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Abstract. Reo is a coordination language which can be used to model
the interactions among a set of components or services in a compositional
manner using connectors. The language concepts of Reo include syn-
chronization, mutual exclusion, data manipulation, memory and context-
dependency. Context-dependency facilitates the precise specification of
a connector’s possible actions in situations where it would otherwise ex-
hibit nondeterministic behavior. All existing formalizations of context-
dependency in Reo are based on extended semantic models that provide
constructs for modeling the presence and absence of I/O requests at the
ports of a connector.
In this paper, we show that context-dependency in Reo can be encoded
in basic semantic models, namely connector coloring with two colors
and constraint automata, by introducing additional fictitious ports for
Reo’s primitives. Both of these models were considered as not expressive
enough to handle context-dependency up to now. We demonstrate the
usefulness of our approach by incorporating context-dependency into the
constraint automata based Vereofy model checker.
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1 INTRODUCTION

1 Introduction

Over the past decades, coordination languages have emerged for the specification
and implementation of interaction protocols for communicating software compo-
nents. This class of languages includes Reo [Arb04], a platform for compositional
construction of connectors. Connectors in Reo (or circuits) constitute the glue
that holds component-based systems together. Moreover, once considered at a
higher level of abstraction, connectors become components themselves; at this
point in our presentation, we view connectors at this higher abstraction level.
More specifically, we regard them as black boxes with a number of ports on
which other components can issue write requests and take requests, collectively
called I/O-requests, for data items. In the next section, we discuss connectors in
more detail; here, we elaborate on I/O-requests.

Once issued on a port, an I/O-request remains pending until it succeeds.
In case of a successful write request, the component that issued the request
passes a data item through this port to the connector. Conversely, a successful
take request causes the connector to pass a data item to the component. What
happens to a data item after a component dispatches it to a connector depends
on the specification of this connector. For instance, the connector might route the
data item to another port, store it for some time in a buffer, or boldly send it into
oblivion. Based on how connectors route data items, we can distinguish several
behavioral properties, including context-sensitivity or context-dependency, the
topic of this report.

Informally, the behavior of context-sensitive connectors does not depend only
on their own current state, but also on the presence or absence of I/O-requests
on their ports—their context. In contrast, the behavior of context-insensitive
connectors depends only on their own current state. To illustrate the concept
of context-sensitivity, we consider the LossySync connector, which coordinates
the interaction between two components: a writer and a taker. Suppose the
writer issues as write request. If the taker is prepared to receive data—i.e., it
has issued a take request—LossySync properly relays a data item from the writer
to the taker. If the taker, however, has not issued a take request, LossySync still
accepts a data item of the writer—i.e., the write request succeeds—but loses it
without ever passing it to the taker. Since the behavior of LossySync depends on
the presence or absence of take requests, it exhibits context-dependent behavior.

Several formal models for describing the behavior of Reo connectors ex-
ist, but not all of them have constructs for context-dependency. For example,
the early models (e.g., constraint automata [BSAR06]), although attractive be-
cause of their simplicity, lack such constructs. These models implement context-
sensitivity as non-determinism. In an attempt to mend this deficiency, more
recent models incorporate constructs for context-dependency, but at the cost of
more complex formalisms (e.g., the 3-coloring model [CCA07]). As a result, the
algorithms for their simulation and verification suffer from a high computational
complexity, which makes these models less attractive in practice.

-1-



2.1 STRUCTURE

Contributions We show that some of the simple semantic models can describe the
behavior of context-dependent connectors, namely the 2-coloring model [CCA07]
and constraint automata. More specifically, we define an operator that trans-
forms a connector with 3-coloring semantics to one with 2-coloring semantics,
while preserving its context-sensitive behavior. In a similar spirit, we define an
operator that transforms a connector with 2-coloring semantics to one with con-
straint automaton semantics. To illustrate its merits, we show how our approach
enables the verification of context-dependent connectors with the Vereofy model
checker (considered impossible up to now). Other applications include context-
sensitive connector decomposition [PSAB11], and, as we speculate, a more effi-
cient implementation of Reo.

Outline In Section 2 (page 2), we give an overview of connectors in Reo. We dis-
cuss their structure and two formalisms for describing their behavior: coloring
models and constraint automata. In Section 3 (page 15), we show how to trans-
form context-dependent connectors with 3-coloring semantics to corresponding
connectors with 2-coloring semantics. We introduce a transformation operator,
prove its correctness, show its distributivity properties, and define its inverse. In
Section 4 (page 44), we show how to transform connectors with 2-coloring se-
mantics to corresponding connectors with constraint automaton semantics. The
structure of this section resembles the structure of the section preceding it: we
introduce a transformation operator, prove its correctness, and show its distribu-
tivity properties. In addition, we discuss an application of the two transforma-
tion operators combined: model checking with Vereofy. In Section 5 (page 55),
we discuss related work. Section 6 (page 57) concludes this report.

2 Connectors in Reo

In this section, we discuss the structure of Reo connectors and two formalisms
for describing their behavior: coloring models and constraint automata. A more
comprehensive overview of Reo appears in [Arb04]. Before diving into the details,
we make a remark on terminology: henceforth, we write “connector” or “circuit”
to refer to both the structure and the intended behavior of a communication
medium between software components. Note that the intended behavior of a
connector and its behavior as described by some semantic model do not always
coincide (e.g., the ordinary constraint automata of the LossySync connector).

In our presentation, we decouple the structure of a connector from its be-
havior and discuss both concepts individually: we treat connector structures in
Section 2.1 (page 2) and the behavior of connectors in Section 2.2 (page 5).
This separation allows us to associate different behavioral models with the same
connector structure in the subsequent sections.

2.1 Structure

In the introduction, we already hinted at some structural properties of connec-
tors: they have ports at which components can issue I/O-requests. Here, we
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2.1 STRUCTURE

proceed by generalizing the concept of ports to that of nodes: entities through
which data items can flow and at which at most two components or connectors
can issue I/O-requests.3 A connector then consists of a set of nodes, and its
ports or boundary nodes constitute a special subset: they accept I/O-requests
from the outside world. In addition to boundary nodes, connectors can have in-
ternal nodes. Contrary to the former, internal nodes cannot accept I/O-requests
from the outside world, but play an important role in the relaying of data items
through the connector by routing them past primitives. Primitives connect nodes
to each other and serve as the elementary communication mediums through
which data items can flow. If a data item flows from one node to another, we
say that these nodes fire. Formally, we define a primitive as a list of (indexed)
nodes, and we specify for each such node whether it accepts write requests—i.e.,
an input node—or take requests—i.e., an output node.

Definition 1 (Universe of nodes [Cos10]). Node is the set of nodes.

Definition 2 (Primitive [Cos10]). Let N ⊆ Node. A primitive e over N with
arity k is a list (nj11 , . . . , n

jk
k ) such that, for all 1 ≤ i, i′ ≤ k, N = {nl | 1 ≤ l ≤ k }

(nodes), ji ∈ { i, o } (io), and [i 6= i′ iff ni 6= ni′ ] (uniqueness).

Importantly, we do not associate primitives with any behavior; we use them
merely as a convenient construct for describing the structure of elementary medi-
ums (specifically, the direction in which data items flow through a connector).
To describe what happens when a data item flows through a primitive e, we lift
e to a primitive connector : a connector without internal nodes and consisting of
a single primitive, namely e, that connects all the (boundary) nodes.4 Shortly, to
illustrate this, we define some of the common primitives in terms of (the struc-
ture of) their corresponding primitive connectors. First, however, we give the
formal definition of connector structures.

Definition 3 (Connector structure [Cos10]). Let N ⊆ Node. A connector
structure C over N is a tuple 〈B,E〉 such that E is a set of primitives (prims),
N =

⋃
e∈E{n ∈ N ′ | e is a primitive over N ′ } (nodes), and ∅ 6= B ⊆ N (b-

nodes).

To illustrate the definition of connector structures, a graphical representation of
some of the common primitive connectors appears in Figure 1 (page 4); their
formal definitions occur below. We make the structural equality between Sync,
LossySync, and FIFO explicit by combining their definitions, but remark that

3 In [Arb04], Arbab does not impose the restriction that at most two components
or connectors can issue I/O-requests on a node: in his presentation, any number
of components or connectors may do this. For simplicity, however, we choose to
follow [CCA07,Cos10], which impose the same restriction as we do, without loss
of generality: to model the merger/replicator-semantics of Arbab’s nodes, we use
explicit Merger and Replicator primitives.

4 In [Cos10], primitives do have behavior. Here, we define the semantics of primitives
only in terms of primitive connectors for the sake of simplicity of the presentation
in Section 3 (page 15) and Section 4 (page 44).
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Sync LossySync SyncDrain FIFO

A B A B A B A B

Merger Replicator
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C A

B

C

Fig. 1. Pictorial representation of common primitives.

they behave differently (as suggested also by the differences between their pic-
torial representations). We defer this topic for now, however, and revisit it in
Section 2.2 (page 5).

Sync, LossySync,FIFO , 〈{A,B }, { (Ai, Bo) }〉
SyncDrain , 〈{A,B }, { (Ai, Bi) }〉

Merger , 〈{A,B,C }, { (Ai, Bi, Co) }〉
Replicator , 〈{A,B,C }, { (Ai, Bo, Co) }〉

The primitive connectors that we introduced above cover only very simple
communication protocols. To model and implement more sophisticated schemes
of interaction, we can construct complex connectors from simpler constituents by
means of composition. The following definition describes this concept formally
in terms of a composition operator for connector structures.

Definition 4 (Composition of connector structures). Let C1 = 〈B1, E1〉
and C2 = 〈B2, E2〉 be connector structures. Their composition, denoted C1�C2,
is a connector structure over N1 ∪N2 defined as:

C1 � C2 = 〈(B1 ∪B2) \ (B1 ∩B2), E1 ∪ E2〉

Thus, to compose two connectors, we merge their sets of nodes, compute a new
set of boundary nodes, and merge the sets of primitives that constitute them.
A pictorial representation of three composed connectors appears in Figure 2
(page 5). We depict boundary nodes by white circles and internal nodes by
black circles. Furthermore, for simplicity, we collapse consecutive instances of
Merger and Replicator into single (black) circles in the depiction of ExclRouter
and SyncFIFO, and we replace the two occurrences of ExclRouter by diamonds
in the depiction of SyncFIFO. The latter does not cause ambiguity, because both
diamonds have exactly one incoming arrow (implicitly attached to the input
node of ExclRouter) and two outgoing arrows (implicitly attached to the two
output nodes of ExclRouter).
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ExclRouter LossyFIFO

B

C

A
A B

SyncFIFO

A B

Fig. 2. Pictorial representation of ExclRouter, LossyFIFO and SyncFIFO.

2.2 Behavior

We proceed with two formalisms for describing the behavior of connectors. Before
we discuss these—i.e., coloring models and constraint automata—we sketch the
behavior of the six primitive connectors and the three composed connectors that
we presented in the previous subsection; these connectors reoccur in the sequel.

Primitive connectors Sync routes a data item from its input node to its output
node only if it has pending write and take requests on both of its nodes.

LossySync behaves almost indistinguishably from Sync, but as described in
the introduction, loses a data item if its input node has a pending write request,
while its output node has no pending take request.

SyncDrain accepts data items from its two input nodes only if they both have
a pending write request. All the data items passed to SyncDrain disappear: they
never reach another component or connector.

In contrast to the previous three connectors, FIFO has a buffer to store data
items in. This buffer causes FIFO to exhibit different states, EMPTY and FULL,
which influence its behavior. In the EMPTY state, a write request on the input
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node of FIFO causes a data item to flow into the buffer, while a take request
on its output node remains pending. Conversely, in the FULL state, a write
request on its input node remains pending, while a take request on its output
node causes a data item to flow from the buffer to the output node. We call FIFO
a state-dependent or state-sensitive connector. Note that Sync, LossySync, and
SyncDrain, in contrast, do not exhibit state-sensitivity (this also holds for Merger
and Replicator), because they lack buffers. When depicting FIFO, we represent
an empty buffer by a white box and a full buffer by a black box.

Merger routes a data item from one of its input nodes to its output node only
if its output node has a pending take request and at least one of its input nodes
has a pending write request. If both of its input nodes have a pending write
request, Merger chooses one of these nodes non-deterministically. The chosen
node then fires, while the write request on the other node remains pending.

Finally, Replicator routes a data item from its input node to both of its output
nodes only if its input node has a pending write request and both of its output
nodes have a pending take request. If Replicator has a pending take request
on only one of its output nodes, it stays idle and all the I/O-requests remain
pending.

Composed connectors The behavior of ExclRouter resembles that of Replicator,
but with one important difference: whereas Replicator copies a data item dis-
patched at its input node to both of its output nodes, ExclRouter relays a data
item to only one of its output nodes at a time. If both of its output nodes have a
pending take request, ExclRouter chooses one of them non-deterministically and
routes the data item to only that node. A more detailed discussion on ExclRouter
appears in [Cos10].

LossyFIFO consists of two primitive connectors: LossySync and FIFO. Intro-
duced in [CCA07], it has become the classical example for showing that a seman-
tic model can (or cannot) describe the behavior of context-sensitive connectors.
As its name suggests, LossyFIFO behaves as a lossy version of FIFO: in case of an
empty buffer, LossyFIFO and FIFO behave indistinguishably, but in case of a full
buffer, LossyFIFO loses any data item dispatched at its input node. In [CCA07],
Clarke et al. elaborate on LossyFIFO and use it to explain why the semantic
models that precede the 3-coloring model (introduced in that publication) can-
not describe the behavior of context-sensitive connectors.

Finally, although its composition looks complex, SyncFIFO behaves indis-
tinguishably from FIFO, except for the case in which it has an empty buffer
and pending I/O-requests on both of its nodes: whereas FIFO in this situation
routes each data item from its input node to its buffer (the take request remains
pending), SyncFIFO routes each data item from its input node past its buffer
immediately to its output node (both I/O-requests succeed, while the buffer
remains empty). Because we can illustrate the concepts that involve composed
connectors in this report with the simpler ExclRouter and LossyFIFO, we do not
discuss SyncFIFO again until Section 4.4 (page 52).
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Coloring models We start with coloring models [CCA07,Cos10] as the first
semantic model we discuss. Coloring models work by marking nodes of a con-
nector with colors that specify whether data items flow through these nodes or
not. Depending on the number of colors, different coloring models with different
levels of expressiveness arise. In this report, we assume a total of four colors
and derive two classes of coloring models from this set: 2-coloring models and
3-coloring models.

Definition 5 (Colors [CCA07]). Color = { , , . , / } is
a set of colors. 2-Color ⊂ Color is a subset of colors defined as { , }.
3-Color ⊂ Color is a subset of colors defined as { , . , / }.
The flow color indicates that data items flow through the nodes it marks,
whereas the no-flow color indicates the converse: no data items flow
through the nodes it marks. Together, these two colors constitute the class of
2-coloring models, which many consider incapable of describing the behavior of
context-sensitive connectors. The 3-coloring model, in contrast, consists of two
no-flow colors ( . and / ) instead of only one. This allows us to model not
only that data items cannot flow through a node, but also why. More precisely,
in the 3-coloring model, the direction of the arrow of the no-flow colors indicates
where the reason for the absence of flow comes from: an arrow pointing in the
same direction as the flow indicates that a node has no pending write requests,
while an arrow pointing in the opposite direction indicates that a node has no
pending take requests. In text, we associate . with the former case and
/ with the latter.

To describe a single behavior alternative of a connector in a given state, we
define colorings: maps from sets of nodes to sets of colors that assign to each
node in the set a color that states whether this node fires (or not) in the behavior
that the coloring describes. We collect all behavior alternatives of a connector
in sets of colorings called coloring tables.

Definition 6 (Coloring [CCA07]). Let N ⊆ Node. A coloring c over N is a
total map N → Color. A coloring is a 2-coloring (respectively, 3-coloring) iff its
co-domain is 2-Color (respectively, 3-Color).

Definition 7 (Coloring table [CCA07]). Let N ⊆ Node. A coloring table T
over N is a set {N → Color } of colorings over N . A coloring table is a 2-coloring
table (respectively, 3-coloring table) iff it is a set of 2-colorings (respectively, 3-
colorings).

To illustrate the previous definitions, coloring tables of some of the common
state-insensitive primitive connectors appear in Figure 3 (page 8) and Figure 4
(page 9); a detailed explanation of the meaning of these coloring tables appears
in [Cos10].

To accommodate connectors that behave differently in different states (e.g.,
connectors with buffers), we use coloring table maps (CTM): maps from sets
of indexes (representing the states of a connector) to sets of coloring tables
(representing the allowed behaviors in these states).5 Subsequently, to model

5 In [Cos10], Costa calls coloring table maps indexed sets of coloring tables.
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Fig. 3. Coloring models of Sync, LossySync, and SyncDrain.

the change of state a connector incurs when (some of) its nodes fire, we use next
functions. The next function of a connector maps an index λ in the domain Λ of
a CTM S and a coloring in the coloring table to which S maps λ to some index
in Λ (possibly the same λ).

Definition 8 (Universe of indexes). Index is the set of indexes.

Definition 9 (Coloring table map [Cos10]). Let N ⊆ Node and Λ ⊆ Index.
A coloring table map S over [N,Λ] is a total map S : Λ → {N → Color } from
indexes to coloring tables over N . A coloring table map is a 2-coloring table
map (respectively, 3-coloring table map) iff its co-domain is {N → 2-Color }
(respectively, {N → 3-Color }).

