SIAM J. COMPUT.

© 1980 Society for Industrial and Applied Mathematics
Vol. 9, No. 3, August 1980

0097-5397/80/0903-0009 $01.00/0

GENERATING ALL MAXIMAL INDEPENDENT SETS:

E. L. LAWLERT, J. K. LENSTRAf AND A. H. G. RINNOOY KAN(

Abstract. Suppose that an independence system (E, .#) is characterized by a subroutine which indicates
In unit time whether or not a given subset of E is independent. It is shown that there is no algorithm for
generating all the K maximal independent sets of such an independence system in time polynomial in |E| and
K, unless # = ¥P. However, it is possible to apply ideas of Paull and Unger and of Tsukiyama et al. to obtain
polynomial-time algorithms for a number of special cases, e.g. the efficient generation of all maximal feasible

solutions to a knapsack problem. The algorithmic techniques bear an interesting relationship with those of
Read for the enumeration of graphs and other combinatorial configurations.

Key words. independence system, satisfiability, maximality test, lexicography test, set packing, clique,

complete k-partite subgraph, knapsack problem, on-time set of jobs, inequality system, facet generation,
matroid intersection

1. Introduction. Let E be a finite set of elements and let # be a nonempty family
of subsets of E satisfying a single axiom: if I € $ and I' = I, then I'e #. Under these
conditions, (E, #) is said to be an independence system and # is its family of independent
sets. An independent set [is said to be maximal if there isno I' € .# such that I' o I. The
subsets of E that are not contained in . are dependent sets. A dependent set J is called
minimal if J'€ # for each J' < J.

Suppose that |E|=n and that (E, %) is characterized by a computer subroutine
which indicates in unit time whether or not a given subset of E is an independent set. All
independent sets can be generated in O(n|#|) time: given an independent set, O(n)
applications of the subroutine suffice to determine the next independent set in a
lexicographic listing. But suppose that one is interested only in all the maximal
independent sets, of which there are K, K = |.#|. These can be found in time polynomial
In n and K only in the unlikely event that 22 = /P, as we show in § 2.

There are, however, a number of special types of independence systems for which it
1s possible to generate all the maximal independent sets efficiently. In § 3, an analysis of
a procedure due to Paull and Unger [5] reveals that there is a polynomial-time
algorithm for this purpose, provided that a certain subproblem can be solved in
polynomial time. Improvements in running time and storage requirements suggested by
Tsukiyama et al. [8] are discussed as well. In § 4, we investigate some of these
independence systems. Typical of these special cases is the problem of generating all the
maximal feasible solutions to a knapsack problem. In § 5, we examine the relationship

between our approach and a technique for the enumeration of graphs and other
combinatorial configurations, recently proposed by Read [6].

2. Complexity. We shall show that the problem of generating all the K maximal
independent sets of an arbitrary independence system is NP-hard, i.e., if there is an
algorithm for the problem which runs in time polynomial in » and K, then there is a
polynomial-time algorithm for solving the satisfiability problem [2].

* Received by the editors May 16, 1978. This research was partially supported by the National Science
Foundation under Grant MC.S 76-17605, and by NATO under Special Research Grant 9.2.02 (SRG. 7).

T Computer Science Division, University of California, Berkeley, California 94720.
T Mathematisch Centrum, Amsterdam, The Netherlands.

1 Erasmus University, Rotterdam, The Netherlands.

558

GENERATING ALL MAXIMAL INDEPENDENT SETS 559

Let F(X,, --,XxN) be a Boolean expression in conjunctive normal form. Let
E m{Tl, Fl, LA TN, FN}, and for anyje{l, o, N} and any JQ.E, define

true if T;eJ, F;£J,
xi(J)= ¢ false if Fel, T;£J,

undefined otherwise.

Let I € # if either

(1) there exists a je{1,---, N} such that both T;& I, F;£1I or

(ii) each clause of F contains a letter X; or)?, whose defined value is true, i.e.,

FxI), -, xnT))=true.

