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In these appendices we present, successively,

I conditions for the existence of a unique solution of (l.1) and (1.2);

11 three tables of coefficients of forward differentiation formulas, and
of two common LM formulas for ODEs, viz., backward differentiation
formulas and Adams-Moulton formulas;

II1  two lemmas which are needed in:

a's proofs of the main results of this paper, as far as they are non-

trival (in the opinion of the authors).
APPENDIX I

Conditions for the existence of a unique solution y(t) € C(I) of (1.1) with
8 =1
- K(t,t,y) is continuous with respect to t and 7, for all (t,t7) ¢ S;
- K satisfies a (uniform) Lipschitz condition with respect to y, i.e.,
|K(c,t,y) - K(t,T,2)] ¢ Ll[y-zi, for all (t,1) € S, for all finite
v,z € Rj
-g(t) e C(I). O

Conditions for the existence of a unique solution y(t) e C(I) of (1.1) with
8 =0
- K(t,T1,y) € CI(SxR);
- for t = t the derivative 3K/3dy is bounded away from zero:
3K (e, t,y) /ay| 2 rg >0 forall tel, ye R
- 3(t,T,y) /3t satisfies a (uniform) Lipschitz conditiom with respect toy
on S *x R;
- g e cl(@ with g(ep) = 0. O

. 1
Conditions for the existence of a unique solution y(t) e C (I) of (1.2),
for given initial value y(to) =Y
The following three (uniform) Lipschitz conditions:
- lf(t,y],z) - f(c,yz,z)| < Ll|yl—y2|, for all t ¢ I, for all finite

2,7)5Y, € R
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i ici Adams-I'rulton formulas
- ;f(c,y,z]) - f(t‘y‘zz)l < LZ{ZI_ZZ;’ for all t ¢ I, for all finite Table 3 Coefficients of the Adams-liculton N u
yozpa2y € Ry for ODEs £'(t) = g(t): £ = £ | = iZO bie,

- KRGt T,y = KTy ) L€ Loly o, for all (r,1) e S, for all finite

7ys¥y € R o

k b b b b b[‘ b5
APPENDIX II (4 1 2 3
. 1 1/2 /2
Table 1 Coefficients of forward differentiation formulas
X 2 5/12 2/3 -1/12
-1
e R 3 3/8 19/24 -5/24 1/24
4 251/720 323/360 -11/30 53/360 -19/720
k 60 61 52 8 8 & 5 95/288 1427/1440 -133/240 241/720 -137/1440 3/160
3 4 5
! ! -1 APPENDIX III
2 32 -2 1/2 LEMMA A.l. Let z >0 for n =0,1,...,N, and suppose that
3 11/6 -3 3/2 -1/3 n-1
z_ < hC z, +C n = kyktl,.0e,N
4 25/12 -4 3 —4/3 /4 L e, izo it Gy RSP
3 137/60 -3 5 -lo/3 5/4 -1/5 where k > 0, h > 0 and c; > 0 (i=1,2). Suppose, moreover, that 2 < z/k
for i = 0,1,...,k=1, Then
Table 2 Coefficients of the backward differentiation formulas z < (hClz#CZ)(l*hC])“'k’ n = k,k+l,...,Ne
k
for ODEs f'(t) = g(t): a.f . = b,g
¢ iZO in=i 0% PROOF, See [ 7 J.
LEMMA A.2, Consider the linear inhomog diffe equation with
k %0 | %2 3 2 s by constant coefficients Lj:
1 1 -1 1 o
(a.1) 6t E Y aket Tt an T B "2 O
2 1 ~4/3 173 2/3 G/ n+k n n o
3 1 ~18/11 9/1 =2/11 6/11 where (gn] is a given sequence, independent of the y .
. k -3 .
) haracteristi Lynomial T{z) i=T:_L.z" J is simple von
4 1 -u8/25 36/25 -16/25 325 12/25 (¢) 1ff the characteristic poty Be) 57 Tyt T v SRR B )
Neumann (cf. Section 2.3) then the solution of (A.1) satisfies the inequality

5 i -300/137 300/137 ~200/137 75/137 -12/137 60/137

s
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n
lygl s ¢t max Iyl F leglh, nzk,
02jsk-1 jok

where C s independent of m.
(12) Iff t(z) is Schur (cf. Section 2.3) then the solution of (A.1) satisfies
the inequality

Iyn[ < ¢l max |y.| + max |g 1}, n2k,
0sjsk=1 1 k<j<n
where C is independent of n.

