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INTRODUCTION 

In this paper we present an algebraic analysis of concurrent processes with 

three types of asynchronous communication. Our starting point is an algebraic 

axiomatisation PA0 (for Process Algebra) of concurrent processes without communication, 

in which the concurrency is that of the free merge, or arbitrary interleaving, of 

atomic actions. Such concurrent cooperation of processes is asynchronous cooperation, 

as each process may operate in connection with its own clock. The system PA0 was 

first introduced in [7] together with an extension to an axiomatisation ACP (for 

Algebra of Communicating Precesses) of concurrent processes with a communication 

mechanism. 

The laws for communication in ACP, like those in Milner's CCS, concern 

synchronous corrmun.ication, requiring the synchronisation or simultaneous execution ajb 

of so-called communication actions a,b. In research on laws for concurrency, while 

concurrent cooperation has been examined in its asychronous and synchronous cases, 

concurrent process communication in the asynchronous case has been neglected. In 

this paper we take up the idea of asynchronous communication wherein a communication by 

actions a,b is consistent with b being performed after a (say). We have devised 

algebraic treatments of this idea based upon three models : 

(i) 

(ii) 

(iii) 

mail via a queue~like channel; 

mail via a bag-like channel; 

causality in systems. 

The plan of the paper is this Section 1 introduces the axiom system PA8 
dascribing the free merge of processes; here o is a constant for process failure or 

deadlock. This axiom system underlies the three axiom systems we present. Section 2 

is devoted to the distinctions been cooperation/communication and synchronous/asychron­

ous, and attempts a classification of formalisms such as CCS, CSP, MEIJE, SCCS, CHILL 

and so forth. Section 3 presents the algebraic systems for (i) and {ii) above; and 

Section 4 presents the system for {iii) together with an involved example on the 
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control of a printer. 

This paper is part of a long series of reports on process algebra and its 

applications, including [6, 7]. The paper can be read independently, though knowledge 

of part of [7] may be helpful; in addition, [7] contains a discussion of related 

approaches to the algebraic theory of concurrency, including CCS and SCCS in 

Milner [23,24]. 

We thank Ms. Judith Thursby for her preparation of this typescript. 

1. PROCESS ALGEBRA WITHOUT COMMUNICATION 

As a point of departure we consider an algebraic axiom system PA0 that analyses 

concurrent processes without communication. The system PA0 is derived from [7] where 

a system PA was introduced for concurrent process algebra without communication, and 

the o-laws for process deadlock were introduced in a system ACP for concurrent process 

algebra with synchronous communication. 

Process algebra is concerned with concurrent processes made from a finite set A 

of atomic processes or aetions, including a special failed or deadlocked process 

OEA. There are four process generating binary operations, 

+ a"lternative eomposition (sum) 

sequential eomposition (produet) 

II parallel eorrrposition (merge) 

lL left-merge 

and these components satisfy a set PA0 of axioms given below. 

1.1 Si!i;nature 

s 
F 

c 

1.2 Axioms 

More formally, let l:PA be the following signature 
6 

p sorts 

+: p x p +p funetions 

p x p +P 

II: p x p +P 

il_: p x p +P 

a for all a E: A eonstants 

Let PA0 be the set of equations over l:PA in Table 1. 
6 
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x+y=y+x 

(x + y) + z = x + (y + z) 

x + x = x 

(x + y)z = xz + yz 

(xy) z = x(yz) 

x+o=x 

OX= 0 

x!ly = xlly + yll.x 

ajl_x = ax 

(ax) lb = a(xll y) 

(x+y) lLz = xll_z + yll_z 

Table 1 

Al 

A2 

A3 

A4 

AS 

A6 

A7 

Ml 

M2 

M3 

M4 

1.3 Semantics A EPA -structure P satisfying the axioms in PA0 is a proaess 

aigebra with deadioak; 0the class of all such algebras we denote ALG(EPA, PA0). 
0 

In analogy with the theory of data type specifications, it is useful to 

consider the equational axiomatisation (EPA , PA0) in two ways : 
0 

(i) as an initiai algebra speaifiaation (in the sense of ADJ[l]) for the 

special structure Aw of all finite processes with deadlock i.e. the 

initial algebra semantics of the specification is I(EPAo' PA0) ~Aw 

(ii) as a general axiomatic specification of such concurrent process algebras 

with semantics ALG(EPA, PA0). 
0 

These views rest on the distinction between finite and infinite processes, 

which requires technical elaboration : 