Definition 10 (Next function [Cos10]). Let S be a CTM over [N,Λ]. A
next function η over [N,Λ, S] is a map Λ × {N → Color } → Λ from [index,
coloring]-pairs to indexes such that [λ, c 7→ λ′] ∈ η iff c ∈ S(λ) (totality). It
is a 2-colored next function (respectively, 3-colored next function) iff its domain
is Λ× {N → 2-Color } (respectively, Λ× {N → 3-Color }).

To illustrate the previous definitions, in Figure 5 (page 10), we show the 2-
colorings and 3-colorings of FIFO, its set of indexes Λ for its two states EMPTY
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2-Coloring Model 3-Coloring Model
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Fig. 4. Coloring models of Merger and Replicator.

and FULL (represented by the indexes FIFO-E and FIFO-F), its CTMs S, and
its next functions η. Again, we refer to [Cos10] for a detailed explanation.

Finally, we join coloring models—i.e., next functions, which comprehensively
describe the behavior of circuits—and connector structures in η-connectors: com-
plete formal models of connectors.

Definition 11 (η-connector). Let S be a CTM over [N,Λ]. An η-connector
CCol over [N,Λ, S] is a tuple 〈C, η〉 in which C = 〈B,E〉 is a connector structure
over N and η a next function over [N,Λ, S]. An η-connector is 2-colored (re-
spectively, 3-colored) iff its constituent next function is a 2-colored next function
(respectively, 3-colored next function).

Composition When we compose two connectors that have coloring models as
their formal semantics, we can compute the coloring model of the composed
connector by composing the coloring models of its constituents. We describe this
composition process in a bottom-up fashion. First, to compose two compatible
colorings—i.e., colorings that assign the same colors to their shared nodes—we
merge the domains of these colorings and map each node n in the resulting set to
the color that one of the colorings assigns to n.6 The composition of two coloring

6 Throughout this report, we implicitly apply the flip-rule [CCA07]. This rule states
that if a coloring c marks a node n with a no-flow color whose arrow points to-
wards n, the coloring identical to c except that it marks n with the other no-flow
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2-Coloring Model 3-Coloring Model

F
IF

O

A B

c1 c1
c2 c2
c3 c3

A B

c1 c1
c2 c2
c3 c3
c4 c4

Λ = { FIFO-E, FIFO-F }

S =

{
FIFO-E 7→ { c1, c3 },
FIFO-F 7→ { c2, c3 }

}

η =


FIFO-E, c1 7→ FIFO-F,
FIFO-E, c3 7→ FIFO-E,

FIFO-F, c2 7→ FIFO-E,
FIFO-F, c3 7→ FIFO-F



Λ = { FIFO-E, FIFO-F }

S =

{
FIFO-E 7→ { c1, c4 },
FIFO-F 7→ { c2, c3 }

}

η =


FIFO-E, c1 7→ FIFO-F,
FIFO-E, c4 7→ FIFO-E,

FIFO-F, c2 7→ FIFO-E,
FIFO-F, c3 7→ FIFO-F,


Fig. 5. Coloring models of FIFO.

tables then comprises the computation of a new coloring table that contains the
pairwise compositions of the compatible colorings in the two individual coloring
tables.

Definition 12 (Composition of colorings [CCA07]). Let c1 and c2 be col-
orings over N1 and N2 such that c1(n) = c2(n) for all n ∈ N1 ∩ N2. Their
composition, denoted c1 ∪ c2, is a coloring over N1 ∪N2 defined as:

c1 ∪ c2 =

{
n 7→ κ

∣∣∣∣n ∈ N1 ∪N2 and κ =

(
c1(n) if n ∈ N1

c2(n) otherwise

) }
Definition 13 (Composition of coloring tables [CCA07]). Let T1 and T2
be coloring tables over N1 and N2. Their composition, denoted T1 · T2, is a
coloring table over N1 ∪N2 defined as:

T1 · T2 =

{
c1 ∪ c2

∣∣∣∣ c1 ∈ T1 and c2 ∈ T2
and c1(n) = c2(n) for all n ∈ N1 ∩N2

}
To illustrate the previous definitions, in Figure 6 (page 11), we depict the 2-
coloring tables and 3-coloring tables of ExclRouter, which we obtain by com-
posing the coloring tables of its constituent primitive connectors. Rather than

color—i.e., the no-flow color with a flipped arrow—also describes an admissible be-
havior. This means that even if two colorings appear incompatible, after applying the
flip-rule, two compatible colorings can arise. To keep coloring tables small, similar
to [CCA07,Cos10], we do not include colorings that one can infer with the flip-rule
in the coloring tables that we show.
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Fig. 6. Coloring models of ExclRouter.

depicting all the colorings that this composition process yields, we do not de-
pict those colorings that contain causality loops. Causality loops may occur if
a composed connector has one or more circular sub-circuits (as in the case of
ExclRouter), and they can cause, among other anomalous phenomena, a reason
for the absence of flow to appear out of nowhere. Colorings that contain causal-
ity loops, therefore, describe inadmissible behavior. In [Cos10], Costa proposes
an algorithm for the detection and removal of colorings that contain causality
loops. We tacitly apply this algorithm throughout this report.

Next, the composition of two CTMs comprises the computation of a new
CTM that maps each pair of indexes in the Cartesian product of the domains
of the two individual CTMs to the composition of the coloring tables to which
these CTMs map the indexes in the pair. We define the composition of two next
functions in terms of the Cartesian product, the composition of colorings, and
the composition of CTMs.

Definition 14 (Composition of CTMs [Cos10]). Let S1 and S2 be CTMs
over [N1, Λ1] and [N2, Λ2]. Their composition, denoted S1 � S2, is a CTM over
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[N1 ∪N2, Λ1 × Λ2] defined as:

S1 � S2 = { 〈λ1, λ2〉 7→ S1(λ1) · S1(λ2) |λ1 ∈ Λ1 and λ2 ∈ Λ2 }

Definition 15 (Composition of next functions [Cos10]). Let η1 and η2
be next functions over [N1, Λ1, S1] and [N2, Λ2, S2]. Their composition, denoted
η1 ⊗ η2, is a next function over [N1 ∪N2, Λ1 × Λ2] defined as:

η1 ⊗ η2 =

 〈λ1, λ2〉, c1 ∪ c27→

〈η1(λ1, c1), η2(λ2, c2)〉

∣∣∣∣∣∣
〈λ1, λ2〉 ∈ Λ1 × Λ2

and
c1 ∪ c2 ∈ (S1 � S2)(〈λ1, λ2〉)


To illustrate the previous definitions, in Figure 7 (page 13), we depict the color-
ing models of LossyFIFO, which we obtain by composing the coloring models of
LossySync and FIFO. In the figure, for notational convenience, we adopt the in-
dexes LosFIFO-E and LosFIFO-F as aliases for the indexes 〈LossySync, FIFO-E〉
and 〈LossySync, FIFO-F〉. This example shows that the previously defined com-
position operators fail to properly compose 2-coloring models of context-sensitive
connectors. To see this, first, we note that the 2-coloring c3 of LossyFIFO de-
scribes a behavior in which LossyFIFO loses a data item. Next, we observe that
the 2-CTM of LossyFIFO maps index LosFIFO-E to a set that contains c3: this
means that its 2-coloring model allows LossyFIFO to behave as described by c3
in the EMPTY state—i.e., it may lose data items—despite the emptiness of the
buffer. We consider this inadmissible behavior. In contrast, the 3-CTM of Lossy-
FIFO maps LosFIFO-E to a set that excludes the 3-coloring c3. Thus, whereas the
3-coloring model of LossyFIFO describes exactly the behavior that we intend it to
exhibit, its 2-coloring model fails in this respect. As noted earlier, in recent years,
the LossyFIFO connector has become the prime example for demonstrating that
(and why) some formalisms cannot describe the behavior of context-dependent
connectors.

Finally, we define the composition of η-connectors in terms of the composition
of connector structures and the composition of next functions.

Definition 16 (Composition of η-connectors [Cos10]). Let CCol1 = 〈C1, η1〉
and CCol2 = 〈C2, η2〉 be η-connectors over [N1, Λ1, S1] and [N2, Λ2, S2]. Their
composition, denoted CCol1 ×CCol2 , is an η-connector over [N1∪N2, Λ1×Λ2, S1�S2]
defined as:

CCol1 × CCol2 = 〈C1 � C2, η1 ⊗ η2〉

Constraint automata We end this section with constraint automata (CA)
[BSAR06] as the second semantic model we discuss. A CA consists of a (pos-
sibly singleton) set of states, which correspond one-to-one to the states of the
connector whose behavior it models, and a set of transitions between them; in
contrast to standard automata, CA do not have accepting states. A transition
of a CA carries a label that consists of two elements: a set of nodes and a data
constraint. The former, called a firing set, describes which nodes can fire simulta-
neously in the state the transition leaves from; the latter specifies the conditions
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2-Coloring Model 3-Coloring Model

L
o

ss
yF

IF
O A B

c1 c1
c2 c2
c3 c3
c4 c4
c5 c5

A B

c1 c1
c2 c2
c3 c3
c4 c4
c5 c5
c6 c6

Λ =

{
LosFIFO-E : 〈LossySync, FIFO-E〉,
LosFIFO-F : 〈LossySync, FIFO-F〉

}

S =

{
LosFIFO-E 7→ { c1, c3, c5 },
LosFIFO-F 7→ { c2, c3, c4, c5 }

}

η =



LosFIFO-E, c1 7→ LosFIFO-F,
LosFIFO-E, c3 7→ LosFIFO-E,
LosFIFO-E, c5 7→ LosFIFO-E,

LosFIFO-F, c2 7→ LosFIFO-E,
LosFIFO-F, c3 7→ LosFIFO-F,
LosFIFO-F, c4 7→ LosFIFO-E,
LosFIFO-F, c5 7→ LosFIFO-F



S =

{
LosFIFO-E 7→ { c1, c6 },
LosFIFO-F 7→ { c2, c3, c4, c5 }

}

η =



LosFIFO-E, c1 7→ LosFIFO-F,
LosFIFO-E, c6 7→ LosFIFO-E,

LosFIFO-F, c2 7→ LosFIFO-E,
LosFIFO-F, c3 7→ LosFIFO-F,
LosFIFO-F, c4 7→ LosFIFO-E,
LosFIFO-F, c5 7→ LosFIFO-F



Fig. 7. Coloring models of LossyFIFO.

that the content of the data items that flow through these firing nodes must
satisfy. Because we do not consider data constraints in this paper, we do not de-
fine their syntax and semantics here; instead, we often investigate a special class
of CA, called port automata (PA), all of whose transitions carry the trivially
satisfied constraint > [KC09]. Details on data constraints appear in [BSAR06].
To summarize the previous: CA serve as operational models of connector behav-
ior, whose states correspond one-to-one to the states of a connector and whose
transitions specify for each state when and what data items can flow through
which nodes.

Definition 17 (Universe of data constraints). Constraint is the set of data
constraints (including >).

Definition 18 (Constraint automaton [BSAR06]). Let N ⊆ Node and
G ⊆ Constraint. A constraint automaton α over [N,G] is a tuple 〈Q,R, q0〉 in
which Q is a set of states, R ⊆ Q×2N×G×Q is a transition relation, and q0 ∈ Q
is an initial state. A constraint automaton over [N,G] is a port automaton over
N iff G = {>}.
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Sync

{A,B}∅

LossySync

{A,B}

{A}

∅

SyncDrain

{A,B}∅

FIFO-E FIFO-F
{A}

∅

{B}

∅

Merger

{A,B}

{A,C}
∅

Repl

{A,B,C}∅

Fig. 8. Port automata of common primitives.

To illustrate the previous definitions, PA of some of the common primitive con-
nectors appear in Figure 8 (page 14). Note that rather than naming states sym-
bolically (e.g, q, p, q0, q1, . . .), we name states by the same indexes that we en-
countered when defining coloring table maps of coloring models.

Note 1. In the sequel, if α = 〈Q,R, q0〉 defines a CA then Q ⊆ Index.

Similar to next functions, CA comprehensively model the behavior of cir-
cuits. Analogous to η-connectors, therefore, we introduce α-connectors: pairs
that consist of a connector structure and a CA.

Definition 19 (α-connector). Let N ⊆ Node and G ⊆ Constraint. An α-
connector CCA over [N,G] is a pair 〈C,α〉 in which C = 〈N,B,E〉 is a connector
structure and α = 〈Q,R, q0〉 is a CA over [N,G].

Composition When we compose two connectors that have CA as behavioral
model, we can compute the CA of the composed connector by composing the CA
of its constituents: the binary operator for CA composition takes the Cartesian
product of the set of states of its arguments, designates the pair of their initial
states as the initial state of the composed CA, and computes a new transition
relation.

Definition 20 (Composition of CA [BSAR06]). Let α1 = 〈Q1, R1, q
1
0〉 and

α2 = 〈Q2, R2, q
2
0〉 be CA over [N1, G1] and [N2, G2]. Their composition, denoted

α1 ./ α2, is a CA over [N1 ∪N2, G1 ∧G2] defined as:7

α1 ./ α2 = 〈Q1 ×Q2, R, 〈q10 , q20〉〉
7 For notational convenience, we write G1 ∧G2 for { g1 ∧ g2 | g1 ∈ G1 and g2 ∈ G2 }.
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3 FROM 3-COLORED η-CONNECTORS TO 2-COLORED η-CONNECTORS

ExclRouter

{A,B}

{A,C}
∅

LosFIFO-E LosFIFO-F
{A}

∅

{A}
{B}

{A,B}

∅

{A}

Fig. 9. Port automata of ExclRouter and LossyFIFO.

in which:

R =

〈〈q1, q2〉, F1 ∪ F2, g1 ∧ g2, 〈q′1, q′2〉〉

∣∣∣∣∣∣
〈q1, F1, g1, q

′
1〉 ∈ R1

and 〈q2, F2, g2, q
′
2〉 ∈ R2

and F1 ∩N2 = F2 ∩N1


The previous definition differs slightly from the one in [BSAR06]: we do not
implicitly assume that every state have a silent τ -transition (as in [BSAR06]),
but explicitly include these transitions in our models (represented by transitions
labeled with ∅). Though essentially a matter of representation, this simplifies
later proofs. To illustrate the previous definition, in Figure 9 (page 15), we
depict the PA of ExclRouter and LossyFIFO (for clarity, we hide internal nodes).
Interestingly, when we disregard the names of the states, the transitions of the
PA of ExclRouter equal the transitions of the PA of Merger. Furthermore, as its
2-coloring model in Figure 7 (page 13), the PA of LossyFIFO does not model
the behavior that we intend LossyFIFO to exhibit: this automaton includes a
transition, namely 〈LosFIFO-E, {A},>, LosFIFO-E〉, which describes the same
inadmissible behavior as coloring c3 in the 2-coloring model of LossyFIFO (the
loss of data items in the EMPTY state).

Similar to Definition 16 (page 12) of composition for η-connectors, we define
the composition operator for α-connectors in terms of the composition operators
for connector structures and CA.

Definition 21 (Composition of α-connectors). Let CCA1 = 〈C1, α1〉 and
CCA2 = 〈C2, α2〉 be α-connectors over [N1, G1] and [N2, G2]. Their composition,
denoted CCA1 × CCA2 , is an α-connector over [N1 ∪N2, G1 ∧G2] defined as:

CCA1 × CCA2 = 〈C1 � C2, α1 ./ α2〉

As a final remark, we emphasize that—more than our presentation of col-
oring models—our presentation of CA remains superficial: we covered only the
essentials relevant to the rest of this report. A more comprehensive overview
appears in [BSAR06].

3 From 3-colored η-connectors to 2-colored η-connectors

Many consider 2-coloring models incapable of describing the behavior of context-
dependent connectors. In this section, however, we show that 2-coloring models
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can describe these: at the expense of making the connector models more com-
plex, we encode context-dependency using only two colors and without altering
the existing composition operators. Essentially, we trade a more complex formal-
ism—i.e., 3-coloring models—with simple connector models for a simpler formal-
ism—i.e., 2-coloring models—with more complex ones. We achieve this with the
M-transformation, the topic of this section. The M-transformation comprises a
collection of unary operators, all denoted by M for notational convenience, that
facilitate the transformation of a 3-colored η-connector to a corresponding 2-
colored η-connector. This latter η-connector differs from the ordinary 2-colored
η-connector that models the same communication medium: every 2-colored η-
connector that results from composing M-transformed 3-colored η-connectors
describes only admissible behavior. In contrast, an η-connector that results from
composing ordinary 2-colored η-connectors can, as demonstrated in the previous
section, describe inadmissible behavior (e.g., the composition of LossySync and
FIFO).

This section looks as follows. First, we give the definitions of M in Section 3.1
(page 16). Second, we prove its correctness in Section 3.2 (page 27). Third, we
show that M distributes over composition in Section 3.3 (page 30). Finally, we
discuss the inversion of M in Section 3.4 (page 36).

Note 2. In the sequel, we abbreviate “M-transformed” by “M-ed” (e.g., pro-
nounced /emd/).

3.1 Definition of M

The idea behind the M-transformation arose from a remark made by Krause in
his PhD thesis [Kra11]: he suggests that we can describe context-sensitive con-
nectors with port automata by adding fictitious negated nodes to every connector
model. The transformation operator that we define in this subsection follows this
approach: it transforms a 3-colored η-connector CCol to a corresponding 2-colored
η-connector by cloning all the nodes of CCol and by assigning appropriate colors
(from 2-Color) to these clones. Recall from Definition 11 (page 9) that an η-
connector consists of a connector structure and a next function. For the sake of
separating concerns, we define M first for the structural aspects of η-connectors
and second for their behavioral aspects.

