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We propose new summary statistics for intensity-reweighted moment
stationary point processes, that is, point processes with translation
invariant n-point correlation functions for all n∈N, that generalise the
well known J -, empty space, and spherical Palm contact distribution
functions. We represent these statistics in terms of generating func-
tionals and relate the inhomogeneous J -function to the inhomoge-
neous reduced second moment function. Extensions to space time
and marked point processes are briefly discussed.
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1 Introduction

The analysis of data in the form of a map of (marked) points often starts with the
computation of summary statistics. Some statistics are based on inter-point
distances, others on the average number of points in sample regions, or on geometric
information. For a survey of the state of the art and a rich source of pointers to
the literature, the reader is referred to the recent Handbook of Spatial Statistics
(Gelfand et al., 2010).

In the exploratory stage, it is usually assumed that the data constitute a reali-
sation of a stationary point process and deviations from a homogeneous Poisson
process are studied to suggest a suitable model. Although stationarity is a conve-
nient assumption, especially if – as is often the case – only a single map is avail-
able, in many areas of application, though, heterogeneity is present. To account
for possible non-stationarity, Baddeley, Møller and Waagepetersen (2000)
defined a reduced second moment function by considering the random measure ob-
tained from the mapped point pattern by weighting each observed point according
to the (estimated) intensity at its location. Gabriel and Diggle (2009) took this idea
further into the domain of space time point processes.
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184 M. N. M. van Lieshout

In this article, our aim is to define an extension of the J -function (van Lieshout
and Baddeley, 1996) that is able to accommodate spatial and/or temporal inho-
mogeneity. The idea underpinning the J -function is to compare the point pattern
around a typical point in the map to that around an arbitrarily chosen origin in
space in order to gain insight in the interaction structure of the point process that
generated the data. In contrast to the reduced second moment function, the J -func-
tion is based on n-point correlation functions of all orders n ∈ N and can be
expressed in terms of the conditional intensity.

The power of the J -function in hypothesis testing was assessed in Chen (2003)
and Thönnes and van Lieshout (1999). Extensions to multivariate point processes
were proposed in van Lieshout and Baddeley (1999), window based J -functions
were suggested in Baddeley et al. (2000) and Chen (2003). For applications in
agriculture, astronomy, forestry and geology, see Kerscher (1998), Kerscher et al.
(1998), Kerscher et al. (1999), Stein, van Lieshout and Booltink (2001), Foxall
and Baddeley (2002), and Paulo (2002).

The plan of this article is as follows. In section 2 we fix notation and recall some
basic concepts from stochastic geometry. In section 3 we describe the most impor-
tant summary statistics that are being used in exploratory analysis of point patterns
under the assumption of stationarity. Section 4 introduces the new statistic Jinhom

and gives representations of it in terms of generating functionals and conditional
intensities. It should be stressed that in doing so, two other new summary statistics
Finhom and Hinhom are introduced that extend the classic empty space and spherical
Palm contact distribution functions. Section 5 is devoted to the explicit computa-
tion of Jinhom for some important classes of point process models. In section 6 we
develop a minus sampling estimator and apply it to simulated examples in section 7.
The article closes with suggestions for further extensions to space time and marked
point processes.

2 Preliminaries and notation

Throughout this article, let X be a simple point process on Rd . A fortiori, X is a
random closed set, so we may write x ∈X for x ∈Rd . Below, we shall often assume
the existence of product densities defined in integral terms by

E

[∑ /=
x1,...,xn∈X

f (x1, . . ., xn)
]

=
∫

· · ·
∫

f (x1, . . ., xn)�(n)(x1, . . ., xn)dx1 · · ·dxn

for all measurable functions f ≥0. The superscript /= indicates that the sum is taken
over all n-tuples of distinct points. The non-negative, measurable, permutation invari-
ant function �(n) is called the n-th order product density. Heuristically speaking,
�(n)(x1, . . ., xn)dx1 · · ·dxn may be interpreted as the infinitesimal probability of find-
ing points of X at each of dx1, . . ., dxn. For the special case n=1, �=�(1) is the
intensity function of X , which represents the heterogeneity of X since �(x)dx can be
interpreted as the probability of observing a point at dx. For further details, see for
© 2011 The Author. Statistica Neerlandica © 2011 VVS.
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example the textbooks (Stoyan, Kendall and Mecke, 1987; Daley and
Vere-Jones, 1988; van Lieshout, 2000; Møller and Waagepetersen, 2004; Illian
et al., 2008; Gelfand et al., 2010).

In the physics literature, n-point correlation functions tend to be used instead of
product densities (Peebles, 1980). They are defined recursively by

�1 ≡1;

�(n)(x1, . . ., xn)
�(x1) · · ·�(xn)

=
n∑

k =1

∑
D1,...,Dk

�n(D1)(xD1 ) · · ·�n(Dk )(xDk ),

where the last sum ranges over all partitions {D1, . . ., Dk} of {1, . . ., n} in k non-
empty, disjoint sets, and the xDj

={xi : i ∈ Dj}, j =1, . . ., k, form the corresponding
partition of points. Since for a Poisson point process �n ≡ 0 for n > 1, heuristically
speaking n-point correlation functions account for the excess due to n-tuples in com-
parison to a Poisson point process with the same intensity function. In particular,
�2(x1, x2)=�(2)(x1, x2)/(�(x1)�(x2))−1.