PROOF. See [7].
APPENDIX IV

PROOF OF THEOREM 2.2.1. Taylor expansion of Y(t _.,t i .) around (tn,tn)

n+j

yields

q
g .0 . 3,9
{ui Eo o hi(-igy 135) Y(t,s)

P
R 1 .q __‘_ 3. Y }
+ J-E-k[e i y” as] qZO o h (_1 1 ) (t,s) bl n'tn)

. O(hp“

) as h » 0.

Writing this formula in the form

+1
P

I e~10

- 1 .q
L (Y] = —h (qu“n"n) + 0(n

q=0 ¥

and expanding the differential operator Dq by the binomial theorem we find

k 2. a  k 3 -1
D = ,l,o{ai( 15-13) +jsz_k[38ij?t—- (1Bij+ i as][‘)at 15;] }

k k
Tk, P N
-y -ﬁ(i(-l)qui_ 7 jalent ,[18.5 Ly }‘I" 259 K(JL)

where ("i)l-li is assumed to be zero for i = £ = 0. Equating to zero all
terms in the Il -0 yields the order equations (2.2.3) and at the same time
L (= omP*ly as required in Definition 2.2.1, O

PROOF OF THEOREM 2,2,2. Taylor expansion of Y(t
yields

i ,t ) around (t“,tn)

P
e e )= ] i

. 8 -q.
- i—1%Y(t,s) | +
0 9 3t 3s U E)

+ 0wP*!y as n o+ 0.

In order to exploit the fact that Y(t,t) = O (see definition 2.2.1), we

introduce the variables u =t + s and v = t - s and write

Y(t,s) =

The identity Y(t,t) = 0 implies that Z and all its derivatives with respect

to u vanish for u = 2t and v = 0., In the following we use the notation

2 (n,m) -8 3"z L (2t ,0).

auav™

By means of the binomial theorem we have

(A.2) Y(tn+j’tn-i) = qz _1.hq[(3 1%—~+ (j*idgy jqz(u v)l(Zt 0t O(h
Pl y4 ) (-0, ¢
=7 34 i@ G- G20 00 Y aen > 0
q=0 £=0 ar

p+l1
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n+j’ n-i

p 9
CEII VRGP A N 2Lhﬂ”(%;(j_i)q-ﬂ(jﬁ)l[z(q—b!.fl)_Z(q—z,tﬂ)]

+ 0Pt

Lo G- L1 iy S g eqioati 200

+ 0wy as w0,

(q,0)

Substitution of (A.2) and (A.3) into &“[Y] and using Z = 0 yields

(q-£,£)

L1 = 2 —rh“ 5(‘*)3 z romP™y as -0

q=

where qu is defined in (2.2.4). This proves the theorem. 0
PROOF OF THEOREM 2.3.1.

PROOF. Taylor expansion in a fixed point t = £ yields, respectively,
- 1, .. dq m+1
gt =1 o (-ingp iy (e + o,
Y (e ..) =Y _ .t )~ E S(hse L)

n-i" n+] n+)” no1 n-1 n+J

-3 —rh 8 G i) M cn>+0(h‘+h"‘“>
o9

o=
m q e
-2, . £.q, 3" 3Y
N T R G R0 e sy Al ALY
=03 £=0 [APVCE AL
. O(hr+hm+l)

3
Kn_i(tn+j) K(t ot ot ,y(tn_i)) = 3§Y(tn+j"n—i)

m q q-L L,
- q-f, .\ £-1.qyp 3 30X
B I I A G s o (LN

q=0%* £=0 e et

+ 0™,

From these expansions it is immediate that the VLM formula (2.1.4) satisfies

the relation

11
(A.4) izolni \(tn_i +
ntAg oYy a-t L
quh{TI(t“[ Cae~ ’(q-)')Bt 3s Y(tn'tﬁ)}
+0(ht+hm”)

where A_ and C ol are defined by (2.3.2) and (2.2. 3), respectively. Under
the conditions of the theorem it is easily verified that this equation leads
o (2.3.3). Furthermore, (2.3.3) is obviously the m-times differentiated

form of equation (1.1). 0

PROOF OF THEOREM 2.3.2. Let Y(t,s) be given by (1.6) where y(t) is the exact

solution of (1.1), then we may write for n 2 k

k k
L) =L - ~yo[°iy"-i+J=E (8. .

