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Special symmetric linear multistep methods for second-order differential equations without first derivatives 
are proposed. The methods can be tuned to a possibly a priori knowledge of the user on the location of the 

frequencies. that are dominant in the exact solution. On the basis of such extra information the truncation error 

can considerably be reduced in magnitude. Numerical results are compared with results produced by the 

symmetric methods of Lambert and Watson and the method of Gautschi. 
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1. INTRODUCTION 

In this paper we consider linear k-step methods 
k k 

2:a1Yn+l-l = h22:b1/Un+J-/,Jn+I-/), k~2, n~k-l (1.1) 
l=O l=O 

for integrating the initial value problem for the special second-order equation: 

ji(t) = f (t,y(t)), y(to) =yo, y(to) =Yo· (1.2) 

This linear multistep (LM) method is characterized by the polynomials 
k k 

P(t): = 2:a1 tk -I, act):= 2:b1 tk -t. (1.3) 
l=O l=O 

Henceforth, we shall refer to (1.1) as the method {p,a}. 
The leading assumption of this paper is that it is a priori known that the solution is approximately 

of the form 
m . 

y(t)~Co + 2: c1e'"11 

j=I 

with frequencies w1 in a given interval [w,w]. 

(1.4) 

The special case where w1 = jw0 , with w0 given, was considered by GAUTSCH! [1]. His approach is 
essentially the following : 
Let 
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<P(z): =p(ez) - z2a(ez), 

then the local truncation error of (1.1) is given by (6] 

d 
Tn +k = <P(h dt )y (tn)· 

Inserting (1.4) in (1.6) yields 
m . 

Tn +k~<P(O)Co + ~ C1<P<ihwj)e""11 , wJ = jwo. 
j=l 

The coefficients in the polynomials p and a are chosen in such a way that 

<P(ihjwo) = 0, j = 0, 1,. .. ,q 

(1.5) 

(1.6) 

(1.7) 

(1.8a) 

for the largest possible value of q. Such methods are said to be of trigonometric order q (see also [8]). 
An alternative approach replaces the fitting conditions (l.8a) by the conditions 

<P(O) = 0, <P(ihwV>) = 0, j = 1,2,. . .,q, (1.8b) 

where the uP> are appropriately chosen points in the interval [w,w]. For first-order differential equa
tions this approach was analyzed in [4]. Following a similar ana:fysis, we will try to minimize the func
tion I <P(ihw) I in the interval [w,w] by a judicious choice of its zeros ihwU> (see Section 2.2). 

An advantage of the second approach (minimax-approach) over the Gautschi-approach is the 
increased accuracy in cases where no accurate estimate of w0 is available or when the frequency is 
varying in time. In order to facilitate the use of these methods we also implemented a simple mechan
ism to estimate the frequency during the integration process. These aspects will be demonstrated by 
numerical experiments in Section 3. 

In Section 2 we derive Gautschi- and minimax methods of optimal (algebraic) order of accuracy. As 
an example, fork =4 closed form expressions for the coefficients a1 and b1 of the polynomials p and cr 
are presented. 

2. SYMMETRIC METHODS 

A linear k-step method is called optimal if it is zero-stable and if its order equals k +2 [6]. It is well
'rnown [3] that optimal methods necessarily 
i) are implicit, 
lii) have an even step number k, 
(iii) have a symmetric a-polynomial, i.e. a<n = tk a(t- 1) 

(iv) and have a p-polynomial the roots of which are I in modulus. 
For second-order ODEs of the form (1.2) the last property implies that p is symmetric so that from 
now on we will restrict our attention to symmetric, implicit LM methods {p,a} with even step number k 
(and consequently even order p). In passing we note that the implication p is symmetric does not 
apply in case of first-order ODEs. 

In his original paper, Gautschi considered Stormer-Cowell type methods, i.e. 
p(t)~tk - 2tk-t + tk-2 as h~O which are clearly not symmetric for k~3 and consequently have 
not the optimal (algebraic) order. Here, we propose LM methods based on the Gautschi-approach as 
well as on the minimax-approach which do have the optimal order. 

Our starting point is to choose a symmetric p-polynornial, which merely serves to let the method 
{p,a} be zero-stable. We require this polynomial to satisfy a 0 = I and p(l) = p'(l) = O; hence it 
takes the form 

(k-2)/2 . . 
p(t) = (t-1)2 II (t-e18')(t-e - 181 ), 0<81<2'1T. (2.1) 

/=I 

J:Ie~e'. the 01 are in ~rinciple free parameters; however, the condition of zero-stability restricts the mul
tiplietty of 81 to 2 if 01-=/='IT and to I if 81 = 'IT. These free parameters can be used, for example, to 
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decrease the error constant or to increase the interval of periodicity ([7]; see also Section 3, second 
example). 

