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Abstract. The paper presents a variant of our generative probabilis-
tic multimedia retrieval model that is suitable for information needs
expressed as multiple examples. Results have been evaluated on the
TRECVID 2003 collection.

1 Introduction

A commonly used paradigm in image and video retrieval is that of querying
by example (QBE). An example document (image or video) is presented to the
search engine, and similar documents are requested. A slightly modified form of
this paradigm is adopted in the TRECVID video retrieval benchmarking effort
[1]. An information request is called a topic. It consists of a textual description of
the multimedia need accompanied by one or more image and/or video examples.
The goal is to return a ranked list of shots that meet the information need.

Combining multiple visual examples to return one set (or ranked list) of
similar documents can be problematic. Consider for example the topic shown
in Figure 1. Here the information need is for shots of points being scored in
basketball. The need is clarified by 6 different examples, some of them close-
ups of the ball going through the basket, others showing overview shots of the
playing field. No document will be highly similar to all examples. Clearly, we are
looking for some sort of OR-functionality here; a query result should be similar
to any of the examples, but not necessarily to all.

A common approach to handling multiple queries is to run separate queries
for each example and combine the results afterwards. In such an approach, the
final score for a document is a function of either the scores or the ranks for the
individual examples [2–4]. It is however far from trivial to choose a combination
function that works well for a variety of queries.

The present work leaves this approach and capture all the different facets of
a set of query examples in a single topic model. For retrieval, all documents in a
collection are compared to this single topic model and ranked accordingly. The

Fig. 1. Topic 101: ‘Find shots of a basket being made’.



rest of the paper is organised as follows. Section 2 describes a generative proba-
bilistic approach to information retrieval. Section 3 discusses how this approach
can be applied to image and video retrieval. Section 4 shows experimental results
and Section 5 summarises our main conclusions.

2 Generative Probabilistic Retrieval

Following Sparck Jones et al. [5], and Lafferty and Zhai [6], we introduce random
variables D and Q to represent a document and a query and an event r to
represent ‘relevant’, and try to answer the following “Basic Question”: What is
the probability that this document is relevant to this query? This probability of
relevance, P(r|D,Q), can be estimated indirectly using Bayes’ rule: P(r|D,Q) =
P(D,Q|r)P(r)/P(D,Q). For ranking documents, we may avoid estimation of
P(D,Q) using the odds of relevance:

P(r|D,Q)
P(r̄|D,Q)

=
P(D,Q|r)P(r)
P(D,Q|r̄)P(r̄)

, (1)

where r̄ means not r. In the following, Q and D are assumed independent in the
unrelevant case (r̄).

Assumption 1. P(Q,D|r̄) = P(Q|r̄)P(D|r̄)
Factoring the conditional probability P(D,Q|r) in different ways leads to two

distinct, though probabilistically equivalent, models [6]. One model corresponds
to query generation, and the other to document generation.

The query generation model results from factoring P(D,Q|r) as P(D,Q|r) =
P(Q|D, r)P(D|r), giving the following odds of relevance:

P(r|D,Q)
P(r̄|D,Q)

=
P(D,Q|r)P(r)
P(D,Q|r̄)P(r̄)

= P(Q|D, r) · P(D|r)
P(D|r̄)︸ ︷︷ ︸
prior odds

· P(r)
P(Q|r̄)P(r̄)︸ ︷︷ ︸
independent of D

(2)

Since the goal is to rank documents, we can safely ignore the document indepen-
dent terms. Also, we assume equal priors, i.e., a priori all documents are equally
likely. This results in the following retrieval status value (RSV) for a document
D:

RSV(D) = P(Q|D, r) (3)

The document generation model results from factoring P(D,Q|r) as
P(D,Q|r) = P(D|Q, r)P(Q|r), arriving at a different equation for the odds of
relevance:

P(r|D,Q)
P(r̄|D,Q)

=
P(D,Q|r)P(r)
P(D,Q|r̄)P(r̄)

=
P(D|Q, r)
P(D|r̄)

· P(Q|r)P(r)
P(Q|r̄)P(r̄)︸ ︷︷ ︸
independent of D

(4)

Ignoring all factors independent of D for ranking gives the following RSV:

RSV(D) =
P(D|Q, r)
P(D|r̄)

(5)



3 Generative Multimedia Retrieval

The next step is to define how to estimate the probabilities P(Q|D, r), P(D|Q, r)
and P(D|r̄). Documents in our case are video shots and queries are either (sets
of) images or shots. We choose to represent a shot by a representative keyframe,
thus all queries and documents are images.1 We estimate the (conditional) prob-
abilities of queries and documents, by building a statistical model for each image.

