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Abstract

The ideal magnetohydrodynamic stability is investigated of localized
interchange modes in a large-aspect ratio tokamak plasma. The resulting
stability criterion includes the effects of toroidal rotation and rotation shear and
contains various well-known limiting cases. The analysis allows for a general
adiabatic index, resulting in a stabilizing contribution from the convective effect.
A further stabilizing effect from rotation exists when the angular frequency
squared decreases radially more rapidly than the density. Flow shear, however,
also decreases the stabilizing effect of magnetic shear through the Kelvin—
Helmholtz mechanism. Numerical simulations reveal the merits and limitations
of the performed local analysis.

1. Introduction

Current tokamaks often show significant toroidal flow and flow shear, which can have a large
impact on stability. Rotation was found to stabilize the resistive wall mode, see, e.g. [1] and
references therein. Flow shear is well known for its role in turbulence suppression, leading to
transport barriers. A mitigating influence of flow shear has also been observed for instabilities,
such as tearing modes [2].

A variety of essentially hydrodynamic instabilities has been investigated experimentally
in magnetically confined plasmas. The rotational or centrifugal Rayleigh—Taylor instability
e.g. almost always appears in field-reversed configurations [3] and has recently been observed
in a magnetic dipole experiment [4]. This instability, together with the Kelvin—Helmholtz
instability [5] has been extensively studied in the 1970s and 1980s in Q-machines, see,
e.g. [6,7]. More recently, the Kelvin—Helmholtz instability associated with flow shear has
been considered to play a role in the scrape-off layer of tokamak plasmas [8—10].

Finally, when rotation approaches the ion sound velocity, the centrifugal convective effect
can play a stabilizing role. This is sometimes referred to as gyroscopic stabilization after an
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analogy from the original paper of [11]. Observations consistent with this predicted effect
are reported for sawteeth in MAST [12, 13], TEXTOR [14], and recently for certain ideal
magnetohydrodynamic (MHD) modes [15].

Pressure-driven instabilities put an upper limit on the maximum attainable dimensionless
pressure 3, thereby limiting the performance of a tokamak as an economically viable fusion
energy source. In a magnetically confined toroidal plasma, various magnetohydrodynamic
instabilities can only develop around rational surfaces. At these magnetic surfaces, the main
poloidal and toroidal Fourier harmonics m and n of the unstable mode match the local pitch
q ~ m/n of the magnetic field, so that magnetic field line bending is minimal.

In this paper we investigate the influence of toroidal rotation on pressure-driven instabilities
localized near rational surfaces. We use a large-aspect ratio expansion of the linear MHD
equations to derive an insightful stability criterion. Numerical simulations serve to test and
illustrate selected aspects of the analysis. Both the analytical and the numerical investigations
include flow self-consistently and take into account plasma compressibility.

For high n, coupling between poloidal harmonics will enable a mode to balloon outwards
into the low-field region of unfavourable curvature. Ballooning modes were found to be further
destabilized by rigid rotation [16, 17], primarily by a further enhancement of the unfavourable
curvature. Flow shear was often found to have a stabilizing influence [18-20]. Unless the
magnetic shear is very low, this effect may, however, be small for sub-Alfvénic flow shear [18].
In specific cases the net effect of flow shear was found to be destabilizing [21].

It was found that, at low [22] or reversed [23] magnetic shear, over a large range of
parameters the most unstable modes are low or intermediate n ‘infernal modes’ that can be
unstable well below the ballooning mode stability limit. These ideal [24] or resistive [25]
modes are driven by pressure gradients and are capable of causing serious disruptions and
collapses. For m = n = 1 this mode is called the quasi-interchange mode [26, 27], which was
used to create an understanding of sawtooth oscillations.

Often a local analysis is performed in which unstable modes are assumed to be highly
localized around a rational magnetic surface. An analysis of this kind lead to the Mercier
criterion [28]. For a tokamak plasma with a circular cross-section, a large-aspect ratio € !,
and low 8 ~ €% a simple stability criterion results [29, 30] that relates the maximum allowed
pressure gradient to the local magnetic shear. The only difference between this toroidal result
and the cylindrical Suydam criterion [31-33] is a stabilizing term due to the average curvature
of the toroidal magnetic field. Corrections to the cylindrical result due to plasma flow were
obtained in [34,35]. Corrections to the toroidal result due to flow shear [36] or centrifugal
forces [37,38] have only been obtained separately and for a ratio of specific heats y = 1.