The a-polynomial of a symmetric, implicit (even) k-step method has +k + 1 free b-coefficients. To 

achieve order p = k + 2, we have to satisfy k + 4 conditions two of which are already fulfilled by 
the assumption p(l) = p'(l) = 0. Because of the symmetry of the method there remain +k + 1 con-

ditions to be met, equal to the number of free parameters. In constructing LM methods based on the 
Gautschi-approach (as well as on the minimax-approach) we follow the same strategy but now the b
coefficients are determined by the fitting conditions (1.8a) (and (1.8b )). Because p(I) = 0 implies 
<l>(O) = 0, the number q in ( 1.8) can be chosen equal to the number of free b-coefficients, i.e. 

I 
q = 2k+1. 

The methods constructed in this way, converge for h--"?0 to the classical optimal method of order 
2q( = k + 2). This is probably best understood using the following heuristic explanation: a classical 
optimal k-step LM method can be considered as a method which is (k +4) times fitted at the origin, 
or equivalently, <l>(z) has a zero of multiplicity k + 4 at z = 0. On the other hand, the optimal 
Gautschi method has a</>- function with a double zero at z = 0 (p(l) = p'(l) = 0) and q = 2k + 1 

zeros at z = ihjw0 . However, because <l>(iv)=O implies <!>(-iv)= 0 the</>- functions of both types of 
methods have the same number of zeros. Finally, because the fitting points monotonically tend to zero 
for h ~o, the fitting points will collapse in the limit, resulting in the same algebraic order. A similar 
argument holds for the minimax methods. 

We remark that the procedure described above is equally valid in case of explicit LM methods. If 
again symmetric methods are used, now a k-step method yields order k. 

We conclude this section with a discussion of the solution of the linear system resulting from the 
fitting conditions ( 1.8a) and the minimax conditions ( l .8b ). 

2.1. Symmetric Gautschi methods 
Due to the symmetry of the method, <l>(z) can be written as 

I k J..kz k k 
<l>(z) = 22:(a1-b1z 2)(e(k-I)z +e1z) = e 2 2;(a1-b1z2)cosh((- -l)z). 

l=O l=O 2 
(2.2) 

The fitting conditions (1.8a) assume the form 

±(a1 +b1 Uhwo)2)cos((~ -l)jhwo) = 0, j = l, ... ,q, 
l=O 

(2.3) 

or, equivalently, 

{
A-1 } . 2 k . k k . 

(jhw0 )2 2: 2b1cos((- -l)jhw0 )+bk 12 = - 2:a,cos((2-l)jhwo), 
l=O 2 /=0 

j= l, .. .,q. (2.4) 

It should be noted that only real-valued equations occur in this system. One possible way to solve 
this system is, of course, a numerical approach. However, if hw0 is extremely small, this system is very 
badly conditioned and we will run into numerical difficulties. Therefore, it is convenient ~o have 
available closed form expressions for the solution of this system. To give an example, we denved for 
k = 4 such expressions using REDUCE, a package used for performing symbolic as well as numeri
cal mathematical manipulation [2]. The results are: 

_ (x -1)_ 2x(l6x 3 +38x 2 +24x+3) +a(Sx +4) 
bo = 36v6 x (x + 1)(2x + 1)(4x2 +2x -1) 
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_ (x -1). 2x(20x 4 +60x 3 +40x 2 -3)-a(18x 3 + l4x 2 -3x -2) 
9v6 x(2x + 1)(4x 2 +2x -1) 

(x -1). 2x(40x 5 +12x 4 -56x3 -20x 2 +6x -3)+a(l08x4 +170x 3 +42x 2 -25x -4) 
18116 x(x + 1)(4x 2 +2x -1) 

where x : = cos Po and Po : = w0h, and where a is the free parameter occurring in the p-polynomial 

(2.5) 

Evidently, zero-stability requires -2~a<2. 

2.2 Symmetric minimax methods 
Proceeding as in the previous section, the system defining the minimax methods reads (cf. (l.8b) and 
(2.4)) 

{
l._ - l l . 2 k . k k . . 