Structure We start with the definition of M for sets of nodes. Informally, the
application of M to a set of nodes yields a set that contains twice as many nodes:
the original nodes, henceforth called base nodes, and their clones, henceforth
called context nodes. Often, we call a base node and its corresponding context
node each other’s duals;8 if n denotes a base node, we denote its dual by n.

8 We disfavor the terminology of “negated nodes”, because context nodes do not be-
have as the negation of base nodes: if data items flow through a base node, data
items never flow through its dual, but if no data items flow through a base node,
data items not always flow through its dual.
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Definition 22 (M for sets of nodes). Let N ⊆ Node. Its M-transformation,
denoted M(N), is defined as:

M(N) =
⋃
n∈N

{n, n }

such that n1 ∈ Node (well-f) and [n1 = n2 iff n1 = n2] (1-to-1), for all
n1, n2 ∈ N .

The second side condition, 1-to-1, states that each context nodes in an M-ed
set of nodes corresponds one-to-one to a base node in the same set—i.e., no two
base nodes share the same context node, and no two context nodes share the
same base node.

Note 3. In the sequel, we adopt the previous condition as a universal property
of base nodes and context nodes. Furthermore, in the sequel, we refer to the
1-to-1 condition in Definition 22 (page 17) (e.g., in proofs) even if the context
of reference concerns single nodes rather than sets of nodes.

The following proposition states that the application of M to a set of nodes
yields a well-formed set of nodes.

Proposition 1 (M-ed sets of nodes are sets of nodes). Let N ⊆ Node.
Then, M(N) is a set of nodes.

Proof. By the premise, N ⊆ Node. Also, by well-f in Definition 22 (page 17),
n ∈ Node, for all n ∈ N . Therefore, M(N) is a set of nodes. ut

We proceed with the definition of M for primitives. Similar to M for sets of
nodes, the application of M to a primitive yields a primitive that consists of twice
as many nodes: the original base nodes and their duals. Additionally, M reverses
the direction of the flow through these duals—i.e., a base input node yields a
context output node, whereas a base output node yields a context input node.
This reversal facilitates the backwards propagation of the reason for the absence
of flow through context nodes (similar to the no-flow color / ); shortly, we
elaborate on this.

Definition 23 (M for primitives). Let e = (nj11 , . . . , n
jk
k ) be a primitive over

N . Its M-transformation, denoted M(e), is defined as:

M(e) = (nj11 , . . . , n
jk
k , n1

¬j1
k+1, . . . , nk

¬jk
2k )

in which ¬i = o and ¬o = i.

The following proposition states that the application of M to a primitive yields
a well-formed primitive.

Proposition 2 (M-ed primitives are primitives). Let e = (nj11 , . . . , n
jk
k ) be

a primitive over N . Then, M(e) is a primitive over M(N).
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Proof. By Definition 2 (page 3) of primitive, we must show M(N) = {nl | 1 ≤
l ≤ 2k } (nodes), ji ∈ { i, o } (io), and [i 6= i′ iff ni 6= ni′ ] (uniqueness),
for all 1 ≤ i, i′ ≤ 2k. We start with nodes. Because e is a primitive over N
by the premise, N = {nl | 1 ≤ l ≤ k }. Then, by Definition 22 (page 17) of M
for sets of nodes, M(N) = {nl | 1 ≤ l ≤ 2k }. Hence, M(e) satisfies nodes.
We proceed with io. Because e is a primitive by the premise, ji ∈ { i, o } for
all 1 ≤ i, i′ ≤ k. Then, by Definition 23 (page 17) of ¬, ji ∈ { i, o } for all
1 ≤ i, i′ ≤ 2k. Hence, M(e) satisfies io. We end with uniqueness. Because e is
a primitive by the premise, [i 6= i′ iff ni 6= ni′ ] for all 1 ≤ i, i′ ≤ k. Then, by 1-
to-1 in Definition 22 (page 17), [i 6= i′ iff ni 6= ni′ ] for all 1 ≤ i, i′ ≤ 2k. Hence,
M(e) satisfies uniqueness. Because M(e) satisfies nodes, io, and uniqueness,
it is a primitive over M(N). ut

We continue with the definition of M for sets of primitives. Informally, the
application of M to a set of primitives yields a set of M-ed primitives.

Definition 24 (M for sets of primitives). Let E be a set of primitives. Its
M-transformation, denoted M(E), is defined as:

M(E) = {M(e) | e ∈ E }

The following proposition states that the application of M to a set of primitives
yields a well-formed set of primitives.

Proposition 3 (M-ed sets of primitives are sets of primitives). Let E be
a set of primitives. Then, M(E) is a set of primitives.

Proof. Because E is a set of primitives by the premise and because M-ed primi-
tives are primitives by Proposition 2 (page 17), M(E) is a set of primitives. ut

We finish this part with the definition of M for connector structures. Recall
from Definition 3 (page 3) that connector structures consist of a set of boundary
nodes and a set of primitives. This allows us to define M for connector structures
in terms of M for sets of nodes and M for sets of primitives.

Definition 25 (M for connector structures). Let C = 〈B,E〉 be a connector
structure over N . Its M-transformation, denoted M(C), is defined as:

M(C) = 〈M(B),M(E)〉

The following proposition states that the application of M to a connector struc-
ture yields a well-formed connector structure. In our proof, we refer to a lemma
that concerns the distributivity of M for sets of nodes over the common set oper-
ators. We have not discussed this lemma yet and defer its treatise to Section 3.3
(page 30). In that subsection, we prove the distributivity properties of all the
forms of M relevant to this report.

Proposition 4 (M-ed connector structures are connector structures).
Let C = 〈B,E〉 be a connector structure over N . Then, M(C) is a connector
structure over M(N).
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Table 1. Proof: M(N) =
⋃

e∈M(E){n ∈ N
′ | e is a primitive over N ′ }

M(N)
= /∗ By applying N =

⋃
e∈E{n ∈ N

′ | e is a primitive over N ′ } /∗

M
(⋃

e∈E{n ∈ N
′ | e is a primitive over N ′ }

)
= /∗ By the distributivity of M for sets of nodes over union in Lemma 6 (page 30) /∗⋃

e∈E M ({n ∈ N ′ | e is a primitive over N ′ })
= /∗ By Definition 23 (page 17) of M for primitives and because M-ed primitives are

primitives by Proposition 2 (page 17) /∗⋃
e∈E{n ∈ N

′ |M(e) is a primitive over N ′ }
= /∗ Because M(C) satisfies prims by Proposition 4 (page 18) /∗⋃

e∈M(E){n ∈ N
′ | e is a primitive over N ′ }

Proof. By Definition 3 (page 3) of connector structures, we must show that
∅ 6= M(B) ⊆ M(N) (b-nodes), M(E) is a set of primitives (prims), and
M(N) =

⋃
e∈M(E){n ∈ N ′ | e is a primitive over N ′ } (nodes). We start with

prims. Because C is a connector structure over N by the premise, E is a set of
primitives. Then, because M-ed sets of primitives are sets of primitives by Propo-
sition 3 (page 18), M(E) is a set of primitives. Hence, M(C) satisfies prims.
We proceed with nodes. Because C is a connector structure over N by the
premise, N =

⋃
e∈E{n ∈ N ′ | e is a primitive over N ′ }. Subsequently, M(N) =⋃

e∈M(E){n ∈ N ′ | e is a primitive over N ′ } follows from Table 1 (page 19).

Hence, M(C) satisfies nodes. We end with b-nodes. Because C is a connector
structure over N by the premise, ∅ 6= B ⊆ N . Then, by Definition 22 (page 17)
of M for sets of nodes, ∅ 6= M(B) ⊆ M(N). Hence, M(C) satisfies b-nodes.
Because M(C) satisfies b-nodes, prims, and nodes, it is a connector structure
over M(N). ut

To illustrate the application of M to connector structures, in Figure 10 (page 20),
Figure 11 (page 20), and Figure 12 (page 21), we depict the M-transformations
of the connector structures of some of the common primitive connectors (their
formal definitions appear below), ExclRouter, and LossyFIFO.

Sync, LossySync,FIFO , 〈{A,B,A,B }, { (Ai, Bo, Ao, Bi) }〉
SyncDrain , 〈{A,B,A,B }, { (Ai, Bo, Ao, Bo)) }〉

Merger , 〈{A,B,C }, { (Ai, Bi, Co, Ao, Bo, Ci) }〉
Replicator , 〈{A,B,C }, { (Ai, Bo, Co, Ao, Bi, Ci) }〉

Although we have not discussed the semantics—i.e., the coloring models—that
the M-transformation assigns to these structures yet, their graphical representa-
tions give away some hints. For example, the depictions of the M-ed structures
of ExclRouter and LossyFIFO show that data items flow in the opposite direction
through the context nodes when compared with the direction of the flow through
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M(Sync) M(LossySync) M(SyncDrain) M(FIFO)

A B

A B

A B

A B

A B

A B

A B

A B

M(Merger) M(Replicator)

A

B

C
A

B

C
A

B

C
A

B

C

Fig. 10. Pictorial representation of the M-ed versions of some of the common primitive
connectors.

M(ExclRouter)

B

C

A

B

C

A

Fig. 11. Pictorial representation of the M-ed version of ExclRouter.

the base nodes. As mentioned before, this resembles the way wherein the no-flow
color / communicates the reason for the absence of flow backwards through
a connector. Shortly, we demonstrate that flow through context nodes implies
that data items can disappear between certain base nodes (conversely, the ab-
sence of flow through context nodes implies that data items cannot disappear).

Another—yet related—observation concerns the connections between base
nodes and context nodes: they do not exist. More specifically, base nodes and
context nodes form a base circuit and a context circuit that influence each other’s
behavior, but data items cannot flow from one of these circuits to the other.
For instance, in Figure 11 (page 20) and Figure 12 (page 21), the new dotted
arrows tangent to the dashed arrows, which represent the structure of LossySync,
articulate the influence that a context circuit can exercise on its corresponding
base circuit: informally, if a context channel touches a base channel, this base
channel can lose data items only if data items flow through the context channel
that touches it. If no context channels touch a base channel, this base channel
cannot lose data items. In the following, we make the previous informal account
more precise.

Behavior Recall from the introduction of this subsection that the applica-
tion of M to a 3-colored η-connector CCol produces a corresponding 2-colored
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M(LossyFIFO)

A B

A B

Fig. 12. Pictorial representation of the M-ed version of LossyFIFO.

η-connector by cloning the nodes of CCol and by assigning appropriate colors to
the resulting clones. In the foregoing, we discussed the cloning of nodes; in the
following, we elaborate on the assignment of appropriate colors.

We begin with the definition of M for 3-colorings and clarify this definition
afterwards.

Definition 26 (M for 3-colorings). Let c be a 3-coloring over N . Its M-
transformation, denoted M(c), is defined as:

M(c) =
⋃
n∈N

{n 7→ , n 7→ } if c(n) = .
{n 7→ , n 7→ } if c(n) = /
{n 7→ , n 7→ } if c(n) =

Thus, the application of M to a 3-coloring c yields a map from the nodes in the
domain of c and their duals to either or . The idea behind these
mappings follows below.

– If c maps n to , M(c) also maps n to , while it maps n to .
This ensures that data items never flow through the same parts of the base
and the context circuits synchronously. If we would allow such synchronous
flow, for instance, data items could flow between the base nodes and through
the context circuit of a LossySync (thus, this LossySync has pending write
and take requests) at the same time. This would mean, however, that this
LossySync may lose the data items that flow through its base circuit without
reason (because of the pending take request). We consider this inadmissible
behavior.

– If c maps n to / (the no-flow color indicating that n lacks take requests),
M(c) maps n to (because flow cannot appear out of nowhere), while
it maps n to (because the absence of take requests can cause the loss
of data items).

– If cmaps n to . (the no-flow color indicating that n lacks write requests),
M(c) maps n to (because flow cannot appear out of nowhere), and
the same holds for n (because the absence of write requests can never cause
the loss of data items).

The following proposition states that the application of M to a 3-coloring yields
a well-formed 2-coloring.

Proposition 5 (M-ed 3-colorings are 2-colorings). Let c be a 3-coloring
over N . Then, M(c) is a 2-coloring over M(N).
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Proof. By Definition 6 (page 7) of 2-colorings, we must show that M(c) is a
total map from M(N) to 2-Color. Because c is a total map from N to 3-Color by
the premise and by Definition 26 (page 21) of M for 3-colorings, M(c) contains
mappings for n and n, for all n ∈ N . Hence, by Definition 22 (page 17) of
M for sets of nodes, M(c) is a total map with M(N) as its domain. Also, by
Definition 26 (page 21) of M for 3-colorings, M(c) maps every n ∈ M(N) to
either or . Hence, by Definition 5 (page 7) of 2-Color, M(c) is a
total map with 2-Color as its co-domain. Therefore, M(c) is a 2-coloring over
M(N). ut

We proceed with the definition of M for 3-coloring tables. Recall that we
defined a coloring table as a set of colorings. Informally, the application of M to
a 3-coloring table—i.e., a set of 3-colorings—yields a set of M-ed 3-colorings.

Definition 27 (M for 3-coloring tables). Let T be a 3-coloring table over N .
Its M-transformation, denoted M(T ), is defined as:

M(T ) = {M(c) | c ∈ T }

The following proposition states that the application of M to a 3-coloring table
yields a well-formed 2-coloring table.

Proposition 6 (M-ed 3-coloring tables are 2-coloring tables). Let T be
a 3-coloring table over N . Then, M(T ), is a 2-coloring table over M(N).

Proof. Because T is a set of 3-colorings over N by the premise and because
M-ed 3-colorings are 2-colorings by Proposition 5 (page 21), M(T ) is a set of
2-colorings over M(N). ut

To illustrate the application of M to 3-coloring tables, in Figure 13 (page 23),
Figure 14 (page 23), and Figure 15 (page 24), we depict the M-ed 3-coloring
tables of some of the common primitive connectors and ExclRouter.9 Although
most transformations turn out straightforwardly, we observe the following about
the transformation of the 3-coloring table of Merger. From a structural point
of view, the context circuit that constitutes the M-ed connector structure of
Merger equals the ordinary connector structure of Replicator: both consist of
one input node and two output nodes. The 2-colorings of this context circuit
in Figure 14 (page 23), however, differ significantly from the 2-colorings in the
ordinary 2-coloring table of Replicator: whereas the latter table does contain c3
and c4, it does not contain c1 and c2. Essentially, this means that context nodes
as defined in this report do not have the same merger/replicator semantics as the
type of nodes Arbab describes in [Arb04]. Note that we can observe a similar
phenomenon when studying the M-ed 3-coloring table of Replicator and the
ordinary 2-coloring table of Merger.

We continue with the definition of M for 3-CTMs. Recall from Definition 9
(page 8) that a CTM maps indexes (representing the states of a connector) to

9 We do not depict the M-transformations of 3-colorings that one can induce with the
flip-rule. See also Footnote 6 (page 9).
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Fig. 13. M-ed 3-coloring models of Sync, LossySync, and SyncDrain.
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Fig. 14. M-ed 3-coloring models of Merger and Replicator.

coloring tables (describing the admissible behavior in these states). Informally,
the application of M to a 3-CTM yields a 2-CTM that maps indexes to M-ed
3-coloring tables.

Definition 28 (M for 3-CTMs). Let S be a CTM over [N,Λ]. Its M-trans-
formation, denoted M(S), is defined as:

M(S) = {λ 7→M(S(λ)) |λ ∈ Λ }

The following proposition states that the application of M to a 3-CTM yields a
well-formed 2-CTM.

Proposition 7 (M-ed 3-CTMs are 2-CTMs). Let S be a 3-CTM over [N,Λ].
Then, M(S) is a 2-CTM over [M(N), Λ].

Proof. By Definition 9 (page 8) of 2-CTMs, we must show that M(S) is a total
map from Λ to a set of 2-coloring tables over M(N). Because S is a total map
from Λ to a set of 3-coloring tables over N by the premise and by Definition 28
(page 23) of M for 3-CTMs, M(S) is a total map with Λ as its domain. Also,
because M-ed 3-coloring tables are 2-coloring tables by Proposition 6 (page 22),
M(S) maps every λ ∈ Λ to an M-ed 2-coloring table over M(N). Hence, M(S) is
a total map with Λ as its domain and with a set of 2-coloring tables over M(N)
as its co-domain. Therefore, M(S) is a 2-coloring table map over [M(N), Λ]. ut

-23-



3.1 DEFINITION OF M

M
(E

xc
lR

o
u

te
r) c1

c2

c3

c4

Fig. 15. M-ed 3-coloring model of ExclRouter.

We proceed with the definition of M for 3-colored next functions. Recall that a
next function maps [index, coloring]-pairs to indexes. Informally, the application
of M to a 3-colored next function yields a 2-colored next function that maps
[index, M-ed 3-coloring]-pairs to indexes.