Let P I= PA0 be any process al.gebra. For p e: P and a e: A* u Aw, the set of 

finite or infinite sequences of actions from A, we will define what it means for a 

to be a traae of p: 

Definition. (i) If a a1*a2* ... *an' where ai e: A (i=l, .•• ,n) and* denotes 

concatenation, then a is a trace of p if there are p1 , .•• ,pn' q1 , ... ,qn,qn+l e: P 

such that 

(i=l, •.• ,n-1) 

Pn an + ~ 

(ii) If a a1*a2* ... then we call a a t:r>aae of p if there are pi,qi 

such that 

(iH). 
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If p E P has an infinite trace, it is an infinite process; otherwise it is 

finite. The initial algebra I(LPA ,PA0) contains finite processes only. 
Th . 0 1 . . f" • ere are various ways to construct process a gebras that contain in inite 

processes, most of which have been developed for the more general case of collllllunicating 

processes. The synchronisation trees (modulo observational equivalence or bisimulatio~ 

from Milner [23] (see also Winskel [31]) constitute such a model if one considers the 

degenerate case of the absence of synchronisation primitives. In De Bakker & Zucker 

[3,4] a topological construction is given via metric spaces, and in Bergstra & Klop [7] 

an equivalent algebraic construction using projective limits. Bergstra, Klop & Tucker 

[8] describes a direct algebraic construction by means of adjoining solutions of 

suitable fixed point equations. The solution of recursion equations is important 

in the theory because such equations constitute an important specification tool for 

process definition; these equations require infinite processes for their solution. 

The projective limit constructions and the topological constructions lead to models 

in which aU gua:rd.ed systems of equations can be soZ.ved. 

2. COOPERATION AND COMMUNICATION 

2.1 A Classification of Concurrency Informally, one thinks of processes as 

logical configurations of atomic acts. A process p is executed as follows : choose 

a first action, perform it; then choose a second action that is possible after the 

first action (according to the definition of the process), perform it; and so on. 

On thinking of the parallel execution of processes one involves notions to do with time 

and clocks. Informally, in the parallel execution of two processes p,q, two basic 

kinds of process cooperation can be distinguished: 

Synchronous Cooperation : the regime of synchronous cooperation allows p,q 

to be executed in parallel with the same speed as measured by the same clock; this 

idea is encorporated in SCCS [14,24], ASP [7], MEIJE [2,28]. 

Asynchronous Cooperation the regime of asynchronous cooperation allows p,q 

to proceed in parallel with their own speeds, as measured by their own independent 

clocks; this idea is encorporated in CSP [15-17], CCS [23], ACP [7], with restrictions 

determined by possible mutual interactions between processes, and in the system PA0, 

where there are no interactions. 

Now, in the interaction between the atomic actions of two processes p,q 

two basic kinds of process corrmrunication can be distinguished : 

Synchronous Communication : the regime of synchronous connnunication requires 

that communication between actions a,b can take place only if both are performed 

simultaneously; this type of collllllunication is sometimes called handshaking and is 

encorporated in CSP, CCS, ACP, and Ada. 

Asynchronous Communication : the regime of asynchronous communication allows 

communication between actions a,b to be consistent with b being performed after a; 
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this idea is encorpoated in CHILL [9]. 

Combining the above regimes one arrives at four categories which can be used 

to classify models of concurrent processes, namely : 

SS synchronous aooperation + synchronous communication 

sees, MEIJE, ASP, ASCCS 

SA synchronous cooperation + asynahronous corrmuniaation 

No example known to us. 

asbnahronous cooperation + synahronous aorrmuniaation 

CCS, CSP, ACP, Ada, Petri nets, 

uniform processes of [3,4] 

AA asynahronous cooperation + asynahronous corrmuniaation 

CHILL, data flow networks 

restoring circuit logic 

2.2 Comments on Examples The combinations SS and AS have been extensively 

studied in process theory; we refer to Austry & Boudol [2] and De Simone [28] for a 

comparison between MEIJE and SCCS, to Milner [23,24] and Hennessy [14] for CCS and 

SCCS, to Bergstra & Klop [7] for ACP and ASP, to De Bakker & Zucker [3,4] for uniform 

processes, and to Brookes [11,12], Winskel [30] for discussions about and comparisons 

between CSP and CCS. For CSP see Hoare [15,16] and Hoare, Brookes & Roscoe [17]. 

