
of as two parallel transitions labelled a and ā).

1

~~

2
a ��

3
ā ��

4 5

6

~~

7
a

~~

ā

8

9 10

The environment can make one choice: it decides whether
to take either a or ā. Once this choice has been made, it
can not be changed. Regardless of the specific choice of
the environment, the two states 1, 6 will be bisimilar in
the resulting unlabelled transition systems, containing non-
deterministic branching.

One possible way to solve the question whether two states
are always bisimilar is to enumerate all conditions and to
create suitably many instantiations of the transition system.
This will be shown to be closely related to (backwards)

determinizations, since both constructions are categorical re-
flections. Then, in a second step, the resulting transition system
can be minimized with respect to bisimilarity. We will discuss
both constructions separately, in a general setting, and also
show how they can be combined into a single algorithm.

The adequacy of the combined determiniza-
tion/minimization algorithm is further strengthened by
considering behavioural metrics on the state spaces. More
specifically, we show that the mapping into the minimized
coalgebra induces a pseudo-metric that provides minimal
distances for all pairs of states. In the example above, the
minimization is of the form:

x
zz

��
y

$$
z

The arrow from the original transition system into the one
above maps both 1 and 6 to x, 7 to y, but 2 to y whenever a
holds and to z whenever ā holds. (Remember that we are not
working in Set, but in a suitable Kleisli category that allows
us to express such effects.) The full mapping is represented
below.

1

~~

// x

~~

��

6

~~

oo

2
a ��

a ((

ā

3
ā ��

ā //

a
--

y

7
a
~~

ā

oo 8

4 77995 11 z 9oo 10hh ff

In this case, distances are sets of conditions. The metric we
consider is such that while states 2 and 7 have distance {a, ā}
in the original coalgebra (they are completely different), the
distance of their images in the minimization decreases to {a}
(their behaviour is only different if a holds).

In summary, the contributions of the present article are:

1) an algorithm that generalizes the usual refinement-based
minimization or bisimulation checking algorithms to
categories with a suitable factorization structure;

2) a general setting for determinization-like constructions,
which we show how to combine with 1) to yield a single
algorithm that does determinization and minimization
simultaneously;

3) a proof that the mapping to the minimization induces a
pseudo-metric which provides minimal distances for all
pairs of states;

4) an extensive set of interesting examples, for which we
work out the details of the constructions above.

In this paper we use four examples to illustrate various aspects
of the theory. In order to make it simpler for the reader to
keep the examples apart we will use the following abbrevia-
tions: (CTS) conditional transition systems (the last example
discussed in the introduction); (DA) deterministic automata;
(NDA) non-deterministic automata and (LWA) linear weighted
automata [8]. Proofs can be found in Appendix D.

2

II. BACKGROUND MATERIAL ON COALGEBRAS

We assume some prior knowledge of category theory (cat-
egories, functors, monads, limits and adjunctions). Definitions
can be found in [11]. However, to establish some notation,
we recall some basic definitions. Let Set be the category of
sets and functions. Sets (and other objects) are denoted by
capital letters X,Y, . . . and functions (and other arrows) by
lower case f, g, . . . , α, β, We write ∅ for the empty set,
1 for the singleton set, typically written as 1 = {•}, and 2
for the two elements set 2 = {0, 1}. The collection of all
subsets of a set X is denoted by P(X) and the collection
of all countable subsets of X by Pc(X). The collection of
functions from a set X to a set Y is denoted by Y X . We write
g ◦ f for function composition, when defined. The product of
two sets X,Y is written as X × Y , while the coproduct, or
disjoint union, of two sets X,Y is usually written as X + Y .
These operations, defined on sets, can analogously be defined
on functions, yielding (bi-)functors.

Definition 1 (Concrete Category [11]). A concrete category
(over Set) is a pair (C, U), where C is a category and
U : C→ Set is a faithful functor.

Definition 2 (Coalgebra). Given an endofunctor F : C → C
an (F -)coalgebra is a pair (X,α), where X is an object of
C and α : X → FX an arrow in C. A coalgebra morphism
f : (X,α) → (Y, β) between two coalgebras α : X → FX
and β : Y → FY is a C-arrow f : X → Y such that Ff ◦α =
β ◦ f . F -coalgebras and their morphisms form a category.

When it is clear from the context, we will often use α
instead of (X,α) to refer to the coalgebra.

An F -coalgebra (Ω, ω) is final if for any F -coalgebra
(X,α) there exists a unique morphism behX : (X,α) →
(Ω, ω). If a final F -coalgebra exists and C is concrete, we
can define behavioural equivalence. For F -coalgebras (X,α)
and (Y, β), x ∈ UX , y ∈ UY , we say that x and y
are behaviourally equivalent, written x ≈ y, if and only if
U(behX)(x) = U(behY)(y).

Example 3. (DA) A deterministic automaton over the input
alphabet A is a pair (X,α), where X is a set of states and
α : X → 2×XA is a function that to each state x associates a
pair α(x) = 〈ox, tx〉, where ox, the output value, determines
if a state x is final (ox = 1) or not (ox = 0); and tx, the
transition function, returns for each input letter a ∈ A the next
state. DA’s are coalgebras for the functor FX = 2× XA on
Set. The final coalgebra of this functor is (P(A∗), ω) where
P(A∗) is the set of languages over A and, for a language L,
ω(L) = 〈εL, La〉, where εL determines whether or not the
empty word is in the language (εL = 1 or εL = 0, resp.) and,
for each input letter a, La is the derivative of L: La = {w ∈
A∗ | aw ∈ L}. From any DA (X,α), there is a unique map
behX into P(A∗) which assigns to each state its behaviour
(that is, the language that the state recognizes). Two states are

behaviourally equivalent iff they accept the same language.

X
behX //

α ��

P(A∗)
ω��

2×XA

id×behA
X

// 2× P(A∗)A

Take A = {a, b} and consider the following DA’s.

x

a

++

b
$$

yboo

a

ss z

a
��

boo 3

a

++

b
$$

2
boo

a

ss

We call the leftmost (X,α) where X = {x, y, x} and
α : X → 2×XA maps x to the pair 〈1, {a 7→ x, b 7→ y}〉, y
to 〈0, {a 7→ y, b 7→ x}〉 and z to 〈1, {a 7→ z, b 7→ y}〉. The
rightmost is (Z, γ) where Z = {3,2} and γ : Z → 2 × ZA
maps 3 to 〈1, {a 7→ 3, b 7→ 2}〉 and 2 to 〈0, {a 7→ 2, b 7→
3}〉. As an example of a coalgebra morphism consider the
function e : X → Z mapping x, z to 3 and y to 2.

Non-deterministic automata (NDA) can be described as
coalgebras for the functor FX = 2 × P(X)A (on Set): to
each input in A, we assign a set in P(X) of possible successors
states. Unfortunately, the resulting behavioural equivalence is
not language equivalence (as for DA), but bisimilarity (i.e., it
only identifies states having the same branching structure).
In [4], [12] it is shown that in order to retrieve language
equivalence for NDA’s, one should consider coalgebras on a
Kleisli category.

In what follows, we introduce Kleisli categories, in which
we model non-deterministic automata and conditional transi-
tion systems as coalgebras. While objects in a Kleisli category
are sets, arrows are generalized functions that incorporate side
effects, specified by a monad. For the definition of a monad
see Appendix A or [4], [13].

Definition 4 (Kleisli Category). Let (T : Set→ Set, η, µ) (or
simply T) be a monad on Set. Its Kleisli category K`(T) has
sets as objects and an arrow X → Y in K`(T) is a function
X → TY . The identity idX is ηX and the composition g◦f of
two arrows f : X → Y , g : Y → Z (given as arrows f : X →
TY , g : Y → TZ in Set) is µZ ◦ Tg ◦ f .

Note that in the following we will employ overloading and
use the same letter to both denote an arrow in K`(T) and the
corresponding arrow in Set. We will usually specify which
arrow is meant in order to avoid confusion. Furthermore, note
that Set can be seen as a subcategory of K`(T), where each
function f : X → Y is identified with ηY ◦ f .

Every Kleisli category K`(T) is a concrete category where
UX = TX and Uf = µX ◦Tf for an object X and an arrow
f : X → Y .

To define coalgebras over Kleisli categories we need the
notion of lifting of a functor, which we define here directly,
but could otherwise be specified via a distributive law (for
details see [4], [14]): a functor F : K`(T)→ K`(T) is called
a lifting of F : Set → Set whenever it coincides with F on
Set, seen as a subcategory of K`(T).

Since F and F coincide on objects, F -coalgebras in a
Kleisli category K`(T) are of the form X → TFX , where

3

intuitively the functor F describes the explicit branching, i.e.
choices which are visible to the observer, and the monad T the
implicit branching, i.e. side-effects, which are there but cannot
be observed directly. In this way, the implicit branching is part
of the underlying category and is also present in the arrow
from any coalgebra into the final coalgebra. As in functional
programming languages such as Haskell, the idea is to “hide”
computational effects underneath a monad and to separate
them from the (functional) behaviour as much as possible.

Example 5. (NDA) Consider the powerset monad TX =
P(X), fully described in Example 32 (Appendix A). The Kleisli
category K`(P) coincides with the category Rel of sets and
relations. As an example of a lifting, take FX = A×X + 1
in Set (with 1 = {•}). The functor F lifts to F in Rel as
follows: For any f : X → Y in Rel (that is f : X → P(Y) in
Set), Ff : A×X+1→ A×Y +1 is defined as Ff(•) = {•}
and Ff(〈a, x〉) = {〈a, y〉 | y ∈ f(x)}.

Non-deterministic automata over the input alphabet A can
be regarded as coalgebras on Rel for the functor F (described
above). A coalgebra α : X → FX is a function α : X →
P(A×X+1), which assigns to each state x ∈ X a set which
contains • if x is final and 〈a, y〉 for all transitions x a−→ y.
For instance, the automaton

1a,b
((b // 2

b
$$

a
��

3a
oo b

hh

corresponds to the coalgebra (X,α), where X = {1, 2, 3}
and α : X → P({a, b} × X + {•}) is defined as follows:
α(1) = {〈a, 1〉, 〈b, 1〉, 〈b, 2〉}, α(2) = {〈a, 2〉, 〈b, 3〉} and
α(3) = {•, 〈a, 2〉, 〈b, 3〉}.

In [4], it is shown that the final F -coalgebra (in Rel) is the
set A∗ of words. For an NDA (X,α), the unique coalgebra
morphism behX into A∗ is a relation that links every state in
X with all the words in A∗ that it accepts.