We will generalize these results to include the effects of both flow shear and centrifugal
forces. Furthermore, the present analysis allows for an adiabatic index larger than y = 1.
The most notable effect associated with a deviation from isothermality is the convective effect
considered experimentally in [12—15]. This effect was in analytical and numerical studies found
to stabilize the internal kink mode [11, 39], localized modes [38], and the quasi-interchange
mode [40]. We find that, depending on the specific profiles, the net effect of toroidal rotation
may be either stabilizing or destabilizing. The obtained stability criterion will be compared
with and supplemented with numerical simulations.

2. Preliminaries

We consider the ideal magnetohydrodynamic equilibrium of an axisymmetric tokamak plasma
with major radius Ry and minor radius a. We use a cylindrical coordinate system (R, Z, ¢)
and consider plasma rotation with an angular frequency €2 in the toroidal ¢-direction. Because
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of the high thermal conductivity along the magnetic field, we can assume the equilibrium
temperature T = p/p to be constant within magnetic surfaces labelled by . In order to
satisfy the force balance dp/dR|y = pRQ?, the pressure p and density p satisfy

p/ps = p/ps = exp (M*(R* — R})/R}), (1)

where ps and p, correspond to the static situation M = 0. Here M = RyQ2/+/2T is related
to the Mach number M = RQ//yT by M = /y/2My, where My = M(R,). We note that
Ds» Ps, 2 and T are functions of ¥ only so that M = M(y) but M = M(R, V).

To investigate the waves and instabilities that arise in a given equilibrium, we consider an
infinitesimal plasma perturbation

EW,0,0.1) =) &, (Y070, )

where 0 is the poloidal angle in the (7, ) flux coordinate system introduced in [41]. The
linearized equation of motion for £ was given by Frieman and Rotenberg and can for a purely
toroidal rotation velocity v = €2 x R be written as [11, 42]

— pwpé — 2ipwp x £ = Fy(§) — RV - (pQ7¢). 3)

Here wp = w + nQ is the Doppler-shifted frequency, the second term represents the Coriolis
effect, and the right-hand side contains the static force operator Fy and an additional force due
to rotation.

The equation of motion (3) can be simplified for a tokamak plasma with a circular cross-
section and inverse aspect ratio € = a/Ry < 1, when investigating low frequencies w ~
and assuming the ordering M ~ 1,m/q —n ~ € and B ~ €. Here B(r) = 2uops/ B3 and
q(r) = d¢/d0 ~ rBy/RoBy, where the radial coordinate r replaces v and the constant By
refers to the magnetic field at the geometric axis R = Rj. Expanding (3) up to fourth order
in €, for non-zero m and n a mode equation can be obtained for the radial component of the
main harmonic § = &, (r) [41]:

(A +E[?AY —r(m® = DA = g. “
Here a prime denotes d/dr and

B (a)lz) — a)z)(w% — w?)

Al = =, (5
wi(wg —a)lz))
As = Allg=mm + @A = n*B(1 = ¢*) —m?By, (6)
where
2 4nQ Q2
A:%%(H—z), %)
W) Wy — wp 20;
Br = BMP(1+ M?). ®)
Here wa(r) = Bo//psRo, ws(r) = /v T /Ry, and
Wi = ol (a) £+/a? — a) and w} = o?/q%, ©)]
where
11, @k (m :
ar=l+—S+-(@M + MY+ =S| ——n]) , (10)
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The notation A{|,—n,, means that in the evaluation of A;, ¢ has to be replaced by m/n.
The inhomogeneous term g arises from the toroidal coupling of € to its sideband amplitude

w1 [41]. When the sideband rational surface at ¢ = (m + 1)/n is not located within the
plasma, this coupling term is given by

1 m+1 ~
g= 5(1 +m)n2q4R3 ( ) B )
(

r a
a

(i)m+1 Be dr, (12)

a
where ,5 = B(1 + M?). We note that (4) can alternatively be written in terms of x = r& as

rrAx) + x(r(A2 — A —m*Ap) = g. (13)
Because of the last terms in a; and a5 it holds that Ay = Ay|g—n/n + (m/q — n)2. Within the
present ordering (m/q — n)> = n*>(Aq)?/q>, with Aq being the difference between ¢ and its
rational surface value m /n. Apart from Agq in this magnetic shear term, in all other expressions
q refers to the constant value ¢ = m/n.