3 Summary statistics

Summary statistics are used by spatial statisticians as tools for exploratory
data analysis, testing, and model validation purposes. Popular examples include the
spherical Palm contact distribution function H , the empty space function F , the
reduced second moment function K and the J -function. More specifically, for a
stationary point process X with intensity �> 0,⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

F (t)=P(X ∩B(0, t) /=∅),

H(t)=P!0(X ∩B(0, t) /=∅),

K (t)=E!0 [∑
x∈X 1{x ∈B(0, t)}]

/�,

J (t)= (1−H(t))/(1−F (t)),

(1)

where B(0, t) is the closed ball of radius t ≥0 centred at the origin and P!0 denotes
the reduced Palm distribution of X. For further details about these and other sum-
mary statistics, see for example, Illian et al., 2008. Note that the J -function is
defined only for t such that F (t) < 1. Values larger than one indicate inhibition,
whereas J (t) < 1 suggests clustering, but note the caveats against drawing too strong
conclusions in Bedford and van den Berg (1997).

All statistics defined in Equation 1 can be expressed in terms of product densi-
ties when they exist. In that case, stationarity implies that the �(n) are translation
invariant. For example, the K -function can be written as

K (t)=
∫

B(0,t)

�(2)(0, x)
�2 dx =

∫
B(0,t)

(1+�2(0, x))dx

© 2011 The Author. Statistica Neerlandica © 2011 VVS.
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if product densities exist up to order n=2. In contrast, the empty space function
depends on product densities of all orders (White, 1979),

F (t)=−
∞∑

n=1

(−1)n

n!

∫
B(0,t)

· · ·
∫

B(0,t)
�(n)(x1, . . ., xn)dx1 · · ·dxn

provided all order product densities exist and the series is absolutely convergent.
Similarly,

H(t)=−
∞∑

n=1

(−1)n

n!

∫
B(0,t)

· · ·
∫

B(0,t)

�(n+1)(0, x1, . . ., xn)
�

dx1 · · ·dxn,

provided that the series is absolutely convergent. Thence (van Lieshout, 2006),

J (t)=1+
∞∑

n=1

(−�)n

n!
Jn(t)

for all t ≥0 for which F (t) < 1, where Jn(t)=∫
B(0,t) · · ·

∫
B(0,t) �n+1(0, x1, . . ., xn)dx1 · · ·

dxn. If product densities of all orders do not exist, one may truncate the series.
Indeed, using only product densities up to second-order gives

J (t)−1≈−�(K (t)− |B(0, t) | ),

where | · | denotes volume, so the K -function can be seen as a second-order approx-
imation to the J -function.

For non-stationary point processes, the definitions in Equation 1 depend on the
choice of origin and adaptations are called for. To this end, Baddeley et al. (2000)
introduced the notion of second-order intensity-reweighted stationarity. A point pro-
cess X possesses this property if the random measure

�=
∑
x∈X

�x

�(x)

is second-order stationary. Here, �x denotes the Dirac measure that places a
single point at x. If � is stationary, it is also second-order stationary but the con-
verse does not hold. Some examples of second-order intensity-reweighted stationary
point processes are Poisson point processes, the random thinning of a stationary
point process, and log Gaussian Cox processes driven by a Gaussian random field
with a translation invariant covariance function. See also the examples of Cox pro-
cesses in Møller and Waagepetersen (2007). Cluster processes, as well as more
general superposition processes, typically are not second-order intensity-reweighted
stationary.

For a second-order intensity-reweighted stationary point process, an inhomoge-
neous K -function (Baddeley et al. (2000)) can be defined by

Kinhom(t)= 1
|B | E

[∑ /=
x,y∈X

1{x ∈B}1{y ∈B(x, t)}
�(x)�(y)

]

regardless of the choice of bounded Borel set B ⊂ Rd with strictly positive volume
|B | , and using the convention a/0=0 for a≥0. Indeed, Kinhom(t)=K�(B(0, t)\{0}),
© 2011 The Author. Statistica Neerlandica © 2011 VVS.
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where K� is the reduced second moment measure of the random measure �. See also
Definition 4.5 of Møller and Waagepetersen (2004).

Gabriel and Diggle (2009) restrict themselves to point processes X that are sim-
ple and have locally finite moment measures of first and second order. Additionally
they assume that X has an intensity function � that is bounded away from zero and
a pair correlation function

g(x, y)=g( ‖x −y ‖ )= �(2)(x, y)
�(x)�(y)

that depends only on ‖x −y ‖ . In this case,

Kinhom(t)=
∫

B(0,t)
g( ‖ z ‖ )dz.

Further discussion can be found in the textbooks, (Illian et al. (2008), section 4.10.2)
and (Møller and Waagepetersen (2004) section 4.1.2) as well as in Gelfand et al.
(2010), parts IV–V.