Example 6. (CTS) We shortly discuss how to specify the
example from the introduction in a Kleisli category.

We use the input monad TX = XA, where A is a set
of conditions or inputs (for the example of the introduction
A = {a, ā}). Given a function f : X → Y , Tf : TX → TY
is fA : XA → Y A defined for all g ∈ XA and a ∈ A as
fA(g)(a) = f(g(a)).

Note that an arrow f : X → Y in the Kleisli category over
the input monad is a function f : X → Y A. For instance, the
dashed arrows in the example of the introduction describe an
arrow in K`(T): state 2 is mapped to y if condition a holds
and to z if ā holds.

We will use the countable powerset functor FX = Pc(X)
as endofunctor, which is lifted to K`(T) as follows: an arrow
f : X → Y in K`(T), which is a function of the form f : X →
Y A, is mapped to Ff : Pc(X) → Pc(Y) with Ff(X ′)(a) =
{f(x)(a) | x ∈ X ′} for X ′ ⊆ X , a ∈ A.

Hence, the example from the introduction is modelled
by an arrow α : X → Pc(X) in K`(T) (i.e., a function
α : X → Pc(X)A), where X = {1, . . . , 10} and A = {a, ā}.

For instance α(1)(a) = α(1)(ā) = {2, 3}, α(2)(a) = {4},
α(2)(ā) = ∅. The entire coalgebra α is represented by:

α 1 2 3 4 5 6 7 8 9 10
a {2, 3} {4} ∅ ∅ ∅ {7, 8} {9} ∅ ∅ ∅
ā {2, 3} ∅ {5} ∅ ∅ {7, 8} {10} ∅ ∅ ∅

Note that the above α : X → Pc(X)A can be seen as
a coalgebra for the functor FX = Pc(X)A in Set, which
yields ordinary A-labelled transition systems, where intuitively
all branching decisions are explicit. However, the resulting
behavioural equivalence (that is, ordinary bisimilarity) would
be inadequate for our intuition, since it would distinguish the
states 1 and 6. In Example 30, we will show that 1 and 6 are
behaviourally equivalent in F -coalgebras in K`(T).

III. “MINIMIZATION” VIA (E,M)-FACTORIZATIONS

We will now present the construction of the minimized
coalgebra that is intended to mimic the minimization of
transition systems via partition refinement in a general setting.
This notion is parametrized by two classes E,M of morphisms
that form a factorization structure for the category C under
consideration.

Definition 7 (Factorization Structures). Let C be a category
and let E, M be classes of morphisms in C. The pair (E,M)
is called a factorization structure for morphisms in C (and C
is called (E,M)-structured) whenever
• E and M are closed under composition with isos.
• C has (E,M)-factorizations of morphisms, i.e., each

morphism f of C has a factorization f = m ◦ e with
e ∈ E and m ∈M.

• C has the unique (E,M)-diagonalization property, i.e.,
for each commutative square as shown on the left-hand
side below with e ∈ E and m ∈M there exists a unique
diagonal, i.e., a morphism d such that the diagram on the
right-hand side commutes (i.e., d◦e = f and m◦d = g).

A
e // //

f ��

B
g��

C //
m // D

A
e // //

f ��

B
g��

d

yy
C //

m // D

The classical example of (E,M)-factorization in Set is the
factorization of a function f into a surjective and an injective
function (epi-mono factorization). In the following, morphisms
from E are drawn using double-headed arrows of the form
A � B, whereas morphisms from M are depicted using
arrows of the form A� B.

In any (E,M)-structured category (E,M)-factorizations of
morphisms are unique up to iso. Furthermore the classes E,M
are both closed under composition. For more details see [11].

We will also use the classes E and M to classify coalgebra
morphisms, depending on whether the underlying C-arrow
belongs to one of the classes. Whenever the endofunctor F
preserves M-arrows, which will be assumed in the following,
the factorization structure can be straightforwardly lifted to
coalgebra morphisms (see Lemma 37 in Appendix D or [15]).

We are now ready to define the minimization. We assume
that a factorization structure (E,M) has been fixed.

4

Definition 8 (Minimization). Let α : X → FX be a coalge-
bra. We call γ : Z → FZ the minimization for α if

• There exists a coalgebra morphism e : (X,α) → (Z, γ),
which is contained in E.

• Furthermore, for any other coalgebra morphism
e′ : (X,α)→ (Y, β), which is in E, there exists a unique
coalgebra morphism h : (Y, β) → (Z, γ) such that
e = h ◦ e′.

X

α

��

e // //

e′
++ ++

Z

γ

��

Y
β��

h

33

FY Fh
++

FX
Fe

//

Fe′ 33

FZ

Note that minimization is unique up to isomorphism if it
exists. Furthermore, while in Set the minimization will also
be minimal in the number of states, this is not necessarily true
for other categories.

Proposition 9 (Minimization and Final Coalgebras). If the
final coalgebra ω : Ω → FΩ exists, then – for a given
coalgebra α : X → FX – the minimization γ : Z → FZ
for α can be obtained by factoring the unique coalgebra
morphism behX : (X,α) → (Ω, ω) into an E-morphism and
an M-morphism.

X
α ��

e
// //

behX

++Z
γ��

//
m

// Ω
ω��

FX
Fe //

FbehX

33FZ //
Fm // FΩ

Example 10 (DA, Minimal Automata). Recall that DA’s are
coalgebras for the functor FX = 2×XA on Set (Example 3)
and take surjective-injective factorization of Set. In this
case, minimizations correspond to the well known minimal
deterministic automata. For instance, the minimization of the
(leftmost) automaton (X,α) in Example 3 is the automaton
(Z, γ) (on its right).

We now describe a construction that – given a coalgebra
α – obtains the minimization γ without going via the final
coalgebra. This closely resembles the partition refinement
algorithm for minimizing deterministic automata or for com-
puting bisimilarity. Whenever the limit in the construction
below exists, we obtain the minimization. In many examples
the constructed sequence might even become stationary after
finitely many steps. The construction is reminiscent of the
construction of the final coalgebra given by Adámek and
Koubek in [16]. We believe that, as in [16], our construction
can be generalized to ordinals beyond ω. In the following, we
assume that the category C has a final object 1.

Construction 11. Let α : X → FX be a coalgebra.
Step 0: Take the unique arrow d0 : X → 1 (= X0).
Step i + 1: Assume that di : X → Xi is given. Take the unique
(E,M)-factorization of di as di = ei◦mi, where ei : X � Ei,
mi : Ei � Xi. Then set di+1 = Fei ◦α (see diagram below).
Note that Xi+1 = FEi.

X

α
��

ei // //

di+1

((

di
++Ei // mi // Xi

FX
Fei // FEi = Xi+1

Take the sequences of arrows ϕi : Xi+1 → Xi and
ψi : Ei+1 → Ei defined as follows: (a) ϕ0 : X1 → 1 (= X0)
is the unique arrow, (b) ϕi = Fψi−1 for i > 0 and (c) ψi is
the unique diagonal as depicted below.

Ei //
mi // Xi = FEi−1

X
ei

33 33

ei+1 ++ ++

di ((

di+1
66

Ei+1

ψi

OO

//
mi+1

// Xi+1 = FEi

ϕi=Fψi−1

OO

Now take the limits of the sequences ψi and ϕi and under
the assumption that F preserves the limit, we obtain E, FE
and γ′ : E → FE as mediating arrow. Furthermore there is a
coalgebra morphism d : (X,α)→ (E, γ). Factoring d = m◦e
with m : X → Z ∈ M, e : Z → E ∈ E gives us the resulting
coalgebra γ : Z → FZ as diagonal.1

The entire construction can be summarized in the following
diagram:

E0
//

m0 // X0 = 1

X

α

++

e0

99 99

e1 // //

e2
%% %%

ei

...

�� ��
d

��

e

����

E1
//

m1 //

ψ0

OO

X1 = FE0

ϕ0

OO

FX

hh

Fe0oo

Fe1
vv

Fei−1

...

}}
Fd

��

Fe

��

E2

ψ1

OO

//
m2 // X2 = FE1

ϕ1

OO

Z 44

γ

++
%%

m
%%

Ei

OO

//
mi // Xi = FEi−1

OO

FZvv

vv
E

OO

//
γ′

// FE

OO

Theorem 12. If the limits in Construction 11 exist and the
endofunctor F preserves the limit, then the coalgebra γ : Z →
FZ is the minimization for α.

In some cases it is straightforward to show that F preserves
the limit of the ψi: in our examples the sequence will usually
become stationary, i.e., consist only of isos from some point
onwards. In this case the arrow d is already an element of
E and the last factorization step can be omitted. In this case
γ = ϕ−1

n ◦mn : En → FEn, where n is the index from which
onwards the arrows ψi, ϕi are isos.

For any category if we take as E the class of all arrows and
M the class of all isos we recover the standard construction
of the final coalgebra, but, in this case, the construction never
terminates in finitely many steps. For a coalgebra in Set, with
M the injections and E the surjections the procedure described
above is nothing else than the classical partition refinement
algorithm, which we illustrate next for deterministic automata.

1Note that the arrow γ′ must be an M-arrow, since M-arrows are preserved
by limits. Then γ must also be an M-arrow (due to Proposition 14.9 in [11]).
However, as far as we know, d need not necessarily be an arrow in E.

5

Example 13. (DA) We apply the construction to the DA (X,α)
of Example 3: at the beginning the function d0 : X → 1
maps x, y, z to the singleton •. By factorizing d0, we obtain
e0 : X � 1 and m0 : 1 � 1 (both uniquely defined). The
surjection e0 corresponds to the partition {x, y, z} (i.e., the
partition where all the states are equivalent).

Then, d1 : X → 2 (= 2 × 1A) maps x and z to 1
(since both states are final) and y to 0. By factoring d1, we
obtain e1 : X � {3,2} (mapping x, z to 3 and y to 2)
and mi : {3,2} � 2. The surjection ei corresponds to the
partition {x, z}, {y} (i.e., the partition equating x and z).

Finally, d2 : X → 2 × {3,2}A, maps x and z to the pair
〈1, {a 7→ 3, b 7→ 2}〉 and y to 〈0, {a 7→ 2, b 7→ 3}〉.
By factoring d2, we obtain e2 : X � {3,2} (mapping x, z
to 3 and y to 2) and m2 : {3,2} � 2 × {3,2}A. Note
that m2 is exactly the function γ of Example 3 and thus
({3, 2},m2) is the DA (Z, γ) which, as shown in Example
10, is the minimization of (X,α).