It 1s easily seen that (E, #) is an independence system. Moreover, F is not satisfiable if
and only if the only maximal independent sets are E—{T}, F;} forj=1,---, N.

Assume there exists a general procedure for generating all the maximal indepen-
dent sets of an arbitrary independence system with running time ¢(n, K'), where ¢ is a
polynomial function of n and K. Apply this procedure to the independence system
defined above and allow it to run for time ¢ (2N, N). Then F is satisfiable if and only if
either

(1) F(x1(I), -, xn(I))=true for some generated I, or

(ii) the procedure fails to halt within the allotted time, establishing that there are

more than N maximal independent sets.

For any given J < E, the conjunctive normal form can be evaluated in time proportional
to its length. Appropriate modification of the unit-time assumption for independence
testing thus establishes that the procedure solves the satisfiability problem in poly-
nomial time. Since the latter problem is NP-complete, it can be solved in polynomial
time 1f and only if = /P [2]. Hence, we have the following theorem.

THEOREM 1. Ifthere exists an algorithm for generating all the maximal independent
sets of an arbitrary independence system in time polynomial in n and K, then P = N'P.

To obtain a reduction to, rather than from, the satisfiability problem, we now
consider the problem of generating all maximal independent sets and all minimal
dependent sets of an independence system. Let there be L such sets. We shall show that
it there 1s a polynomial-time algorithm for the satisfiability problem, then there is an
algorithm for generating all these sets in time polynomial in n and L. Each step of the
latter algorithm yields a new set on the list.

Suppose then, that at a certain point sets Iy, - - -, I, have been generated. Let
X <{l, -, 1} indicate the generated sets which are maximal independent and £ =

{1, -, [}-¥ those which are minimal dependent. Any new set I must satisfy I £ I, for
all ie Z and I;Z I for all i € £. Form the Boolean expression

(/\EE.SE\/}'E'I;X;‘) A (/\ie.‘?\/jerii})-

The length of this expression is O (nl/) and by our assumption one can determine if it is
satisfiable in ¢(nl/) time, for some polynomial function ¢. If the expression 1S not
satisfiable, then /=L and the algorithm terminates. Otherwise, construct a truth
assignment in polynomial time, by successively fixing the value of each variable and
determining if the reduced expression is satisfiable. Next define I = {j|X; = rrue} and
test I for independence in unit time. If I is independent, augment it until a maximal
independent set results; if I is dependent, remove elements until a minimal dependent
set 1s found. Either procedure requires O(n) time. Since clearly I # I; fori=1, - - - LT
1s the new set on the list. We thus have the following theorem.

560 E. L. LAWLER, J. K. LENSTRA AND A. H. G. RINNOOY KAN

THEOREM 2. If P = NP, then there exists an algorithm for generating all the maximal

independent sets and all the minimal dependent sets of an arbitrary independence system
in time polynomial in n and L.

3. An algorithm.

3.1. A generalized Paull-Unger procedure. We now assume that E={1, - - -, n}
and that independence testing requires time ¢. Let #; be the family of all independent
sets that are maximal within {1, - - -, j}. By definition, %, = {{J}. We seek to construct £;
from $;_; in order to obtain %,, the family of all K independent sets that are maximal
within E.

Suppose that I € #;_;. If TU{j}e #, then clearly TU{j}e &. If TU{j}£ £, then
I € #;. It follows that

|

Fol=|F|=- - =S| =K

Observing that the elements of E can be numbered arbitrarily, we obtain the following
result.

THEOREM 3. ForanyJ < E, the number of independent sets maximal within J does
not exceed K.

Suppose that I'e $; and jelI'. Since I'—{;} is independent and included in
{1, --,j—1}, there must be some I € $,_; such that I'—{j}< I. Moreover, I' is an
independent set that is maximal within I U {j}. This observation suggests the following
procedure to obtain #; from $;_;, which is a generalization of an algorithm due to Paull
and Unger [5].