Definition 29 (M for 3-colored next functions). Let η be a 3-colored next
function over [N,Λ, S]. Its M-transformation, denoted M(η), is defined as:

M(η) = { (λ,M(c)) 7→ η(λ, c)) |λ ∈ Λ and c ∈ S(λ) }

The previous definition may surprise the reader: it seems as if we do not apply the
M-transformation for 3-CTMs as one might expect. The following proposition
establishes, however, that by defining M for 3-colored next functions as in the
previous definition, we apply M to 3-CTMs rather implicitly : the proposition
states that the application of M to a 3-colored next function over a set of nodes,
a set of indexes, and a 3-CTM yields a well-formed 2-colored next function over
the M-ed set of nodes, the same set of indexes, and the M-ed 3-CTM.
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Table 2. Proof: [λ, c 7→ λ′] ∈ M(η) iff c ∈ (M(S))(λ)

[λ, c 7→ λ′] ∈ M(η)
≡ /∗ By Definition 29 (page 24) of M for 3-colored next functions /∗

there exists a c′ ∈ S(λ) such that c = M(c′)
≡ /∗ Because, by Definition 27 (page 22) of M for 3-coloring tables, c′ ∈ S(λ) iff

M(c′) ∈ M(S(λ))

/∗

there exists a c′ ∈ S(λ) such that c = M(c′) and M(c′) ∈ M(S(λ))
≡ /∗ By simplifying [c = M(c′) and M(c′) ∈ M(S(λ)] /∗

there exists a c′ ∈ S(λ) such that c ∈ M(S(λ))
≡ /∗ Because c′ is a dead variable /∗

c ∈ M(S(λ))
≡ /∗ By Definition 28 (page 23) of M for 3-CTMs /∗

c ∈ (M(S))(λ)

Proposition 8 (M-ed 3-colored next functions are 2-colored next
functions). Let η be a 3-colored next function over [N,Λ, S]. Then, M(η) is a
2-colored next function over [M(N), Λ,M(S)].

Proof. By Definition 10 (page 8) of 2-colored next functions, we must show that
M(η) is a map from [index, 2-coloring]-pairs to indexes such that [λ, c 7→ λ′] ∈
M(η) iff c ∈ (M(S))(λ) (totality). Because η is a map from [index, 3-coloring]-
pairs to indexes by the premise, by Definition 29 (page 24) of M for 3-colored
next functions and because M-ed 3-colorings are 2-colorings by Proposition 5
(page 21), M(η) is a map with Λ × {M(N) → 2-Color } as its domain and
with Λ as its co-domain. Furthermore, satisfaction of totality by M(η) fol-
lows from Table 2 (page 25). Therefore, M(η) is a 2-colored next function over
[M(N), Λ,M(S)]. ut

To illustrate the application of M to 3-colored next functions, we show the M-
ed 3-colorings, M-ed 3-CTMs, and M-ed 3-colored next functions of FIFO and
LossyFIFO in Figure 16 (page 26).10

We end this subsection with the definition of M for 3-colored η-connectors.
Recall from Definition 11 (page 9) that η-connectors consist of a connector struc-
ture and a next function. This allows us to define M for 3-colored η-connectors
in terms of M for connector structures and M for 3-colored next functions.

Definition 30 (M for 3-colored η-connectors). Let CCol = 〈C, η〉 be a 3-
colored η-connector over [N,Λ, S]. Its M-transformation, denoted M(CCol), is
defined as:

M(CCol) = 〈M(C),M(η)〉
10 We do not depict the M-transformations of 3-colorings that one can induce with the

flip-rule. See also Footnote 6 (page 9).
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Λ = { FIFO-E, FIFO-F }

S =

{
FIFO-E 7→ { c1, c4 },
FIFO-F 7→ { c2, c3 }

}

η =


FIFO-E, c1 7→ FIFO-F,
FIFO-E, c4 7→ FIFO-E,

FIFO-F, c2 7→ FIFO-E,
FIFO-F, c3 7→ FIFO-F,



Λ = { LosFIFO-E, LosFIFO-F }

S =

{
LosFIFO-E 7→ { c1, c6 },
LosFIFO-F 7→ { c2, c3, c4, c5 }

}

η =



LosFIFO-E, c1 7→ LosFIFO-F,
LosFIFO-E, c6 7→ LosFIFO-E,

LosFIFO-F, c2 7→ LosFIFO-E,
LosFIFO-F, c3 7→ LosFIFO-F,
LosFIFO-F, c4 7→ LosFIFO-E,
LosFIFO-F, c5 7→ LosFIFO-F


Fig. 16. M-ed 3-coloring models of FIFO and LossyFIFO.

The following proposition states that the application of M to a 3-colored η-
connector yields a well-formed 2-colored η-connector.

Proposition 9 (M-ed 3-colored η-connectors are 2-colored η-connect-
ors). Let CCol = 〈C, η〉 be a 3-colored η-connector over [N,Λ, S]. Then, M(CCol)
is a 2-colored η-connector over [M(N), Λ,M(S)].

Proof. By Definition 11 (page 9) of 2-colored η-connectors, we must show that
M(C) is a connector structure over M(N) and that M(η) is a 2-colored next func-
tion over [M(N), Λ,M(S)]. Because CCol is a 3-colored η-connector over [N,Λ, S]
by the premise and by Definition 11 (page 9) of η-connectors, C is a connector
structure over N , and η is a 3-colored next function over [N,Λ, S]. Then, because
M-ed connector structures are connector structures by Proposition 4 (page 18),
M(C) is a connector structure over M(N). Also, because M-ed 3-colored next
functions are 2-colored next functions by Proposition 8 (page 25), M(η) is a 2-
colored next function over [M(N), Λ,M(S)]. ut
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3.2 CORRECTNESS OF M

3.2 Correctness of M
In this subsection, we demonstrate the correctness of M: we consider M correct
if its application to a 3-colored η-connector yields a corresponding 2-colored η-
connector. We investigate two types of correspondence, painting correspondence
and simulation, and show that M for 3-colored η-connectors satisfies both.

Painting correspondence We start with painting correspondence. In this con-
text, we call the M-transformation correct if, for each 3-colored η-connector CCol,
its M-transformation M(CCol) has paintings that correspond to the paintings of
CCol. Informally, a painting comprises an (infinite) sequence of alternating indexes
(representing states) and colorings (representing transitions); one may consider
paintings as executions of η-connectors.

Definition 31 (Painting). Let CCol = 〈C, η〉 be an η-connector and λ0 ∈ Λ the
index representing the initial state of the connector that CCol models. A painting
of CCol is a sequence [λ0, c0, . . .] such that λi+1 = η(λi, ci) for all i ≥ 0. The set
that contains all the paintings of CCol is denoted πCCol .

Informally, two paintings correspond if, for all i ≥ 0, the i-th colorings on the
paintings assign the flow color to the same nodes in their domain intersection and
the i-th indexes on the paintings equal each other. We formulate our correctness
lemma formally below; a proof follows shortly.

Lemma 1 (M-ed 3-colored η-connectors correspond to 3-colored η-
connectors). Let CCol = 〈C, η〉 be a 3-colored η-connector over [N,Λ, S] and
λ0 ∈ Λ the index representing the initial state of the connector that CCol models.
Then:

i. if: [λ0, c0, . . .] ∈ πCCol

then: [λ0,M(c0), . . .] ∈ πM(CCol) such that for all 0 ≥ i :
{n ∈ N | ci(n) = } = {n ∈ N | (M(ci))(n) = }

ii. if: [λ0,M(c0), . . .] ∈ πM(CCol)

then: [λ0, c0, . . .] ∈ πCCol such that for all 0 ≥ i :
{n ∈ N | ci(n) = } = {n ∈ N | (M(ci))(n) = }

Shortly, we sketch a proof by induction that establishes the lemma. For the
sake of conciseness, however, we first move large parts of the inductive step to
the following two lemmas. Lemma 2 (page 27) states that M for 3-colored next
functions preserves the flow behavior of the connector—i.e., if an untransformed
coloring assigns flow to some base node n, the M-transformation of this coloring
exists and assigns the flow color to n. The same must hold in the opposite direc-
tion. Lemma 3 (page 28) states that M for next functions preserves transitions
from one state to the next.

Lemma 2 (M for 3-colored next functions preserves flow). Let η be a
3-colored next function over [N,Λ, S] and n ∈ N . Then:(

λ ∈ Λ and c ∈ S(λ)
and c(n) =

)
iff

(
λ ∈ Λ and M(c) ∈ (M(S))(λ)

and (M(c))(n) =

)
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Proof. We first prove the left-to-right direction (only if), and proceed with the
right-to-left direction ( if).

only if — We start by deriving the first two conjuncts of the right-hand side
(RHS) from the first two conjuncts of the left-hand side (LHS). This turns
out straightforwardly: the first conjunct follows trivially, while c ∈ S(λ) im-
plies M(c) ∈ (M(S))(λ) by Definition 27 (page 22) of M for 3-coloring tables.
Finally, we derive the RHS’s third conjunct from the third conjunct of the
LHS. By the premise, c(n) = . Then, by Definition 26 (page 21) of
M for 3-colorings, {n 7→ , n 7→ } ⊆ M(c). Hence, (M(c))(n) =

.
if — The first two conjuncts of the LHS follow from the first two conjuncts of

the RHS similar to the only if case. Next, by the premise, (M(c))(n) =
. By Definition 26 (page 21) of M for 3-colorings, this happens only if

c(n) = . ut

Lemma 3 (M for 3-colored next functions preserves transitions). Let η
be a 3-colored next function over [N,Λ, S] and n ∈ N . Then:(

λ, λ′ ∈ Λ and c ∈ S(λ)
and η(λ, c) = λ′

)
iff

(
λ, λ′ ∈ Λ and M(c) ∈ (M(S))(λ)

and (M(η))(λ,M(c)) = λ′

)
Proof. The implication, in both directions, follows trivially (first conjunct), from
Definition 27 (page 22) of M for 3-coloring tables (second conjunct), and from
Definition 29 (page 24) of M for 3-colored next functions (third conjunct). ut

Finally, given the previous two lemmas, we sketch a proof of Lemma 1 (page 27).

Proof (Of Lemma 1). Both i. and ii. follow from induction on the length of
the prefix of a painting. The base case (prefix of length 1) follows from the
preservation of well-formedness of M for next functions and because λ0 ∈ Λ by
Definition 31 (page 27). To prove the inductive step, first, suppose there exists a
painting with a prefix of length 2j−1 on which the lemma holds, for some j ≥ 1
(note that the (2j−1)-th element is an index). Next, apply Lemma 2 to establish
that there exists a painting with a prefix of length 2j on which the lemma holds
(note that the (2j)-th element is a coloring). Finally, apply Lemma 3 to establish
that there exists a painting with a prefix of length 2j+1 = 2(j+1)−1 on which
the lemma holds. ut

Simulation Alternatively, we can define the correctness of M in terms of simu-
lation. In this context, we call the M-transformation correct if, for each 3-colored
η-connector CCol, its M-transformation M(CCol) simulates CCol. Shortly, we ex-
plain the meaning of simulation for η-connectors. First, however, we introduce
an auxiliary concept: simulation for colorings. Informally, a coloring c1 simulates
a coloring c2 if c1 assigns the same color as c2 to all the nodes in the domain of
c2. For simplicity of the presentation, we assume the no-flow color equal
to both . and / .
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Definition 32 (Simulation for colorings). Let c1 and c2 be colorings over
N1 and N2. c1 simulates c2, denoted c1 � c2, if N2 ⊆ N1 and c1(n) = c2(n) for
all n ∈ N2.

Note that simulation relates asymmetrically: c1 � c2 does not imply c2 � c1. To
see this, suppose c1 = {A 7→ , B 7→ } and c2 = {A 7→ }:
whereas c1 � c2, c2 6� c1 (because the domain of c2 does not include the
domain of c1). The following lemma states that the M-transformation of a 3-
coloring—i.e., a 2-coloring—simulates the original 3-coloring.

Lemma 4 (M-ed 3-colorings simulate 3-colorings). Let c be a 3-coloring
over N . Then, M(c) � c.

Proof. By Definition 26 (page 21) of M for 3-colorings, [{n 7→ , n 7→
} ⊆ M(c) iff {n 7→ } ⊆ c] and [[{n 7→ , n 7→ } ⊆

M(c) or {n 7→ , n 7→ } ⊆ M(c)] iff [{n 7→ . } ⊆ c or {n 7→
/ } ⊆ c]], for all n ∈ N . Because c is a 3-coloring over N by the premise,

M(c) � c. ut

We proceed with the definition of simulation for η-connectors. Our definition
roots in Milner’s notion of bi-simulation [Mil89], adapted to fit coloring mod-
els. Informally, an η-connector CCol1 simulates an η-connector CCol2 if the former
describes state-transitions that correspond to the state-transitions described by
CCol2 ; we define correspondence of state-transitions in terms of simulation for
colorings.

Definition 33 (Simulation for η-connectors). Let CCol1 = 〈C1, η1〉 and
CCol2 = 〈C2, η2〉 be η-connectors over [N1, Λ1, S1] and [N2, Λ2, S2]. CCol1 simulates
CCol2 , denoted CCol1 � CCol2 , if there exists a relation R ⊆ Λ1 × Λ2 such that, for
all 〈λ1, λ2〉 ∈ R:

if [〈λ2, c2〉 7→ λ′2] ∈ η2 then there exists a λ′1 ∈ Λ1 such that [〈λ1, c1〉 7→ λ′1] ∈
η1 and 〈λ′1, λ′2〉 ∈ R and c1 � c2.

In that case, R is called a simulation relation.

Like simulation for colorings, simulation for η-connectors relates asymmetrically
(in contrast to Milner’s bi-simulation). We remark that one can easily adapt
the previous two definitions to satisfy symmetry—i.e., by replacing ⊆ with = in
Definition 32 (page 29) and by supplementing the condition of R in Definition 33
(page 29) with a symmetric condition. As we do not need these definitions in
this report, however, we skip them.

The following lemma states the correctness of M (in the context of sim-
ulation): it establishes that the application of M to a 3-colored η-connector
CCol yields a 2-colored η-connector that simulates CCol. This means that M-ed
3-colored η-connectors behave indistinguishably from their untransformed coun-
terparts if we disregard their context nodes.

Lemma 5 (M-ed 3-colored η-connectors simulate 3-colored η-connect-
ors). Let CCol = 〈C, η〉 be a 3-colored η-connector over [N,Λ, S]. Then,
M(CCol) � CCol.
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Proof. Let R = { 〈λ, λ〉 |λ ∈ Λ }. We show that R is a simulation relation. Let
〈λ, λ〉 ∈ R. Suppose [〈λ, c〉 7→ λ′] ∈ η. First, by Definition 29 (page 24) of M
for 3-colored next functions, [〈λ,M(c)〉 7→ λ′] ∈ M(η). Next, by the definition
of R, 〈λ′, λ′〉 ∈ R. Finally, because M-ed 3-colorings simulate 3-colorings by
Lemma 4 (page 29), M(c) � c. Hence, R is a simulation relation. Therefore,
M(CCol) � CCol. ut

3.3 Distributivity of M

In the previous subsection, we showed the correctness of M. Though an essential
result, it not yet suffices for the following reason: to properly compose a 2-
colored η-connector from context-dependent constituents, we still must compose
a 3-colored η-connector from 3-colored constituents first. Only thereafter, we can
apply M to obtain the desired 2-colored η-connector. Instead, we prefer (i) to ap-
ply M only once to the 3-colored η-connectors that model the common primitive
connectors and (ii) to construct more complex 2-colored η-connectors by com-
posing these M-transformations. We favor this approach because we speculate
that an implementation of Reo that operates on 2-coloring models can compute
connector composition more efficiently than an implementation that operates
on 3-coloring models.11 In this subsection, we develop the theory that accom-
modates this: we show that the M-transformation distributes over composition.
The idea appears quite simple: we wish to prove that it does not matter whether
we first compose 3-colored η-connectors CCol1 and CCol2 and then apply M to the
composition or first apply M to CCol1 and CCol2 and then compose the resulting
2-colored η-connectors. Although straightforward from a conceptual perspective,
the details involve quite some work. As in Section 3.1 (page 16), we divide our
presentation into two parts: we commence with the distributivity of M for the
structural aspects of 3-colored η-connectors and conclude with the distributivity
of M for their behavioral aspects.

Structure We start with three lemmas that concern the distributivity of M
for the structural aspects of 3-colored η-connectors. The first lemma states that
M for sets of nodes distributes over the common set operators for union, in-
tersection, and complement. In our proofs, we apply the commutativity and
distributivity properties of these operators.

Lemma 6 (M for sets of nodes distributes over union, intersection,
and complement). Let N1, N2 ⊆ Node be sets of nodes. Then:

M(N1) ∪M(N2) = M(N1 ∪N2)
M(N1) ∩M(N2) = M(N1 ∩N2)
M(N1) \M(N2) = M(N1 \N2)

Proof. Follows from Table 3 (page 31), Table 4 (page 31), and Table 5 (page 32).
ut

11 We leave an actual (proof-of-concept) implementation for future work.
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Table 3. Proof: M(N1) ∪M(N2) = M(N1 ∪N2)

M(N1) ∪M(N2)
= /∗ By Definition 22 (page 17) of M for sets of nodes /∗⋃

n∈N1
{n, n } ∪

⋃
n∈N2

{n, n }
= /∗ By the definition of ∪ /∗⋃

n∈N1∪N2
{n, n }

= /∗ By Definition 22 (page 17) of M for sets of nodes /∗

M(N1 ∪N2)

Table 4. Proof: M(N1) ∩M(N2) = M(N1 ∩N2)

M(N1) ∩M(N2)
= /∗ By Definition 22 (page 17) of M for sets of nodes /∗⋃

n1∈N1
{n1, n1 } ∩

⋃
n2∈N2

{n2, n2 }
= /∗ By the commutativity of ∩, and by the distributivity of ∩ over

⋃ /∗⋃
n1∈N1

⋃
n2∈N2

({n1, n1 } ∩ {n2, n2 })
= /∗ Because, by 1-to-1 in Definition 22 (page 17), {n1, n1 }∩{n2, n2 } = ∅ if n1 6= n2

and {n1, n1 } ∩ {n2, n2 } = {n1, n1 } = {n2, n2 } otherwise /∗⋃
n1∈N1∩N2

⋃
n2∈N1∩N2

M(n1)

= /∗ Because n2 is a dead variable /∗⋃
n1∈N1∩N2

M(n1)

= /∗ By Definition 22 (page 17) of M for sets of nodes /∗

M(N1 ∪N2)

Similar to the previous lemma, the next lemma states that M for sets of
primitives distributes over the common set operators for union, intersection,
and complement. Because we use only the first of these three properties in the
sequel, we skip the proofs of the latter two and leave these as conjectures.