Example 14. (LWA) We study automata with weights taken
from a field (linear weighted automata, see [8]). Consider the
Kleisli category K`(T) for the monad T : Set → Set where
TX = (FX)ω , where (FX)ω denotes the set of all mappings
from X into F with finite support. For a function f : X → Y
in Set define Tf : TX → TY as follows: let a ∈ (FX)ω ,
then

Tf(a)(y) =
∑
{a(x) | x ∈ X, f(x) = y}

If we restrict to finite sets, we obtain the category of finite-
dimensional vector spaces: a Kleisli arrow X → Y for finite
sets X,Y is a matrix with entries from F, where the columns
are indexed by X and the rows are indexed by Y . If we view
a Kleisli arrow as a function TX → TY we obtain exactly
the linear maps from an |X|-dimensional vector space into a
|Y |-dimensional vector space (both over F).

For a set A of labels we take the endofunctor FX =
A × X + 1 on Set where A is a fixed set of labels and •
– denoting termination – stands for the element of the one-
element set 1. This functor is lifted to K`(T) as follows: an
arrow f : X → Y in K`(T), which is a function of the form
f : X → (FY)ω , is mapped to Ff : A×X + 1→ A× Y + 1
with Ff(〈a, x〉)(〈a, y〉) = f(x)(y), Ff(•)(•) = 1 and 0 in
all other cases. Hence transition carry labels from A (for the
explicit branching) and weights (for the implicit branching).

An example LWA for A = {a} and F = R (taken from
[8]) is shown below (graphical representation on the right
and coalgebra α : X → (RA×X+1)ω , in matrix form, on the
left):

〈a, 1〉
〈a, 2〉
〈a, 3〉
•

1 2 3
3/2 0 1/2
1/2 1 1/2
−3/2 0 −1/2

2 2 2


1a,1/2

~~

a,−3/2

��

//

a,3/2

��

2

2

a,1

HH

//
2 2 3

a,1/2

ee

a,1/2

ii

a,−1/2

VV

oo

As factorization structure we use as E-arrows the matrices
of full row rank (i.e., the monos) and as M-arrows the
matrices of full column rank (i.e., the epis). Let E be the
morphism (matrix) into the minimization: two vectors x,y
satisfy Ex = Ey iff they are equivalent in the sense of [8]
(see Appendix C for an elaboration of this claim and for an
example minimization involving the automaton above).

Boreale also observes that bisimilarity in his setting co-
incides with trace equivalence, which is consistent with the
intuition behind implicit and explicit branching: here the
endofunctor F does not provide any explicit branching, but
simply observations in A.

IV. “DETERMINIZATION” VIA REFLECTIONS

For several categories there are no suitable factorization
structures. This can for instance be observed in Rel, wherein
we model non-deterministic automata as coalgebras. It is
known that there is no unique minimal non-deterministic
automata. The usual procedure is to first construct the cor-
responding deterministic automaton (via the powerset con-
struction), which is then minimized in a second step. In this
section, we will give a general framework for determinization-
like constructions in the form of reflections, which can also
be applied to other settings, such as the example discussed
in the introduction. For non-deterministic automata we will
obtain an automaton which is “backward-deterministic”, i.e.,
for every state and each letter there is exactly one predecessor.
Then we will show how reflections can be combined with the
minimization construction. For the sake of the reader we will
define the frequently used concept of a reflective subcategory.

Definition 15 (Reflective Subcategory). Let S be a subcate-
gory of C. Let X be an object of C. An S-reflection for X is
an arrow ηX : X → X ′, where X ′ is an S-object, such that
for every other arrow f : X → Y with Y in S there exists a
unique S-morphism f ′ such that f = f ′ ◦ ηX . S is called a
reflective subcategory of C whenever each C-object has an
S-reflection.

Note that this definition is equivalent to saying that the
functor embedding S into its host category C has a left adjoint
L : C→ S. The arrows ηX form the unit of this adjunction.

It is important to remark here that the unit η will in our
examples not coincide with the natural transformation η of the
monad T . It is well-known that for a monad T : Set → Set
the category Set is coreflective in K`(T), whereas here we
need a reflective subcategory.

We will first study two examples of reflections: a reflective
subcategory of Rel (needed for NDA’s) and a reflective
subcategory of K`(T), for T the input monad (needed for
CTS’s).

Example 16. (NDA) The category of inverse functions Setop

is a reflective subcategory of Rel. The reflection L is the
inverse powerset functor, i.e., for a relation R : X → Y we
have L(R) : P(X)→ P(Y) in Setop where L(R), seen as an
inverse function, maps Y ′ ⊆ Y to R−1(Y ′). The adjunction

6

has as unit ηX : X → P(X), which relates an element x ∈ X
with X ′ ⊆ X if and only if x ∈ X ′.

(CTS) For K`(T) where T is the input monad, we have
the following situation: since every function f : X → Y A

corresponds to a function f ′ : A × X → Y by currying, the
Kleisli category over the input monad is isomorphic to the
co-Kleisli category over the comonad V X = A×X on Set.
Hence Set is both reflective and coreflective in K`(T). The
unit of the reflection is the Kleisli arrow ηX : X → A × X
with ηX(x)(a) = 〈a, x〉. The reflection L coincides with V
on objects and takes the product of the state set X with the
label set A. More concretely, for an arrow f : X → Y in
K`(T) we obtain an arrow Lf : A×X → A×Y in Set with
Lf(〈a, x〉) = 〈a, f(x)(a)〉.

Now we are ready to define the reflection of a coalgebra
into the subcategory.

Definition 17 (Reflection of Coalgebras). Let S be a reflective
subcategory of a category C and let L : C → S be the left
adjoint of the embedding functor. Assume that S is preserved
by the endofunctor F . Then, given a coalgebra α : X → FX
in C we reflect it into S, obtaining a coalgebra α′ : LX →
FLX by the following construction:

X
α //

ηX ��

FX
ηFX ��

FηX
))

LX
Lα //

α′
44LFX

ζX // FLX

Note that η is the unit of the adjunction and that ζX is the
mediating morphism that exists since F preserves S and hence
FLX is an object of S.

Proposition 18. Let S be a reflective subcategory of C,
which is preserved by the endofunctor F . The category of
F -coalgebras in S is a reflective subcategory of the category
of F -coalgebras in C.

The result above is a special case of Corollary 2.15 by
Hermida and Jacobs [17].

Note that a limit in a reflective subcategory S is also a limit
in the entire category C. Hence, if the final coalgebra exists
in the subcategory S, it is also the final coalgebra in C.

Example 19. (NDA) We will first study the effect of a reflection
on a non-deterministic automaton, for which we use the reflec-
tive subcategory Setop of Rel (see Example 16). The effect of
the reflection on coalgebras is a powerset automaton which is
however “backwards-deterministic”: more specifically, given a
coalgebra α : X → A×X + 1 in K`(P) = Rel, the reflected
coalgebra α′ : P(X) → A × P(X) + 1 is a relation which
lives in Setop and, when seen as a function, maps 〈a,X ′〉
with X ′ ⊆ X to {x ∈ X | ∃x′ ∈ X ′ : 〈a, x′〉 ∈ α(x)} (the set
of a-predecessors of X ′) and • to {x ∈ X | • ∈ α(x)} (the
set of final states, the unique final state of the new automaton).
For instance, the reflection of the NDA (X,α) in Example 5

is the following backwards-deterministic automaton

13 123

a,b

ii
b //boo

a
��

23

a

kk

a
��

b // 3

1a,b
((b //

b 66

a
OO

12 2 ∅ a,b
vv

a
OO

Note that the above automaton has a single final state (consist-
ing of the set of final states of the original automaton) and ev-
ery state has a unique predecessor for each alphabet letter. For
this reason, it can be seen as a function α′ : A×X + 1→ X
(i.e., an algebra for the functor FX = A×X + 1).

Note that Set is not a reflective subcategory of Rel – it is
instead coreflective – and hence both categories have differ-
ent final coalgebras. However for the reflective subcategory
Setop, we have exactly the same final coalgebra as for Rel,
which, as shown in [4], is the initial algebra in Set.

(CTS) Now we come back to the Kleisli category K`(T)
over the input monad T (see Example 6) and coalgebras with
endofunctor Pc. As discussed in Example 16, Set is a reflec-
tive subcategory of K`(T). On coalgebras reflection has the
following effect: given a coalgebra α : X → Pc(X) in K`(T)
we obtain a reflected coalgebra α′ : A×X → Pc(A×X) in
Set with α′(〈a, x〉) = {〈a, x′〉 | x′ ∈ α(x)(a))}. That is, we
generate the disjoint union of |A| different transition systems,
each of which describes the behaviour for some a ∈ A.
For instance, the reflection of the CTS from the introduction
(formally introduced in Example 6) is the following.

a1

�� ��

a2
��

a3

a4 a5

ā1

�� ��

ā2 ā3
��

ā4 ā5

a6
�� !!

a7
��

a8

a9 a10

ā6
�� !!

ā7

!!

ā8

ā9 ā10

We now consider other forms of factorizations that do not
conform to the conditions of Definition 7. They make use of
a reflective subcategory with a “good” factorization structure.

Definition 20 (Pseudo-Factorization). Let C be a category and
let S be a reflective subcategory which is (E,M)-structured.

Let f : X → Y be an arrow of C where Y is an object of
S. Now take the unique arrow f ′ : LX → Y with f ′ ◦ηX = f
(which exists due to the reflection) and factor f ′ = m ◦ e
with m ∈ M, e ∈ E. Then the decomposition f = m ◦ c with
c = e ◦ ηX is called the (E,M)-pseudo-factorization of f .

X
ηX

vv

f

''
LX

f ′
//

e
22 22

Y

,,
m

BB

Example 21. We study pseudo-factorizations, using the reflec-
tions of Example 19.

(NDA) For Setop, the reflective subcategory of Rel, we
consider as E the class of all inverse injections and as M the
class of all inverse surjections. Given a relation R : X → Y ,
let Z = {R−1(y) | y ∈ Y } ⊆ P(X) be the set of pre-images
of elements of Y under R. Now define relations Rc : X → Z

7

with Rc(x) = {Z ∈ Z | x ∈ Z} and Rm : Z → Y with
Rm(Z) = {y ∈ Y | Z = R−1(y)}. Note that Rm is an
inverse surjection, and Rm ◦Rc = R.