Baddeley et al. (2000) briefly discuss how to define empty space and spherical
Palm contact distribution functions for inhomogeneous point processes. First, for
given x ∈Rd and t ≥0, they propose to determine r(x, t) by solving

t =
∫

B(x,r(x,t))
�(y)dy,

then set

Fx(t)=P(d(x, X )≤ r(x, t)),

Hx(t)=P!x(d(x, X )≤ r(x, t)),

where d(x, X ) denotes the shortest distance from x to a point of X. For Poisson
point processes, the above definitions do not depend on x and are both equal to
1 − e−t. The obvious drawback of such an approach is that r(x, t) may be hard to
compute in practice. Moreover, the definitions depend on x as well as t. Our goal
in the present article is to give an alternative definition of F , H , and J for intensity-
reweighted moment stationary point processes based on their representation in terms
of product densities that does not depend on the choice of origin and is easy to use
in practice.

4 Inhomogeneous J-function

Let X be a simple point process on Rd whose intensity function � exists and is
bounded away from zero with inf x �(x)= �̄> 0. Assume that for all n ∈ N the n-th
order factorial moment measure exists as a locally finite measure and has a Radon–
Nikodym derivative �(n) with respect to the n-fold product of Lebesgue measure
with itself for which the corresponding n-point correlation function �n is transla-
tion invariant, that is, �n(x1 +a, . . ., xn +a)=�n(x1, . . ., xn) for almost all x1, . . ., xn ∈
© 2011 The Author. Statistica Neerlandica © 2011 VVS.
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Rd and all a ∈ Rd . We shall call such a point process intensity-reweighted moment
stationary. Note that a fortiori X is second-order intensity-reweighted stationary.
Moreover, a stationary point process is also intensity-reweighted moment stationary.

Definition 1. Let X be an intensity-reweighted moment stationary point process. Set

Jn(t)=
∫

B(0,t)
· · ·

∫
B(0,t)

�n+1(0, x1, . . ., xn)dx1 · · ·dxn

and define

Jinhom(t)=1+
∞∑

n=1

(−�̄)n

n!
Jn(t)

for all t ≥0 for which the series is absolutely convergent, that is, for which lim supn→∞(
�̄n

n! |Jn(t) |
)1/n

< 1.

If X is stationary, �̄=�, so by Proposition 4.2 in van Lieshout, 2006, Jinhom ≡J
and Definition 1 is in accordance with the definition of the J -function in the station-
ary case. Like in that case, the series in Definition 1 may be truncated, for example
when X is only second-order intensity-reweighted stationary or not all n-point cor-
relation functions exist. For n=1, we obtain

Jinhom(t)−1≈−�̄
∫

B(0,t)
�2(0, x)dx =−�̄(Kinhom(t)− |B(0, t) | ).

Again, broadly speaking, Jinhom(t) > 1 indicates inhibition at range t, Jinhom(t) < 1
suggests clustering.

In the remainder of this section, we rewrite Jinhom in terms of generating func-
tionals and conditional intensities. Recall that for any function v : Rd → [0, 1] that is
measurable and identically 1 except on some bounded subset of Rd , the generating
functional at v is defined as

G(v)=E

[∏
x∈X

v(x)

]
,

where by convention an empty product is taken to be 1. The distribution of X is
determined uniquely by its generating functional (Daley and Vere-Jones, 2008, Vol-
ume II, 9.4.V). The factorial moment measures, provided they exist as locally finite
measures, can be derived from the generating functional using its Taylor expansion
(Daley and Vere-Jones, 2008, Volume II, 9.5.VI). Conversely, if product densities
of all orders exist, let u be a measurable function with values in [0, 1] that has bounded
support. Then

G(1−u)=1+
∞∑

n=1

(−1)n

n!

∫
· · ·

∫
u(x1) · · ·u(xn)�(n)(x1, . . ., xn)dx1 · · ·dxn,

provided the series converges (Stoyan et al. 1987, p. 109).
© 2011 The Author. Statistica Neerlandica © 2011 VVS.
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Theorem 1. Write, for t ≥0 and a ∈Rd ,

ua
t (x)= �̄1{x ∈B(a, t)}

�(x)
, x ∈Rd ,

and assume that lim supn→∞
(

�̄n

n!

∫
B(0,t) · · ·

∫
B(0,t)

�(n)(x1, ..., xn)
�(x1)···�(xn) dx1 · · ·dxn

)1/n
< 1. Under

the assumptions of Definition 1, for almost all a ∈Rd ,

Jinhom(t)= G !a(1−ua
t )

G(1−ua
t )

(2)

for all t ≥ 0 for which the denominator is non-zero, where G !a is the generating func-
tional of the reduced Palm distribution P!a at a, G that of P itself.

Note that the assumption that the intensity function is bounded away from zero
implies that the ua

t take values in [0, 1]. Hence the generating functionals in Equa-
tion 2 are well-defined. Moreover, G !a(1 − ua

t ) and G(1 − ua
t ) do not depend on the

choice of a (cf. the proof below).
For a stationary point process, ua

t (x)=1{x ∈B(a, t)}, hence

G(1−ua
t )=P(X ∩B(a, t)=∅)=1−F (t).

A similar interpretation holds for the numerator of Equation 2 in terms of the spher-
ical Palm contact distribution function:

G !a(1−ua
t )=P!a(X ∩B(a, t)=∅)=1−H(t).