3.1 Gaussian Mixture Models

The model assumes that an image is the outcome of a random process that
generates n-dimensional feature vectors x = (x1, . . . , xn), where each feature
vector describes a small, square block of pixels. The retrieval framework itself is
independent of the specificities of the features; we have used DCT coefficients
and x- and y-coordinates to capture colour, texture and position of a pixel block.
In the remainder the term sample is used to refer to both the feature vectors
and the pixel blocks they describe. One or more images are represented as a bag
of samples X = {x1,x2, . . . ,xNS

}.
The samples are assumed to be generated by a mixture of Gaussian sources,

where the number of Gaussian components NC is fixed for all images in the
collection. The Gaussian mixture model (GMM) is fully described by a set of
parameters θ = (θ1, . . . ,θNC

) defining the different components. Each compo-
nent Ci is described by its prior probability P(Ci), the mean µi and the variance
Σi, thus θi = (P(Ci),µi,Σi). Details about estimating these parameters are de-
ferred to Section 3.2. Equation 6 defines the probability of drawing one sample
x from a GMM with parameters θ.

p(x|θ) =
NC∑
i=1

P(Ci)
1√

(2π)n|Σi|
e−

1
2 (x−µi)

T Σi
−1(x−µi) (6)

The probability of drawing a bag of samples is simply the joint probability of
drawing the individual samples:

p(X|θ) =
NS∏
i=1

p(x|θ) ∝
NS∑
i=1

log p(x|θ) (7)

Working in the log domain avoids numerical underflow in the multiplication of
many small numbers.

3.2 Parameter Estimation

One way to look at mixture modelling for images is by assuming an image can
show only so many different things, each of which is modelled by a Gaussian
1 For a variant of the generative models in which we incorporate temporal aspects of

video, we refer the reader to [3].



distribution. Each sample in a document is then assumed to be generated from
one of these Gaussian components. This viewpoint, where ultimately each sample
is explained by one and only one component, is useful when estimating the
GMM parameters. The assignment of samples xj to components Ci can be
viewed as hidden variables, so the Expectation Maximisation (EM) algorithm
[7] can be used. This algorithm iterates between estimating the a posteriori class
probabilities for each sample (the E-step) given the current model settings, and
re-estimating the components parameters based on the sample distribution and
the current sample assigments (the M-step):
E-step: Estimate the hidden assignments hij of samples xj to components Ci,
for all samples and components.

hij = P(Ci|xj) =
p(xj |Ci)P(Ci)∑NC

c=1 p(xj |Cc)P(Cc)
(8)

M-step: Update the component’s parameters to maximise the joint distribution
of component assignments and samples. θnew = arg maxθ p(X ,H|θ), where H
is the matrix with all sample assignments hij . More specifically:

µnew
i =

∑
j hijxj∑

j hij
, (9)

Σnew
i =

∑
j hij(xj−µnew

i )(xj−µnew
i )T∑

j hij
, (10)

P(Ci)new = 1
N

∑
j hij (11)

The algorithm is guaranteed to converge.