As a concrete example consider the relation R between sets
X = {a, b, c, d} and Y = {1, 2, 3, 4, 5} visualized below on
the left (where R(a) = R(b) = {1, 2}, R(c) = {3}, R(d) =
{3, 4}). Its pseudo-factorization into Rc and Rm is shown on
the right. Here Rm is indeed an inverse surjection, mapping
elements of Y to their preimage in P(X).

a 1

b 2

c 3

d 4

5

a 1

b {a, b} 2

c {c, d} 3

d {d} 4

∅ 5

(CTS) For Set, the reflective subcategory of K`(T), where
T is the input monad, we use the classical factorization struc-
ture with surjective and injective functions. Given an arrow
f : X → Y in K`(T), seen as a function f : X → Y A, we
define Y ′ = {y ∈ Y | ∃x ∈ X, a ∈ A : f(x)(a) = y}. Then
fc : X → Y ′A with fc(x)(a) = f(x)(a) and fm : Y ′ → Y A

with fm(y)(a) = y for all a ∈ A, i.e., fm is simply an injection
without side-effects. Note that fm ◦ fc = f in K`(T).

Note that pseudo-factorizations enjoy the diagonalization
property as in Definition 7 whenever g is an arrow of S (see
Lemma 38 in Appendix D). However pseudo-factors are not
necessarily closed under composition with the isos of C.

We will in the following fix a reflective subcategory S
(possibly C itself) and work under the assumption that S has
a final object and is preserved by the chosen endofunctor F .
As before we assume that F preserves M-arrows.

Proposition 22. Let C be a category with a reflective sub-
category S. Furthermore assume that S is (E,M)-structured.
Then, given a coalgebra α : X → FX in C, the following
two constructions obtain the same resulting minimization
γ : Z → FZ (provided that the limit exists):
(i) Apply Construction 11 using the (E,M)-pseudo-

factorizations of Definition 20.
(ii) First reflect α into the subcategory S according to Defi-

nition 17 and then apply Construction 11 using (E,M)-
factorizations.

Example 23. (NDA) Proposition 22 suggests two procedures
for building the minimization of an NDA (and thus checking
the equivalence of its states). We first apply Construction (ii)
to the NDA (X,α) in Example 5 and then we briefly illustrate
Construction (i).

Recall that the reflection of (X,α) into Setop is (P(X), α′)
in Example 19. By applying Construction 11 (with the factor-
ization structure of Setop), we remove from (P(X), α′) the
states that are not related to any word in the final coalgebra
or, in other words, those states from which there is no path to
the final state. Intuitively, we perform a backwards breadth-
first search and the factorizations make sure that unreachable

states are discarded and duplicated states are merged. The
resulting automata is illustrated below.

123

a,b

��
b // 23

a

��
b // 3 ∅

a,b

��
aoo

Construction (i) can be understood as an efficient implementa-
tion of Construction (ii): we do not build the entire (P(X), α′),
but we construct directly the above automaton by iteratively
adding states and transitions. We start with state 3, then we
add 23 and ∅ and finally we add 123. All the details of this
construction are shown in Appendix B.

It is worth noting that in the minimization the languages
accepted the states form a partition of A∗, i.e., they are
all disjoint and their union is exactly A∗. For the above
automaton, this is easily observed by looking at the regular
expressions denoting them:

L(123) = (a+ b)∗ba∗b L(23) = a∗b

L(3) = ε L(∅) = (a+ b)∗a

Recall that the final coalgebra consists of all words A∗. The
unique mapping from the minimization into the final coalgebra
is an inverse surjection (i.e. it is in E of Setop) and assigns
every word to the unique state that accepts it.

It is interesting to remark that the automaton obtained above
is precisely the automaton in the third step of the well-known
Brzozowski algorithm for minimization of non-deterministic
automata [7], which, in a nutshell, works as follows: 1) given
an NDA reverse it, by reversing all arrows and exchanging
final and initial states; 2) determinize it, using the subset
construction, and remove unreachable states; 3) reverse it
again; 4) determinize it, using the subset construction, and
remove unreachable states. In our example, we are doing steps
1)–3) but without the explicit reversal. Our automata do not
have initial states, but steps 1)–3) are independent on the
specific choice of initial states, because of the two reversals.

V. METRICS AND ISOMETRIC MAPS

The construction of the previous section is parametrized
by the chosen classes of E and M arrows. It is a natural
question which classes are reasonable. One possible answer is
to define metrics and to choose as M-arrows isometric maps,
i.e., those maps that preserve distances. This means that, if
a final coalgebra should exist, one obtains the same distances
regardless of whether they are computed on the final coalgebra
or on the minimization. In order to be able to define metrics,
we will from now on restrict ourselves to concrete categories
over Set (see Definition 1).

Definition 24 (Metric and Pseudo-Metric). Let A be an
arbitrary set and let (D,≤,⊕) be a partially ordered set with
a commutative monoidal operation ⊕ with unit 0. A pseudo-
metric on A is a function d : A × A → D satisfying the
following laws for a, b, c ∈ A: (i) d(a, b) ≥ 0; (ii) d(a, a) = 0;
(iii) d(a, b) = d(b, a); (iv) d(a, c) ≤ d(a, b)⊕ d(b, c), where 0

8

is the unit of the monoidal operation ⊕. It is called a metric
if in addition d(a, b) = 0 implies a = b.

Example 25. (NDA,LWA) In our examples involving non-
deterministic automata or linear weighted automata we simply
take the discrete metrics, obtaining distance 0 if two elements
are equal and 1 otherwise (where 0 ≤ 1). The monoidal
operation takes the maximum of two values.

(CTS) In the case of the conditional transition systems,
defined via the input monad, we consider a more interesting
metric: let x,y ∈ TX , i.e., x,y : A → X . Then d(x,y) =
{a | x(a) 6= y(a)}, ordered by inclusion. The unit is ∅ and
the monoidal operation corresponds to the union.

Proposition 26 (Induced Pseudo-Metric). Let (C, U) be a
concrete category. Assume that there is a metric dY : UY ×
UY → D for every object Y of C. Every arrow f : X → Y
induces a pseudo-metric df : UX × UX → D defined by
df (a, b) = dY (Uf(a), Uf(b)).

Definition 27 (Non-Expansive, Isometric Maps). Let (C, U)
be a concrete category and assume a family of metrics as in
Proposition 26. An arrow f : X → Y of C is called non-
expansive whenever df (a, b) ≤ dX(a, b) for all a, b ∈ UX . It
is called isometric whenever df (a, b) = dX(a, b).

If all arrows are non-expansive, it can easily be shown that
all sections are isometric.2 This also means that ηX , as the unit
of an adjunction, is isometric, since it has a left-inverse εX (the
co-unit). This implies that the reflection into the subcategory
does not modify the distance between elements.

Now assume that we are in the following setting: let (C, U)
be a concrete category with a reflective subcategory S, which
is (E,M)-structured. We also assume a family of metrics as
defined above, such that all C-arrows are non-expansive and
all M-arrows are isometric. It can be shown that these re-
quirements hold for our running examples concerning NDA’s,
LWA’s and CTS’s. Then the construction of the minimization
in S, done in one of the two ways described in Proposition 22,
induces a pseudo-metric on the original coalgebra, which is
minimal with respect to distances.

Theorem 28. Let α : X → FX be a coalgebra in C, let
α′ : LX → FLX be the reflection of α into S and let
γ : Z → FZ be the minimization for α′. In addition, let c =
e ◦ ηX : (X,α)→ (Z, γ) be the coalgebra morphism into the
minimization where e ∈ E with e : (LX,α′) → (Z, γ). Then,
for every other coalgebra morphism f : (X,α) → (Y, β), we
have dc(a, b) ≤ df (a, b) for all a, b ∈ UX .

We prove that two elements have distance 0 in the mini-
mization if and only if they are behaviourally equivalent.

Corollary 29 (Behavioural Equivalence and Induced Pseudo–
Metrics). Let (C, U) be a concrete category, let F : C → C
be an endofunctor and we assume that the final F -coalgebra
exists. Let (X,α) be a coalgebra with mapping c : X → Z

2Sections are the arrows f : X → Y for which there exists a g : Y → X
with g ◦ f = idX .

into its minimization (as in Theorem 28). Then for a, b ∈ UX
it holds that a ≈ b if and only if dc(a, b) = 0.

Finally, we summarize all notions introduced earlier, includ-
ing metrics, by considering once more the CTS example.

Example 30. (CTS) Recall the coalgebraic description of CTS
given in Example 6: the base category is K`(T), where T
is the input monad and F = Pc is the countable powerset
functor. The CTS of the introduction is the coalgebra α : X →
Pc(X) represented by the table in Example 6 (with column
indices in X = {1, . . . 10} and row indices in A = {a, ā}).

We first apply the algorithm in Proposition 22(i) with the
pseudo-factorization of Example 21 (Construction (ii) only
consists in minimizing the reflected coalgebra of Example 19).
The terminal object of K`(T) is the one-element set 1 = {•}
and hence the unique morphism d0 : X → 1 is the following:

d0 1 2 3 4 5 6 7 8 9 10
a • • • • • • • • • •
ā • • • • • • • • • •

Via pseudo-factorization we obtain d0 = m0 ◦c0 with c0 = d0

and m0 the identity. The algorithm now computes Fc0 ◦ α =
d1 : X → Pc({•}) = {∅, {•}}:

d1 1 2 3 4 5 6 7 8 9 10
a {•} {•} ∅ ∅ ∅ {•} {•} ∅ ∅ ∅
ā {•} ∅ {•} ∅ ∅ {•} {•} ∅ ∅ ∅

Again d1 = c1 and hence the algorithm computes Fc1 ◦ α =
d2 : X → Pc({∅, {•}}) = {∅, {∅}, {{•}}, {∅, {•}}}:

d2 1 2 3 4 5 6 7 . . .
a {∅, {•}} {∅} ∅ ∅ ∅ {∅, {•}} {∅} ∅
ā {∅, {•}} ∅ {∅} ∅ ∅ {∅, {•}} {∅} ∅

where “. . . ” is an abbreviation for for 8, 9, 10.
The pseudo-factorization gives c2 : X → {∅, {∅}, {∅, {•}}}

by restricting the image of d2, since nothing maps to {{•}}.
Hence c2 has exactly the same table as the one given for d2.