Consequently, one retrieves the classic definition of the J -function given in section 3.
At this point it should be emphasised that the numerator and denominator in

the right hand side of Equation 2 generalise the spherical Palm contact distribution
function and empty space function to intensity-reweighted moment stationary point
processes and may be denoted- Hinhom and- Finhom respectively.

Proof. We begin by showing that

E!x

[∑ /=
x1,...,xn∈X

n∏
i =1

1{xi ∈B(x, t)}
�(xi)

]

=
∫

B(0,t)
· · ·

∫
B(0,t)

�(n+1)(0, x1, . . .xn)
�(0)�(x1) · · ·�(xn)

dx1· · ·dxn

for almost all x ∈Rd . To see this, consider the functions

fA(x, X )= 1{x ∈A}
�(x)

∑ /=
x1,...,xn∈X

n∏
i =1

1{xi ∈B(x, t)}
�(xi)

© 2011 The Author. Statistica Neerlandica © 2011 VVS.
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defined for all bounded Borel sets A⊂Rd and apply (13.1.5) in Volume II, of Daley
and Vere-Jones (2008) and Fubini’s theorem to obtain∫

A
E!x

[∑ /=
x1,...,xn∈X

n∏
i =1

1{xi ∈B(x, t)}
�(xi)

]
dx

=E

[∑ /=
x,x1,...,xn

1{x ∈A}
�(x)

n∏
i =1

1{xi ∈B(x, t)}
�(xi)

]
.

The expectation in the right hand side can be computed in terms of �(n+1) and
equals ∫

A

∫
B(x,t)

· · ·
∫

B(x,t)

�(n+1)(x, x1, . . .xn)
�(x)�(x1) · · ·�(xn)

dxdx1 · · ·dxn =

∫
A

∫
B(0,t)

· · ·
∫

B(0,t)

�(n+1)(0, x1, . . .xn)
�(0)�(x1) · · ·�(xn)

dxdx1 · · ·dxn

by the translation invariance of the n-point correlation functions. Hence

E!x

[∑ /=
x1,...,xn∈X

n∏
i =1

1{xi ∈B(x, t)}
�(xi)

]

is constant for almost all x ∈Rd and the claim is proved.
Next, as the cardinality of X ∩B(a, t) is almost surely finite,

∏
x∈X

(
1− �̄1{x ∈B(a, t)}

�(x)

)
=1+

∞∑
n=1

(−�̄)n

n!

∑ /=
x1,...,xn∈X

n∏
i =1

1{xi ∈B(a, t)}
�(xi)

,

which can be verified by working out the product in the left-hand side, and the
expressions are well-defined under the convention that an empty product takes the
value one. Consequently, for almost all a,

G !a(1−ua
t )=1+

∞∑
n=1

(−�̄)n

n!

∫
B(0,t)

· · ·
∫

B(0,t)

�(n+1)(0, x1, . . ., xn)
�(0)�(x1) · · ·�(xn)

dx1 · · ·dxn (3)

provided the power series in the right hand side is absolutely convergent.
By the discussion preceding the statement of the theorem and the fact that X is

assumed to be intensity-reweighted moment stationary,

G(1−ua
t )=1+

∞∑
n=1

(−�̄)n

n!

∫
B(0,t)

· · ·
∫

B(0,t)

�(n)(x1, . . ., xn)
�(x1) · · ·�(xn)

dx1 · · ·dxn (4)

regardless of the choice of a, since the power series in the right hand side is assumed
to be absolutely convergent.

Upon recalling the definition of the n-point correlation functions and splitting
into terms that do or do not contain the origin, one obtains that the right hand
© 2011 The Author. Statistica Neerlandica © 2011 VVS.
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side of Equation 3 is equal to

1+
∞∑

n=1

(−�̄)n

n!

∑
D⊆{1, ..., n}

Jn(D)(t)
n−n(D)∑

k =1

∑
D1, ..., Dk /=∅ disjoint

∪Dj ={1, ..., n}\D

In(D1) · · · In(Dk )

(with
∑0

k =1 =1) which in turn can be written as

[
1+

∞∑
n=1

(−�̄)n

n!
Jn(t)

]
×

⎡
⎢⎢⎢⎣1+

∞∑
m=1

(−�̄)m

m!

m∑
k =1

∑
D1, ..., Dk /=∅ disjoint

∪Dj ={1, ..., m}

In(D1) · · · In(Dk )

⎤
⎥⎥⎥⎦(5)

where

In =
∫

B(0,t)
· · ·

∫
B(0,t)

�n(x1, . . ., xn)dx1 · · ·dxn

and n(D) denotes the cardinality of the set D. The sum over k in the rightmost term
of Equation 5 can be written as∫

B(0,t)
· · ·

∫
B(0,t)

�(m)(x1, . . ., xm)
�(x1) · · ·�(xm)

dx1 · · ·dxm,

hence the second term in Equation 5 is equal to the right hand side of Equation 4.
Finally, since both sums in Equation 5 are absolutely convergent, so is Equation 3,
an observation that completes the proof.

Next, we focus our attention on Papangelou conditional intensities �(x; X ), x∈Rd .
Assuming they exist, they are defined in integral terms by

E

[∑
x∈X

f (x, X \{x})

]
=

∫
E!x [ f (x, X )]�(x)dx =

∫
E [ f (x, X )�(x; X )]dx

for any non-negative measurable function f (Papangelou, 1974), see also Georgii
(1976) and Nguyen and Zessin (1979).