(hwU>)2 ~ 2b1cos((- - l)hwW) +bk 12 = - ~a1 cos((2 - l)hwU 1), J = l,. .. ,q, 
l=O 2 /=O 

(2.6) 

where the iwUlh are zeros of the function </>(ihw) such that it has a small maximum norm in the inter
val w~w~w. First, we observe that </>(ihw) = exp(ikhw / 2) i/;(ihw) with i/;(ihw) real-valued. If if(ihw) 
wouTd be a polynomial in w, then the optimal choice would be a shifted Chebyshev polynomial ( cf. 
[4]). This suggests to approximate if; by such a Chebyshev polynomial and to identify the wU> with the 
zeros of this polynomial. Since i/;(ihw) is an even function of w we write (cf. (2.2)) 

ikhw 

</>(ihw) = e 2 if(ihw)~e 

where C is some constant. Thus 

ikhw 
2 

2 - 2 2 
C T ( 2w - w - ~ ). 

q _2 2 , 
w -w 

(j.) [ I (_2 2 l _2 2) ( 2 i - 1 ]+ w = - w +w ) + -(w -w cos =---=-'IT) , j 
2 - 2 - 2q 

3. NUMERICAL ILLUSTRATION 

1, .. .,q. (2.7) 

In this section the optimal Gautschi methods and the optimal minimax methods are tested for k = 4 
(resulting in (algebraic) order 6). They will be compared mutually and also with the 6th-order, 4-step 
(implicit) method of LAMBERT AND WATSON [7], which is also intended to integrate efficiently periodic 
initial value problems. Actually, this method is the conventional optimal 4-step method. Similar to 
the 'fitted' methods, it has one free parameter a (cf. 2.5). In all methods this parameter a is chosen 
equal to zero. 

Additionally, we list the results of the original 4-step Gautschi method of trigonometric order 3 ( cf. 
[1, p. 393]). This method has only algebraic order 5 because it lacks symmetry. 

3.1 lmplementational details 
It will be clear that a proper application of the Gautschi- and minimax methods requires a more or 
less accurate estimate of the frequency w0 and the frequency-interval [ w, w], respectively. If these esti
mates are not available in advance, and also in cases where the frequency is varying in time, it will be 
convenient to have a mechanism to estimate the frequency automatically. Therefore, we implemented 
such a mechanism based on the following strategy: Suppose that the (local) solution on Un -i .tnl can 
sufficiently accurate be approximated by 

y(t)c::::'.Co + Cieiw(n)t , tE[ln-i.lnl· (3.1) 

Then, requiringy(t;) = y; and y"(t;) = f; i = n - l, n, we obtain 
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(w(n))2 = fn-1 -Jn (3.2) 
Yn-Yn-1 

Now, we use a 'fitting' method to perform the step from tn to tn + 1 if the following conditions hold 
true: 

(i) 

(ii) 

(w(j))2>(e/h)2 , f.= 0.02 , j = n, n-1, n-2. (3.3a) 

Only three w-values are involved because we focused on four-step methods. Evidently, (w(j))2 
should be positive to obtain a real value for the frequency; the reason to impose the more restric
tive condition (i) is motivated by the fact that the 'fitted' methods converge to the Lambert
Watson method for h~O and do not show a substantial gain for very small values of hw(j). 
Moreover, the (numerical) solution of ( 1.8) gives numerical difficulties for hw(j)<< I 

max(w(j))<l.2min(w(j)), j = n, n -1, n -2. (3.3b) 
J J 

The expression for the local truncation error Tn +k (cf. Section I) is based on constant w-values 
in the 'domain of influence' of the LM method, i.e. [tn_ 3,tn+d· To avoid a rigorous violation of 
this assumption, condition (ii) is applied. 

If (i) and (ii) are satisfied we use w0 = w, w:=(w(n-2) +w(n-l)+w(n))/3 in case of the 
Gautschi-approach and [w,w] = [.95w, I .05w] in case of the minimax-approach. If (one of) these con
ditions are not satisfied we use the Lambert-Watson method to integrate this particular step from tn 
to tn + 1• In our experiments, the above strategy is applied every step. Finally, in the numerical tests 
the implicit relations were solved iteratively by Newton's method with the stopping criterion: residue 
less than 10- 12 . To measure the obtained accuracy we define 

cd(i/;(t)) : = - log10 (/2 norm of the error of i/;(t) at t = tend). 

This quantity represents the number of correct digits of l/;(t). 