By iterating the construction once again, Fc2 ◦ α =
d3 : X → Pc({∅, {∅}, {∅, {•}}}):

d3 1 2 3 4 5 6 7 . . .
a {∅, {∅}} {∅} ∅ ∅ ∅ {∅, {∅}} {∅} ∅
ā {∅, {∅}} ∅ {∅} ∅ ∅ {∅, {∅}} {∅} ∅

Note that c3 : X → {∅, {∅}, {∅, {∅}}} (which is d3 restricted
to its image) and c2 are isomorphic and thus the algorithm
terminates. The resulting minimization is (Z, γ) depicted be-
low (note that γ is an element of M and hence simply an
injective function from Z to Pc(Z)).

{∅, {∅}} // 66{∅} // ∅

It is easy to see that the above transition system is isomorphic
to the one of introduction having states x, y, z. Moreover, the
morphism c3 (whose table is equal to the one of d3 above)
corresponds to the dashed arrow of the introduction.

We now show that c3:(X,α) → (Z, γ) induces a metric
on X . A specific state x ∈ X can be represented by a
function x : A → X in TX with x(a) = x for all a. Now

9

consider the states 2, 7 and take the respective functions
x2,x7; Uc3(x2) : A → Z maps a to {∅} and ā to ∅, while
Uc3(x7) maps both a, ā to {∅}. Hence the distance between
2 and 7 is {ā}, meaning that they have the same behaviour
only when a holds. Consider now states 1 and 6: the functions
Uc3(x1) : A → Z and Uc3(x6) : A → Z map both a and ā
to {∅, {∅}}. Thus 1 and 6 are at distance ∅, i.e., they are
behaviourally equivalent. The entire table of distances is as
follows (where “. . . ” is an abbreviation for for 4, 5, 8, 9, 10):

1 2 3 . . . 6 7
1 ∅ {a, ā} {a, ā} {a, ā} ∅ {a, ā}
2 {a, ā} ∅ {a, ā} {a} {a, ā} {ā}
3 {a, ā} {a, ā} ∅ {ā} {a, ā} {a}
. . . {a, ā} {a} {ā} ∅ {a, ā} {a, ā}
6 ∅ {a, ā} {a, ā} {a, ā} ∅ {a, ā}
7 {a, ā} {ā} {a} {a, ā} {a, ā} ∅

VI. CONCLUSION AND RELATED WORK

Several previous papers (e.g., [5], [6]) have pointed out
the relationship between the construction of the final coal-
gebra (via the so-called “final sequence” [18], [16]) and the
minimization algorithm. Inspired by these, our paper is the
first one that proposes an abstract algorithm (Construction 11)
for minimizing coalgebras. The construction only relies on
(pseudo-)factorization structures and it is completely indepen-
dent of the base category of the endofunctor F . Together with
appropriate reflections, this allows to perform “minimization”
of interesting class of systems that cannot be regarded as
coalgebras over Set, such as non-deterministic automata,
conditional transition systems and linear weighted automata.

For non-deterministic automata, which we model as coal-
gebras following [4], the result of the proposed algorithm
coincides with the one of the third step of the Brzozowski’s
algorithm [7]. The resulting automata are not really minimal in
the number of states (it is well know that there exists no unique
minimal non-deterministic automata), but they correspond to
backwards-deterministic automata and have the nice property
that the languages recognized by the states form a partition of
the set of all words.

The example on conditional transition systems is completely
original, but it has been motivated by the work in [9], [10],
which introduce notions of bisimilarity depending on condi-
tions (which are fixed once and for all). The setting of [10] is
closer to ours, but no minimization algorithm is given there.
For practical purposes we think it will be beneficial to work
with matrices where entries correspond to Boolean formulas,
specifying whether there exists a transition between two states.
We already have a prototype implementation performing the
fixed-point iteration based on binary decision diagrams.

In order to further witness the expressiveness of our ap-
proach, we showed that Construction 11 subsumes the mini-
mization algorithm in [8] for linear weighted automata.

Our study on factorization structures and minimizations also
allows to define interesting behavioural pseudo-metrics on the
state spaces of dynamical systems. A closely related approach
relying on coalgebras on the category of metric spaces and
non-expansive maps is studied in [19], [20] for the case of

probabilistic transition systems. In these works the functor F
also acts on the metrics (via the so-called Kantorovich metrics)
and, consequently, the algorithm presented in [20] computes a
new pseudo-metric at every iteration. In the approach of this
paper instead, the minimization is first computed and from that
the resulting behavioural pseudometrics.

We plan to investigate under what circumstances one can
obtain an algorithm that computes the distances on states
directly, without going via the minimization. We know that
this is feasible for conditional transition systems, but it is
unclear how far this can be generalized. Moreover, we plan to
further study applications to weighted automata over semirings
and to probabilistic transition systems, using either the (sub-
)distribution monad for the discrete case or the Giry monad
as considered by Doberkat in [21].

Finally, we should mention that factorization structures for
coalgebras have also been studied in [15] (for axiomatizing
a Co-Birkhoff theorem) but, to our knowledge, they have not
been related to minimization algorithms. Moreover, the notion
of minimizations generalizes simple [22] and minimal [23]
coalgebras in the case where the base category is Set with
epi-mono factorizations.

Acknowledgements: We would like to thank Ana Sokolova, Paolo
Baldan, Walter Tholen, Jiřı́ Adámek and Stefan Milius for answering
our questions and giving generous and extremely helpful feedback.

REFERENCES

[1] J. E. Hopcroft, R. Motwani, and J. D. Ullman, Introduction to Automata
Theory, Languages, and Computation (3rd Edition). Wesley, 2006.

[2] R. Paige and R. E. Tarjan, “Three partition refinement algorithms,” SIAM
Journal on Computing, vol. 16, no. 6, pp. 973–989, 1987.

[3] M. P. Schützenberger, “On the definition of a family of automata,”
Information and Control, vol. 4, no. 2-3, pp. 245–270, 1961.

[4] I. Hasuo, B. Jacobs, and A. Sokolova, “Generic trace semantics via
coinduction,” LMCS, vol. 3, no. 4:11, pp. 1–36, 2007.

[5] S. Staton, “Relating coalgebraic notions of bisimulation,” in Proc. of
CALCO ’09. Springer, 2009, pp. 191–205, LNCS 5728.

[6] F. Bonchi and U. Montanari, “Coalgebraic models for reactive systems,”
in Proc. of CONCUR ’07. Springer, 2007, pp. 364–379, LNCS 4703.

[7] J. A. Brzozowski, “Canonical regular expressions and minimal state
graphs for definite events,” in Mathematical Theory of Automata, vol.
12(6). Polytechnic Press, NY, 1962, pp. 529–561.

[8] M. Boreale, “Weighted bisimulation in linear algebraic form,” in Proc.
of CONCUR ’09. Springer, 2009, pp. 163–177, LNCS 5710.

[9] M. Hennessy and H. Lin, “Symbolic bisimulations,” TCS, vol. 138, no. 2,
pp. 353–389, 1995.

[10] M. Fitting, “Bisimulations and boolean vectors,” in Advances in Modal
Logic. World Scientific Publishing, 2002, vol. 4, pp. 1–29.

[11] J. Adámek, H. Herrlich, and G. Strecker, Abstract and Concrete Cate-
gories - The Joy of Cats. Wiley, 1990.

[12] J. Power and D. Turi, “A coalgebraic foundation for linear time seman-
tics,” in Proc. of CTCS ’99, ser. ENTCS, vol. 29, 1999, pp. 259–274.

[13] S. Mac Lane, Categories for the Working Mathematician. Springer-
Verlag, 1971.

[14] P. S. Mulry, “Lifting theorems for Kleisli categories,” in Proc. of MFPS.
Springer, 1993, pp. 304–319, LNCS 802.

[15] A. Kurz, “Logics for coalgebras and applications to computer science,”
Ph.D. dissertation, Ludwigs-Maximilians-Universität München, 2000.

[16] J. Adámek and V. Koubek, “On the greatest fixed point of a set functor,”
TCS, vol. 150, pp. 57–75, 1995.

[17] C. Hermida and B. Jacobs, “Structural induction and coinduction in a
fibrational setting,” Information and Computation, vol. 145, pp. 107–
152, 1998.

[18] J. Worrell, “On the final sequence of a finitary set functor,” TCS, vol.
338, no. 1-3, pp. 184–199, 2005.

10

[19] F. van Breugel and J. Worrell, “A behavioural pseudometric for proba-
bilistic transition systems,” TCS, vol. 331, pp. 115–142, 2005.

[20] ——, “Approximating and computing behavioural distances in proba-
bilistic transition systems,” TCS, vol. 360, pp. 373–385, 2005.

[21] E.-E. Doberkat, “Kleisli morphisms and randomized congruences for the
giry monad,” J. Pure and Appl. Algebra, vol. 211, pp. 638–664, 2007.

[22] J. Rutten, “Universal coalgebra: a theory of systems,” TCS, vol. 249,
pp. 3–80, 2000.

[23] H. P. Gumm, “On minimal coalgebras,” Applied Categorical Structures,
vol. 16, pp. 313–332, 2008.

[24] J. MacDonald and W. Tholen, “Decomposition of morphisms into
infinitely many factors,” in Proc. of Category Theory – Applications
to Algebra, Logic and Topology, ser. Lecture Notes in Mathematics, no.
962. Springer, 1981, pp. 175–189.

APPENDIX

A. Additional Definitions

We will now formally define the notion of monad (see also
[11], [4]).

Definition 31 (Monad). A monad on Set is an endofunctor
T : Set→ Set together with two natural transformations:
• a unit natural transformation η : Id ⇒ T , that is arrows
ηX : X → TX for each set X satisfying suitable natu-
rality conditions;

• a multiplication natural transformation µ : T 2 ⇒ T ,
that is arrows µX : TTX → X for each set X again
satisfying suitable naturality conditions.

The unit and multiplication have to satisfy the follow compat-
ibility conditions:

TX
ηTX //

id &&

T 2X
µX
��

TX
TηXoo

id

xx

TX

T 3X
TµX //

µTX ��

T 2X
µX
��

T 2X
µX

// TX

Example 32. In the running examples of this paper we use
the following monads:

(CTS) Input monad: for a given set A of inputs define
T : Set → Set with TX = XA for a set X . For a
function f : X → Y in Set define Tf : XA → Y A with
Tf(g)(a) = f(g(a)) for g : A→ X and a ∈ A.

The unit arrows are ηX : X → XA with ηX(x)(a) = x
for all a ∈ A. Furthermore the multiplication arrows have
the form µX : (XA)A → XA with µX(g)(a) = g(a)(a) for a
function g : A→ XA.