Theorem 2. Assume that X admits a conditional intensity and define the random
variable Wa,t(X )=∏

x∈X (1 − ua
t (x)). Then, under the assumptions of Theorem 1,

E [Wa,t(X )]=0 implies E [�(a; X )Wa,t(X )/�(a)]=0, and otherwise for almost all a∈Rd

Jinhom(t)=E

[
�(a; X )
�(a)

Wa,t(X )
]

/EWa,t(X ),

the Wa,t-weighted expectation of �(a; X )/�(a).

As Wa,t(X )=1{X ∩B(a, t)=∅} when X is stationary, Theorem 2 generalises The-
orem 1 in van Lieshout and Baddeley (1996). Note that the expectations in the
numerator and denominator of the expression for Jinhom(t) above do not depend on
the choice of a∈Rd , cf. Theorem 1 and the proof below. Consequently, Jinhom(t)≤1
© 2011 The Author. Statistica Neerlandica © 2011 VVS.
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if and only if cov
(

�(a;X )
�(a) , Wa(X)

)
≤ 0 with a similar statement for the opposite in-

equality sign, cf. van Lieshout and Baddeley (1996), Corollary 1.

Proof. Consider the functions

fA(x, X )= 1{x ∈A}
�(x)

∏
y∈X

(
1− �̄1{y ∈B(x, t)}

�(y)

)

defined for all bounded Borel sets A ⊂ Rd . Arguing as in the proof of Theorem 1
and using the definition of conditional intensities, one obtains

∫
A

E!x

⎡
⎣∏

y∈X

(
1− �̄1{y ∈B(x, t)}

�(y)

)⎤
⎦dx

=
∫

A
E

⎡
⎣�(x; X )

�(x)

∏
y∈X

(
1− �̄1{y ∈B(x, t)}

�(y)

)⎤
⎦dx.

Hence,

E!x

⎡
⎣∏

y∈X

(
1− �̄1{y ∈B(x, t)}

�(y)

)⎤
⎦=E

⎡
⎣�(x; X )

�(x)

∏
y∈X

(
1− �̄1{y ∈B(x, t)}

�(y)

)⎤
⎦

for almost all x ∈ Rd . Using the representation of the inhomogeneous J -function
given in Theorem 1 completes the proof.

5 Theoretical examples

5.1 Poisson process

Let X be a Poisson point process with intensity function � :Rd →R+ that is bounded
away from zero. Since �(n)(x1, . . ., xn)=∏

i �(xi), see e.g. Stoyan et al. (1987), the
n-point correlation functions vanish for n > 1, so Jinhom(t)≡1 for all t ≥0.

The generating functional of X is G(1 − u)= exp[−∫
u(x)�(x)dx], (Daley and

Vere-Jones, 2008, Volume II, p. 60). In particular, for the function u =u0
t defined

in Theorem 1,

1−Finhom(t)=G(1−u0
t )= exp[−�̄ |B(0, t) | ].

Since for a Poisson point process P!0 =P, see (Daley and Vere-Jones, 2008, Volume
II, p. 281],

Hinhom(t)=1−G !0(1−u0
t )=Finhom(t).
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5.2 Location dependent thinning

Let X be a simple, stationary point process on Rd for which product densities �(n)

of all orders exist. Let p : Rd → (0, 1) be a measurable function that is bounded away
from zero and consider the thinning of X with retention probability p(x) as in
Baddeley et al. (2000) or, Volume II, Daley and Vere-Jones (2008) section 11.3.
Since the process is simple, the product densities �(n)

th of the thinned point process can
be expressed in terms of those of X by �(n)

th (x1, . . ., xn)=�(n)(x1, . . ., xn)
∏n

i =1 p(xi).
In particular, the intensity function of the thinned point process is �th(x)=�p(x),
where �> 0 is the intensity of X. Consequently,

�(n)
th (x1, . . ., xn)

�th(x1) · · ·�th(xn)
= �(n)(x1, . . ., xn)

�n .

Therefore, the n-point correlation functions of the thinned point process coincide
with those of the underlying stationary point process X , �th

n (x1, . . ., xn)=�n(x1, . . .,
xn), and inherit the property of translation invariance. Hence J th

n is equal to the
Jn-function of the underlying point process X. As the intensity function of the thinned
point process is bounded from below by �p̄ where p̄ is the infimum of the retention
probabilities,

J th
inhom(t)=1+

∞∑
n=1

(−�p̄)n

n!
Jn(t)

for all t ≥ 0 for which the series converges. Note that the power series coefficients
are identical to those in the power series expansion of the J -function of X.