Lemma 7 (M for sets of primitives distributes over union, intersection,
and complement). Let E1 and E2 be sets of primitives. Then:

M(E1) ∪M(E2) = M(E1 ∪ E2)
M(E1) ∩M(E2) = M(E1 ∩ E2)
M(E1) \M(E2) = M(E1 \ E2)

Proof. Follows from Table 6 (page 32). ut

The final lemma of this part states that M for connector structures distributes
over composition. This means that it does not matter whether we first compose
connector structures C1 and C2 and then apply M to the composition or first
apply M to C1 and C2 and then compose the transformations; the resulting
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Table 5. Proof: M(N1) \M(N2) = M(N1 \N2)

M(N1) \M(N2)
= /∗ By the definition of \ /∗

{n ∈ M(N1) |n /∈ M(N2) }
= /∗ By the definition of

⋃ /∗⋃
n∈{n∈M(N1) |n/∈M(N2)}{n}

= /∗ Because, by Definition 22 (page 17) of M for sets of nodes, n ∈ M(N) iff n ∈ M(N)

/∗⋃
n∈{n∈N1 |n/∈N2}{n, n}

= /∗ By the definition of \ /∗⋃
n∈N1\N2

M(n)

= /∗ By Definition 22 (page 17) of M for sets of nodes /∗

M(N1 \N2)

Table 6. Proof: M(E1) ∪M(E2) = M(E1 ∪ E2).

M(E1) ∪M(E2)
= /∗ By Definition 24 (page 18) of M for sets of primitives /∗

{M(e) | e ∈ E1 } ∪ {M(e) | e ∈ E2 }
= /∗ By the definition of ∪ /∗
{M(e) | e ∈ E1 ∪ E2 }

= /∗ By Definition 24 (page 18) of M for sets of primitives /∗

M(E1 ∪ E2)

connector structures equal each other. In our proof, we apply the distributivity
lemmas that concern M for sets of nodes and M for sets of primitives.

Lemma 8 (M for connector structures distributes over composition).
Let C1 = 〈B1, E1〉 and C2 = 〈B2, E2〉 be connector structures over N1 and N2.
Then:

M(C1)�M(C2) = M(C1 � C2)

Proof. Applying Definition 25 (page 18) of M for connector structures and Def-
inition 4 (page 4) of composition for connector structures yields:〈

M(B1) ∪M(B2) \M(B1) ∩M(B2),
M(E1) ∪M(E2)

〉
=

〈
M(B1 ∪B2 \B1 ∩B2),
M(E1 ∪ E2)

〉
(i)

(ii)

Sub-equation (i) follows from the distributivity of M for sets of nodes over union,
intersection, and complement in Lemma 6 (page 30), while sub-equation (ii)
follows from the distributivity of M for sets of primitives over union in Lemma 7
(page 31). Therefore, M(C1)�M(C2) = M(C1 � C2). ut
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Table 7. Proof: M(c1) ∪M(c2) = M(c1 ∪ c2).

M(CCol1 ) ∪M(CCol2 )
= /∗ By Definition 12 (page 10) of composition for colorings and because, since M-

ed 3-colorings are 2-colorings by Proposition 5 (page 21), M(CCol1 ) and M(CCol2 ) are
2-colorings over M(N1) and M(N2)

/∗{
n 7→ κ

∣∣∣∣n ∈ M(N1) ∪M(N2) and κ =

(
(M(c1))(n) if n ∈ M(N1)
(M(c2))(n) otherwise

)}
= /∗ By the definition of

⋃ /∗⋃
n∈M(N1)∪M(N2)

{
{n 7→ (M(c1))(n) } if n ∈ M(N1)
{n 7→ (M(c2))(n) } otherwise

= /∗ By the distributivity of M for sets of nodes over ∪ in Lemma 6 (page 30) /∗⋃
n∈M(N1∪N2)

{
{n 7→ (M(c1))(n) } if n ∈ M(N1)
{n 7→ (M(c2))(n) } otherwise

= /∗ Because, by Definition 22 (page 17) of M for sets of nodes, n ∈ M(N1 ∪ N2) iff
n ∈ M(N1 ∪N2) /∗⋃

n∈N1∪N2

{
{n 7→ (M(c1))(n), n 7→ (M(c1))(n) } if n ∈ N1

{n 7→ (M(c2))(n), n 7→ (M(c2))(n) } otherwise
= /∗ By Definition 26 (page 21) of M for 3-colorings /∗⋃

n∈N1∪N2

{
M({n 7→ c1(n) }) if n ∈ N1

M({n 7→ c2(n) }) otherwise
= /∗ By Definition 12 (page 10) of composition for colorings /∗⋃

n∈N1∪N2
M(n 7→ (c1 ∪ c2)(n))

= /∗ By Definition 26 (page 21) of M for 3-colorings /∗

M(c1 ∪ c2)

Behavior We proceed with five lemmas that concern the distributivity of M
for the behavioral aspects of 3-colored η-connectors.

The first lemma states that M for 3-coloring tables distributes over compo-
sition. This means that it does not matter whether we first compose 3-colorings
c1 and c2 and then apply M to the composition or first apply M to c1 and c2 and
then compose the transformations; the resulting 2-colorings equal each other.
In our proof, we apply the one-to-one correspondence between base nodes and
context nodes.

Lemma 9 (M for 3-colorings distributes over composition). Let c1 and
c2 be 3-colorings over N1 and N2 such that c1(n) = c2(n) for all n ∈ N1 ∩N2.
Then:

M(c1) ∪M(c2) = M(c1 ∪ c2)

Proof. Follows from Table 7 (page 33). ut

The second lemma states that M for 3-coloring tables distributes over com-
position. This means that it does not matter whether we first compose 3-coloring
tables T1 and T2 and then apply M to the composition or first apply M to T1 and
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Table 8. Proof: ϕ(M(c1),M(c2)) ≡ ϕ(c1, c2)

ϕ(M(c1),M(c2))
≡ /∗ By the definition of ϕ /∗

(M(c1))(n) = (M(c2))(n) for all n ∈ M(N1) ∩M(N2)
≡ /∗ By the distributivity of M for sets of nodes over union in Lemma 6 (page 30) /∗

(M(c1))(n) = (M(c2))(n) for all n ∈ M(N1 ∩N2)
≡ /∗ Because, by Definition 22 (page 17) of M for sets of nodes, n ∈ M(N1∩N2) iff n ∈

M(N1 ∩N2) /∗

(M(c1))(n) = (M(c2))(n) and (M(c1))(n) = (M(c2))(n) for all n ∈ N1 ∩N2

≡ /∗ By Definition 26 (page 21) of M for 3-colorings /∗

c1(n) = c2(n) for all n ∈ N1 ∩N2

≡ /∗ By the definition of ϕ /∗

ϕ(c1, c2)

T2 and then compose the transformations; the resulting 2-coloring tables equal
each other. Our proof turns out less straightforwardly than one might expect,
because we must ensure that the compatibility condition—i.e., colorings must
assign the same colors to their shared nodes—holds. This requires an auxiliary
derivation in which we show that the compatibility of 3-colorings c1 and c2 im-
plies the compatibility of their M-transformations and vice versa. In our main
proof, in addition to this result, we apply the distributivity lemma that concerns
M for 3-colorings.

Lemma 10 (M for 3-coloring tables distributes over composition). Let
T1 and T2 be a 3-coloring tables over N1 and N2. Then:

M(T1) ·M(T2) = M(T1 · T2)

Proof. First, we prove an auxiliary equivalence that helps us keep the main proof
more concise. Let ϕ(c, c′) be a predicate on colorings c and c′ over N and N ′

defined as [ϕ(c, c) ≡ c(n) = c′(n) for all n ∈ N ∩ N ′]. It follows from Table 8
(page 34) that ϕ(M(c1),M(c2)) ≡ ϕ(c1, c2). Then, the lemma follows from Ta-
ble 9 (page 35). ut

The third lemma states that M for 3-CTMs distributes over composition.
This means that it does not matter whether we first compose 3-CTMs S1 and
S2 and then apply M to the composition or first apply M to S1 and S2 and then
compose the transformations; the resulting 2-CTMs equal each other. In our
proof, we apply the distributivity lemma that concerns M for 3-coloring tables.

Lemma 11 (M for 3-CTMs distributes over composition). Let S1 and
S2 be CTMs over [N1, Λ1] and [N2, Λ2]. Then:

M(S1)�M(S2) = M(S1 � S2)
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Table 9. Proof: M(T1) ·M(T2) = M(T1 · T2)

M(T1) ·M(T2)
= /∗ By Definition 13 (page 10) of composition for coloring tables /∗

{M(c1) ∪M(c2) |M(c1) ∈ M(T1) and M(c2) ∈ M(T2) and ϕ(M(c1),M(c2)) }
= /∗ By the distributivity of M for 3-colorings over composition in Lemma 9 (page 33) and

because, by Definition 27 (page 22) of M for 3-coloring tables, [M(c1) ∈ M(T1) iff c1 ∈
T1] and [M(c2) ∈ M(T2) iff c2 ∈ T2] /∗

{M(c1 ∪ c2) | c1 ∈ T1 and c2 ∈ T2 and ϕ(M(c1),M(c2)) }
= /∗ By Table 8 (page 34) /∗

{M(c1 ∪ c2) | c1 ∈ T1 and c2 ∈ T2 and ϕ(c1, c2) }
/∗ Because [c1 ∈ T1 and c2 ∈ T2 and ϕ(c1, c2)] iff [c1 ∪ c2 ∈ { c1 ∪ c2 | c1 ∈
T1 and c2 ∈ T2 and ϕ(c1, c2) }] /∗

{M(c1 ∪ c2) | c1 ∪ c2 ∈ { c1 ∪ c2 | c1 ∈ T1 and c2 ∈ T2 and ϕ(c1, c2) } }
= /∗ By Definition 13 (page 10) of composition for coloring tables /∗

{M(c1 ∪ c2) | c1 ∪ c2 ∈ T1 · T2 }
= /∗ By Definition 27 (page 22) of M for 3-coloring tables /∗

M(T1 · T2)

Proof. Follows from Table 10 (page 36). ut

The fourth lemma states that M for 3-colored next functions distributes over
composition. This means that it does not matter whether we first compose 3-
colored next functions η1 and η2 and then apply M to the composition or first
apply M to η1 and η2 and then compose the transformations; the resulting 2-
colored next functions equal each other. In our proof, we apply the distributivity
lemmas that concern M for 3-colorings and M for 3-CTMs.

Lemma 12 (M for 3-colored next functions distributes over composi-
tion). Let η1 and η2 be next functions over [N1, Λ1, S1] and [N2, Λ2, S2]. Then:

M(η1)⊗M(η2) = M(η1 ⊗ η2)

Proof. Follows from Table 11 (page 37) ut

The fifth and final lemma states that M for 3-colored η-connectors distributes
over composition. This means that it does not matter whether we first compose
3-colored η-connectors CCol1 and CCol2 and then apply M to the composition or first
apply M to CCol1 and CCol2 and then compose the transformations; the resulting
2-colored η-connectors equal each other. In our proof, we apply the distributiv-
ity lemmas that concern M for connector structures and M for 3-colored next
functions.

Lemma 13 (M for 3-colored η-connectors distributes over composi-
tion). Let CCol1 = 〈C1, η1〉 and CCol2 = 〈C2, η2〉 be 3-colored η-connectors over
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Table 10. Proof: M(S1)�M(S2) = M(S1 � S2)

M(S1)�M(S2)
= /∗ By Definition 28 (page 23) of M for 3-CTMs /∗

{λ1 7→ M(S1(λ1)) |λ1 ∈ Λ1 } � {λ2 7→ M(S1(λ2)) |λ1 ∈ Λ2 }
= /∗ By Definition 14 (page 11) of composition for CTMs /∗

{ 〈λ1, λ2〉 7→ M(S1(λ1)) ·M(S2(λ2)) |λ1 ∈ Λ1 and λ2 ∈ Λ2 }
= /∗ By the distributivity of M for 3-coloring tables over composition in Lemma 10

(page 34) /∗

{ 〈λ1, λ2〉 7→ M(S1(λ1) · S2(λ2)) |λ1 ∈ Λ1 and λ2 ∈ Λ2 }
= /∗ Because, by the definition of the Cartesian product, [λ1 ∈ Λ1 and λ2 ∈ Λ2] iff
〈λ1, λ2〉 ∈ Λ1 × Λ2

/∗

{ 〈λ1, λ2〉 7→ M(S1(λ1) · S2(λ2)) | 〈λ1, λ2〉 ∈ Λ1 × Λ2 }
= /∗ By Definition 28 (page 23) of M for 3-CTMs /∗

M({ 〈λ1, λ2〉 7→ S1(λ1) · S2(λ2) | 〈λ1, λ2〉 ∈ Λ1 × Λ2 })
= /∗ By Definition 14 (page 11) of composition for CTMs /∗

M(S1 � S2)

[N1, Λ1, S1] and [N2, Λ2, S2]. Then:

M(CCol1 )×M(CCol2 ) = M(CCol1 × CCol2 )

Proof. Applying Definition 30 (page 25) of M for 3-colored η-connectors and
Definition 16 (page 12) of composition for η-connectors yields:〈

M(C1)�M(C2),
M(η1)⊗M(η2)

〉
=

〈
M(C1 � C2),
M(η1 ⊗ η2)

〉
(i)

(ii)

Sub-equation (i) follows from the distributivity of M for connector structures
over composition in Lemma 8 (page 32), while sub-equation (ii) follows from the
distributivity of M for 3-colored next functions over composition in Lemma 12
(page 35). Therefore, M(CCol1 )×M(CCol2 ) = M(CCol1 × CCol2 ). ut

3.4 Inverse of M

Before we continue, let us recapitulate what we presented so far. First, in Sec-
tion 3.1 (page 16), we defined the M operator for various types of operands.
Next, in Section 3.2 (page 27), we proved the correctness of M, and in Sec-
tion 3.3 (page 30), we showed that M distributes over composition. In this last
subsection, we investigate the inverse of M. Essentially, we answer the following
question, relevant to the computation of connector animations: can we transform
M-ed 3-colored η-connectors back to their original form?
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Table 11. Proof: M(η1)⊗M(η2) = M(η1 ⊗ η2)

M(η1)⊗M(η2)
= /∗ By Definition 29 (page 24) of M for 3-colored next functions /∗

{λ1,M(c1) 7→ η1(λ1, c1)) |λ1 ∈ Λ1 and c1 ∈ S1(λ1) }
⊗

{λ2,M(c2) 7→ η2(λ2, c2)) |λ2 ∈ Λ2 and c2 ∈ S2(λ2) }
= /∗ By Definition 15 of composition for next functions /∗

〈λ1, λ2〉,M(c1) ∪M(c2)7→

〈η1(λ1, c1), η2(λ2, c2)〉

∣∣∣∣∣∣
〈λ1, λ2〉 ∈ Λ1 × Λ2

and
M(c1) ∪M(c2) ∈ (M(S1)�M(S2))(〈λ1, λ2〉)


= /∗ By the distributivity of M for 3-colorings over composition in Lemma 9 (page 33)

/∗
〈λ1, λ2〉,M(c1 ∪ c2)7→

〈η1(λ1, c1), η2(λ2, c2)〉

∣∣∣∣∣∣
〈λ1, λ2〉 ∈ Λ1 × Λ2

and
M(c1 ∪ c2) ∈ (M(S1)�M(S2))(〈λ1, λ2〉)


= /∗ By the distributivity of M for 3-CTMs over composition in Lemma 11 (page 34) /∗

〈λ1, λ2〉,M(c1 ∪ c2)7→

〈η1(λ1, c1), η2(λ2, c2)〉

∣∣∣∣∣∣
〈λ1, λ2〉 ∈ Λ1 × Λ2

and
M(c1 ∪ c2) ∈ (M(S1 � S2))(〈λ1, λ2〉)


= /∗ By Definition 28 (page 23) of M for 3-CTMs /∗

〈λ1, λ2〉,M(c1 ∪ c2)7→
〈η1(λ1, c1), η2(λ2, c2)〉

∣∣∣∣∣∣
〈λ1, λ2〉 ∈ Λ1 × Λ2

and
M(c1 ∪ c2) ∈ M((S1 � S2)(〈λ1, λ2〉))


= /∗ By Definition 27 (page 22) of M for 3-coloring tables /∗

〈λ1, λ2〉,M(c1 ∪ c2)7→

〈η1(λ1, c1), η2(λ2, c2)〉

∣∣∣∣∣∣
〈λ1, λ2〉 ∈ Λ1 × Λ2

and
c1 ∪ c2 ∈ (S1 � S2)(〈λ1, λ2〉)


= /∗ By Definition 29 (page 24) of M for 3-colored next functions /∗

M


〈λ1, λ2〉, c1 ∪ c27→

〈η1(λ1, c1), η2(λ2, c2)〉

∣∣∣∣∣∣
〈λ1, λ2〉 ∈ Λ1 × Λ2

and
c1 ∪ c2 ∈ (S1 � S2)(〈λ1, λ2〉)




= /∗ By Definition 15 (page 12) of composition for next functions /∗

M(η1 ⊗ η2)

Connector animating [Cos10] concerns the visual simulation of Reo connec-
tors; the current Reo distribution12 includes a tool that facilitates this. To com-
pute animations, this tool analyzes the coloring models of connectors. Experience
suggests that animations based on 3-coloring models provide users with better
insight about the behavior of a connector than animations based on 2-coloring
models. To accord with this observation, however, becomes problematic if—for
the sake of improving efficiency as speculated in the previous subsection—we

12 Homepage: http://reo.project.cwi.nl/
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Table 12. Proof: 1
M (M(N)) = N .