(LWA) Monad assigning weights from a field: let F be a
field and define T : Set → Set with TX = (FX)ω , which is
the set of all mappings from X to F of finite support, i.e., only
finitely many function values may be different from 0. For a
function f : X → Y in Set define Tf : (FX)ω → (FY)ω as
follows: let a ∈ (FX)ω , where a has finite support, then

Tf(a)(y) =
∑
{a(x) | x ∈ X, f(x) = y}

The unit arrows are ηX : X → (FX)ω with

ηX(x)(y) =

{
1 if x = y
0 otherwise

Furthermore, the multiplication arrows have the form
µX :

(
F(FX)ω

)
ω
→ (FX)ω with

µX(g)(x) =
∑

f∈(FX)ω

g(f) · f(x)

for a function g ∈
(
F(FX)ω

)
ω

. This definition implies
that arrow composition in the corresponding Kleisli category
corresponds to matrix multiplication.

(NDA) Powerset monad: let T : Set→ Set be the powerset
monad with TX = P(X) for a set X . Furthermore T acts on
a function f : X → Y as follows: Tf : P(X) → P(Y) with
Tf(X ′) = {y ∈ Y | ∃x ∈ X ′ : f(x) = y}.

The unit arrows are ηX : X → P(X) with ηX(x) =
{x}. Furthermore the multiplication arrows have the form
µX : P(P(X))→ P(X) with

µX(Z) =
⋃
Z∈Z

Z, Z ⊆ P(X)

i.e., we take the union of all the sets contained in Z.

B. Additional Examples: Non-deterministic Automata

Example 33. (NDA) We are considering the non-deterministic
automaton of Example 5. We are working in the category
K`(P) = Rel and FX = A×X+1. We will in the following
denote a relation α : X → A × X + 1 by a Boolean matrix
with column indices from X and row indices from A×X+ 1.
Arrow composition is done via matrix multiplication (using
logical or for addition and logical and for multiplication). In
our specific example α looks as follows. Note that 〈a, 1〉 is
abbreviated by a1, etc.

α =

1 2 3
a1
b1
a2
b2
a3
b3
•



1 0 0
1 0 0
0 1 1
1 0 0
0 0 0
0 1 1
0 0 1


The final object is the empty set ∅ and hence d0 = c0 is a 0×3-
matrix. In the next step we obtain d1 : X → 1 (= A×∅+ 1).

d1 = Fc0 ◦ α = •
(
0 0 1

)
We compute the pseudo-factorization (see Example 21) and
obtain c1 = d1. In the next step we get d2 : X → A× 1 + 1.

d2 =Fc1 ◦ α =

a1 b1 a2 b2 a3 b3 •
a•
b•
•

0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1

 ◦ α

=

1 2 3
a•
b•
•

0 0 0
0 1 1
0 0 1


Again, via the pseudo-factorization we obtain c2 = d2. By
iterating again, we obtain d3 : X → A× (A× 1 + 1) + 1.

11

d3 =Fc2 ◦ α =

1 2 3
aa•
ba•
ab•
bb•
a•
b•
•



0 0 0
0 0 0
0 1 1
1 1 1
0 0 0
0 1 1
0 0 1



=

2 × 3 ◦
aa•
ba•
ab•
bb•
a•
b•
•



1 0 0 0
1 0 0 0
0 1 0 0
0 0 1 0
1 0 0 0
0 1 0 0
0 0 0 1


◦

1 2 3
0 0 0
0 1 1
1 1 1
0 0 1


2

×
3

◦

= m3 ◦ c3

By iterating the construction once again we obtain d4 : X →
A×{2,×, �, ◦}+1. Via pseudo factorization we obtain m4, c4
with c4 = c3, i.e., we have reached the fixed-point.

d4 =Fc3 ◦ α =

1 2 3
a2
b2
a×
b×
a3
b3
a◦
b◦
•



0 0 0
0 0 0
0 1 1
1 1 1
1 1 1
1 1 1
0 0 0
0 1 1
0 0 1



=

2 × 3 ◦
a2
b2
a×
b×
a3
b3
a◦
b◦
•



1 0 0 0
1 0 0 0
0 1 0 0
0 0 1 0
0 0 1 0
0 0 1 0
1 0 0 0
0 1 0 0
0 0 0 1


◦

1 2 3
0 0 0
0 1 1
1 1 1
0 0 1


2

×
3

◦

= m4 ◦ c4

The arrow m4 = γ gives us the following minimization
(compare with the automaton in Example 23).

3

a,b

��
b // ×

a

��
b // ◦ 2

a,b

��
aoo

Intuitively, we are here basically doing a breadth-first
backwards search, starting from the set of final states.

C. Additional Examples: Linear Weighted Automata

Example 34. (LWA) We come back to Example 14 and con-
sider the following linear weighted automaton from [8] with
X = {1, 2, 3}, A = {a} and F = R (graphical representation

on the right and coalgebra α : X → (RA×X+1)ω , in matrix
form, on the left):

〈a, 1〉
〈a, 2〉
〈a, 3〉
•

1 2 3
3/2 0 1/2
1/2 1 1/2
−3/2 0 −1/2

2 2 2


1a,1/2

~~

a,−3/2

��

//

a,3/2

��

2

2

a,1

HH

//
2 2 3

a,1/2

ee

a,1/2

ii

a,−1/2

VV

oo

There is only a single label a, hence we omit labels in the
following.

The final object is the empty set and hence d0 = c0 is a
0× 3-matrix. Thus we obtain:

d1 = Fc0 ◦ α =
1 2 3

•
(
2 2 2

)
The arrow d1 is a matrix of full row rank (i.e., an element of
E) and hence c1 = d1. In the next step we obtain:

d2 = Fc1 ◦ α =
1 2 3

◦
•

(
1 2 1
2 2 2

)
Note that d2 is an element of E, since its row vectors are
linearly independent and hence c2 = d2. In the next step we
obtain:

d3 = Fc2 ◦ α =

1 2 3
�
2

•

1 2 1
1 2 1
2 2 2


Note that d3 is not of full row rank, since it contains two
identical row vectors. We factor out an arrow of M as follows:

d3 =

� 2

�
2

•

1 0
1 0
0 1

 ◦ 1 2 3(
1 2 1
2 2 2

)
�
2

= m3 ◦ c3

Hence we have reached a fixed-point and set γ = m3. The
corresponding transition system looks as follows:

0 �oo a,1
//

a,1

��

2 //
1

This linear weighted automaton is equivalent to the one
obtained in [8].

Comparison to Boreale’s Linear Weighted Automata
We will compare the setting of Example 14 with the linear

weighted automata of Boreale [8], where we use the reals as
field.

Definition 35 (Weighted Automaton in Linear Form [8]).
A linear weighted automaton (LWA for short) is a triple
L = (V, {Ta}a∈A, ϕ), where V is a (finite-dimensional) vector
space over R, and Ta : V → V , for a ∈ A, and ϕ : V → R
are linear maps.

12

We assume in the following that the vector space has as
elements mappings of the form X → R for a finite set X , i.e.,
vectors are elements of TX in the notation of Example 14.

First, we show how to convert LWA’s into coalgebras and
vice versa. Given an LWA L we define the following coalgebra
α : X → TFX , where TFX = (RA×X+1)ω:

α(x)(〈a, y〉) = Ta(ηX(x))(y)

α(x)(•) = Ta(ηX(x))(•)

Note that ηX(x), where ηX is the unit of the monad, stands
for the function that maps x to 1 and all other elements to 1.
It corresponds to a unit vector.

Given a coalgebra α : X → TFX we define an LWA with
vector space (RX)ω , Ta(u)(y) = (α · u)(〈a, y〉) and ϕ(u) =
(α · u)(•). Here we abuse the notation and interpret α as a
matrix where columns are indexed by X and rows by A ×
X+ 1. Then α ·u denotes the multiplication of matrix α with
vector u.

Definition 36 (Weighted L-Bisimulation [8]). A relation R on
V is called weighted L-bisimulation whenever

1) R is linear, i.e., there exists a subspace U of V such
that for u,v ∈ V it holds that uRv ⇐⇒ u− v ∈ U .

2) Whenever uRv for u,v ∈ V , then

a) ϕ(u) = ϕ(v)
b) Ta(u)RTa(v) for all a ∈ A.

Two vectors u,v are L-bisimilar (u ∼L v) if there exists an
L-bisimulation R with uRv.

Instead of using the definition above, an alternative defini-
tion is to require an LWA L′ on a vector space V ′ and a linear
map f : V → V ′, such that:

(i) ϕ′(f(u)) = ϕ(u);
(ii) f ◦ Ta = T ′a ◦ f .

Then two vectors u, v are in relation if they have the same
image under f .

Given such a linear map f , one can construct the subspace
U in Definition 36 as the kernel of f and show that it has
the required properties. On the other hand, if we are given
an L-bisimulation R, one can construct f as a surjective
linear mapping that has U as its kernel. Then one defines
the linear weighted automaton L′ via T ′a(f(u)) = f(Ta(u))
and ϕ′(f(u)) = ϕ(u). Due to the conditions of Definition 36
one can show that T ′a and ϕ′ are well-defined.

Now Conditions (i) and (ii) above correspond to the condi-
tion for coalgebra morphisms, requiring that Ff ◦α = α′ ◦ f ,
where α is the coalgebra for L and α′ the coalgebra for L′.

Since the minimization induces minimal distances, it is
straightforward to show that two vectors are L-bisimilar iff
their images in the relatively final coalgebra coincide, i.e., if
they have distance 0.

Finally, note that Boreale’s algorithm computes the orthog-
onal complement U⊥ (in our setting the row space of E in
Example 14) rather than U itself, similar to our algorithm.

D. Proofs
Lemma 37. Assume that the functor F preserves M-arrows.
Then the category of F -coalgebras is (E,M)-structured, when-
ever this holds for the underlying category C.

Proof: We check that the conditions of Definition 7 are
satisfied. Note that the isos in the underlying category agree
with the isos in the category of F -coalgebras. Hence closure
under composition with isos follows trivially.

The factors of a coalgebra morphism f : (X,α) → (Z, γ)
are obtained by factoring f : X → Z into f = m ◦ e with
e : X → Y , m : Y → Z. Since F preserves M-arrows Fm ∈
M and hence the coalgebra β can be obtained as the unique
diagonal arrow.