Step 1. For each I e $,_,, find all independent sets I’ that are maximal within
I'U{}. ‘

Step 2. For each such I', test I' for maximality within {1, - - -, j}. Each set I’ that is
maximal within {1, - - -, j} is a member of #;, and we have seen that each member of .
can be found in this way. However, a given I’ € 4, may be obtained from more than one
I € #;_:. In order to eliminate duplications, we need one further step.

Step 3. Reject each I' that passes the maximality test if it appears among the sets
already found to be in #;. Suppose that in Step 1, foreach I € $;_,, at most K'sets I' are
found in time ¢’; by Theorem 3, we have K' = K. For each I, the maximality test in Step
2 requires O(nc) time, and the duplication test in Step 3 can be accomplished with
O (K') pairwise set comparisons, each of which requires O(n) time. It follows that, for
fixed j, O(c'K) time suffices for the first step, O(ncKK'’) time for the second step, and
O(nK*K') time for the third step. Thus, the overall running time to obtain %, is
O(nc’K +n’cKK'+n’K*K'). This yields the following theorem.

THEOREM 4. All the maximal independent sets of an independence system can be
generated in time polynomial in n, c and K, if it is possible to list in polynomial time all
independent sets that are maximal within I U{J}, for arbitrary I € $,_,,j=1, - -, n.

In § 4, we investigate several cases in which the subproblem referred to in Theorem
4 (the “I U {j} problem”) can be solved in polynomial time.

3.2. Improvements of Tsukiyama et al. A technique suggested by Tsukiyama et
al. [8] enables one to eliminate duplications more efficiently. It yields significant
improvements In both running time and storage requirements of the Paull-Unger
procedure.

Instead of comparing aset ' with all members of #; found previously, one retains I'

only if it is obtained from the lexicographically smallest I € $;_, from which it can be
produced. Hence Step 3 is modified in the following way.

GENERATING ALL MAXIMAL INDEPENDENT SETS 561

Step 3'. For each I' obtained from I € #;_, that is maximal within {1, - - -, j}, test
foreachi<j,igl theset (I'-{jHhUU N{L, . -,i—1})U{i} for independence. Reject
I’ if any of these tests yields an affirmative answer.

If, indeed, any affirmative answer is obtained, then I'—{;} is included in an
independent set that is lexicographically smaller than I, and hence in a lexicographically
smaller maximal independent set from %;_,.

For each I', the lexicography test in Step 3’ requires O (nc) time, which is the same
as required by the maximality test in Step 2. Hence, the overall running time of the
revised procedure is O(nc'K +n*cKK'). 1

Possibly of even greater interest for some applications is the fact that storage
requirements can be greatly reduced by organizing the computation as a depth-first
search of a tree. Nodes at level j correspond to members of #;, with the tree rooted at &,
the unique member of Fo. Since for each I € #;_,, either I U{j}e ¥, or I € ¥, each node
has at least one and at most K’ children. Whenever in the depth-first search a member of
#. 1s encountered, it is outputted. The maximum number of subproblems that must be

maintained in stack to allpw backtracking is O(nK'). A further decrease in storage
requirements can be obtained at the expense of an increase in running time.

4. Applications. In this section we investigate various independence systems for
which all maximal independent sets can be generated in polynomial time.

4.1. Set packing. Let S be a finite set with |S|=m and let ¥={S;, - -, S,} be a
family of (not necessarily distinct) subsets of S. A subfamily I = & is a packing in S if the
sets in I are pairwise disjoint. The packings correspond to the independent sets of an
independence system with E = .%. All maximal packings can be generated in polynomial
time, as shown below.

First consider the “I U{j} problem”. Let A; = & consists of the sets S; for which
Si(1S;# (J. Given I € #;_4, the only sets which can possibly be maximal within I U {S;}
are [itself and (I — A;) U{S;}. Thus K’ =2. It follows that, given A}, the I U {j} problem
can be solved in O(n) time.

Assuming the sets §; are specified by ordered lists of indices, one can find the sets
Ay, -+, A, in O(mn® time. It follows that Step 1 requires O (mn’+n’K) time.