It might be puzzling why ASCCS, which gives according to Milner [24] a 

framework for "asychronous processes", is classified under SS. The reason is that 

it is a subcalculus of sees, and hence also employs synchronous cooperation and 

synchronous communication - even though asynchronously cooperating processes may be 

1-nterpreted in ASCCS. 

The combination AA in studied for instance using temporal logic in Pnueli 

[26], Lamport [21] and Koymans, Vytopil & de Roever [19], Kuiper & de Roever [20]. 

Moreover, trace theories are used to describe the semantics of data flow networks 

(see Kahn [18], Brock & Ackerman [10]) and the semantics of restoring circuit logic 

(see Ebergen [13], Rem [27] and Van de Snepscheut [29]. Restoring circuit logic 

is intended to describe the behaviour of circuits regardless of delays in the 

connecting wires. This delay insensitivity leads to the classification under AA. 

A discussion of the case AA in an algebraic setting is absent to our 

knowledge. In Milne [22] and Bergstra & Klop [6] the AA case is reduced to the 

AS case for switching circuits and data flow networks respectively. We are not 

aware of any "direct" algebraic descriptions of the AA case. 

2.3 The AA Case One may imagine a wild variety of different mechanisms 

for asynchronous communication. We will now proceed to describe three mechanisms 

far:isy}lc.h:vonous commupication that are consistent with asynchronous cooperation. 
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The mechanisms are closely related to one another : 

(i) Mail via an order-preserving channel (cf a queue) 

(ii) Mail via a non-order-preserving channel (cf a bag) 

(iii) A causal mechanism wherein one action causes another. 

For each of these mechanisms we will present an algebraic notation based upon 

(a) a special purpose a7,.phabet of atomia aations; 

(b) an appropriate enaapsuiation operator; and 

(c) a set of axioms to specify the semantics of the mechanism. 

In each case the axiom system is an extension of PA0 ; cases (i) and (ii) we will 

complete in the next section while case (iii) we will treat in Section 4. It may 

be helpful to make a comparision with the construction of ACP as an extension of PA0• 

3. MAIL VIA A CHANNEL 

We will treat the cases of mail via an order-preserving channel and mail via 

a non-order-preserving channel together since the syntax and axioms proposed for these 

mechanisms coincide to a large extent. 

3.1 The alphabet. Let B be a finite set of actions. Let D be a finite set 

of data, and c a special symbol for ahan:n.ei. For all d E D there are actions 

c t d send data d via aha:nne7,. c aonside:red as a potentiai aation 

c ... d send data d via ahanne 7,. c aonside:red as an aatuai action 

c + d remsive data d via ahanne7,. c aonsidEred as a potentiai aation 

c ... d reaeive data d via ahan:n.ei c aonsidered as an aatuaZ. aation 

The distinction between c t d and c + d may be slightly unusual c t d indicates 

an internai, intended, potentiai, or future action while c + d denotes an exte:rnai, 

:reaZised, aatuai, or past action; and similarly for c + d and c + d. 

This distinction is implicit in the synchronous communication operator I 

of ACP where a communication takes the form alb = c for atomic acts a,b,c~ By virtue 

of the equation, a,b can be seen as potential actions giving rise to the communication 

c as an actual action. 

Let ctD = {ctd I dED} and likewise for ctD, etc. 

Now we define the alphabet to be 

A= Bu{o} u (ctD) u (0'6-D) u (c+D) u (c:.f.D). 

Note that the cardinality IAI = IBI + 4IDI + 1. 

The actions b E B are not related to channel c. Although we specify syntax 

and axioms for one channel c only, the presence of several channels, c,c', ••• is 

entirely unproblematic; in that case, B may also contain actions c'td etc. since 

these are not related to channel c. 
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3.2 Encapsulation Operator. Here the situation divides into the cases of mail 

via an order-preserving channel (3.2.1) and mail via an non-order-preserving 

channel (3.2.2). 

3.2.1 Queue-iike Channel. ~et D* be the set of sequences a of data d E D. The 

empty sequence is denoted by e. Concatenation of sequences a,T is denoted as a*T; 

especially if a= <d1, ... ,dn> (n~O) then d*o = <d,d1 , ... ,dn> and o*d = <d1, ... ,dn,d>. 

Further, if n~l, last (a) = dn. 