The generating functional of the thinned point process is Gth(v)=G(vp+1 − p),
where G is the generating functional of X , cf. Daley and Vere-Jones (2008),
Volume II, (11.3.2). Hence

1−F th
inhom(t)=Gth

(
1− p̄

p(·)1{·∈B(0, t)}
)

=G(1− p̄1{·∈B(0, t)})

=E [(1− p̄)n(X∩B(0,t))],

the generating function of the number of points of X that fall in B(0, t) evaluated at
1− p̄. As the reduced Palm distribution of the thinned point process coincides with
a random location dependent thinning of the reduced Palm distribution of X with
retention probabilities given by the function p,

1−H th
inhom(t)=G !0

th(1−u0
t )=E!0[(1− p̄)n(X∩B(0,t))],

so that under the assumptions of Theorem 1

J th
inhom(t)= E!0[(1− p̄)n(X∩B(0,t))]

E [(1− p̄)n(X∩B(0,t))]
.

Note that the assumption of stationarity of the underlying point process X may
be weakened to intensity-reweighted moment stationarity.
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5.3 Scaling

Let X be a simple point process on Rd for which product densities �(n) of all orders
exist. Let c > 0 be a scalar constant and map the point pattern X to cX. Then all
order product densities �(n)

cX of cX exist and are given by �(n)
cX (x1, . . ., xn)= c−dn�(n)(x1 /

c, . . ., xn / c). In particular for n=1, �cX (x)= c−d�(x/ c). Therefore the n-point corre-
lation functions �cX

n (x1, . . ., xn)=�n(x1 / c, . . ., xn / c) of cX are invariant under trans-
lations if and only if the n-point correlation functions �n of X are, in which case the
Jn-functions JcX

n of cX are scaled versions JcX
n (t)= cdnJn(t/c) of the corresponding

functions of X. Furthermore, inf x∈Rd �cX (x)= �̄c−d , so the inhomogeneous J -func-
tion of cX is

JcX
inhom(t)=1+

∞∑
n=1

(−�̄c−d )n

n!
cdnJn(t/c)=1+

∞∑
n=1

(−�̄)n

n!
Jn(t/c)=Jinhom(t/c),

the inhomogeneous J -function of X evaluated at t/c provided the series converges.
Note that in contrast to the thinning case, the power series coefficients are not iden-
tical to those of the underlying point process X.

The generating functional of the scaled process is given by GcX (v(·))=G(v(c·)),
where G is the generating functional of X , whence

F cX
inhom(t)=Finhom(t/c).

Similarly, noting that dP!x
cX (�)=dP!x / c(�/c),

HcX
inhom(t)=Hinhom(t/c).

5.4 Log Gaussian Cox process

Write Q for the distribution of a random measure defined in terms of its Radon–
Nikodym derivative � with respect to Lebesgue measure. We assume that all
moment measures of the random measure exist and are locally finite. Let X be the
Cox process directed by the random intensity process �, that is, given a realisa-
tion �=�, X is a Poisson point process with intensity function �. It follows from
Daley and Vere-Jones (2003), Volume I, section 6.2 that the factorial moment
measures of X exist and are equal to the moment measures of the driving random
measure. Hence X has product densities �(n)(x1, . . ., xn)=E [

∏n
i =1 �(xi)]. Moreover,

the reduced Palm distribution of X at x is the distribution of a Cox process
with driving random measure distributed as Qx, the Palm distribution of the driving
measure of X at x (Stoyan et al., 1987 p. 141).

The class of log-Gaussian Cox processes (Møller, Syversveen and Waage-
Petersen, 1998) is especially convenient. For models in this class,

�(x)= exp[Z(x)],

where Z is a Gaussian field. We write � for the mean function and assume the
covariance function is of the form �2r for fixed �2 > 0 and correlation function r.
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Conditions have to be imposed on these functions in order to make the resulting
Cox process well-defined. In particular, the intensity function must be integrable al-
most surely, and ��(B)=∫

B �(x)dx a finite random variable for all bounded Borel
sets B ⊂Rd . Moreover, the distribution of the random measure �� must be uniquely
determined by that of Z. Sufficient conditions are given in Adler (1981),
Theorem 3.4.1 for zero mean Gaussian processes. Therefore, we additionally assume
that the mean function � is continuous and bounded. Now, if r is translation invari-
ant, X is intensity-reweighted moment stationary and the intensity function �(x)=
exp[�(x)+�2/2] is bounded away from zero with infimum exp[�2/2+ inf x∈Rd �(x)].
Further discussion and examples can be found in Møller et al. (1998), see also
Møller and Waagepetersen (2004).

In order to derive an explicit formula for Jinhom, we turn to the generating func-
tional. Recall that a Cox process has a generating functional (Daley and Vere-
Jones, 2003, Volume I, Proposition 6.2.II) defined by G(v)=EQ exp[−∫

(1 − v(x))
�(x)dx]. Therefore, for the log-Gaussian Cox process described above,

1−Finhom(t)=G(1−u0
t )=EZ

[
exp

[
−�̄

∫
B(0,t)

eZ(x)−�(x) dx
]]

where �̄ denotes inf x∈Rd e�(x).
The Palm distributions Qx of a log Gaussian random measure are �(x)= eZ(x)-

weighted (Møller et al., 1998). Therefore,

1−Hinhom(t)=G !a(1−ua
t )=EZ

[
eZ(a)−�(a)

e�2/2
exp

[
−�̄

∫
B(a,t)

eZ(y)−�(y) dy
]]

.