The maximality test for I’ is equivalent to verifying that I'N A,; # & for all
i <j,S;£1 Since each such test can be carried out in O(n?®) time, Step 2 requires
O(n°K) time.

The lexicography test is easily seen to be equivalent to verifying that [I —
(A; N {Siv1, - -+, Si-1D]NA; # D forall i <j, S;£ 1. Thus, Step 3 requires O(n>°K) time
as well.

It follows that the overall running time of the procedure is O(mn*+ n>K). Since it
1s possible to implement the search tree in O (n) space, O (mn) space is sufficient overall.

Suppose & is induced by an undirected m-edge n-vertex graph G with edge set S.
S; denotes the set of edges incident to vertex j and A; denotes the set of vertices
adjacent to vertex j. Then each packing I < & is an independent or stable set of vertices
of G, or, equivalently, a clique of the complementary graph G. It was in this context that
the Paull-Unger procedure and the improvements of Tsukiyama et al. were originally
proposed.

For the graph problem, itis natural for the sets A; to be given as input in the form of
ordered lists. Under this assumption, and noting that).:_, |A,| = 2m, one can reduce the
time bound to O(mnK) and the space bound to O(m +n), as shown in [8].

4.2. Complete k-partite subgraphs. Let G be an undirected graph with vertex set
V ={v1,: -, v,} and edge set S with |S|=m. A complete k-partite subgraph of G is

¢ #;. Feasibility is restored by
K'=j, and the I U{/} problem can be

cmE y if Z ier @ + Armij) > b and it
, A, Moreover, for all I'
ogether. It follows that

f u mts a g f?f. hasa d eadline d ; ,
.. for completion bv th

GENERATING ALL MAXIMAL INDEPENDENT SETS 563

Again consider the I U{j} problem and assume that I U{j}& #.. In this case, we
have)., ;pi + p; > d;. Independence is restored by removing job j from I U{j} or by
removing some jobs from I such that job j, which can be assumed to remain in the last
position, 1s completed on time. It follows that solving the I U {;} problem is equivalent
to finding all maximal subsets H =1 such that) ;_; p: =d; — p;, which can be accom-

plished by applying the knapsack procedure of § 4.3. By Theorem 3, the number of
maximal subsets H does not exceed K—1. Hence the I U{;} problem can be solved in

O(n*K) time.
Since maximality and lexicography tests require O(n) time, it follows that the
overall running time of the procedure is O(n°K?).

4.5. Inequality systems. The problems consideredin §§ 4.1, 4.3 and 4.4 can all be
viewed as special instances of the general problem of finding all maximal feasible

solutions to an inequality system of the form Ax = b, x;€{0, 1}(j=1,: - -, n), where the
m X n-matrix A = (a;;) and the m-vector b = (b;) have nonnegative components.
For example, givenasetS ={1,---, m}andafamily ¥ ={S.,- - -, S,.}of subsets of

S, define a; =1 if i €S}, a; =0 otherwise. In the case that ;=1 (1=1,---,m), the
maximal feasible solutions correspond to the maximal packings in §; they can be
generated in polynomial time, as has been shown in §4.1. In the case that b; =
Z?__:l a;j—1 ({=1,---,m), the maximal feasible solutions correspond to the
complements of the minimal coverings of S. We have not been able to devise a
polynomial-time algorithm for this problem. Nor have we been able to obtain an
NP-hardness result similar to Theorem 1 for this case or even for a general inequality
system, although we conjecture that no polynomial-time algorithm exists unless
P = NP,

For the scheduling problem discussed in § 4.4,wehavem =n,a;=p;ifi =j,a;; =0
otherwise, and b; = d; (cf. [4]). The same technique as above can be applied to a slightly
wider class of inequality systems, where b is an m-vector with nondecreasing
components and A 1s a nonnegative m X n-matrix such that

(1) a;>0 implies a;;> 0 for all j'<j, and

(ii) the strictly positive entries in each column are nonincreasing.