Now for each a c: D* there is an encapsulation operator µ0 : P->- P where P is 
c 

a domain of processes (i.e. the elements of a process algebra satisfying the axioms 

below). Informally, if x is a process, then µ0 (x) denotes the process obtained by 
c 

requiring that the channel c initially contains a data sequence o and that no 
0 communications with care performed outside x. Thus, x and µc(x) correspond to 

internal and external views of a system's behaviour, in some sense. 

There are other relevant intuitions about encapsulation. The process µ0 (x) 
c 

can_ be viewed as the result of the partial execution of x with respect to c with 

initial contents a. By execution we mean the transformation of internal or potential 

actions like ctD into an external or actual actions like ctd, and their effect on 

processes (cf Remark 4.6). Encapsulation is formally defined by axioms MOl-9 below. 

3.2 Bag-Zike Channe 7,. For the bag-like channel the situation is very much 

the same except that a data sequence o is now a multiset of data. We denote a 

finite multiset of dED by M. Now for all finite multisets M over D we introduce 

again an encapsulation or partial execution operator 

P+P 

3.3 The signature. Although the various ingredients of the signature, both for the 

cases of mail via a queue-like channel and via a bag-like channel, have now all been 

introduced, we will display these signatures once more in Table 2. 

3.4 Axioms. Suppose a set B of actions, a set D of data and a channel name c 

are given. Then we have the following axiom systems 

0 PA0 (µc,B,D) in Table 3 

M PA0(µc,B,D) in Talbe 4 

for mail via a queue-like channel and mail via a bag-like channel, respectively. 

Here a varies over the alphabet A = B u {o} u ctD u ctD u c+D u c ... D, and e varies 

over E = B u {o} u c1'D u cJ., D. 
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Table 2. 

3.5 Semantics. 

algebras 
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alternative composition (sum) 

seqii.ential composition (product) 

parallel composition (merge) 

left-merge 

dead-Z.ock or failure 

atomic action E B, independent from c 

send d via channe i c; internal. view 

send d via channel. c; external. view 

receive d via c; internal. view 

receive d via c; external. view 

encapsuZ.ation w.r.t. queue-like channel. c 

enaapsuZ.ation w.r.t. bag-Z.ike channel. c 

et M The axiom systems PA0(µc,B,D) and PA0(µc,B,D) determine initial 

AW(+,.,11, jJ_, o, µ~,B,D) 

AW(+," II, LI_, o, µ~,B,D) 
respectively. These are just enrichments of the initial algebra I (PA).denoted Aw or 

of PA0 • Using a projective limit construction as with ACP in [7], or a topological 

completion as in [3,4], it is possible to construct larger models 

A"\+,.' II ' ll_, 

A""(+,., II ' ll_, 

with infinite processes, in which aZ.Z. gWI!'ded systems of equations can be soZ.ved. 

3.6 Examples. We will now give some examples both for the case of an order-

preserving channel and the case of non-order-preserving channel. 

3.6. l E:rmrrpZ.e for a queue-like channel.. Consider the following very simple data 

flow network : 

) f : +..___..) 
P (0 cl G) q 

Figure 1. 
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x+y=y+x 

(x + y) + z = x + (y + z) 

x + x = x 

(x + y)z = xz + yz 

(xy) z = x(yz) 

x + 0 = x 

ox= 0 

x[\y = xlLy + ylLx 

all..x = ax 

ax lj_y = a(x\\ y) 

(x + y)lJ..z = xJLz + ylLz 

µCJ (e) = e 
c 

µCJ (ex) = e. µ0 (x) 
c c 
(j 

].Jc (ctd) = cfd 

d*o 
= ctd.µc (x) 

= cld 

= c~d.µ0 (x) 
c 

if d f last (a) or ~= E 

µ0 (c+d.x) = o if d f last (a) or a= E 
c 

µa(x + y) = µcr(x) + µcr(y) 
c c c 

(a E A, e E E, a E D*) 