Note that no assumption is made on the magnitude of the magnetic shear. Itis only required
thatm /g —n ~ € inthe region where the mode amplitude is significant. Such modes experience
little magnetic field line bending so that they can easily be unstable to interchanging adjacent
plasma elements. Such interchange modes are sometimes referred to as flute instabilities. In
the following section we will derive a stability criterion for such modes.

3. Derivation of a stability criterion

Under certain conditions, the continuum of frequencies a)]% = w?(r) will contain an

accumulation point for instabilities. Equation (9) shows that for y > 1, w? is lifted by rotation
to a finite buoyancy frequency, or Brunt—Vaisala frequency, associated with a stable entropy
stratification [41,43]. A stabilizing influence can be therefore be expected for instabilities
clustering at this continuum. We will consider the stability of modes that are radially highly
localized, without taking into account the coupling between poloidal harmonics leading to
poloidal localization. For such localized modes, the Coriolis shift [44] is much smaller than
the Doppler shift so that we can assume that marginal stability holds for wp &~ 0. Wheny > 1,
the w_-continuum will not vanish at the rational surface. Modes clustering at this continuum
are therefore not automatically unstable.

3.1. A local mode equation

We investigate the mode equation (13) around the radial position » = ry where the coefficient
r3 Ay, multiplying the highest derivative of £, has a local minimum. Marginally stable modes
will have a Doppler-shifted frequency wp &~ n€2'x that vanishes at x = r — ry = 0. To second
order in x, (5) gives

2 2 nQ 2 2 402
A= (1 N 2) x2> — T ) (14)
WA W Wy WA W
2 2 Q’ 2 2 2
= 1925 <1 L ) x2> — A iy (15)
Wx 20) Wp
2
G F
—G+ (ﬂ - n) s (_2 - _2) (n )’ 22 (16)
q Wy Wy
where
F =2¢%a1]gmm/n = 1 +2¢°[1 + y "M (4 + MP)], (17)
G = (0! /03)q Wl gemm = (1 — y " HBM®*. (18)
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F is a toroidal inertial enhancement factor that reduces to the Pfirsch—Schliiter factor 1 + 2¢>
for M = 0. G is the value of A, at the rational surface for wp = 0. For y > 1, there will in
general be a small difference Ar = ry — rg between the rational surface at r = rgand x = 0
so that (m/q — n)?> = (nq'/q)*(x* + 2xAr + (Ar)?). Using (16), we can write to second
order in x

/ 2
PPA ~ (L — M2) <@) (62 +x%) (19)
q
where, evaluated at x = 0,
2
Y q / F G
MgEMg_M]gE(_,) 522(—2——2) 20)
q Wy Wy
G 2
52 = _ ( q ) . Q1)
1 — M3 \nq'
In writing (19), we assumed that
Ar)?
(—12 L8 L. (22)
11— M3

The first inequality was used to neglect the magnetic field line bending at x = 0 to write
Aj(x = 0) = G. The second inequality was used to neglect the contribution to (19) due
to the variation in 3. Finally, we assumed the contribution of G” to be negligible. The
implications of the orderings of (22) will be discussed in sections 3.2 and 3.4, respectively.
Using B/w} = 2¢*/ywi we can write

2 A2
- - (q Q
M:=F(1) =, 23
A (CI'> w3 @y
F=1+2¢*1+y '"M*@&+y "M (24)

Note the small difference in this modified inertial enhancement factor F compared with F
from (17). Using (19), the mode equation (4) can locally be written as

(8> +x*)&"Y + DE = h, (25)
where h = g(q/nq")*/(1 — M?2) and, evaluated at x = 0,

Ay —(m*—1)G 1 ?
p="A=tm -1 _<i> . (26)
1-M;  r*\nq
With wp = nQ'x, the quantity A" at x = 0 is given by
L L4 Q2
wy 20;

We note that instead of (4) the mode equation (13) for x = r& could have been used. Where
(rA))’ = 0, we can write r(Ay — A)) — m?A; = rAf — (m*> — 1)A,, yielding again (25)
and (26).