1=

(t_..)=hy;.K _.(c )]

i) n-i n+j 13 n-i n+j

k
2-20{[11 - 1 TINCCP S ARC)

n-i’ “n-i’ ot
i ==k J

- G ))_Kn—i(tnn’))]}'

Substitution of the functions Y(t,s) and Yn(c) and using (2.1.3) and (2.3.6b)

leads to

TS
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k { k [ n-i
(A.5) L () = izolaicﬂ'fj}_kmii\h (ZO“n—i,e““mj’“/:’y“z)”'e)
* En—i“‘?‘nq‘))‘h*ij“(“mj"n—i’y“n-i”yn—i”}'

Thus, we have found for the errors £ the relation

k
(A.6) 1

k n
f_k [hﬂij £Zown—i,lAK([n+j’tf’y(tl)’yﬂ)

+ 8. .E (h;tn+j) - thjAK(tn cn_i,y(tn_i),yn_i)}.

ij =i +j°

We now proceed with the two cases (a) and (b) separately.

(a) a(z) = ez 9 #0.

We want to apply the discrete Gronwall inequality stated in Lemma A.]
in order to derive an upper bound for the solution of this linear difference
equation, and therefore we need an upper bound . for ]vn[. A straightforward

calculation yields

k k n
.7 v l=1m) + } ] [bulph z legh + cbynle ;{+BEM)]
i=0 j=-k £=0

n
© Cgh ] fepl + CiE) + T(h),

where C_  and C’ are constants independent of h and n (in the following

0
a1l constante C. will be independent of h andn). From (A.6) it follows that
]

n
fagl le, | = coh lzoleel + € E(h) + T(h)

so that for h sufficiently small

) | n=1
le,| = AEREAT [Cgh @Zoltﬂ' + CE(h) + T(h)]

n-l
< Coh ] lep| + o lE) + T() )L
2" Loieel v o

Application of Lemma A.1 (with z=k I(h)) vields

*
e, | Qae,m™™ 0 ne, 8 e, M)+ T D,

*

n=k ,...,N.
Since nh = T — t» part (a) of the theorem is immediate.
(b) a(z) is simple von Neumann, B(z) = O.

Instead of directly applying Lemma A.l to the inequality (obtained
from (A.6))

k
DACHIENRE A
we first apply Lemma A.2 (i) to obtain the "sharper" inequality

n
(A.8) e | femy + ) vill, nozxt.
n 0 =k ]

Unfortunately, if we use the upper bound (A.7) for [vj[ and then apply
Lemma A.l, we cannot prove convergence. However, by using the property
g(z) = 0, that is hi = Z§=-k &ij = 0, a sharper upper bound than (A.7) can
be derived, To that end we write

LINAWHTddNS



k k
Ijj_k"ij““mj"t"(‘l)"'L) | = j}_ke“mx(:n,tl,y(:z),yl)

+ AK(th.,tz,y(tt).yl) - AK(tn,tl,y(tl),ye)]l
li |
< bLh ety
j"‘k [

and, similarly,

k
Y < b ] AE(h).
=k

k
'52;ksijﬁn-i(h;[n+j

In this way we obtain instead of (A.7) the upper bound

k k n
12
4.9 fvl = T () o 1.1 twiljln lzolcel+cLlh|cn_i|+bAE(h)]

i=0 j=— =
k n

<cph _I Cle, ;1 +n Z leg1d + C,aE(m) + T(N).
i=0 £=0

Substitution into (A.8) yields the inequality

le,| B1 5 1eston  leplonseom 07 ]}
€ 56{5(h)+h [ €. .|+h e, +h "AE(h) +h T(h].
o3 PN P R

It is easily verified that

[f‘ li les_;! [i leil
€. .| € (k+1) €.0.
j=k i=0 7 j=o !