3.2 Test examples 
Bessel's equation 
First, we consider the frequently used test problem, originally discussed by GAUTSCH! [ 1] 

(3.4) 

y(t)+(IOO+~)y(t) = 0, J.:;;1.:;;10, (3.5) 
4t 

with the initial conditions according to the 'almost periodic' particular solution 

y(t) = Ytlo(lOt), (3.6) 

where J 0 is the Bessel function of the first kind. Obviously, the frequency of y (t) is approximately 10 
and consequently the Gautschi methods were applied using w0 = 10. For the minimax-approach we 
used the frequency interval [w,w] = [9.5, 10.5]. Additionally, we applied these methods using the 
technique for automatically estimating the frequency. Table 3.1 shows the results for several step 
sizes. Compared with the symmetric methods, the original Gautschi method is by far inferior. This is 
not only due to its lower algebraic order but also a consequence of the fact that the coefficients are 
given in series form which is not accurate enough unless hw0 <<1. Moreover, this table clearly shows 
that it may pay to adapt the method to the knowledge available on the solution: for the versions in 
which the fitting points are fixed beforehand, the optimal Gautschi method has a global error which is 
approximately 100 times smaller than the error of the Lambert-Watson method, whereas the minimax 
method has a further increase in accuracy of about three decimal digits. Furthermore, we see that the 
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TABLE 3.1 cd(y(t))-values at tend= 10 for problem (3.5), (3.6) 

method k/p/q frequency h = 1/10 h -1 /25 h-1/50 

Lambert-Watson 4/6/- 1.5 4.1 6.0 

optimal Gautschi 41613 10 3.5 6.4 8.2 

optimal Gautschi 41613 automatic 3.3 7.2 7.9 

optimal minimax 41613 [9.5,10.5] 6.4 9.1 11.0 

optimal minimax 41613 automatic 7.2 9.0 11.0 

original Gautschi 41513 10 0.4 3.1 4.9 

automatic versions yield results which are approximately equal to the results obtained with a fixed fre
quency (interval). We mention that - in these tests - it did not occur that the algorithm changed to 
the Lambert-Watson method. The original Gautschi method gives the same results for both versions 
because its poor performance is not caused by an inaccurate estimate of the frequency. 

Orbit equation 
The next example was studied by STIEFEL & BETTIS [9]: 

z(t) + z (t) = .001 eit' z (0) = 1, .i(O) = . 9995i, z EC, O:;;;;t :;;;;40'1T. (3.7) 

Writing z(t) = u(t)+iv(t), u,velR, the solution is given by 

u(t) = cost+ .0005tsint, v(t) = sint - .0005tcost. (3.8) 

The results of the various methods, when applied to the equivalent real-valued system for u and v, are 
given in Table 3.2. As the solution possesses a frequency 

method 

Lambert-Watson 

optimal Gautschi 
optimal Gautschi 

optimal minimax 
optimal minimax 

original Gautschi 

TABLE 3.2. cd (z (t))-values at tend = 40'1T for problem (3. 7),(3.8) 

k/p/q 

4161-

41613 
41613 

41613 
4/6/3 

41513 

frequency 

automatic 

[0.9,1.1] 
automatic 

h='IT/4 
1.5 

3.0 
4.4 

5.0 
6.2 

0.2 

h ='IT/6 h ='IT/9 
2.6 3.7 

4.2 5.3 
5.5 6.5 

6.1 7.2 
7.4 8.5 

1.4 2.6 

h ="IT/ 12 

4.5 

6.1 
7.3 

8.0 
9.2 

3.4 

close to l, we applied the Gautschi-type methods using w0 = 1 and the minimax method was given 
the frequency interval [0.9, 1.1]. Again, both types of methods were also tested using the 'frequency
estimator'. The solution z(t) represents a slightly perturbed circular orbit in the complex plane. Its 
distance to the origin is given by 

l l 

y(t) = [u 2(t)+v 2(t)]2 = (1 +(.0005t)2]2 , (3.9) 

~ence z (t) spirals slowly outwards. Many numerical methods yield approximations which spiral 
mwards for all values of h; these methods were termed 'orbitally unstable' by Stiefel and Bettis. (This 
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is because the principle roots of the characteristic equation are inside the unit circle for any small h; 
for a detailed discussion on these aspects we refer to [7].) Lambert and Watson constructed LM 
methods possessing a periodicity property as long as the product of h and the frequency w remains 
within a certain interval and called this the interval of periodicity. To give an example, the Lambert
W atson method we are testing in this section has an interval of periodicity (0,60/11). Therefore, the 
accuracy of y is probably more interesting than the accuracy of z. We found for all methods and for 
all step sizes used a numerical value of y larger than 1, which is, at least qualitatively, in accordance 
with its theoretical behaviour. The cd-values can be found in Table 3.3. 