Since Y (x)=Z(x) − �(x), x ∈ Rd , is a stationary Gaussian process, the above
generating functional does not depend on the choice of a. Therefore, under the
assumptions of Theorem 1,

Jinhom(t)=
EY

[
eY (0) exp

[
−�̄

∫
B(0,t) eY (x) dx

]]
EY [eY (0)]EY

[
exp

[
−�̄

∫
B(0,t) eY (x) dx

]] .

Note that Jinhom(t) < 1 if and only if the random variables eY (0) and e−�̄
∫

B(0, t) eY
are

negatively correlated. The geostatistical models used in practice, for example the one
we shall consider in section 7, have a positive, continuously decreasing correlation
function. Therefore, by Pitt’s theorem (Pitt, 1982), the Gaussian fields defined by
such correlation functions are associated. Under the further conditions of Theorem
3.4.1. in Adler (1981), the sample functions Y (·) are almost surely continuous and
hence the integral of eY over B(0, t) is uniquely defined and the limit of Riemann
sums over ever finer partitions of B(0, t). Since Y is associated, cov(eY (0), e−ci�i eY (xi )

)≤0
for all finite sums with positive scalar multipliers ci > 0. Upon taking the limit, it
follows that Jinhom(t)≤1.
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6 Estimation

The goal of this section is to develop an estimator for the inhomogeneous J -function
of Definition 1. For this purpose, we shall use the representation in terms of generat-
ing functionals of Theorem 1 and apply the minus sampling principle
outlined in Stoyan et al. (1987), p. 127.

Specifically, let Let W ⊂ Rd be a compact set with non-empty interior and sup-
pose the point process X is observed in W. For clarity of exposition, we assume
that the intensity function � is known and bounded away from zero on W with
�̄= inf x∈W �(x). If � is unknown, it can be estimated (for instance using kernel
estimation (Berman and Diggle, 1989)) and plugged into the estimators outlined
below.

Let L ⊆W be a finite point grid. Set

1− ̂Finhom(t)=
∑

lk∈L∩W�t

∏
x∈X∩B(lk ,t)

[
1− �̄

�(x)

]
#L ∩W�t

, (6)

where W�t is the eroded set {x∈W :d(x, ∂W )≥ t}={x∈W :B(x, t)⊆W}. We shall
restrict attention to t small enough for W�t to contain points of L. Note that

̂1−Finhom(t) is an estimator as for all grid points lk ∈ W�t the ball B(lk, t) is fully
contained in W so that no points of X \W are needed for the computation of the
product in the numerator of Equation 6. Similarly, set

1− ̂Hinhom(t)=
∑

xk∈X∩W�t

∏
x∈X\{xk}∩B(xk ,t)

[
1− �̄

�(x)

]
#X ∩W�t

. (7)

Compared to Equation 6, the grid points lk are replaced by the points xk of X ∩
W�t. Again, Equation 7 is a function of X ∩W only.

With slight abuse of notation we write, for t ≥ 0 and a ∈ W�t, ua
t (x)= �̄1{x ∈

B(a, t)}/�(x) for x ∈ W and zero otherwise. Each ua
t is measurable, takes values in

[0, 1] and has bounded support W.

Proposition 1. Under the assumptions of Theorem 1, the estimator defined by that
of Equation 6 is unbiased, that of Equation 7 is ratio-unbiased.

Proof. Note that

G(1−ulk
t )=1+

∞∑
n=1

(−�̄)n

n!

∫
B(lk ,t)

· · ·
∫

B(lk ,t)

�(n)(x1, . . ., xn)∏n
i =1 �(xi)

dx1 · · ·dxn,

which, becasue of the translation invariance of the integrands, reduces to

1+
∞∑

n=1

(−�̄)n

n!

∫
B(0,t)

· · ·
∫

B(0,t)

�(n)(x1, . . ., xn)∏n
i =1 �(xi)

dx1 · · ·dxn
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for all lk ∈L∩W�t. As an aside, full translation invariance of the n-point correlation
functions is not needed. Unbiasedness follows.

Next, turn to the numerator of Equation 7. By the definition of Palm distribu-
tions and the reduced Campbell–Mecke theorem (Stoyan et al., 1987, p. 107), its
expectation can be expressed as∫ ∫

W�t

∏
y∈�∩B(x,t)

(
1− �̄

�(y)

)
dP!x(�)�(x)dx.

By Fubini and Equation 3, the Palm expectation in the integrand is a constant
G !0(1−u0

t ) for almost all x ∈W�t, hence the expectation of the numerator of Equa-
tion 7 equals G !0(1−u0

t )
∫

W�t
�(x)dx. As the expectation of the denominator is equal

to
∫

W�t
�(x)dx, the ratio is ratio-unbiased as claimed.

7 Examples

In order to see how Jinhom(t) works in practice, we simulated realisations of three
of the models presented in section 5 in the planar unit square. Typical patterns are
displayed in the leftmost column of Figure 1. In all three images a smooth intensity
gradient can be observed: more points are located near the bottom of the square
than near the top. However, the interaction structure seems different. For example,
the middle picture contains groups of points that are close together, with large gaps
in between the clusters. In the lower picture on the other hand, points seem to avoid
being very close together and are more evenly spaced out. In the top picture, both
very small and very large interpoint distances occur. In order to quantify the above
qualitative remarks, we applied the ideas presented in this article and compared the
results to those obtained by a second order analysis. To simulate the patterns and
calculate the estimators, the R packages spatstat1 and Random Fields2 were used.