3.2. Localized mode solutions

The solutions to the local equation (25) are

E(x)=c P, (%) +020, <E) + ﬁ (28)
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where the degree of the Legendre functions P and Q isv = —1/2+./1/4 — D. Wheny =1
or M = 0, § vanishes and these solutions become x"* with v, = —1/2 + \/1/4 — D. For
D > 1/4 these solutions are rapidly oscillating and diverging near x = 0. The solution (28)
has a characteristic length scale §. In line with the local character of the present analysis, (22)
requires that § < ry. From (21) we see that magnetic shear ensures mode localization,
especially for high n. Also, the closer the mode frequency is to that of the continuum, as
measured by G, the more localized they become.

3.3. A local stability criterion

When the degree v is real, the solution (28) is radially non-oscillatory so that stability is
ensured. This is the case when D < 1/4, which yields for stability

/7 2
(=117 (%) > =B (1= %) +q*(Sy + S + ), (29)
where
S, = G'/m* — (m* — )G /m?r, (30)
Sk = =B = —[BMP(1+ MP)], €3]
Se = 2BM2(1+y ' MHQY Q2. (32)

Alternatively, the multiplicative factor 1 — M3 can be taken into account by adding ¢?S; to the
right-hand side of (29), where

_rI*:SZ’2

=-—=. (33)
4q* 0}

S

3.4. Ordering

Within the ordering used in the derivation of (4), the terms in the stability criterion (29) are
all of order B ~ €2. The dimensionless flow M and flow shear My are both of order unity.
The conditions (22) used in the derivation of (29) introduce some additional restrictions on the
quantities involved. The second inequality of (22) requires

/ 2
(1 -y HaM* <« |1 — M2} (%) ) (34)

Since gz(nq’ /q)? is of the same order as f, the analysis breaks down when either (ro/a)? or
[1— Mﬁ| becomes too small and (34) additionally requires

-y '« or M <L (35)

In the stability condition (29) y appears as a free parameter, whereas for high M (35) requires
the use of y ~ 1. We will look at the two options (35) explicitly in sections 5.2 and 5.3.

Note that for low n, assumption (34) makes S, negligible in the stability criterion (29).
For n > 1, the part S, & —G/r may, however, still be relevant. This is because for n > 1,
magnetic shear ensures mode localization even when G increases.

When either M = 0 or y = 1, the continuum frequency w_ vanishes at the rational
surface so that wp = 0 becomes a cluster point. In these particular cases, the result (29) could
have been obtained in a more formal fashion using the Frobenius method [45].
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Using S, ~ —G/r and BM? = Q% /w3, (29) can be written as

/ 2
(";) > —B +q* B — M* — MHY

2 7\ 2 2 2 2
4 (rﬁ <3> +20 (1 + ﬂ) —(1 - y*l)Q M ) . (36)
Wi 2q Y r

4. Physical interpretation

,
4

[}

In the absence of flow, stability criteria (29) or (36) reduce to a well-known expression for
local stability, discussed in section 5.1. The left-hand side of (29) or (36) shows the stabilizing
effect associated with the bending of magnetic field lines. The right-hand side contains the
destabilizing pressure gradient 8’ and also a term ¢>p’ representing the average stabilizing
effect of toroidal magnetic field curvature. The physical interpretation of the various flow
terms will be discussed next.