3.3 Smoothing

Typicalities are more interesting than commonalities. Smoothing is a technique
for explaining the common query terms, to reduce their influence on the rank-
ing[8]. The estimates of the GMM are smoothed using interpolation with a
general, background distribution – this technique is known as Jelinek-Mercer
smoothing [9]. The smoothed version of the likelihood for a single sample x
becomes (cf. Equation 6):

p(x|θ) = κ

[
NC∑
i=1

P(Ci)
1√

(2π)n|Σi|
e−

1
2 (x−µi)

T Σi
−1(x−µi)

]
+(1−κ)p(x), (12)

where κ is a mixture parameter that can be estimated on training data with
known relevant documents. A useful way of thinking about this smoothed variant
is the following. A sample from a smoothed GMM comes either from one of the
NC components, or from a general background model. The background density
p(x) is estimated by marginalisation over all document models in a reference
collection D:

p(x) =
∑
d∈D

p(x|θd)P(d) (13)



The reference collection D can be the current collection, a representative sample
of that, or, another comparable collection.

3.4 GMMs and the Retrieval Framework

In the GMM approach, each document D has 2 representations: a set of samples
XD and a Gaussian mixture model θD (the same holds for queries Q). To relate
this to the conditional probabilities as introduced in Section 2, we estimate the
probability of A conditioned on B and r, P(A|B, r), as the probability that the
model of B (θB) generates the samples of A (XA). Furthermore, to estimate the
probability of A conditioned on the unrelevant event (P(A|r̄)), we use the joint
background density of the samples of A (cf. Equation 13). Thus, the retrieval
status values for query generation (Eq. 3) and document generation (Eq. 5) are
estimated as

RSVQgen(D) = P(Q|D, r) ≡ P(XQ|θD) (14)

RSVDgen(D) =
P(D|Q, r)
P(D|r̄)

≡ P(XD|θQ)
P(XD)

(15)

4 Experiments

We evaluated the query and document generation variant of the generative prob-
abilistic retrieval framework on the TRECVID 2003 search task [1]. For each
document in the collection, and for each query example, we build GMMs as de-
scribed in Section 3.2. Since we are interested in multiple-example queries, we
regard samples from all available query images as a single set of query samples.
We study two variants to represent the sets of query samples XQ. The first vari-
ant uses all available query samples, the second only those samples occurring in
manually selected, interesting regions.2

4.1 Results

We have two model variants (query generation and document generation) and
two ways of building query sample sets (full and regions). This amounts to four
different system variants. Each of these variants is evaluated in isolation, as
well as in combination with textual information. In these combined runs, we
use a query generation approach for the textual part of the query: What is the
probability that the textual query terms are generated by the document model
(The models are built from speech transcripts, for details see [10]).3 Table 4.1
shows results for different experimental settings (the last column is explained in

2 Our manually selected query regions are available from http://www.cwi.nl/

projects/trecvid/.
3 A document generation approach for the textual part is problematic, since the short

text queries we deal with have too little data to estimate proper topic models from.



Section 4.2). If we start with full example images, query generation outperforms
document generation, but if we select regions, the situation is reversed. Looking
at the average precision scores per topic, rather than only at the mean, and
inspecting the returned ranked lists for the different models, it seems that we
have to do with different types of matching. The query generation approach
seems to be good at finding (near) exact matches, and is successful mainly when
the set of examples is homogeneous (e.g. highly similar CNN baseball shots, or
Dow Jones graphics). When a set of examples is less homogeneous, often a single
example dominates the query generation results. Figure 2 shows this effect. In the
document generation approach, the topic models seem to have learned important
common aspects of the query examples, and thus all examples contribute to the
combined result (see Figure 2), and more generic matches are found. The fact
that common aspects are learned, could be an explanation why selecting regions
helps here. When a user indicates important regions, the topic models will be
more focused and retrieve better documents. In the query generation approach,
selecting regions does not help, since exact matching relies heavily on background
similarity.

Table 1. Experimental results. MAP scores for using visual information only (MAPvis)
and a combination of visual and textual information (MAPMM). The MAP for textual
only is .130.

Qgen Dgen Dgen–BG

Qsamples MAPvis MAPMM MAPvis MAPMM MAPvis MAPMM

full .028 .143 .026 .119 .034 .162
region .023 .115 .026 .167 .034 .172

Query Generation Document Generation

Fig. 2. Visualisations of the top N retrieved documents for the multiple-
example run (top row) and the individual example runs, for the rocket
launch query (topic0107). Created using NIST’s BeadPlot tool (see
http://www.itl.nist.gov/iaui/894.02/projects/beadplot/). Colour codes
represent document identifiers.