TABLE 3.3. cd(y(t))-values at tend =40'll" for problem (3.7)-(3.9) 

method k/p/q frequency h='ll"/4 h='ll"/6 h ='ll"/9 h ='!/" / 12 
Lambert-Watson 4161- 3.0 4.1 5.2 6.0 

optimal Gautschi 41613 4.2 5.4 6.5 7.3 
optimal Gautschi 41613 automatic 4.4 5.6 6.6 7.3 

optimal minimax 41613 [0.9, 1.1] 6.4 7.6 8.7 9.4 
optimal minimax 41613 automatic 7.5 8.7 9.7 10.5 

original Gautschi 41513 0.2 1.5 2.7 3.6 

The results of both tables give rise to conclusions similar to those of the first example. Again, the 
estimates of the frequency were accepted in all steps and the results obtained are even better than in 
the case where we used a fixed frequency. 

N on/inear equation 
Our third problem is taken from JAIN, KAMBo and GOEL [5] and reads 

z(t)+(l+a+abe-2it)z(t)-ae-i1z 2(t) = 0, 0:E;;;t:E;;;20'll", 

z (0) = 1 + b, .i(O) = i (1-b ), z EC. 

The theoretical solution, with z(t) = u(t) + i v(t), is given by 

u(t) = (1 +b)cost , v(t) = (1-b)sint. 

(3.10) 

(3.11) 

Following Jain et al. we selected the parameter values a =0.1 and b =O.l. The Gautschi- and 
minimax methods were applied in both versions; in the non-automatic version we employed wo = 1 
and [w,w] = [0.9, 1.1], respectively. As the solution (3.11) possesses only one, constant frequency 
w=l,-the Gautschi method, using w0 =1, integrated exactly, whereas the automatic version gives 
results which are nearly exact (relative to the machine-precision). The minimax method did not 
exactly fit the frequency w = 1 (cf. (2.7)) but could obtain a substantial gain in accuracy when com
pared with the Lambert-Watson method. Table 3.4 gives the results for several step lengths. 

Mathieu's equation 
The last test example is a Mathieu equation, also possessing a periodic solution: 

ji(t)+(a -2qcos(2t))y(t) = 0, 0:E;;;t:E;;;20, y(O) = 1, j(O) = 0. (3.12) 

We do not have available an exact solution; however, it is known that the solution is of the form 

(3.13) 

where P(t) is periodic with frequency 2 and>. is the 'characteristic exponent' which depends on a and 
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method 
Lambert-Watson 

optimal Gautschi 
optimal Gautschi 

optimal minimax 
optimal minimax 

original Gautschi 
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TABLE 3.4. cd(z(t))-values at tend= 20?T for problem (3.10), (3.11) 

k/p/q 
4161-

41613 
41613 

41613 
41613 

41513 

frequency 

automatic 

[0.9,1.1) 
automatic 

h -?T / 6 
3.1 

exact 
11.5 

6.6 
7.9 

2.0 

h -'IT/ 12 
5.0 

exact 
11.1 

8.5 
9.7 

3.9 

h -'IT I 24 
6.8 

exact 
11.0 

10.2 
10.9 

5.7 

q. By choosing a =3.7 and q =2.0 we achieve that .x~2. Hence, we tested the Gautschi method with 
w0 = 2 and the minimax-approach used the frequency interval [l.9,2.1). Both methods performed 
only slightly better than the Lambert-Watson method. This is explained as follows: in spite of the 
periodicity of the function P(t), the solution y(t) is not of the form (1.4), at least not with a small 
value of m. This became clear in using the automatic version: in the greater part of the time steps the 
estimator could not find positive values for w2(n) (see also the conditions (3.3)) and even if such 
values were found in three subsequent time steps they varied too rapidly to be useful. 

TABLE 3.5. cd(y(t))-values at tend=20 for example (3.12) 

method k/p/q frequency h=l/10 h =1/20 h=l/40 
Lambert-Watson 4161- 3.6 5.4 7.2 

optimal Gautschi 41613 2 4.6 6.4 8.3 
optimal Gautschi 41613 automatic 3.7 5.0 5.8 

optimal minimax 4/6/3 [1.9,2.1) 4.0 5.8 7.5 
optimal minimax 41613 automatic 3.7 5.5 7.1 

original Gautschi 41513 2 2.8 4.3 5.9 

Therefore, apart from its use in estimating the unknown frequency of the (local) solution, this exam
ple clearly shows, that this frequency-estimation technique is at the same time useful to detect whether 
or not y (t) is of the required form ( 1.4). If this premiss on y (t) is not fulfilled the fitting- and 
minimax methods are not feasible and a conventional method should be used. The results of all 
methods are collected in Table 3.5. The reference solution at tend=20 as well as the starting values 
for the 4-step methods were calculated with an automatic Runge-Kutta code from the NAG-library 
using a very small tolerance parameter to control the local error. 
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