4.1. The convective term S,

The assumption underlying the appearance of the stabilizing S, term is that of adiabatic
plasma motion conserving S = pp~7. When the pressure adjusts instantaneously, a perturbed
plasma element will have a relative density difference with its environment proportional to
—S§'/yS. A displacement in the direction of a force g per unit mass will therefore yield
an oscillation frequency wgy = +/—g8/yS. This Brunt—Viisalid-frequency or buoyancy
frequency describes stable oscillations when the specific entropy S decreases in the direction
of the body force. Otherwise its gives the growth rate of instability.

Plasma confined to an isothermal magnetic surface will encounter an increasing
pressure (1) in the direction of the centrifugal force. When y > 1 the specific entropy will then
be decreasing, having a stabilizing influence. The centrifugal force per unit mass g = RQ? so
that, using (1), we can write

5 1 RQ?

BV =73 yS

58 1 —y RM?
SR, Yy R}

R~ (1 — y HM*Q?, (37

where an average directional factor (cos?>6) = 1/2 was included for plasma motion within
the circular magnetic surfaces, because both the centrifugal force and the entropy gradients
correspond to gradients in the R-direction. In terms of this frequency
G 1 w}
S, ~ ——~ —— -2V (38)

r rowk

We note that at the rational surface, for M < 1, we can write w? ~ wfw /(1 +2q2), revealing the
convective effect as the origin of this finite continuum frequency. The Pfirsch—Schliiter factor
1 + 247 accounts for an increased effective inertia, due to the motion along the magnetic field
that accompanies poloidal motion within the magnetic surfaces. The stabilizing centrifugal
convective effect, or gyroscopic stabilization after [11], is considered for sawteeth in tokamaks
in [12-15].

4.2. The kinetic energy term Sy

Previously, this term was found in the study of ballooning modes [17], the internal kink
mode [11] and localized modes [37,38]. The term corresponds to a variation of the kinetic
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energy density (3/0r) (R-VipR*Q?) ~ [2p,/M*(1 +/\/l2)]/ = —B}S;, where (1) was
used. Typically in a tokamak both p; and M decrease radially, furthering instability by
effectively diminishing the Mercier curvature term g24’.

The origin of S; can be traced back to the last term in (3), which is associated with a
potential energy (& - R)* (€ - V)3p?/d [11]. This shows that Sy requires the perturbation
to have a component in the direction of the centrifugal force.

The origin of a kinetic energy gradient as a source of instability can be understood
by considering a thin differentially rotating disc with a small perpendicular magnetic field,
e.g. an astrophysical accretion disc [46]. Adding the Brunt—Vaisala-frequency squared
of an incompressible plasma perturbation RQ2?p’/p and the frequency squared RQ?Y of
the magnetorotational instability [47,48] yields R(pQ?)'/p [49,50]. Instability resulting
from a gradient in the kinetic energy may therefore be understood as a combination of the
magnetorotational instability and the convective instability.

The incompressible buoyancy-frequency p’ RQ?/p appears for the convective instability
because it results from radial plasma perturbations, which are nearly incompressible due
to the large energy associated with magnetic compression. This instability is analogous
to the Rayleigh-Taylor instability of a fluid on top of a lighter fluid. In contrast to
the magnetorotational instability, this instability is often observed in experiments, see,
e.g.[3,4,6,7].

4.3. The flutter term S¢

Because this term derives from the radial variation of the Doppler shift wj, = n€Q’ through A’
it is expected to play a role only for non-axisymmetric perturbations. Typically in a tokamak
Q% < 0o that S is stabilizing.

A potential energy term proportional to 2% was found in [17] and [11,51] in relation to
ballooning modes and the internal kink mode, respectively.

In [17], an integrated form of S¢ was associated with the kinetic energy of the fluttering
motion occurring as the plasma flows past the perturbation. Its origin can be traced back to
the Coriolis term in (3).

Different from S; and the shear stabilization effect found for ballooning modes [18, 19],
the sign of Q' is important for S¢. In contrast to the magnetorotational instability, St is
stabilizing for a radially decreasing angular frequency. It may therefore be very well possible
to experimentally observe the influence of this term on stability.