Al 

A2 

A3 

A4 

AS 

A6 

A7 

Ml 

M2 

M3 

M4 

MOl 

M02 

M03 

M04 

MOS 

M06 

M07 

MOS 

M09 
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x+y=y+x il 

(x+y) + z = x + (y+z) A2 

x+x=x ~ 

(x+y)z = xz + yz A4 

(xy)z = x(yz) AS 

x+c=x A6 

ox = o A7 

xii Y = xlly + yllx Ml 

a[lx = ax M2 

ax[ly = a(x!I y) M3 

(x+y) llz = xllz + y[lz M4 

M 
µc(e) = e MNOl 

M M 
µc(ex) = e.µc(x) MN02 

µM(ctd) = ctd MN03 
c 

µM(ctd . x) = ctd. µMU{d}(x) MN04 
c c 

µMU{d} (dd) = cl-d MNOS 
c 

µMU{d}(c~d.x) = cfd . µM(x) MN06 
c c 

µM(dd) = c if d t M MN07 
c 

µM(dd. x) = i3 if d t M MNOS 
c 
M M M 

\Jc (x+y) = µc (x) + µc (y) MN09 

Table 4. (a£ A, e £ E, M a mul tiset over D) 
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rp(d) 

wq(d) 
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proeesaor f read.s vaZ.ue d at port p 

p2•ooessor g writes d at port q 

There are two order-pr~serving channels cl and c2. Internally, the node f satisfies 

f = L 
di;D 

(rp(d) + cNd) • cltd • f. 

So, node f merges the inputs from p and c2 and emits these through cl, The node g 

is defined by 

g = L cl+d ·(i • c2ta(d) + i · wq(d))·g 
di;D 

The effect of the internal step i is to make the choice nondeterministic, and 

a : D -+ D is a transformation of the data; thus g obtains d from cl and then chooses 

whether to 'recycle' a(d) via c2 or to output d via port q. 

The network N is now externally described by 

Note that the actions cl+d, cltd, cl'd and cltd are unrelated to c2 and thereby work 
a as b's in the definition for µc 2• Conversely, the send and receive actions for c2 

are unrelated to cl. 

3.6.2 Exampte for a queue-Z.ike ehanneZ.. 

protocol as in Figure 2 : 

Consider the very simple connnunication 

T: d) c2 : (b ) 
p cl q 

Figure 2 

s l: rp(d)•cltd·c2+ack·S 
dED 

R= l: cl+d·wq(d)·c2tack•R 
dED 

T = e: E (sjJ R). µcl µc2 

In fact the protocol T satisfies the following recursion equation (as one easily 

computes from the axioms in PA0 (µ~,B,D)) : 

T = l: rp(d) ·cltd•cl~d·wq(d) •c2tack·c2~ack•T. 
dED 
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This recursion equation constitutes an external speaifiaation of T. 

3.6.3 

(i) 

(ii) 

(iii) 

(iv) 

E:x:ampie for a bag-iike channei 

i(ctd c c+d) = ctd · dd 

µ</J(ctd 
c 

µ: <ctd 11 c+d) = ctd . c+<l 

µ</J (ctdl • ctd2 • 
c Z c+u 

uED 
I: c+u) 

ue;D 

ctdl • ctd2 • (c+dl • ~d2 + cfd2 · c~dl) 

(v) Let D = Dl u D2, Dl n D2 = </J, and 

Figure 3. 

(vi) 

H = [ Z cl+d • c2td 
d€Dl 

+ I: cl+d • c3td ] •H 
d €D2 

Then H separates the Dl messages from the D2 messages. 

Let dl "' d2. Then 

µ~ 
c (ctdl c+d2) 

µ</J 
c (ctdl II c+d2) 

µ'~ 
c (c+d2 lL ctdl) 

~c1 

~c3 

ctdl· 0 

ctdl• 0 

o. 

3.7 Rem.arks Notice that there is no guarantee that after a send action ctd 

the corresponding receive action c+d will ever be performed. Thus the send action 

enabies the receive action but does not force its execution. This holds for both 

mechanisms. 

In the tele-communications area the design language SDL, used by CCITT, 

is quite popular. SDL mainly consists of a format for graphical notations for 

concurrent ~ystem descriptions with a send and receive mechanism. SDL leaves open 

the nature of the transmission protocol that supports the send and receive 

instructions. In SDL, example 3.6.2 can be depicted as follows 
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wq (d) 

Figure 4 

c ) 
denotes an independent act­

lon 

D 
denotes a send action 

denotes a receive action 

Here it is assumed that in each cycle d receives a value at rp(d) and cl+d 

respectively. 

cription : 

The µ-encapsulation of the protocol leads to the following SDL des-

rp (d) cltd wq(d) c2tack c2~ack 

Figure 5 

3.8 Remark on synchronous communication. 

A syntax for synchronous communication along a channel c, inspired by CSP and CCS, 

would be 

c!d send d 

c?d :reaeive d 

c#d aorrununiaate d 

In ACP [7] one introduces a communication function I on actions. In this particular 

example, I would work as follows 

c!d c?d 

Notice that we do not use variables : for example, c?x·P is modelled by 

This differs from CCS where one would have 

c(d) l ;;(d) = 't. 