1
M (M(N))

= /∗ By Definition 22 (page 17) of M /∗

1
M
(⋃

n∈N{n, n }
)

= /∗ By Definition 34 (page 38) of 1
M

/∗{
n′ ∈

⋃
n∈N{n, n }

∣∣n′, n′ ∈ ⋃n∈N{n, n }
}

= /∗ Because, by 1-to-1 in Definition 22 (page 17), [n′, n′ ∈
⋃

n∈N{n, n }] iff [n′ ∈⋃
n∈N{n }] and because, by the definition of

⋃
, [n′ ∈

⋃
n∈N{n }] iff [n′ ∈ N ] /∗{

n′ ∈
⋃

n∈N{n, n } |n
′ ∈ N

}
= /∗ Because

⋃
ranges over N /∗

N

would write an implementation of Reo that operates on M-ed 3-coloring mod-
els instead of the 3-coloring models themselves: in that case, we would have
to compute animations based on 2-coloring models, which inform users poorly.
Therefore, in this final subsection, we define the inverse of M, denoted by 1

M ,
which allows us to retrieve a 3-colored η-connector from its M-transformation.
We commence with the definitions of 1

M for the structural aspects of coloring
models and conclude with the definitions of 1

M for their behavioral aspects.

Structure We start with 1
M for M-ed sets of nodes. This operator erases all the

context nodes from the M-ed set.

Definition 34 ( 1
M for M-ed sets of nodes). Let N ⊆ Node be an M-ed set

of nodes. Its 1
M -transformation, denoted 1

M (N), is defined as:

1
M (N) = {n ∈ N |n, n ∈ N }

The following lemma states that the application of 1
M to an M-ed set of nodes

yields the untransformed set of nodes. In our proof, we apply the one-to-one
correspondence between base nodes and context nodes.

Lemma 14 ( 1
M for M-ed sets of nodes inverts M). Let N ⊆ Node be a set

of nodes. Then:

1
M (M(N)) = N

Proof. Follows from Table 12 (page 38). ut

We proceed with the definition of 1
M for M-ed primitives. Similar to how

1
M for M-ed sets of nodes erases all the context nodes from a set, 1

M for M-ed
primitives erases all the context nodes from a list.

Definition 35 ( 1
M for M-ed primitives). Let e = (nj11 , . . . , n

j2k
2k ) be an M-ed

primitive over N . Its 1
M -transformation, denoted 1

M (e), is defined as:
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Table 13. Proof: 1
M (M(e)) = e.

1
M (M(e))

= /∗ By Definition 2 (page 3) of e /∗

1
M (M((nj1

1 , . . . , n
jk
k )))

= /∗ By Definition 23 (page 17) of M for primitives /∗

1
M ((nj1

1 , . . . , n
jk
k , (n1)¬j1k+1, . . . , (nk)

¬jk
2k ))

= /∗ By Definition 35 (page 38) of 1
M for primitives /∗

(nj1
1 , . . . , n

jk
k )

= /∗ By Definition 2 (page 3) of e /∗

e

1
M (e) = (nj11 , . . . , n

jk
k )

The following lemma states that the application of 1
M to an M-ed primitive yields

the untransformed primitive.

Lemma 15 ( 1
M for M-ed primitives inverts M). Let e = (nj11 , . . . , n

jk
k ) be a

primitive over N . Then:

1
M (M(e)) = e

Proof. Follows from Table 13 (page 39). ut

We continue with the definition of 1
M for M-ed sets of primitives. Informally,

the application of 1
M to an M-ed set of primitives yields a set of 1

M -ed M-ed
primitives.

Definition 36 ( 1
M for M-ed sets of primitives). Let E be an M-ed set of

primitives. Its 1
M -transformation, denoted 1

M (E), is defined as:

1
M (E) = { 1

M (e) | e ∈ E }

The following lemma states that the application of 1
M to an M-ed set of primitives

yields the untransformed set of primitives. In our proof, we apply the inversion
lemma that concerns 1

M for M-ed primitives.

Lemma 16 ( 1
M for M-ed sets of primitives inverts M). Let E be a set of

primitives. Then:

1
M (M(E)) = E

Proof. Follows from Table 14 (page 40). ut

We end with 1
M for M-ed connector structures. Recall from Definition 3

(page 3) that connector structures consist of a set of boundary nodes and a
set of primitives. This allows us to define 1

M for M-ed connector structures in
terms of 1

M for M-ed sets of nodes and 1
M for M-ed sets of primitives.
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Table 14. Proof: 1
M (M(E)) = E

1
M (M(E))

= /∗ By Definition 24 (page 18) of M for sets of primitives /∗

1
M ({M(e) | e ∈ E })

= /∗ By Definition 36 (page 39) of 1
M for sets of primitives /∗

{ 1
M (M(e)) |M(e) ∈ {M(e) | e ∈ E) }

/∗ By the inversion of M for primitives by 1
M in Lemma 15 (page 39) and because

[M(e) ∈ {M(e) | e ∈ E }] iff [e ∈ E] /∗

= { e | e ∈ E }
/∗ Because E = { e | e ∈ E } /∗

= E

Definition 37 ( 1
M for M-ed connector structures). Let C = 〈B,E〉 be an

M-ed connector structure over N . Its 1
M -transformation, denoted 1

M (C), is de-
fined as:

1
M (C) = 〈 1M (B), 1

M (E)〉
The following lemma states that the application of 1

M to an M-ed connector
structure yields the untransformed connector structure. In our proof, we apply
the inversion lemmas that concern 1

M for M-ed sets of nodes and 1
M for M-ed

sets of primitives.

Lemma 17 ( 1
M for M-ed connector structures inverts M). Let C =

〈N,B,E〉 be a connector structure over N . Then:

1
M (M(C)) = C

Proof. Applying Definition 30 (page 25) of M for connector structures and Def-
inition 42 (page 43) of 1

M for M-ed connector structures yields:〈
1
M (M(B)),
1
M (M(E))

〉
=

〈
B,
E

〉
(i)

(ii)

Sub-equation (ii) follows from the inversion of M for sets of nodes by 1
M in

Lemma 14 (page 38), while sub-equation (ii) follows from the inversion of M for
sets of primitives by 1

M in Lemma 16 (page 39). Therefore, 1
M (M(C)) = C. ut

Behavior We conclude with 1
M for the behavioral aspects of M-ed 3-colored η-

connectors and begin with the definition of 1
M for M-ed 3-colorings. By analyzing

the colors that an M-ed 3-coloring assigns to a base node and its dual, we can
infer the color that the untransformed 3-coloring assigns to the base node: due
to Definition 26 (page 21) of M for 3-colorings, the colors (from 2-Color) that
an M-ed 3-coloring assigns to a base node and its dual uniquely define the color
(from 3-Color) that the untransformed 3-coloring assigns to this base node.
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Table 15. Proof: 1
M (M(c)) = c

1
M (M(c))

= /∗ By Definition 38 (page 41) of 1
M for M-ed 3-colorings /∗n 7→ κ

∣∣∣∣∣∣∣∣
n, n ∈ M(N) and

κ =

 . if {n 7→ , n 7→ } ∈ M(c)
/ if {n 7→ , n 7→ } ∈ M(c)

if {n 7→ , n 7→ } ∈ M(c)




= /∗ By Definition 26 (page 21) of M for 3-colorings /∗n 7→ κ

∣∣∣∣∣∣n ∈ N and κ =

 . if c(n) = .
/ if c(n) = /

if c(n) =


= /∗ Because c is a 3-coloring by the premise /∗

{n 7→ κ |n ∈ N and κ = c(n) }
= /∗ By Definition 6 (page 7) of colorings /∗

c

Definition 38 ( 1
M for M-ed 3-colorings). Let c be an M-ed 3-coloring over

N . Its 1
M -transformation, denoted 1

M (c), is defined as:

1
M (c) =

n 7→ κ

∣∣∣∣∣∣∣∣
n, n ∈ N and

κ =

 . if c(n) = and c(n) =
/ if c(n) = and c(n) =

if c(n) = and c(n) =




The following lemma states that the application of 1
M to an M-ed 3-coloring

yields the untransformed 3-coloring.

Lemma 18 ( 1
M for M-ed 3-colorings inverts M). Let c be a 3-coloring over

N . Then:

1
M (M(c)) = c

Proof. Follows from Table 15 (page 41).

We proceed with the definition of 1
M for M-ed 3-coloring tables. Recall that

we defined a coloring table as a set of colorings. Informally, the application of 1
M

to an M-ed 3-coloring table yields a set of 1
M -ed M-ed 3-colorings.

Definition 39 ( 1
M for M-ed 3-coloring tables). Let T be an M-ed 3-coloring

table over N . Its 1
M -transformation, denoted 1

M (T ), is defined as:

1
M (T ) = { 1

M (c) | c ∈ T }

The following lemma states that the application of 1
M to an M-ed 3-coloring table

yields the untransformed 3-coloring table. In our proof, we apply the inversion
lemma that concerns 1

M for M-ed 3-colorings.
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Table 16. Proof: 1
M (M(T )) = T

1
M (M(T ))

= /∗ By Definition 27 (page 22) of M for 3-coloring tables /∗

1
M ({M(c) | c ∈ T )

= /∗ By Definition 39 (page 41) of 1
M for M-ed 3-coloring tables /∗

{ 1
M (M(c)) |M(c) ∈ {M(c) | c ∈ T } }

= /∗ By the inversion of M for 3-colorings by 1
M in Lemma 18 (page 41) and by Defini-

tion 27 (page 22) of M for 3-coloring tables /∗

{ c |M(c) ∈ M(T ) }
= /∗ Because, by Definition 27 (page 22) of M for 3-coloring tables, M(c) ∈ M(T ) iff c ∈
T

/∗

T

Lemma 19 ( 1
M for M-ed 3-coloring tables inverts M). Let T be a 3-coloring

table over N . Then:

1
M (M(T )) = T

Proof. Follows from Table 16 (page 42) ut

We continue with the definition of 1
M for 3-CTMs. Recall from Definition 9

(page 8) that a CTM maps indexes (representing the states of a connector) to
coloring tables (describing the admissible behavior in these states). Informally,
the application of 1

M to an M-ed 3-CTM yields a CTM that maps indexes to
1
M -ed M-ed 3-coloring tables.

Definition 40 ( 1
M for M-ed 3-CTMs). Let S be an M-ed 3-CTM over [N,Λ].

Its 1
M -transformation, denoted 1

M (S), is defined as:

1
M (S) = {λ 7→ 1

M (S(λ)) |λ ∈ Λ }

The following lemma states that the application of 1
M to an M-ed 3-CTM yields

the untransformed 3-CTM. In our proof, we apply the inversion lemma that
concerns 1

M for M-ed 3-coloring tables.

Lemma 20 ( 1
M for M-ed 3-CTMs inverts M). Let S be a 3-CTM over [N,Λ].

Then:

1
M (M(S)) = S

Proof. Follows from Table 17 (page 43). ut

We proceed with the definition of 1
M for 3-colored next functions. Recall that a

next function maps [index, coloring]-pairs to indexes. Informally, the application
of 1

M to an M-ed 3-colored next function yields a next function that maps [index,
1
M -ed M-ed 3-coloring]-pairs to indexes.
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Table 17. Proof: 1
M (M(S)) = S

1
M (M(S))

= /∗ By Definition 28 (page 23) of M for 3-CTMs /∗

1
M ({λ 7→ M(S(λ)) |λ ∈ Λ })

= /∗ By Definition 40 (page 42) of 1
M for M-ed 3-CTMs /∗

{λ 7→ 1
M (M(S(λ))) |λ ∈ Λ }

= /∗ By the inversion of M for 3-coloring tables by 1
M in Lemma 19 (page 42) /∗

{λ 7→ S(λ) |λ ∈ Λ }
= /∗ Because S is a total map with Λ as its domain /∗

S

Definition 41 ( 1
M for M-ed 3-colored next functions). Let η be an M-ed

3-colored next function over [N,Λ, S]. Its 1
M -transformation, denoted 1

M (η), is
defined as:

1
M (η) = { (λ, 1

M (c)) 7→ η(λ, c)) |λ ∈ Λ and c ∈ S(λ) }

The following lemma states that the application of 1
M to an M-ed 3-colored next

function yields the untransformed 3-colored next function. In our proof, we apply
the inversion lemma that concerns 1

M for M-ed 3-colorings.

Lemma 21 ( 1
M for M-ed 3-colored next functions inverts M). Let η be a

3-colored next function over [N,Λ, S]. Then:

1
M (M(η)) = η

Proof. Follows from Table 18 (page 44) ut

We conclude with the definition of 1
M for M-ed 3-colored η-connectors. Recall

from Definition 11 (page 9) that η-connectors consist of a connector structure
and a next function. This allows us to define 1

M for M-ed 3-colored η-connectors
in terms of 1

M for M-ed connector structures and 1
M for M-ed 3-colored next

functions.

Definition 42 ( 1
M for M-ed 3-colored η-connectors). Let CCol = 〈C, η〉

be an M-ed 3-colored η-connector over [N,Λ, S]. Its 1
M -transformation, denoted

1
M (CCol), is defined as:

1
M (CCol) = 〈 1M (C), 1

M (η)〉

The following lemma states that the application of 1
M to an M-ed 3-colored η-

connector yields the untransformed 3-colored η-connector. In our proof, we apply
the inversion lemmas that concern 1

M for M-ed connector structures and 1
M for

M-ed 3-colored next functions.

Lemma 22 ( 1
M for M-ed 3-colored η-connectors inverts M). Let CCol =

〈C, η〉 be a 3-colored η-connector over [N,Λ, S]. Then:
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Table 18. Proof: 1
M (M(η)) = η

1
M (M(η))

= /∗ By Definition 41 (page 43) of 1
M for M-ed 3-colored next functions /∗

{λ, 1
M (M(c)) 7→ (M(η))(λ,M(c)) |λ ∈ Λ and M(c) ∈ (M(S))(λ) }

= /∗ By Definition 29 (page 24) of M for 3-colored next functions /∗

{λ, 1
M (M(c)) 7→ η(λ, c) |λ ∈ Λ and M(c) ∈ (M(S))(λ) }

= /∗ Because, by Definition 27 (page 22) of M for 3-coloring tables, [M(c) ∈ (M(S))(λ)]
iff [c ∈ S(λ)] /∗

{λ, 1
M (M(c)) 7→ η(λ, c) |λ ∈ Λ and c ∈ S(λ) }

= /∗ By the inversion of M for 3-colorings by 1
M in Lemma 18 (page 41) /∗

{λ, c 7→ η(λ, c) |λ ∈ Λ and c ∈ S(λ) }
= /∗ By Definition 10 (page 8) of next functions /∗

η

1
M (M(CCol)) = CCol

Proof. Applying Definition 30 (page 25) of M for 3-colored η-connectors and
Definition 42 (page 43) of 1

M for M-ed 3-colored η-connectors yields:〈
1
M (M(C)),
1
M (M(η))

〉
=

〈
C,
η

〉
(i)
(ii)

Sub-equation (i) follows from the inversion of M for connector structures by
1
M in Lemma 17 (page 40), while sub-equation (ii) follows from the inversion
of M for 3-colored next functions by 1

M in Lemma 21 (page 43). Therefore,
1
M (M(CCol)) = CCol. ut

4 From 2-colored η-connectors to α-connectors

In the previous section, we showed that two coloring models can describe the
behavior of context-sensitive connectors. In this section, we proceed this line
of work by showing that constraint automata—and in particular the class of
port automata—can describe the behavior of context-dependent connectors as
well. Our approach, called the L-transformation, comprises two unary operators,
both denoted by L for notational convenience, that facilitate the transformation
of 2-colored η-connectors to corresponding α-connectors. The L-transformation
enables the encoding of context-dependency in PA as follows: starting with
a 3-colored η-connector CCol, we first generate its corresponding 2-colored η-
connector using M—i.e., M(CCol)—and then construct the α-connector that cor-
responds to M(CCol) using L—i.e., L(M(CCol)). Because M ensures that the inter-
mediate 2-colored η-connector M(CCol) faithfully describes the possibly context-
dependent behavior of the connector that CCol models (as proven in the previous
section), the α-connector L(M(CCol)) does so as well.
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We note that the correspondence between 2-colored η-connectors and α-
connectors has been argued for informally in several publications [CCA07,Cos10].
We quote from [CCA07]:

One aspect of the constraint automata model is that transitions in au-
tomata are labeled with the collection of nodes that synchronously suc-
ceed in a given step, at the exclusion of all other nodes present in the
connector being modeled. Calculating this set based on the configura-
tion of a connector (which is equivalent to the state of the constraint
automaton) is precisely what connector coloring achieves. That is, the
2-coloring model of a connector produces a set of colorings which can be
equated with the transitions in the corresponding constraint automata.