4.4. The shear term S

The prefactor 1 — M3 already appears in the cylindrical result [34,35,52], with F = 1.
The quantity M, is sometimes referred to as the Alfvén Mach number and gives the ratio
between the flow shear and the frequency shear of Alfvén waves. When these shears match,
an instability does not bend the field lines and the magnetic shear term vanishes. In this
way, flow shear effectively diminishes the stabilizing influence of magnetic field line bending.
This destabilizing effect of S, ~ pQ' is essentially that of the Kelvin-Helmholtz instability,
modified by toroidicity, rotation and a magnetic field. For a torus, a similar term was
found in [36,53] and in [37], where it was eventually neglected due to the used ordering.
Experimentally this instability has been studied in magnetically confined plasmas mainly in
Q-machines, see, e.g. [5-7].

The same quantity 1 — M3 with F = 1 multiplies the highest derivative term in ballooning
mode equations [18, 19] at marginal stability. For low flow shears this Kelvin—Helmholtz term
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was found to lead to shear destabilization [18, 21] of ballooning modes. For higher flow shears
with M =~ 1, however, complete stabilization was obtained due to the effect of flow shear
on poloidal mode coupling [20]. Non-linearly, interchanges may also be stabilized by flow
shear [54, 55].

Note that (20) shows a stabilizing influence of the convective effect on the Kelvin—
Helmholtz instability for high M*. The stabilizing Brunt-Viisild term M3, diminishes the
destabilizing shear term M3 in such a way that the M*/y termin F is replaced by M*/y? in F.

5. Various limiting cases

5.1. No flow: M =0

Without rotation, S, = S = St = 0 so that (29) reduces to the Shafranov—Yurchenko
condition [29, 30]

2
r{q

- (—) >—p'(1—¢q%, (39)
4\4q

which is a limiting case of the Mercier criterion [28] for large-aspect ratio plasmas with a
circular cross-section. In the cylindrical limit ¢ — 0, the last term vanishes so that (39)
reduces to Suydam’s criterion [31] for static cylindrical plasmas.

5.2. Some flow: M* « 1

Neglecting terms proportional to M*, the stability criterion (29) can be written as

r q/ 2 ) ) q2 02 ! ) rQ2
Z<_) >—pU-qg)+—~ p(—)+(1+2q)42 ) (40)
q Wy o q
where p(Q2/p) = 292 — (p2)'/p derives from the sum of S; and S, respectively. When the
angular frequency squared decreases faster than the density, this term is stabilizing. The shear
term in (40), on the other hand, is always destabilizing. The net effect of rotation therefore
depends crucially on the specific angular frequency and density profile.

Note that the condition M* <« 1 is appropriate for most tokamak plasmas, where the
rotation velocity is usually somewhat smaller than the ion sound velocity. The stability
criterion (40) may be of some relevance to assess the influence of toroidal rotation on transport
barriers, which typically have low magnetic shear but high flow shears. For high-n ballooning
modes, however, flow shear influences poloidal coupling, potentially leading to complete
stabilization [18-20].

5.3. Isothermal: y = 1

When instabilities arise on a long enough timescale for heat exchange with their environment
to take place, it may be appropriate to assume y = 1. In this case, S, vanishes so that (29)
gives with g, = fM2(1 + M?)

/

2 2/ ’
r q , 2Q B
7= M) (;) > —p'(1 —q2)+q2ﬁk< - Fi) (41)

Apart from the new shear term involving M2, this stability criterion is equal to those of [37, 38]
derived for y = 1. For M* < 1, B ~ BM? = pQ?/B} = Q?/wi so that (41) can be

9
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written as
2 202/ 2\O”2
r(q 2¢°Q" +r(1+2g%)Q~/4
Z (—) > B +q* B — B0 + ; : 42)
q Wy

For arigidly rotating plasma with y = 1 as well as M* < 1, the only effect of flow on localized
modes is therefore the subtraction of the kinetic energy density from the static pressure in the
toroidal curvature term.

5.4. Cylindrical limit

In the cylindrical limit g — 0, the only remaining effect of flow is through the factor 1 — Mi
multiplying the magnetic shear term, with Ma = (q/q")2’'/wa. The resulting stability criterion
may be compared with the cylindrical result [34, 35, 52] for purely longitudinal flow, where
the same factor 1 — Mﬁ appears.