In this case, the I U{j} problem with I U{;} £ #; can be solved by applying the knapsack
procedure of § 4.3 to the constraint of smallest index A such that a,; > 0. Any maximal

subset of I U{} that satisfies constraint A will then satisfy the remaining constraints as
well.

The reader may be able to construct other examples in which a certain property of
A permits one to restrict attention to a single constraint when independence has to be

restored. In each such case, the knapsack procedure can be applied to solve the I U {;}
problem in polynomial time.

4.6. Facet generation. Consider the convex hull P of all 0-1 vectors x satisfying
the general inequality system Ax =b, where A=0. Balas and Zemel [1] have
established a correspondence between the facets of P and the minimal covers of A, i.e.
the minimal feasible solutions to Ax Z b. Such covers are in one-one correspondence to
the maximal feasible solutions to Ax’'# b', where b} = mel a;i—bi—1 (=1, --,m),
under the assumption that all data are integers.

Thus, in order to generate the facets of P, it suffices to generate the K maximal
feasible solutions to Ax’ ¥ b'. This inequality system can be considered as the disjunc-
tion of m knapsack inequalities Z;;l a;x;=b; (=1, -+, m),the ithsuch inequality
having K; maximal feasible solutions. In the case that m = 1, the procedure of § 4.3 can
be applied to yield all minimal covers in polynomial time. In the general case, the

564 E. L. LAWLER, J. K. LENSTRA AND A. H. G. RINNOOY KAN

following procedure may have some practical value, even though it is not polynomial in
K.

A maximal feasible solution to the entire system has to be feasible and maximal
with respect to at least one of the separate inequalities. The procedure of § 4.3 is now
applied to each of these inequalities in turn. However, a maximal feasible solution to
inequality i is accepted as a maximal feasible solution to Ax' ¥ b’ only if it is

(1) infeasible for each of the inequalities 1, - - -, i—1, and

(1) infeasible or maximal feasible for each of the inequalities i +1, - - -, m.

It is not hard to see that this procedure generates all minimal covers without dupli-
cation.

For inequality i, application of the knapsack procedure requires O(n°K;) time, and
conditions (i) and (ii) can be checked in O(mn) time for any candidate solution, or in
O(mnK;) time altogether. It follows that the overall running time of the procedure is
O((mn +n®) Y K;). Unfortunately, there exist inequality systems for which ¥ K; is
exponentially related to K. For example, in the simple casethatm =n—1,a;=1,b; =
i=1,-- , m,j=1,---,n),wehave K;=()(i=1,--- , m),Y) K;=2"—1,and K =n.

For some special cases, truly polynomial-time algorithms can still be obtained. For
example, suppose A 1s such that the entries in each row are monotone nonincreasing. If
I'U{j} £ 4, then removal of any element from I U {;} restores feasibility, so that K' = ».

In analogy to the above approach, one might view a general inequality system
Ax = b as the conjunction of m knapsack inequalities. In this case, however, a maximal
feasible solution to the entire system can be feasible but nonmaximal with respect to

each of the separate inequalities. It seems hard to make any significant progress beyond
the special cases discussed in § 4.5.

4."7. Matroid intersections. A matroid M = (E, #) is an independence system such

that for all J < E, all independent sets maximal within J have the same cardinality [3].
Given m matroids M;=(E, %) (=1, - -, m)with E={1, - -, n}, their intersection
(E, #)is an independence system defined by & = (12, #.. We are interested in generat-
ing all maximal independent sets in (E, #), assuming that independence testing in M;
requires time ¢; (i=1,:---,m).

Consider the I U{j} problem. If I U{j} £ #; then addition of j must have destroyed
independence in some of the m matroids, say, in M,, - - - , M;. Each of these matroids M,

contains a unique minimal dependent set or circuit C;, and independence in M; is
restored by removing any one element from C,.

It follows that, in order to solve the I U{j} problem, it is necessary to find all
minimal subsets of U:_,C; that contain at least one element from each circuit, 1.e., all
minimal coverings of (Cy, -+ -,). In view of our remark in § 4.5, we settle for a brute
force approach: consider all n™ possible solutions. This yields an overall running time of
On™*K Y ci), which is, at least, polynomial for fixed m.