X
α��

e // // Y
β��

// m // Z
γ
��

FX
Fe // FY //

Fm // FZ
Finally, take a commuting square in the category of coal-

gebras as depicted below and show that there is a diagonal
arrow. X

α ��

e // //

f
��

Y
β��

//
g
//

d

��

Z
γ
��

FX
Fe //

Ff
��

FY //
Fg
//

Fd

��

FZ

U
δ��

@@
m

@@

FU
@@

Fm

@@

The arrow d is obtained as the unique diagonal arrow for
the upper square consisting of e, g, f,m. Note that Fd makes
the lower square commute. It is left to show that everything
commutes, specifically that δ ◦ d = Fd ◦ β. Consider the
commuting square (γ◦g)◦e = Fm◦(Ff◦α) in the underlying
category. It can be checked that both δ ◦ d and Fd ◦ β are
diagonals for this square and hence they coincide. Specifically:

(δ ◦ d) ◦ e = δ ◦ (d ◦ e) = δ ◦ f = Ff ◦ α
(Fd ◦ β) ◦ e = Fd ◦ (β ◦ e) = Fd ◦ Fe ◦ α

= F (d ◦ e) ◦ α = Ff ◦ α
Fm ◦ (δ ◦ d) = (Fm ◦ δ) ◦ d = γ ◦m ◦ d = γ ◦ g
Fm ◦ (Fd ◦ β) = F (m ◦ d) ◦ β = Fg ◦ β = γ ◦ g

This shows that the factorization structure of the underlying
category can be lifted to the category of F -coalgebras.

Proposition 9 (Minimization and Final Coalgebras). If the
final coalgebra ω : Ω → FΩ exists, then – for a given
coalgebra α : X → FX – the minimization γ : Z → FZ
for α can be obtained by factoring the unique coalgebra
morphism behX : (X,α) → (Ω, ω) into an E-morphism and
an M-morphism.

Proof: The proposition follows directly from the fact
that the category of coalgebras is (E,M)-structured (cf.
Lemma 37), especially from the diagonalization property.

Theorem 12. If the limits in Construction 11 exist and the
endofunctor F preserves the limit, then the coalgebra γ : Z →
FZ is the minimization for α.

13

Proof: We first show that the construction is well-defined
and then that γ : Z → FZ is the minimization.

Ei //
mi // Xi = FEi−1

X
ei
55 55

ei+1))))

di

((

di+1=Fei◦α

66
Ei+1

ψi

OO

//
mi+1
// Xi+1 = FEi

ϕi=Fψi−1

OO

First, observe that the outer diagram above commutes: ϕi ◦
di+1 = di. For i = 0 follows immediately since both are
arrows into the final object. For i> 0 we obtain by induction:
ϕi◦di+1 = Fψi−1◦Fei◦α = F (ψi−1◦ei)◦α = Fei−1◦α =
di.

Next, consider the category Mor(C), whose objects are
morphisms of C and arrows are commuting squares. In
Mor(C), γ′ : E → FE is the limit object of the ω-chain

m0 ← m1 ← m2 ← · · · ← mi ← . . .

where each morphism mi+1 → mi consists of the pair of
morphisms of C: ψi : Ei+1 → Ei and ϕi : Xi+1 → Xi. It is
known from [24] that the full subcategory of M-arrows (seen
as objects) is a reflective subcategory of Mor(C). Hence γ′ as
the limit object is in M. Note however that d is not necessarily
contained in E.

E0
//

m0 // X0 = 1

X

α

++

e0

99 99

e1 // //

e2
%% %%

ei

...

�� ��
d

��

e

����

E1
//

m1 //

ψ0

OO

X1 = FE0

ϕ0

OO

FX

hh

Fe0oo

Fe1
vv

Fei−1

...

}}
Fd

��

Fe

��

E2

ψ1

OO

//
m2 // X2 = FE1

ϕ1

OO

Z 44

γ

++
%%

m
%%

Ei

OO

//
mi // Xi = FEi−1

OO

FZvv

vv
E

OO

//
γ′

// FE

OO

In the following let pi : E → Ei and ri : FE → Xi be the
limit projections. Note that ri = Fpi−1 since F preserves this
limit.

Observe that α is the tip of a cone over the ω-chain in
Mor(C): Fei−1 ◦ α = di = mi ◦ ei and ψi ◦ ei+1 = ei by
construction. Hence d, Fd exist as the mediating morphisms.
Note that Fd must be the mediating morphism since it makes
the triangles commute (ri ◦ Fd = Fpi−1 ◦ Fd = F (pi−1 ◦
d) = Fei−1.) Therefore d : (X,α) → (E, γ′) is a coalgebra
morphism.

In the second part of the proof we will now assume the
existence of a coalgebra morphism g : (X,α) → (Y, β) with
g ∈ E. We first show that there is a unique coalgebra morphism
j : (Y, β)→ (E, γ′).

We start by showing that β is the tip of a unique cone (in
Mor(C)) consisting of morphisms si : Y → Ei, ti : FY →
Xi over the ω-chain such that

ti = Fsi−1 for i > 0 (1)
si ◦ g = ei for i ≥ 0 (2)

Being a cone amounts to ti ◦ β = mi ◦ si and ψi ◦ si+1 =
si. (Note that the latter implies ϕi ◦ ti+1 = Fψi−1 ◦ Fsi =
F (ψi−1 ◦ si) = Fsi−1 = ti.)

This cone is obtained as follows: we have t0 : FY → X0 =
1 as the unique arrow into the final element and s0 : Y → E0

as the unique diagonal arrow making the following diagram
commutes (i.e., such that s0 ◦ g = e0).

X g // //

e0
��

Y

t0◦b
��

s0
vv

E0
// m0 // X0 = 1

For the induction step assume that we have already con-
structed si, ti. Set ti+1 = Fsi and we know that it is the
unique choice due to (1). Now consider the diagram below and
observe that mi+1 ◦ ei+1 = di+1 = Fei ◦α = F (si ◦ g) ◦α =
Fsi ◦ (Fg ◦ α) = ti+1 ◦ β ◦ g. Hence we obtain si+1 as the
unique diagonal arrow which satisfies Condition (2).

Ei // mi

// Xi

FY

ti

''

ti+1

77

Y
β

oo

si
++

si+1

22

X
g

oooo
ei

33 33

ei+1 ++ ++
Ei+1

//
mi+1

//

ψi

OO

Xi+1

ϕi

OO

We have to check that si+1, ti+1 continue the cone: first ti+1◦
β = mi+1◦si+1 due to the commutativity of the (lower) square
above. It is left to show that ψi ◦ si+1 = si. We prove this
by showing that ψi ◦ si+1 is a diagonal arrow for the upper
square in the diagram above: (ψi ◦ si+1) ◦ g = ψi ◦ ei+1 = ei
and mi ◦ (ψi ◦ si+1) = ψi ◦mi+1 ◦ si+1 = Fψi−1 ◦Fsi ◦β =
F (ψi+1 ◦ si) ◦ β = Fsi−1 ◦ β = ti ◦ β and, by uniqueness
ψi ◦ si+1 = si (for i > 0). For i = 0 both arrows go to the
final object and are hence equal.

Now we obtain j : Y → E and Fj : FY → FE as
mediating morphisms between the cones consisting of si, ti
and pi, ri (and hence pi ◦ j = si). Note that Fj must be the
mediating morphism since it makes the triangles commute.
Furthermore j ◦ g = d since both are mediating morphisms
from the cone (in C) with tip X to the limit object E:
d is a mediating morphism by construction and j ◦ g by
pi ◦ (j ◦ g) = (pi ◦ j) ◦ g = si ◦ g = ei.

We now show uniqueness of j: let j′ : (Y, β)→ (E, γ′) be
another coalgebra morphism with d = j′ ◦ g. Then the arrows
pi ◦ j′ and ri ◦ Fj′ form a cone satisfying the Conditions (1)
and (2) above. Specifically: (1) ri ◦ Fj′ = Fpi−1 ◦ Fj′ =
F (pi−1 ◦ j′) and (2) (pi ◦ j′) ◦ g = pi ◦ d = ei (where pi ◦ j′
plays the role of si and ri ◦ Fj plays the role of ti). Since
the cone consisting of si, ti is the unique cone satisfying these
requirements we have pi ◦ j′ = si, ri ◦ Fj′ = ti and hence
j = j′ (due to the uniqueness of mediating morphisms).

14

Finally obtain h : (Y, β) → (Z, γ) by constructing the
diagonal arrow in the following diagram in the category of
coalgebras.

(X,α)
g
// //

e ����

(Y, β)

j
��

h

ww

(Z, γ) //
m // (E, γ′)

In order to show that h is the unique coalgebra morphism with
e = h ◦ g, take another coalgebra morphism h′ : (Y, β) →
(Z, γ) with h′ ◦ g = e. Note that by using the diagonalization
property it suffices to show that m ◦h′ = j. We show that the
arrows pi◦(m◦h′) and ri◦F (m◦h′) form a cone satisfying the
Conditions (1) and (2) above. Condition (1) holds trivially and
(2) (pi◦(m◦h′))◦g = pi◦m◦(h′◦g) = pi◦m◦e = pi◦d = ei.
Since the cone consisting of si, ti is the unique cone satisfying
these requirements we have pi ◦ (m ◦ h′) = si and hence
j = m ◦ h′ (due to the uniqueness of mediating morphisms).

In order to summarize the proof: the cones over the ω-chain
in Mor(C) are as follows.

α
e,Fe
zz

g,Fg

&&
d,Fd

��

ei,Fei−1

��

ei+1,Fei

��

γ

m,Fm ##

β

j,Fjyy
si+1,ti+1

��

γ′
pi,ri

zz

pi+1,ri+1

%%
. . . mi mi+1

ψi,ϕi

oo . . .

Proposition 18. Let S be a reflective subcategory of C,
which is preserved by the endofunctor F . The category of
F -coalgebras in S is a reflective subcategory of the category
of F -coalgebras in C.

Proof: The reflection arrow is constructed as described
in Definition 17. Note especially that FLX is an object of S,
since F preserves S, and hence the arrow ζX exists.

As in Definition 17 let α′ = ζX ◦ Lα. Now assume
that f : (X,α) → (Y, β) with β : Y → FY is a coalgebra
morphism where β is an arrow of S.

X
α //

ηX
��f

FX

ηFX
��

Ff

��

FηX

&&

LX
Lα //

f ′

zz

LFX
ζX //

g

yy

FLX

Ff ′tt
Y

β
// FY

Let f ′ be the unique arrow in S for which f ′ ◦ηX = f and let
g be the unique arrow in S such that g ◦ ηFX = Ff . We have
to show that Ff ′ ◦ α′ = β ◦ f , i.e., f is indeed a coalgebra
morphism.