The cylindrical result, however, contains an additional term with a trans-slow resonance
for Mﬁ = yp/(B? + yp), which is absent in (29). This is due to the ordering assumed
in the derivation of the mode equation (4). The missing term is O(Bg / B?) = €2 smaller
than the other terms, which is why it does not appear in the present large-aspect ratio result.
This trans-slow resonance also disappears in a proper kinetic treatment [56]. Physically,
within the present ordering there is no coupling between the m, n-Alfvén continuum modes
and the slow-magnetosonic continuum, only with its m = 1, n-sidebands. This is due to the fact
that in cylindrical geometry, the slow-magnetosonic sidebands cross at the rational surfaces,
enhancing the interaction with the Alfvén continuum.

6. Simulations

To illustrate some aspects of the obtained stability criterion (29), we investigate the stability
of a specific rotating equilibrium numerically. An analytical rigidly rotating isothermal
equilibrium [57, 58] is used with y = 5/3, € = 0.1, and 8 between zero at the plasma edge
and a maximum g =~ 0.015. This resulted in a monotonically increasing g-profile, centred
around go = 1 at rp = 0.6, where ¢’ ~ 0.023. For this low shear equilibrium with constant £
and M, (29) predicts instability for M <« 1 when

M >/—rq? /4B’ ~0.1. (43)

The ideal MHD spectrum of waves and instabilities of this equilibrium was investigated
with PHOENIX [59], including seven poloidal harmonics in the eigenvalue calculation.
Convergence checks with more poloidal harmonics have been performed to ensure the accuracy
of the results.

Local stability criteria are sufficient conditions for stability only for modes that are
localized radially. In particular for high mode numbers, modes will also localize poloidally
at the low-field side. We may therefore expect (29) to be a better guide for stability at low
mode numbers, which is what we will focus on. As discussed at the end of section 3.2, mode
localization in this case has to come primarily from closeness of the mode frequencies to the
continuum.

6.1. Quasi-interchange mode

For m = n = 1, a Sturmian sequence of unstable modes appears above a Mach number
My = /5/6 M = 0.15, consistent with (43). Figure 1(b) shows the growth rate of these
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Figure 1. (a) The Doppler-shifted frequency wp divided by wap = wa(R = Ryp), of the
w_-continuum (thick line), the first zonal flow mode (dots), the first three global Alfvén modes
(solid), and the most unstable interchange mode (dashes). (b) The dimensionless growth rate of
the most unstable modes as a function of My = 4/5/6 M. The radial perturbation of the stable and
unstable modes and the poloidal perturbation of the zonal flow-modes is displayed for My = 1.
Note that the smaller the growth rate of the unstable modes, the more localized they are.

unstable quasi-interchange modes for various Mach numbers M. The real part of the Doppler-
shifted frequency of the instability, the Coriolis shift [44], is not monotonic in M, as shown
in figure 1(a). It does become very small for marginally stable modes, justifying the use of
wp = 0 in the performed stability analysis.

6.2. Other modes

Figure 1(a) also shows two types of modes reported earlier [58]. A Sturmian sequence of
modes is present, which have a finite amplitude only in a small range around the rational
surface and are polarized within the magnetic surfaces. The frequency and characteristics of
these modes allowed us to identify them as a type of non-axisymmetric zonal flow modes [58].
The frequency of these modes is always somewhat below the continuum frequency wlzj =w?,
so that these modes were found to become slightly unstable for low M.

The stable global rotation-induced Alfvén modes discussed in [58] appear above
M, ~ 0.15, along with the unstable modes. These modes also cluster below the w_-continuum
frequency as shown in figure 1(a). The mode structure of the unstable modes is very similar to
that of these stable Alfvén modes. Both modes have a single dominant poloidal mode number
that is resonant with the rational surface and small sideband amplitudes.

The most significant difference is in the parallel component, which is much larger for the
unstable modes. The unstable modes apparently couple more strongly with slow-magnetosonic
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Figure 2. The growth rate of the first few unstable modes as a function of n = m for My = 1.
Here wyp is wa evaluated at the magnetic axis.

waves to form a mixed slow-Alfvén eigenmode. For higher mode numbers, the radial
component becomes more significant compared with the poloidal component. Also the
sideband amplitudes of the parallel component become more and more significant for higher
mode numbers. Forn = 10e.g.,them = 9and m = 11 side bands of the parallel displacement
become an order of magnitude larger than the main m = 10 component.