For certain special cases, e.g. the generation of all spanning trees [7], the special
structure of the system can be exploited and significant improvements made.

S. An enumeration procedure of Read. We conclude by noting a relationship
between our techniques and those proposed by Read [6] for the enumeration of graphs,
digraphs, and other combinatorial configurations. We restate the essential features of
Read’s procedure in our terms, as follows.

The family 4; is to be obtained from the family 4;_; by applying an augmentation
operation to each set in $;_,. These sets are processed in a canonical linear order *“<”
and the augmentation routine produces sets I' from each I € .%;_ in this same order. For

GENERATING ALL MAXIMAL INDEPENDENT SETS 565

each I' € $;, let f(I') denote the first set in #;_; which produces I’ when subjected to the
augmentation operation. Suppose that the canonical order is weakly monotonic in the
sense that for all I', I"e #;, I' <I" implies f(I')=f(I"). Then it is simple to avoid
duplications: when applying the augmentation operation, retain the next set produced
only if it follows the member of #; that has been obtained lastly.

Consider, for example, how this procedure is applied by Read to generate all the
nonisomorphtc digraphs on five vertices. The nondiagonal elements of the adjacency
matrix are written as a string of 20 bits, which can be interpreted as a binary integer. A
canonical digraph is one which has the largest such integer of all digraphs in its
1Isomorphism class, and this integer is its code. Let #;,_, be the family of all canonical
digraphs with j — 1 arcs; their codes specify the canonical linear order. Foreach I € %;_;,
the augmentation operation produces digraphs I’ with j arcs by systematically changing
a 0 to a1 inthe 20-bit representation of I. Each such I’ is tested for canonicity. Each I’
that passes the canonicity test is added to the list #; if and only if its code is strictly
greater than that of the most recently obtained member of .#;. It can be shown that the
property of weak monotonicity is satisfied. Thus, all canonical digraphs with j arcs are
generated in this way, without duplication.

We have been unable to devise a weakly monotonic ordering for the problems
considered in this paper. The lexicography test of Tsukiyama et al. is, in effect, an
alternative to Read’s technique for eliminating duplications and amounts to an analysis
of the inverse of the augmentation operation. That is, when I’ is obtained from
I'e$;_;, I'isretained onlyif f(I') = I, where f(I') denotes the lexicographically smallest
set in #;_; which produces I' when subjected to the augmentation operation.

REFERENCES

[1] E. BALAS AND E. ZEMEL, All the facets of zero-one programming polytopes with positive coefficients,
Management Sciences Research Report 374, Carnegie-Mellon University, Pittsburgh, 1975.

[2] S. A. Cook, The complexity of theorem-proving procedures, Proc. 3rd Annual ACM Symp. Theory
Comput., (1971), pp. 151-158.

[3] E. L. LAWLER, Combinatorial Optimization: Networks and Matroids, Holt, Rinehart and Winston, New
York, 1976.

(4] E. L. LAWLER AND J. M. MOORE, A functional equation and its application to resource allocation and
sequencing problems, Management Sci., 16 (1969), pp. 77-84.

[5] M. C. PAULL AND S. H. UNGER, Minimizing the number of states in incompletely specified sequential
switching functions, IRE Trans. Electron. Comput., EC-8 (1959), 356-367.

[6] R. C. READ, Every one a winner, or how to avoid isomorphism search when cataloguing combinatorial
configurations, Ann. Discrete Math, 2 (1978), pp. 107-120.

[7] R.C. READ AND R. E. TARJAN, Bounds on backtrack algorithms for listing cycles, paths, and spanning
trees, Networks, 5 (1975), pp. 237-252.

[8] S. TSUKIYAMA, M. IDE, M. ARIYOSHI AND I. SHIRAWAKA, A new algorithm for generating all the
maximal independent sets, this Journal, 6 (1977), pp. 505-517.