We first show that the square consisting of Lα, g, f ′, β
commutes: it holds that (g ◦ Lα) ◦ ηX = g ◦ ηFX ◦ α =

Ff ◦ α = β ◦ f = (β ◦ f ′) ◦ ηX . Since ηX is the unit of a
reflection and by uniqueness of the mediating arrow we obtain
g ◦ Lα = β ◦ f ′.

Next we show that the triangle consisting of the arrows
g, ζX , Ff commutes: g ◦ ηFX = Ff = Ff ′ ◦ FηX = (Ff ′ ◦
ζX)◦ηFX . With the same argument as above (but for the unit
ηFX) it follows that g = Ff ′ ◦ ζX .

Hence Ff ′ ◦ α′ = Ff ′ ◦ ζX ◦ Lα = g ◦ Lα = β ◦ f ′.

Lemma 38 (Diagonalization for Pseudo-Factorizations). Let
S be a reflective subcategory of C, which is (E,M)-structured.
Assume a commuting diagram in C as shown on the left below
where c = e ◦ ηX with e ∈ E and m ∈M. Furthermore let g
be an arrow of S.

A
c // //

f ��

B
g
��

C //
m // D

A
c // //

f ��

B
g
��

d

yy
C //

m // D

Then there exists a unique diagonal arrow d which is contained
in S and which makes the two triangles commute.

Proof: In more detail the diagrams above look as follows:

A
ηX //

f ��

A′
e // //

f ′

yy

B
g
��dttC //

m
// D

Now C is an object of S, since m is an arrow in S, which
implies the existence of a unique arrow f ′ : A′ → C in S with
f ′ ◦ ηX = f .

It holds that (g◦e)◦ηX = m◦f = (m◦f ′)◦ηX . Since both
g◦e and m◦Ff ′ are contained in S, it holds that g◦e = m◦f ′
(uniqueness of mediating arrows). This commuting diagram
lives in S and hence there exists a unique arrow d : B → C
with d ◦ e = f ′ and m ◦ d = g.

Assume there is another diagonal d′ with d′ ◦ e ◦ ηX = f
and m ◦ d′ = g. Since d′ ◦ e ◦ ηX = f ′ ◦ ηX and since C is an
object of S we have d′ ◦ e = f ′. Uniqueness follows from the
uniqueness requirement of factorization structures in S.

Proposition 22. Let C be a category with a reflective sub-
category S. Furthermore assume that S is (E,M)-structured.
Then, given a coalgebra α : X → FX in C, the following
two constructions obtain the same resulting minimization
γ : Z → FZ (provided that the limit exists):
(i) Apply Construction 11 using the (E,M)-pseudo-

factorizations of Definition 20.
(ii) First reflect α into the subcategory S according to Defi-

nition 17 and then apply Construction 11 using (E,M)-
factorizations.

Proof: First note that the diagonal arrows required in
Construction 11 (variant (i)) exist due to Lemma 38. Note
that ϕi ◦ mi+1 is an arrow of S, since ϕi = Fψi−1, ψi−1

is a diagonal S-arrow and F preserves S-arrows. Furthermore
ϕo : X → 1 is the unique arrow into 1, which is also the final
object of S.

15

Assume that we apply Construction 11 (variant (i)) using
the pseudo-factorizations, obtaining arrows di : X → Xi,
ei : X → E0, mi : Ei � Xi, ψi : Ei → Ei−1 and ϕi : Xi →
Xi−1.

Now let α′ : LX → FLX with α′ = ζX ◦Lα be the reflec-
tion of α into the subcategory. We call the arrows arising in
Construction 11 (variant (ii)) d′i, e

′
i,m

′
i, ψ
′
i, ϕ
′
i. We will show

that di = d′i ◦ ηX , ei = e′i ◦ ηX ,mi = m′i, ψi = ψ′i, ϕi = ϕ′i.
This is true for i = 0 since d0 is the unique arrow from
X to 1 and d′0 ◦ ηX : X → 1. Now in order to obtain the
pseudo-factorization of d0 we first construct d′0 and factorize
d′0 = m′0 ◦e′0. Hence e0 = e′0 ◦ηX and m0 = m′0. (The arrows
ϕ0, ψ0 are treated in the induction step.)

We assume by the induction hypothesis that di = d′i ◦
ηX , ei = e′i ◦ ηX ,mi = m′i, ψi−1 = ψ′i−1, ϕi−1 = ϕ′i−1.

For the induction step note that the diagram below com-
mutes: the left-hand part arises from the reflection of α and
the rightmost triangle commutes since it results from applying
F to ei = e′i ◦ ηX .

X
α //

ηX ��

FX
ηFX��

FηX
��

Fei

%%

LX
Lα //

α′
44LFX

ζX // FLX
Fe′i // FE

Hence di+1 = Fei ◦α = Fe′i ◦α′ ◦ ηX = d′i+1 ◦ ηX . Now, as
argued above, the pseudo-factorization of di+1 is obtained by
factorizing d′i+1 in the subcategory and hence ei+1 = e′i+1◦ηX
and mi+1 = m′i+1.

In addition ψi and ψ′i are both mediating arrows for the
square consisting of the arrows e′i,mi, e

′
i+1, ϕi ◦ mi+1 (see

diagram below and compare with the proof of Lemma 38).

X
ηX //

ei
��

LX
e′i+1
// //

e′i

yy

Ei+1

ϕi◦mi+1
��

ψi=ψ
′
i

ttEi // mi // Xi

Furthermore ϕi and ϕ′i are equal: for i = 0 this follows since
they are the unique arrows from FE0 into X0. For i > 0 it
holds that ϕi = Fψi−1 = Fψ′i−1 = ϕ′i.

Hence in both cases we take limits of the same diagrams.
And since S is a reflective subcategory of C limits are
preserved and we obtain the same coalgebra γ′ : E → FE in
both cases. Assume that pi : E → Ei are the limit projections.

Let d : X → E and d′ : LX → E be the mediating arrows
from both coalgebras. It holds that pi ◦ (d′ ◦ ηX) = e′i ◦ ηX =
ei. Hence, by uniqueness of mediating morphisms, we have
d = d′ ◦ ηX . Hence, the pseudo-factorization of d is obtained
by factoring d′ and we obtain the same resulting coalgebra
γ : Z → FZ in both constructions.

Proposition 26 (Induced Pseudo-Metric). Let (C, U) be a
concrete category. Assume that there is a metric dY : UY ×
UY → D for every object Y of C. Every arrow f : X → Y
induces a pseudo-metric df : UX × UX → D defined by
df (a, b) = dY (Uf(a), Uf(b)).

Proof: In order to show that df : UX × UX → D is
a pseudo-metric we have to check that all conditions are
satisfied: let a, b, c ∈ UX .

(i) df (a, b) = dY (Uf(a), Uf(b)) ≥ 0

(ii) df (a, a) = dY (Uf(a), Uf(a)) = 0

(iii) df (a, b) = dY (Uf(a), Uf(b))

= dY (Uf(b), Uf(a)) = df (b, a)

(iv) df (a, c) = dY (Uf(a), Uf(c))

≤ dY (Uf(a), Uf(b))⊕ dY (Uf(b), Uf(c))

= df (a, b)⊕ df (b, c)

Theorem 28. Let α : X → FX be a coalgebra in C, let
α′ : LX → FLX be the reflection of α into S and let
γ : Z → FZ be the minimization for α′. In addition, let c =
e ◦ ηX : (X,α)→ (Z, γ) be the coalgebra morphism into the
minimization where e ∈ E with e : (LX,α′) → (Z, γ). Then,
for every other coalgebra morphism f : (X,α) → (Y, β), we
have dc(a, b) ≤ df (a, b) for all a, b ∈ UX .

Proof: We view this situation as a diagram in the category
of coalgebras: f ′ is the morphism that is obtained by reflecting
the coalgebra morphism f into the category of coalgebras in S.
Furthermore we take the (E,M)-factorization of f ′ with f ′ =
m′ ◦e′. Then, h is the unique morphism into the minimization
γ, which makes the diagram commute.

(X,α)
ηX //

f

��

c

**
(LX,α′)

e′����

e // //

f ′

""

(Z, γ)

(V, δ)
h

55

��

m′��

(Y, β)
ηY // (LY, ζY ◦ Lβ)

Since ηY and especially m′ are isometric and h is non-
expansive, we have for a, b ∈ UX:

dc(a, b) = dZ(U(h ◦ e′ ◦ ηX)(a), U(h ◦ e′ ◦ ηX)(b))

= dh(U(e′ ◦ ηX)(a), U(e′ ◦ ηX)(b))

≤ dV (U(e′ ◦ ηX)(a)), U(e′ ◦ ηX)(b))

= dm′(U(e′ ◦ ηX)(a)), U(e′ ◦ ηX)(b))

= dLY (U(m′ ◦ e′ ◦ ηX)(a)), U(m′ ◦ e′ ◦ ηX)(b))

= dLY (U(f ′ ◦ ηX)(a)), U(f ′ ◦ ηX)(b))

= dLY (U(ηY ◦ f)(a)), U(ηY ◦ f)(b))

= dηY (Uf(a)), Uf(b))

= dY (Uf(a), Uf(b))

= df (a, b)

Corollary 29 (Behavioural Equivalence and Induced Pseudo-
Metrics). Let (C, U) be a concrete category, let F : C → C

16

be an endofunctor and we assume that the final F -coalgebra
exists. Let (X,α) be a coalgebra with mapping c : X → Z
into its minimization (as in Theorem 28). Then for a, b ∈ UX
it holds that a ≈ b if and only if dc(a, b) = 0.

Proof: First note that there are coalgebra morphisms
behX : X → Ω, behZ : Z → Ω into the final coalge-
bra. In addition behZ ◦ c = behX . According to Theo-
rem 28 it holds that dc(a, b) ≤ dbehX

(a, b). Furthermore,
due to non-expansiveness, dbehX

(a, b) = dbehZ◦c(a, b) =
dbehZ

(Uc(a), Uc(b)) ≤ dZ(Uc(a), Uc(b)) = dc(a, b) and
thus dbehX

(a, b) = dc(a, b).
Hence x ≈ y ⇐⇒ UbehX(a) = UbehX(b) ⇐⇒

dΩ(UbehX(a), UbehX(b)) = 0 ⇐⇒ dbehX
(a, b) = 0 ⇐⇒

dc(a, b) = 0.

17