6.3. Infernal modes

Figure 2 shows, for M = 1, the growth rate of the first few most unstable modes as the toroidal
mode number 7 is increased from 1 to 10. The growth rate increases by almost two orders of
magnitude, to reach a dangerously high growth rate of almost Im(wp) = 0.1wa for n = 10.

With increasing n, coupling to poloidal sideband harmonics becomes more important. For
the present case, even for n = 10, the neighbouring rational surfaces at ¢ = (n £ 1)/n lie
outside the plasma due to the low magnetic shear. The mode can minimize magnetic field line
bending by shifting its poloidal sidebands in the direction of their respective rational surface.
This effect is indeed observed in the simulations. These sideband amplitudes have opposite
sign, to give localization at the low-field side. This weak ballooning is visible primarily in the
parallel displacement, the component that does not bend the field lines.

In figure 2 the growth rate is shown for the same equilibrium, using y = 1 in the stability
calculations. The effect of y is seen to be largest for modes with a higher number of nodes.
The stabilization is also most effective for low-m, n modes, which may be explained by the
term S, in (30). The modes shown in figure 2 are far from marginality and not localized
enough to justify the analysis of section 3. The Mercier index D from (26) may, however,
be used as a first approximation for the terms multiplying £ in the mode equation (4). The
term (30) contains a part inversely proportional to m that is stabilizing when G’ < —G/r.
For the present equilibrium this requires |8’| > B/r which, for r ~ r; ~ 0.6 is indeed
the case.

Another observation from the data in figure 2 is that the growth rate decreases
approximately exponentially with the number of nodes of the unstable modes, in agreement
with the result from a boundary layer analysis [60]. Finally we note that for n = 10, unstable
modes are already present in the absence of flow, in contrast with (39). This again shows that
local criteria should not be interpreted as sufficient conditions for stability, since they do not
properly take into account mode coupling.
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7. Conclusions and discussion

A local stability criterion (29) has been derived including the effects of toroidal rotation and
rotation shear. This stability criterion reduces to various known limits. A trans-slow reso-
nance is absent, because in the assumed ordering the Alfvén waves only couple to the slow-
magnetosonic sidebands. A general adiabatic index y is retained in the analysis, although
for sonic rotation velocities the analysis allows only small deviations from isothermality. For
y > 1, the accumulation point for localized modes increases in frequency through the centrifu-
gal convective effect. Destabilizing rotational effects may, however, drive the most unstable
modes away in frequency faster from the accumulation point than this frequency moves away
from marginality. A destabilizing effect is e.g. associated with flow shear. A further destabi-
lizing term is present when the density decreases faster than the angular frequency squared.

The derived criterion is only a sufficient condition for stability for modes that are localized
radially but not poloidally. Local criteria of this kind may therefore be regarded as necessary
conditions for stability only. Numerical simulations indeed show this to be the case. Poloidal
harmonics couple to create an additional destabilizing outward ballooning effect. In relation
to this point, we note the work of [61] showing that for a static cylindrical plasma within ideal
MHD the effect of magnetic shear is to localize instabilities rather than to stabilize them. This
is at variance with local criteria like those of Suydam and that derived in this work, showing
once more the caution that should be taken in interpreting local stability criteria.

The instabilities considered in this paper are particularly unstable in regions of low
magnetic shear, existing e.g. in ‘hybrid’ advanced tokamak scenarios. These instabilities
can also arise due to the very high pressure gradients near internal transport barriers, which
typically arise near low mode number rational surfaces and involve low magnetic shear and
high flow shear [18]. The work of [62,63] shows that a local stability criterion is equal to
the existence criterion for reversed shear Alfvén eigenmodes near a rational surface. The
modifications due to flow discussed here, may therefore also be relevant for these modes that
appear as Alfvén cascades and are used for MHD spectroscopy [64].
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