4. CAUSALITY 

I: c? d ·P[d/x]. 
de:D 

In the previous section, the action ctd is the executed or actualised form 

of ctd and likewise c+d is ctd after execution or actualisation. Moreover, in some 
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sense a casual effect is involved 

explicit in the present section. 

ctd causes c+d. These concepts will be made 

4.1 Ac tualisatio:n. On the alphabet A we postulate an operator A:A ..... A, such 

that 0 0 and ~ a for all a E A. The action a is called the actuaUsation a = 
Writing B A-A, where A. = {a I a E A}, A is partitioned as follows : 

A = B u A . 

of a. 

4.2 Causal relations On the set B of not yet completed actions we have a binary 

relation R encoding the casual relations between such actions. Instead of (a,b)ER 

we write 

a lr b , 

in words : "a causes b". Further notations are : 

Dom(R) for the domain of R, i.e. Dom(R) = {b I 3 b' 

Ran(R) for the range of R, i.e. Ran(R) = {b I 3 b' 

b l~b'}, and 

b' 11-bL 

So Dom(R) contains the causes or stimuU and Ran(R) the effects or responses. 

N\.:>te that an action can be both a cause and an effect. Finally, write R(b) = 

{b' I b l~b'} for the set of effects of b. 

4.3 Encapsulation Operator. Let b E B. Performing b has two consequences : b is 

now changed into b, and all b'ER(b), actions caused by b are now enabled. The 

operator which takes care of the execution of b (or, in another phrasing which 

changes the view from "internal" to ''external") and which takes into account which 

actions are enabled, is the encapsulation operator yE where E c B. The intuitive 

meaning of yE is : yE(x) is the process where initially all ac~ions of E are enabled 

and aU casual effects take pl.ace within x, i.e. actions within x are neither enab'led 

or disabled by actions outside x and conversely. 

4.4 Axioms and Semantics. The axioms for the operations yE are given in Table 5 

below. Semantically, as with the previous axiomatisations, the equations specify an 

enrichment of the initial algebra I(PA0). And again it is possible to enrich the 

important model constructions for infinite processes to permit the solution of 

guarded systems of equations. 

4. 5 Examples (i) Supposeal~d, c l~b (see Figure 6 (a)). 

y0 (abllcd) =y0(a(bllcd)) +y\!l(c(dilab)) =ay{d}Cbi!cd) + ... 

ay{d}(bcd+c(dllb)) + ... = a(o + cy{d,b}(db+bd) + ... 

accas + sa> + 2a.csa + <IB> Calle> Coll a). 
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PA0(y,") over atoms A with causality relation R 

x + y = y + x 

(x + y) + z = x + (y + z} 

x + x = x 

(x + y)z = xz + yz 

(xy) z = x(yz) 

x + 0 = x 

OX= 0 

xii Y = xJl.y + y[j_x 

al]_y = ay 

ax[Ly = a(xll y) 

(x + y) [Lz = xJl.z + yJl.z 

A 

o=o 
~ A 
a=a 

yE(a) = a if a E E or a t Ran(R) 

l (a) = o if a f/. E and a E Ran (R) 

Ee ) E() (E-{a}) u R(a)() y ax = y a ·y x 

E E E 
y (x + y) = y (x) + y (y) 

Al 

A2 

A3 

A4 

AS 

A6 

A7 

Ml 

M2 

M3 

M4 

Gl 

G2 

G3 

G4 

GS 

G6 

(ii) Suppose d l~a, b l~c (see Figure 6(b)). Then i (ab II cd) = o. 

a c a .?f c 
' / "-
' / ' / 

x x 
/ " / ' b IC ~ d b / 'd 

Figure 6. (a) (b) 

Note that circular causal relations, such as in this example (ii), yield deadlock. 

Here an action a must be considered to cause the actions accessible from a or 'later' 

than a. (Indeed, we have a. b = y(,\a II b) for aj~b) 

(iii) Let X and Y be the two infinite processes recursively defined by X = abX 

and Y = cdY; so X = (ab)w and Y = (cd)w. Suppose al~c and dl~b. Then 

l <xii Y) = i (a(bXll Y) + c(dY II X)) = ay {c} (bxll Y) + 0 

ay {c\b cxll Y) + c(dY II bX)) = a(o + 2y~ (dY II bX)) = 



accay{b}<Yllbx) +o) 

acasi <xii Y) • 
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Hence y~Cxll Y) = (acao)w. 