In this section, we present a formal argument.13 First, we give the definitions
of L in Section 4.1 (page 45). Second, we prove its correctness in Section 4.2
(page 47). Third, we show that L distributes over composition in Section 4.3
(page 48). Finally, in Section 4.4 (page 52), we discuss an application of M and
L: the verification of context-dependent connectors with Vereofy.

4.1 Definitions of L

In this subsection, we define two versions of L—the one operates on 2-colored
next functions and the other on 2-colored η-connectors—that facilitate the trans-
formation of the 2-coloring model of a connector to its corresponding port au-
tomaton. Recall from Definition 18 (page 13) that a PA defines a constraint
automaton whose all transitions carry > as data constraint; recall from the
same definition that a CA serves as an operational model of the behavior of a
connector.

We start with L for 2-colored next functions. Informally, this unary operator
transforms a 2-colored next function over a set of nodes N , a set of indexes Λ,
and a 2-coloring table map S to a PA whose set of states equals Λ. Furthermore,
L includes for each index λ ∈ Λ and for each coloring c ∈ S(λ) (recall that
CTMs map indexes to coloring tables) a transition labeled with the set of nodes
to which c assigns the flow color as firing set; all transitions additionally carry
> as the data constraint.

Definition 43 (L for 2-colored next functions). Let η be a 2-colored next
function over [N,Λ, S] and λ0 ∈ Λ the index that represents the initial state of
the connector whose state-transitions η models. Its L-transformation, denoted
L(η), is defined as:

L(η) = 〈Λ,R, λ0〉
in which:

R =

{
〈λ, F,>, η(λ, c)〉

∣∣∣∣λ ∈ Λ and c ∈ S(λ) and
F = {n ∈ N | c(n) = }

}
13 Actually, we present a somewhat weaker result: we show only that for each 2-colored
η-connector, there exists a corresponding α-connector. We do not require the oppo-
site direction for our current purpose and leave it for future work.
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∅
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∅
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{A,C}{A,B}

∅

Fig. 17. L-ed M-ed 3-coloring models of some of the common primitive connectors.

The following proposition states that the application of L to a 2-colored next
function yields a well-formed PA.

Proposition 10 (L-ed 2-colored next functions are PA). Let η be a 2-
colored next function over [N,Λ, S]. Then, L(η) is a PA over [N ].

Proof. By Definition 19 (page 14), we must show that L(η) = 〈Λ,R, λ0〉 is a
CA over [N, {>}]. To demonstrate this, by Definition 18 (page 13), we must
show that R ⊆ Λ× 2N × {>}×Λ. Because, by the premise, η is a next function
over [N,Λ, S], by Definition 10 (page 8), the co-domain of η is Λ. Also, by
Definition 43 (page 45), for all 〈λ, F, g, η(λ, c)〉 ∈ R, we have λ ∈ Λ, F ⊆ N ,
and g = >. Therefore, L(η) = 〈Λ,R, λ0〉 is a CA over [N, {>}] ut

To illustrate the application of L to 2-colored next functions, in Figure 17
(page 46) and Figure 18 (page 47), we show the L-ed M-ed 3-colored next
functions—i.e., L-ed 2-colored next functions, i.e., PA—of some of the com-
mon primitive connectors, ExclRouter, and LossyFIFO.14 Note that the transi-
tion 〈LosFIFO-E, {A},>, LosFIFO-E〉, which describes the inadmissible behavior
in which LossyFIFO loses a data item between A and an empty buffer, does not
exist in the context-sensitive PA of LossyFIFO. This contrasts its ordinary PA in
Figure 9 (page 15).

We end this subsection with the definition of L for 2-colored η-connectors. Re-
call that η-connectors consist of a connector structure and a next function. This

14 We do not depict the transitions that one can induce with the flip-rule. See also
Footnote 6 (page 9).
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ExclRouter

{A,B,C}

{A,B}

{A,C}
∅

LosFIFO-E LosFIFO-F
{A}

∅

{B}

{A,B}

{B}

{A,B}

Fig. 18. L-ed M-ed 3-coloring models of ExclRouter and LossyFIFO.

allows us to define L for 2-colored η-connectors in terms of L for 2-colored next
functions. Note that connector structures do not incur any change; L changes
only the semantic models that we associate these connector structures with.

Definition 44 (L for 2-colored η-connectors). Let CCol = 〈C, η〉 be a 2-
colored η-connector over [N,Λ, S]. Its L-transformation, denoted L(CCol), is de-
fined as:

L(CCol) = 〈C,L(η)〉

The following proposition states that the application of L to a 2-colored η-
connector yields a well-formed α-connector.

Proposition 11 (L-ed 2-colored η-connectors are α-connectors). Let
CCol = 〈C, η〉 be a 2-colored η-connector over [N,Λ, S]. Then, L(CCol) = 〈C,L(η)〉
is an α-connector over N .

Proof. By Definition 19 (page 14) of α-connectors, we must show that L(η) is
a PA over N . This follows from Proposition 10 (page 46). Therefore, L(CCol) is
an α-connector over N . ut

4.2 Correctness of L

In this subsection, we show the correctness of L: we call the L-transformation
correct if, for each 2-colored η-connector CCol, its L-transformation L(CCol) bi-
simulates CCol; the definition of bi-simulation in this context occurs below. As
our definition of simulation for η-connectors, this definition roots in Milner’s
notion of bi-simulation [Mil89]. Informally, an α-connector CCA bi-simulates an
η-connector CCol (and vice versa: bi-simulation, in contrast to simulation, relates
symmetrically) if for each mapping in the next function of CCol, there exists a
corresponding transition in the PA of CCA, and for each transition in the PA of
CCA, there exists a corresponding mapping in the next function of CCol.

Definition 45 (Bi-simulation for α-connectors and η-connectors). Let
CCA = 〈C,α〉 with α = 〈Q,R, q0〉 be an α-connector over [N,G] and CCol = 〈C, η〉
an η-connector over [N,Λ, S]. CCA and CCol are bi-similar, denoted CCA ∼ CCol,
if there exists a relation R ⊆ Q× Λ such that, for all 〈q, λ〉 ∈ R:
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(i) If 〈q, F,>, q′〉 ∈ R then there ex-
ists a λ′ ∈ Λ such that:

– [〈λ, c〉 7→ λ′] ∈ η;
– 〈λ′, q′〉 ∈ R;
– F = {n ∈ N | c(n) = }.

(ii) If [〈λ, c〉 7→ λ′] ∈ η then there
exists a q′ ∈ Q such that:

– 〈q, F,>, q′〉 ∈ R;
– 〈λ′, q′〉 ∈ R;
– F = {n ∈ N | c(n) = }.

In that case, R is called a bi-simulation relation.

The following lemma establishes the correctness of L: it states that the L-
transformation of a 2-colored η-connector bi-simulates this 2-colored η-connector
(and, by symmetry, vice versa).

Lemma 23 (L-ed 2-colored η-connectors and 2-colored η-connectors
are bi-similar). Let CCol = 〈C, η〉 be a 2-colored η-connector over [N,Λ, S].
Then, L(CCol) ∼ CCol.

Proof. Let R = { 〈λ, λ〉 |λ ∈ Λ }. We show that R is a bi-simulation relation
by demonstrating that it satisfies (i) and (ii) of Definition 45 (page 47). Let
〈λ, λ〉 ∈ R.

(i) Suppose 〈λ, F,>, λ′〉 ∈ R. Then, by Definition 43 (page 45) of R, there exists
a c ∈ S(λ) such that λ′ = η(λ, c) and λ′ ∈ Λ. Hence, [〈λ, c〉 7→ λ′] ∈ η. Also,
by the definition of R, 〈λ′, λ′〉 ∈ R. Finally, by Definition 43 (page 45) of
R, F = {n ∈ N | c(n) = }. Therefore, R satisfies (i).

(ii) Suppose [〈λ, c〉 7→ λ′] ∈ η. Then, by Definition 43 (page 45) of R, there exists
a c ∈ S(λ) such that 〈λ, F,>, λ′〉 ∈ R and λ′ ∈ Λ. Also, by the definition
of R, 〈λ′, λ′〉 ∈ R. Finally, by Definition 43 (page 45) of R, F = {n ∈
N | c(n) = }. Therefore, R satisfies (ii).

Thus, R satisfies (i) and (ii). Hence, R is a bi-simulation relation. Therefore,
L(CCol) ∼ CCol. ut

4.3 Distributivity of L

In this subsection, we demonstrate that L distributes over composition, impor-
tant for similar reasons as the relevance of the distributivity of M over com-
position in Section 3.3 (page 30): we prefer (i) to compute L-transformations
only once for the common primitive connectors and (ii) to compose the resulting
port automata to form more complex PA. Because we defined L for two types of
operands (2-colored next functions and 2-colored η-connectors), this subsection
consists of two lemmas: one distributivity lemma for each form of L.

We start with the distributivity lemma of L for 2-colored next functions.
Informally, this lemma states that it does not matter whether we first compose
2-colored next functions η1 and η2 and then apply L to the composition or
first apply L to η1 and η2 and then compose the transformations; the resulting
PA equal each other. Our proof, although rather technical and relatively long,
essentially comprises of a series of straightforward applications of definitions that
allow us to rewrite the transition relations of the composed PA.
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Lemma 24 (L for 2-colored next functions distributes over composi-
tion). Let η1 and η2 be 2-colored next functions over [N1, Λ1, S1] and
[N2, Λ2, S2]. Additionally, let λ10 and λ20 be indexes representing the initial states
of the connectors whose state-transitions η1 and η2 model. Then:

L(η1) ./ L(η2) = L(η1 ⊗ η2)

Proof. Applying Definition 43 (page 45) of L for 2-colored next functions to
the left-hand side (LHS) and Definition 15 (page 12) of composition for next
functions to the right-hand side (RHS) yields:

〈Λ1, R1, λ
1
0〉

./
〈Λ2, R2, λ

2
0〉

= L

 〈λ1, λ2〉, c1 ∪ c27→

〈η1(λ1, c1), η2(λ2, c2)〉

∣∣∣∣∣∣ 〈λ1, λ2〉 ∈ Λ1 × Λ2 and
c1 ∪ c2 ∈ (S1 � S2)(〈λ1, λ2〉)




in which:

R1 =

{
〈λ1, F1,>, η1(λ1, c1)〉

∣∣∣∣λ1 ∈ Λ1 and c1 ∈ S1(λ1) and
F1 = {n ∈ N1 | c1(n) = }

}
and:

R2 =

{
〈λ2, F2,>, η2(λ2, c2)〉

∣∣∣∣λ2 ∈ Λ2 and c2 ∈ S2(λ2) and
F2 = {n ∈ N2 | c2(n) = }

}
Applying Definition 20 (page 14) of composition for CA to the LHS, and Defi-
nition 43 (page 45) of L for next functions to the RHS yields:

〈Λ1 × Λ2, R, 〈λ10, λ20〉〉 = 〈Λ1 × Λ2, R
′, 〈λ10, λ20〉〉

in which:

R =

〈〈λ1, λ2〉, F1 ∪ F2,>, 〈λ′1, λ′2〉〉

∣∣∣∣∣∣
〈λ1, F1,>, λ′1〉 ∈ R1

and 〈λ2, F2,>, λ′2〉 ∈ R2

and F1 ∩N2 = F2 ∩N1


and:

R′ =

{
〈λ, F,>, (η1 ⊗ η2)(λ, c)〉

∣∣∣∣λ ∈ Λ1 × Λ2 and c ∈ (S1 � S2)(λ)
and F = {n ∈ N1 ∪N2 | c(n) = }

}
What remains to be shown is R = R′. This follows from Table 19 (page 50) and
Table 20 (page 51). Therefore, L(η1) ./ L(η2) = L(η1 ⊗ η2). ut

We marked the most interesting step in our proof with “
.
=” (instead of the

ordinary “=”), which occurs as the fourth equality symbol (counted from top
to bottom) in Table 19 (page 50). In that step, we use the premise that the
2 -colored next functions under consideration map only 2 -colorings. In case of
3-colored next functions, this step becomes invalid, and the proof breaks down.

We end this subsection with the distributivity lemma of L for 2-colored η-
connectors. Informally, this lemma states that it does not matter whether we first
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Table 19. Proof: R = R′ (first part)

R
= /∗ By the definition of R in Lemma 24 (page 49) /∗{
〈〈λ1, λ2〉, F1 ∪ F2,>, 〈λ′1, λ′2〉〉

∣∣∣∣ 〈λ1, F1,>, λ′1〉 ∈ R1 and 〈λ2, F2,>, λ′2〉 ∈ R2

and F1 ∩N2 = F2 ∩N1

}
= /∗ By the definitions of R1 and R2 in Lemma 24 (page 49) /∗〈〈λ1, λ2〉, F1 ∪ F2,>, 〈λ′1, λ′2〉〉

∣∣∣∣∣∣∣∣∣∣
λ1 ∈ Λ1 and c1 ∈ S1(λ1) and λ′1 = η1(λ1, c1)
and F1 = {n ∈ N1 | c1(n) = } and
λ2 ∈ Λ2 and c2 ∈ S2(λ2) and λ′2 = η2(λ2, c2)
and F2 = {n ∈ N2 | c2(n) = }
and F1 ∩N2 = F2 ∩N1


= /∗ Because, by the definition of the Cartesian product, [λ1 ∈ Λ1 and λ2 ∈ Λ2] iff
〈λ1, λ2〉 ∈ Λ1 × Λ2

/∗
〈〈λ1, λ2〉, F1 ∪ F2,>, 〈λ′1, λ′2〉〉

∣∣∣∣∣∣∣∣∣∣∣∣

〈λ1, λ2〉 ∈ Λ1 × Λ2

and c1 ∈ S1(λ1) and c2 ∈ S2(λ2)
and λ′1 = η1(λ1, c1) and λ′2 = η2(λ2, c2)
and F1 = {n ∈ N1 | c1(n) = }
and F2 = {n ∈ N2 | c2(n) = }
and F1 ∩N2 = F2 ∩N1


.
= /∗ Because, by the definition of F1 and F2 in Lemma 24 (page 49), [F1∩N2 = F2∩N1]

iff [{n ∈ N1 ∩ N2 | c1(n) = } = {n ∈ N1 ∩ N2 | c2(n) = }], and
because, since c1 and c2 are 2-colorings, [{n ∈ N1 ∩ N2 | c1(n) = } = {n ∈
N1 ∩N2 | c2(n) = }] iff [c1(n) = c2(n) for all n ∈ N1 ∩N2] /∗
〈〈λ1, λ2〉, F1 ∪ F2,>, 〈λ′1, λ′2〉〉

∣∣∣∣∣∣∣∣∣∣∣∣

〈λ1, λ2〉 ∈ Λ1 × Λ2

and c1 ∈ S1(λ1) and c2 ∈ S2(λ2)
and λ′1 = η1(λ1, c1) and λ′2 = η2(λ2, c2)
and F1 = {n ∈ N1 | c1(n) = }
and F2 = {n ∈ N2 | c2(n) = }
and c1(n) = c2(n) for all n ∈ N1 ∩N2


= /∗ Because, by Definition 13 (page 10) of composition for coloring tables, [c1 ∈
S(λ1) and c2 ∈ S(λ2) and c1(n) = c2(n) for all n ∈ N1 ∩ N2] iff [c1 ∪ c2 ∈ S(λ1) ·
S(λ2)] /∗〈〈λ1, λ2〉, F1 ∪ F2,>, 〈λ′1, λ′2〉〉

∣∣∣∣∣∣∣∣∣∣
〈λ1, λ2〉 ∈ Λ1 × Λ2

and c1 ∪ c2 ∈ S1(λ1) · S2(λ2)
and λ′1 = η1(λ1, c1) and λ′2 = η2(λ2, c2)
and F1 = {n ∈ N1 | c1(n) = }
and F2 = {n ∈ N2 | c2(n) = }


= /∗ Continued in Table 20 /∗

· · ·
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Table 20. Proof: R = R′ (second part)

〈〈λ1, λ2〉, F1 ∪ F2,>, 〈λ′1, λ′2〉〉

∣∣∣∣∣∣∣∣∣∣
〈λ1, λ2〉 ∈ Λ1 × Λ2

and c1 ∪ c2 ∈ S1(λ1) · S2(λ2)
and λ′1 = η1(λ1, c1) and λ′2 = η2(λ2, c2)
and F1 = {n ∈ N1 | c1(n) = }
and F2 = {n ∈ N2 | c2(n) = }


= /∗ By Definition 14 (page 11) of composition for coloring table maps /∗〈〈λ1, λ2〉, F1 ∪ F2,>, 〈λ′1, λ′2〉〉

∣∣∣∣∣∣∣∣∣∣
〈λ1, λ2〉 ∈ Λ1 × Λ2

and c1 ∪ c2 ∈ (S1 � S2)(〈λ1, λ2〉)
and λ′1 = η1(λ1, c1) and λ′2 = η2(λ2, c2)
and F1 = {n ∈ N1 | c1(n) = }
and F2 = {n ∈ N2 | c2(n) = }