In combination with textual information, the region based document gen-
eration approach is better than any query generation variant. The lower per-
formance of the query generation approaches can be explained because in this
combination of modalities, the near exact matches on visual content interfere
with the textual ranking. In the document generation approach however, the
visual information seems to provide the generic visual context, while the textual
information zooms in on specific results. For example, for topics that ask for
airplanes, helicopters or rocket launches, the visual model captures the fact that
we are looking for object against a background of sky. The textual information
can than help distinguishing between the specific objects. Figure 3 shows an
example.

Fig. 3. Document generation results (top 5) for Rocket launch query (topic107). The
visual information sets the context (top rows, sky background) adding texual informa-
tion fills in specifics (bottom, rockets

4.2 Automatically Selecting Regions

It is clear that selecting regions is useful for the document generation approach.
Rather than selecting them manually, it is possible to automatically select im-
portant parts of an example image. The main idea is to select those parts of the
example that differ most from the average image. Samples that are likely to be
generated by any model, should not influence the training process too much.

This can be achieved by incorporating background probabilities (Equation
13) in the training process. Again, hidden variables hij indicate the assignment
of samples xj to components Ci, but now samples can also be assigned to the
background, indicated by hBGj . The EM-algorithm can be applied as before.
The E-step changes to:

hij = P(Ci|xj) =
p(xj |Ci)P(Ci)∑NC

c=1 p(xj |Cc)P(Cc) + p(xj)P(BG)
(16)

hBGj = P(BG|xj) =
p(xj)P(BG)∑NC

c=1 p(xj |Cc)P(Cc) + p(xj)P(BG)
, (17)



where P(BG|xj) is the posterior probability that xj is from the background,
and P(BG) is the prior probability that we see background samples from the
current model.

In the M-step, we do not update the background model p(x). All we up-
date are the component parameters (like in Equations 9,10, and 11), and the
background prior (P(BG)) for the current model.

P(BG)new =
1
N

∑
j

hBGj (18)

Since common samples will be assigned to the background, only distinguishing
samples are used in estimating the components’ parameters. Figure, 4 shows
an example image and the regions that are automatically selected to build the
model from.

Fig. 4. Sphinx example. Original image (left) and samples selected by EM algorithm
(right).

The rightmost column of Table 4.1 shows the results for the different settings
trained using the new EM variant. A small (1%) sample from a comparable col-
lection (the TRECVID 2003 development set) was used to estimate the back-
ground probabilities (P(xj)) for the query samples. Clearly, using background
probabilities during training helps. Automatically selecting regions using the
new EM variant is almost as good as manually selecting important regions. Au-
tomatically finding distinguishing parts within manually selected regions, gives
another improvement.

5 Conclusions

This work presented two ways of applying generative probabilistic retrieval mod-
els to the problem of video retrieval: a query generation approach and a doc-
ument generation approach. We showed that the query generation approach is
not good at handling multiple-example queries. Usually, there is no document
model in the collection that is likely to generate all available visual examples. In
such cases, the query generation approach results in a model that explains one
of the examples very well.

The document generation approach on the other hand, has to capture all
information available in the examples in a limited number of Gaussian compo-
nents. Therefore, it will capture mainly things that are present in all examples,
and thus build a model that describes the commonalities in the examples. This



leads to results that take all different examples into account. Often the things
captured in the query models are of a generic, context-like nature (e.g. sky, grass,
water). This turns out to be very useful in combination with textual informa-
tion, where the results are far better than anything obtained so far using the
query generation approach. We showed also, specifically for the document gen-
eration approach, that indicating important regions in example images is useful
for retrieval. The automatic approach we developped yields comparable results
to manual region selection. Automatically selecting important bits within man-
ually created regions gives a slight improvement on the scores over using the
user’s manual selection as is.

Future work on the document generation model should prove whether indeed
the results would be more like exact matches when multiple-example queries are
modelled by more components. Another plan is to investigate automatic selection
of samples for the query generation approach.
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