4.6 Remarks It should be noted that however often an aation b has been 

enabled, after being performed it is again disabled. For instance if bj~c, then 

Thanks to the interpretation of causality as introducing an obligation (which has no 

multiplicity), the mail via an unordered channel mechanism differs from the present 

mechanism. For, in the setting of Section 3, we have 

µ~(ctd • ctd • c+d· c+d) = ctd 
c ctd • c+d · c+d . 

It is, however, easy to specify the variant of the causality mechanism above such 

that the obligations fo:t'lll a multiset rather than a set: axioms Gl-6 from Table 5 

carry over to that case unaltered, with only the stipulation that E is a multiset. 

It is also simple to generalise the above causality relation to the case 

where an effect b may have several causes a1, .•. ,an: 

meaning that all the ai (i=l, ... ,n) have to be executed in order to enable b. 

Finally, let us remark that there is an interesting connection between the 

"spatial" notion of encapsulation (as represented by the operators :lH in ACP; 

µ0 , µM in the mail mechanisms of Section 3; and the present yE for causality) and the 
c c 

"temporal" notion of execution. In some sense, one could say 

encapsulation = execution 

Indeed, an encapsulated process can be thought to be already executed since no 

further interactions with an environment are possible. 

4.7 Printer Example As a finale we will examine a somewhat involved example. 

This example of the control of a printer constitutes an abstract version of the highest 

level of a specification case study reported in [5]. Henk Obbink [25] (Philips 

Research) suggested we should use a stimulus-response or causality mechamism at the 

highest specification level. An i~portant motivation for the present paper is 

to present a proper foundation for such a causality mechanism in process algebra. 

In fact, mail via order-preserving or non-order-preserving channels turn out to be 

modifications of this same idea (with the advantage of having better syntax). 

Let us consider a configuration of three components : 
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CM command moduZe 

P printer 

D dispZay 

The only connnand that CM can issue is to start the printer; the printer will stop by 

itself. If the printer runs out of paper, a message to this effect roust be displayed 

where upon new paper will be provided, and printing proceeds. When printing has 

finished this is reported to CM. 

The behaviour of the components is defined by equations and depicted in the 

diagrams in Figure 7 (a), (b), (c) . From now on, we adopt the following 

Convention. We will use the following typographical convention : instead of denoting 

actions as b, b we will write, respectively, b and b. So itaiioized actions are in 
~ 

B and are not yet completed, and oompZeted actions are in B are in B are in usual 

print. 

Figure 7(a). 

Figure 7 (b) • 

CM 
CM0 

PC 

' I CMl 

RP 

It' CM2 

CM = CM0 

CM1 = RP .CM2 

p 

CM PC.RP.CM 

..--~~~~~~.,.PO 

STP 
p 

PAD 

P STP.PAD.P2 

Pz STOP.P + POP.NP.P 2 

print command 

reply from printer 

start printer 

printer asks data 

printer stops printer 
runs out 
of paper 

printer receives new paper 



D 

Figure 7(c). 
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.-~~~~~~.a DO 

D 
stop 

Dstart 

display "start" 

display "stop" disp'lay "pop" 

Dok display 110K 11 

D 

D .D+D Dk.D stop pop o 1 

In these diagrams, fat arrows represent actions; the other lines identify control 

points and have no direction. 

The casual relations in R are listed below : 

PC 

STOP 

POP 

NP 

If- STP 

lf- D stop 
1 f-
1 f-

D 
pop 

Dok 

STP jf­
Dstop lf­
D pop If-

D start 
RP 

NP 

The entire system S is now described externally by 

Further, let S* be the subsystem that starts with the exceptional case of no paper 

It can be shown that S and S* satisfy the following specification by means 

of recursion equations 

s PC . STP . [D . PAD • {STOP . D . RP • s + POP . D . S*} 
start stop pop 

+ PAD . {D • (STOP . D . RP . s +POP . D . S*) + 
start stop pop 

+ STOP · D 
stop 

• RP s + POP . D pop S*}J 

S* NP · [STOP · DOK . Dstop RP . s + POP DOK D . S* pop 

+ DOK . (STOP · Dstop . RP · $ + POP · D . S*)J pop 
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