= /∗ Because, by Definition 15 (page 12) of composition for next functions, [〈λ1, λ2〉 ∈
Λ1 × Λ2 and c1 ∪ c2 ∈ (S1 � S2)(λ) and λ′1 = η1(λ1, c1) and λ′2 = η2(λ2, c2)] iff
[〈λ′1, λ′2〉 = (η1 ⊗ η2)(〈λ1, λ2〉, c1 ∪ c2)] /∗〈〈λ1, λ2〉, F1 ∪ F2,>, 〈λ′1, λ′2〉〉

∣∣∣∣∣∣∣∣∣∣
〈λ1, λ2〉 ∈ Λ1 × Λ2

and c1 ∪ c2 ∈ (S1 � S2)(〈λ1, λ2〉)
and 〈λ′1, λ′2〉 = (η1 ⊗ η2)(〈λ1, λ2〉, c1 ∪ c2)
and F1 = {n ∈ N1 | c1(n) = }
and F2 = {n ∈ N2 | c2(n) = }


= /∗ By applying F = F1 ∪ F2, and by the definitions of F1 and F2 in Lemma 24

(page 49) /∗〈〈λ1, λ2〉, F,>, 〈λ′1, λ′2〉〉

∣∣∣∣∣∣∣∣∣∣
〈λ1, λ2〉 ∈ Λ1 × Λ2

and c1 ∪ c2 ∈ (S1 � S2)(〈λ1, λ2〉)
and 〈λ′1, λ′2〉 = (η1 ⊗ η2)(〈λ1, λ2〉, c1 ∪ c2)

and F =

{
n ∈ N1 ∪N2

∣∣∣∣ c1(n) =
or c2(n) =

}


= /∗ Because, by Definition 12 (page 10) of composition for colorings, [c1(n) =
or c2(n) = ] iff [c1 ∪ c2 = ]

/∗〈〈λ1, λ2〉, F,>, 〈λ′1, λ′2〉〉

∣∣∣∣∣∣∣∣
〈λ1, λ2〉 ∈ Λ1 × Λ2

and c1 ∪ c2 ∈ (S1 � S2)(〈λ1, λ2〉)
and 〈λ′1, λ′2〉 = (η1 ⊗ η2)(〈λ1, λ2〉, c1 ∪ c2)
and F = {n ∈ N1 ∪N2 | c1 ∪ c2 = }


= /∗ By applying λ = 〈λ1, λ2〉 and c = c1 ∪ c2 /∗{
〈λ, F,>, (η1 ⊗ η2)(λ, c)〉

∣∣∣∣λ ∈ Λ1 × Λ2 and c ∈ (S1 � S2)(λ)
and F = {n ∈ N1 ∪N2 | c1 ∪ c2 = }

}
= /∗ By definition of R′ /∗

R′
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4.4 APPLICATION: MODEL CHECKING WITH VEREOFY

compose 2-colored η-connectors CCol1 and CCol2 and then apply L to the composi-
tion or first apply L to CCol1 and CCol2 and then compose the transformations; the
resulting α-connectors equal each other. In our proof, we apply the distributivity
lemma that concerns L for 2-colored next functions.

Lemma 25 (L for 2-colored η-connectors distributes over composi-
tion). Let CCol1 = 〈C1, η1〉 and CCol2 = 〈C2, η2〉 be 2-colored η-connectors over
[N1, Λ1, S1] and [N2, Λ2, S2]. Additionally, let λ10 and λ20 be indexes representing
the initial states of the connectors that CCol1 and CCol2 model. Then:

L(CCol1 )× L(CCol2 ) = L(CCol1 × CCol2 )

Proof. Applying Definition 44 (page 47) of L for 2-colored η-connectors, Defini-
tion 16 (page 12) of composition for η-connectors, and Definition 21 (page 15)
of composition for α-connectors yields:〈

C1 � C2,
L(η1) ./ L(η2)

〉
=

〈
C1 � C2,
L(η1 ⊗ η2)

〉
(i)

(ii)

Sub-equation (i) follows trivially, while sub-equation (ii) follows from the dis-
tributivity of L for 2-colored next functions over composition in Lemma 24
(page 49). Therefore, M(CCol1 )×M(CCol2 ) = M(CCol1 × CCol2 ). ut

4.4 Application: model checking with Vereofy

We proceed with an application of M and L: the verification of context-sensitive
connectors with Vereofy [BBKK09b,BBKK09a],15 a model checking tool for the
analysis of Reo connectors based on constraint automata. Vereofy, developed
by the group of Christel Baier at the Technical University of Dresden, allows
for the verification of temporal properties expressed in LTL and CTL-like log-
ics, and it supports bi-simulation equivalence checks. Moreover, it can generate
counterexamples and provides a GUI integration with the Eclipse Coordination
Tools.16

Up to now, Vereofy could not faithfully model check context-dependent con-
nectors; to verify such connectors, one needed to implement context-dependency
as non-determinism, potentially rendering the result of a verification run mean-
ingless. Using M and L, however, we mend this deficiency: the port automata
that result from applying our transformation operators properly describe the
behavior of context-sensitive connectors, and since PA constitute a subclass of
CA, we can specify and verify them with Vereofy. To summarize our approach:

1. Transform the common primitive 3-colored η-connectors to context-depend-
ent 2-colored η-connectors using M. Examples appear in Figure 13 (page 23),
Figure 14 (page 23), and Figure 16 (page 26).

15 Vereofy homepage: http://www.vereofy.de
16 Eclipse Coordination Tools homepage: http://reo.project.cwi.nl
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4.4 APPLICATION: MODEL CHECKING WITH VEREOFY

2. Transform these context-dependent 2-colored η-connectors to context-de-
pendent α-connectors using L. Examples appear in Figure 17 (page 46).

3. Compose these context-dependent α-connectors to construct more complex
connectors. Examples appear in Figure 18 (page 47).

Although simple and straightforward, this recipe enables the analysis of context-
sensitive connectors with Vereofy in many cases. Unfortunately, there exist cases
in which this approach does not work due to the presence of causality loops: since
there do not exist methods for the detection and removal of causality loops from
CA, we must remove these from the coloring models of connectors—i.e., before
we transform coloring models to CA. To summarize our approach in this case:

1. Transform the common primitive 3-colored η-connectors to constructive 3-
colored η-connectors that consist of constructive 3-colorings [Cos10] to facil-
itate the detection and removal of causality loops.

2. Compose these constructive 3-colored η-connectors to construct more com-
plex constructive 3-colored η-connectors.

3. Detect and remove causality loops.
4. Transform these filtered constructive 3-colored η-connectors to 2-colored η-

connectors using M.
5. Transform these 2-colored η-connectors to α-connectors using L.

Shortly, we illustrate both of the two approaches with an example.
Vereofy comes with a library that contains CA of most of the common prim-

itive connectors, written in two input languages: the Reo Scripting Language (a
textual version of Reo) and the guarded command language CARML (a tex-
tual version of constraint automata). For our purpose, we adapted and extended
this library: using M and L, we wrote a new library CD-Library that con-
tains context-dependent versions of some of the common primitive connectors.17

Specifically, CD-Library contains the context-dependent CA of Sync, LossySync,
FIFO, SyncDrain, Merger, and Replicator. In addition to these primitive connec-
tors, we also included atomic context-dependent CA of ExclRouter and SyncFIFO
(the composed versions of these CA contain causality loops).

In the rest of this subsection, we give two examples of the analysis of context-
dependent connectors with Vereofy: we start with the specification and verifica-
tion of LossyFIFO and end with the specification and verification of SyncFIFO.

LossyFIFO A simple example concerns LossyFIFO. In Figure 19 (page 54), we
repeat its ordinary port automaton (on the left) and the PA that results from
applying M and L to its 3-coloring model (on the right). In the latter, for sim-
plicity, we hide the context nodes A and B. (Note, however, that for the proper
composition of LossyFIFO with other connectors, one requires an instance with
visible context nodes.) Additionally, in Figure 19 (page 54), we show the RSL
code that specifies these automata.

17 CD-Library and examples: http://reo.project.cwi.nl/vereofy_CD.tar.gz

-53-

http://reo.project.cwi.nl/vereofy_CD.tar.gz
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1 CIRCUIT L O S S Y _ F I F O _ N D {
2
3 / / Channels
4 new L O S S Y _ S Y N C _ N D ( A ; M ) ;
5 new F I F O 1 ( M ; B ) ;
6
7 / / Boundary
8 s o u r c e [ 0 ] = A ;
9 s i n k [ 0 ] = B ;

10
11 / / Hide
12 M = NULL;
13 }

1 CIRCUIT L O S S Y _ F I F O _ C D {
2
3 / / Channels
4 new L O S S Y _ S Y N C _ C D ( A , n M ; M , n A ) ;
5 new F I F O 1 _ C D ( M , n B ; B , n M ) ;
6
7 / / Boundary
8 s o u r c e [ 0 ] = A ; s o u r c e [ 1 ] = n B ;
9 s i n k [ 0 ] = B ; s i n k [ 1 ] = n A ;

10
11 / / Hide
12 M = NULL; n M = NULL;
13 }

LosFIFO-E LosFIFO-F
{A}

∅

{A}
{B}

{A,B}

∅

{A}

LosFIFO-E LosFIFO-F
{A}

∅

{B}

{A,B}

∅

{A}

Fig. 19. Ordinary PA of LossySync (bottom–left) and its specification in RSL (top–left)
and the L-ed M-ed 3-coloring model of LossySync (bottom–right) and its specification
in RSL (top–right).

The two CA equal each other except for one transition of the ordinary CA:
〈LosFIFO-E, {A},>, LosFIFO-E〉. This transition describes an inadmissible be-
havior of LossyFIFO, namely the loss of a data item between A and an empty
buffer. In contrast, the CA that results from applying M and L to the 3-coloring
model of LossyFIFO does not have this transition and thus, does not permit
this inadmissible behavior. The following LTL property demonstrates this dif-
ference: �((LosFIFO-E∧A)→© LosFIFO-F). This property states that always
if LossyFIFO has an empty buffer and its input node A fires, it has a full buffer
one step forward in time. Whereas the ordinary CA violates this property, the
context-dependent CA satisfies it.

SyncFIFO A more complex example concerns SyncFIFO. In fact, a first attempt
to model SyncFIFO using our library of context-sensitive primitive connectors
failed due to the presence of causality loops in the resulting composition. Because
we cannot detect and remove causality loops from constraint automata, we had
to handle these in the 3-coloring model of the connector (using constructive
colorings) as described above. In Figure 20 (page 55), we depict the ordinary CA
of SyncFIFO and the context-sensitive CA that results from this procedure. At
first sight, these automata seem very similar. In fact, if we hide all context nodes
in the context-dependent CA on the right, we obtain two identical automata.

The crux of the difference between the two automata, therefore, lies exactly in
these context nodes: in contrast to LossyFIFO, SyncFIFO itself exhibits context-
dependent behavior (instead of only the primitive connectors that constitute
it, namely LossySync). Recall that in the EMPTY state, if the output node of
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SyncFIFO-E SyncFIFO-F
{A}

∅

{A,B}
{B}

∅

SyncFIFO-E SyncFIFO-F
{A,B}

∅

{A,B}

{B}

{B}

{B,A}

∅

{A}

{B}

Fig. 20. Ordinary PA of SyncFIFO (left) and its L-ed M-ed 3-coloring model (right).

SyncFIFO (henceforth: B) lacks a take request, a write request on its input node
(henceforth: A) causes a data item to flow into the buffer. However, if B has a
pending take request, a write request on A causes a data item to flow immediately
to node B. The ordinary CA of SyncFIFO does not capture this difference, which
means that an implementation of this CA would non-deterministically choose one
of these two options in case of a pending write request on A and a pending take
request on B. In contrast, an implementation of the context-dependent CA of
SyncFIFO always chooses the appropriate option, because in the absence of a take
requests on B, data items with irrelevant content—i.e., signals—flow through
B. To illustrate this, we encourage the interested reader to compose SyncFIFO
and FIFO in the same way we composed LossySync and FIFO.18

5 Related work

In [AR03], Arbab et al. introduce a coalgebra-based semantic model for Reo.
Some years later, in [BSAR06], Baier et al. present an automaton-based ap-
proach, namely constraint automata (CA), and prove correspondences with the
coalgebra-based model. In [CCA07], however, Clarke et al. observe that nei-
ther of these models can handle context-sensitivity, and they introduce the 2-
coloring and 3-coloring models to mend this deficiency. Since then, other se-
mantic models with the same aim have come to existence. In [Cos10], Costa
introduces intentional automata (IA) as an operational model with constructs

18 The CA that results from composing the ordinary CA of SyncFIFO and FIFO includes
a transition that describes an inadmissible behavior in which, in case both SyncFIFO
and FIFO have empty buffers, the input node of SyncFIFO fires and causes its own
buffer to become full (while the buffer of FIFO remains empty). The CA that results
from composing the context-dependent CA of SyncFIFO and FIFO, in contrast, does
not include such a transition: if the input node of SyncFIFO fires when both SyncFIFO
and FIFO have empty buffers, the buffer of FIFO becomes full (while the buffer of
SyncFIFO remains empty).

In Vereofy, we can verify this by model checking both connectors for the property
�((SyncFIFOFIFO-EE ∧ A)→© SyncFIFOFIFO-EF), where SyncFIFOFIFO-EE repre-
sents the state with two empty buffers, and SyncFIFOFIFO-EF represents the state
with one full buffer (namely FIFO’s) and one empty buffer (namely SyncFIFO’s).
Whereas the ordinary CA violates this property, the context-dependent CA satisfies
it.
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for context-dependency. Unlike CA, whose states correspond one-to-one to the
internal configurations of connectors, IA have more states than the connectors
they model; each state of an IA contains information about not only the config-
uration of the connector, but also about the nodes that intend to fire (i.e., with
a pending I/O-request). Similarly, transition-labels consist of two sets of nodes:
those that intend to fire, and those that actually fire. By maintaining informa-
tion about I/O-request on nodes, IA capture context-dependency. The number
of states, however, quickly grows large, whereas our approach yields succinct
CA. In [BCS09], Bonsangue et al. introduce guarded automata (GA) as another
automaton-based model for capturing context-dependency. Like CA, the states
of GA correspond one-to-one to the configurations of connectors, which makes
them significantly more compact than IA. To encode context-sensitivity, every
transition-label of a GA consists of a guard and a string. Together, they express
which nodes can fire (the string), given the presence and absence of requests at
certain nodes (the guard). Guarded automata seem very similar to the CA we
obtain with our approach: instead of guards that contain negative occurrences
of (base) nodes to specify that these nodes have no pending I/O-requests, we
make these negative occurrences explicit with the introduction of (flow through)
context nodes.

Besides Vereofy, other approaches to model checking Reo connectors exist.
In [KKdV10], Kokash et al. employ the mCRL2 toolset, developed at the TU
of Eindhoven, for model checking connectors, combined with a translation tool
that automatically generates mCRL2 specifications from graphical models of
Reo connectors. The tool’s original algorithm operated on constraint automata,
making it impossible to verify context-dependent connectors using this approach.
Later, however, Kokash et al. incorporated (3-)coloring information in the tool,
thus facilitating verification of context-dependent connectors. This advantage
of mCRL2 over Vereofy, which could not handle context-dependent connectors
up to now, seems no longer valid as we have shown how to encode context-
sensitivity in Vereofy. An advantage of Vereofy over mCRL2, on the other hand,
is its ability to generate counterexamples, which mCRL2 cannot do. In [Kem09],
Kemper introduces a SAT-based approach to model checking timed constraint
automata (TCA). In her work, Kemper represents TCA as formulas in proposi-
tional logic and uses existing SAT solvers for verification. This approach allows
for model checking timed properties of Reo connectors, but it cannot handle
context-dependency. In [MSA06], Mousavi et al. develop a structural opera-
tional semantics in Plotkin’s style for Reo, encode this semantics in the Maude
term-rewriting language, and use Maude’s LTL model checking module to verify
Reo connectors. In [KSA+08], Khosravi et al. introduce a mapping from Reo to
Alloy, a modeling language based on first-order relational logic, and apply the
Alloy Analyzer for verification. Although the approach can handle some context-
dependent connectors—using a maximal progress rule that removes undesired
behavior—Khosravi et al. admit to have considerable performance issues.
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6 Concluding remarks

We showed how to encode context-sensitivity in the 2-coloring model and con-
straint automata by adding fictitious nodes to every connector model, while
both of these two formalisms are considered incapable of describing the be-
havior of context-dependent connectors. Our approach, constituted by the M-
transformation and the L-transformation, enables the application of tools and
algorithms devised for these simpler semantic models to context-dependent con-
nectors. As an example, we demonstrated how Vereofy can model check context-
sensitive connectors, which seemed impossible up to now.

Future work With respect to future work, we would like to investigate whether
Reo’s implementation can benefit from the results presented in this report.
We speculate that algorithms for the computation of connector composition
run faster on M-transformed 2-colored η-connectors (or their corresponding α-
connectors) than on the untransformed 3-colored η-connectors, because of the
simpler semantic model. Furthermore, we would like to extend our results that
concern the correspondence between 2-coloring models and constraint automata
(recall that in this report, we have formally established an equivalence in only
one direction). Finally, we would like to investigate the relation between other
formalisms for Reo that facilitate the proper modeling of context-dependent be-
havior (e.g., intentional automata and guarded automata).

Acknowledgments We are grateful to the Vereofy team for their support.
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