Hence,

n
le | <c {6(h)+h[(l+nh) S le }+nh-IAE(h)*nh_lT(h)}},
n 4 220 £

Since y(z) is Schur, we may apply Lemma A.2 (ii) to (A.11) and find

(A.12) ]:nl < c{6(h) + max fv.|}, n2k .
r<i<n J

Since nh = T = t, we find for h sufficiently small

9Ts

n={
. =1
le ] < Coh lzoiiei + Ceh” [né(h) + AE(h) + T(W) 1.
Finally, by applying Lemma A.! we arrive at the estimate

le, | < (ncsm“"‘ (k’hcsé(h)+c6h"(ha(h)ma(h)nm1).

from which part (b) of the theorem follows. [

PROOF OF THEOREM 2.3.4. Following the first lines of the proof of Theorem
2.3.2 we obtain the following relation, analogous to (A.5), where

Ko = K(tr,'.s)

T
k k k k n
(A10} Il -1
Yook . e .= 1 ¥ a.‘{ Tw o K ope.+h E__(hye )
120 j=k ijierj,n=ive-io g oy iilpzg ™ i, n+j,Lj n-i n+j "
. . c
-, nzk. <
[
X o]
Now we write K o ;= K+ (ij’n_i—xm) and K o p = Kop * (ij’e-xnz) l%
and rewrite (A.10) to obtain Z
-3
k *
(A.11) E Yifaei = Vnr 2k,
i=0
where
Knn_Kn#' n-i
= _on_ntg,ntl
Kna¥n =" L7556 h T A WL
i3 i,3 £
K .. ,7K
+h 5 Bi.fw - l(___J_p____“* ht nt)El +
i, e
ent T os B (hse o -bL (D,
P BN 03 n+j ~n
1,]
LIyl = Er* - by}
y 4o LYL 8 Afn_i],
(a.13)
k k -1
- r o ont I



SR T S

T
. -1 -1
+ Czhuigj ileg; lzzok“ +h Ii&eijur_i(h;:m)l«»h L1,

*

r k.

Now we use the condition 8(z) = 0, i.e., ﬂi = 0, and (2.3.6a) to obtain (cf.

the derivation of (A.,9) in the proof of Theorem 2.3.2)

*

'AE(m} o lt, ek,

k r
lv.l <c {h Yle _.l+n § le | +h”
r 3145 i 20 £4

r
< Ch{h 1 degl e w” AE(h)} +n e

£=0
Substituting this into (A.12) we find, for h sufficiently small,

-1
B -1 -1 "
|en| < cs{é(h) +h AE(h) + h 'T(h) + h ZZO [czl}

and application of Lemma A.)l yields the result of the theorem. 0

PROOF OF THEOREM 3.3.1. Proceeding as in the proof of Theorem 2.3.2 we derive

the relations

*
(A.14) [%%ﬁ%,

where v: satisfies the inequality (using (1.3') and (1.3"))

k
* * *
fv | = Lyl +n izo yiAfn_i|

3.

k
* *
s+ ]yl e clenin

i=0 n-l

Application of Lemma A.,2 (i) yields (because u*(z) is simple von Neumann)

n n *
A.15 < . . § .
(415) I%I%bﬁﬂquh(mw£wﬂ

where C0 is some constant independent of n and h,

For n, ve derive from the second relation in (A.13)
k
(A.16) ‘Z an T vy
i=0

where v is defined as in (A.6).

(a) In the case where a(z) = uozk we have from (A.7):

n
Iyl < ¢ IE () + lzolct' T, (W), 0z K

INIWIIddNS
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for some constant C,. Substitution into (A,15) yields

8TS

a .
IEIEC{hi[}e.1+hi]tl*E.(h)*
n 2 7K 3 220 £ j

RO h_lT;(h)] v 8h) + ha’(m}

? -1
E CJ{h jzo legl + B () wT () 40 T/ (h) + 5 () +ha*<h)}

where we have used that nh = T = Ca. From Lemma A.l, part (a) of the theorem

easily follows.
(b) Since a(z) is simple von Neumann, we apply Lemma A.2 (i) to (A.16) and

use (A.9) (since £(z):0) to find

Inl=¢ {5'(}.)* E[‘i (hle M]Z % fe l)+AE.(\\)+T.(h)]}
Tl Ll gt j 3

=
? * -1 -1
< Cs{h jzoltj‘ + 87 () + h BE (h) +h Tn(h)}.

Substitution into (A.15) and applying Lemma A.1 leads to part (b) of the

LNAIWHTddNS

theorem. [

Centre for Mathematics and Computer Science
(formerly: Mathematical Centre)

Department of Numerical Mathematics
Kruislaan 413

1098 SJ Amsterdam

The Netherlands