Poisson point process

The first example is a heterogeneous Poisson point process with intensity function
�(x, y)=100e−y. Note that the mean number of points is 100(1 − e−1) ≈ 60 per unit
area. A realisation is shown in the top left frame in Figure 1. The top middle frame
shows (6) (solid line) and (7) (dashed line). Both graphs are close but neither is above
the other over the full range of t, in accordance with the fact that for any Poisson point
process, Jinhom ≡ 1. For comparison, the plug-in minus sampling estimator of Kinhom

is shown as the solid line in the top right frame. Its graph is close to but consistently
smaller than that of the theoretical value 	t2 (dashed line in the top right frame).

Log Gaussian Cox process

The second example is a log Gaussian Cox process. The defining Gaussian random
field has exponentially decaying correlation function, unit variance, and mean func-
© 2011 The Author. Statistica Neerlandica © 2011 VVS.
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Fig. 1. Each row contains realisations of a point process in the leftmost frame, the graphs of (6)
(solid line) and (7) (dashed line) in the middle frame, and the graph of ̂Kinhom(t) (solid line)
compared to 	t2 (dashed line) in the rightmost frame. The models are a Poisson point pro-
cess (top row), a log Gaussian Cox process (middle row) and a thinned hard core process
(bottom row).

tion � satisfying e�(x,y) =100e−y−1/2. Note that the intensity function of the Cox pro-
cess thus defined coincides with that of the Poisson point process discussed above.
A realisation is shown in the middle row’s leftmost frame in Figure 1. The middle
frame in the same row shows (6) (solid line) and (7) (dashed line). Note that the
graph of (7) lies well below that of (6), indicative of attraction between points due
to the positive correlation of Z after accounting for the inhomogeneity. The plug-in
minus sampling estimator of Kinhom is shown as the solid line in the rightmost frame
in the middle row. In contrast to ̂Jinhom(t), ̂Kinhom indicates no departure from the
Poisson hypothesis up till about t =0.13; for larger t, its graph lies below that of the
function t �→	t2, suggesting repulsion (sic).
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Thinned hard core process

The third example is a thinned hard core (Strauss) process defined by its condi-
tional intensity 
1{d(x, X \{x}> R}. A realisation for 
=200, R =0.05 and reten-
tion probability p(x, y)= e−y is shown in the bottom left frame in Figure 1. The
middle frame in the bottom row shows (6) (solid line) and (7) (dashed line). Note
that the hard core distance is clearly reflected in the flat initial segment in the graph
of (7), which lies above the graph of (6) up to about r =0.2, indicative of the inhi-
bition between points due to that present in the underlying hard core process after
accounting for the inhomogeneity. The plug-in minus sampling estimator of Kinhom,
shown as the solid line in the bottom right frame, also remains flat for t up to
the hard core distance and takes values smaller than that of a Poisson point pro-
cess up to about t =0.2, thus confirming the picture painted by the Jinhom-function
approach.

8 Summary and extensions

In this article, we defined three new summary statistics for intensity-reweighted mo-
ment stationary point processes, calculated them explicitly for the three representa-
tive classes of intensity-reweighted moment stationary point processes presented in
Baddeley et al. (2000), derived minus sampling estimators and presented simulation
examples. The novel statistics can be described in terms of fundamental point pro-
cess characteristics including product densities, the generating functional and condi-
tional intensity. Our statistics involve product densities of all orders. If one restricts
oneself to second-order, the inhomogeneous K -function of Baddeley et al. (2000)
is retrieved.

Although this article focussed on point processes on Rd , the approach may be
extended to space time or marked point processes. First, assume that Y is a simple
point process on the product space Rd × R equipped with the supremum distance
whose intensity function �(·) exists and �̄= inf (x,t) �(x, t) > 0. Furthermore assume all
order factorial moment measures exist as locally finite measures that have Radon–
Nikodym derivatives �(n) with respect to the n-fold product measure of Lebesgue
measure ` with itself, n ∈ N, and the corresponding n-point correlation functions
are translation invariant in both components. Then define Jn as in Definition 1. An
inhomogeneous space time version of the J -function follows completely analogously
to the purely spatial context, and

JST
inhom(t)−1≈−�̄

∫ t

−t

∫
‖x ‖≤t

�2((0, 0), (x, s))dxds,

which corresponds to the K ∗
ST -approach of Gabriel and Diggle (2009). If space

and time are scaled differently, see section 5.3, JST
inhom(t, s) becomes a function of

two variables, one for spatial distances, the other for time differences, which is more
natural in many applications.
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For marked point processes on Rd , one must assume that the n-point correlation
functions are translation invariant in the spatial component only. The definition of
JB

inhom(t)-functions with respect to mark sets B of positive probability in the spirit
of van Lieshout (2006) is then straightforward.
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Notes

1. A. Baddeley and R. Turner (2005) Spatstat: an R package for analyzing spatial
point patterns. Journal of Statistical Software 12, 1–42.
2. M. Schlather (2009) Random Fields. Simulation and analysis of random fields.
http://CRAN.R-project.org/package=RandomFields.
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