Explorations of the
Dynamic Environment

Explorations of the
Dynamic Environment

Verkenningen van Dynamische Contexten

(MET EEN SAMENVATTING IN HET NEDERLANDS)

PROEFSCHRIFT

TER VERKRIJGING VAN DE GRAAD VAN DOCTOR

AAN DE UNIVERSITEIT UTRECHT OP GEZAG VAN DE

RECTOR MAGNIFICUS, PROF. DR. J.A. VAN GINKEL

INGEVOLGE HET BESLUIT VAN HET COLLEGE VAN

DECANEN IN HET OPENBAAR TE VERDEDIGEN OP

DONDERDAG 22 SEPTEMBER 1994 DES VOORMIDDAGS
TE 10.30 UUR

DOOR

Cornelis Franciscus Martinus
Vermeulen

GEBOREN OP 8 DECEMBER 1966
TE ZWOLLE

promotor: Prof. dr. D.J.N. van Eijck (Faculteit der Letteren)
co-promotor: Dr. A. Visser (Faculteit der Wijsbegeerte)

CIP-GEGEVENS KONINKLIJKE BIBLIOTHEEK, DEN HAAG

Vermeulen, Cornelis Franciscus Martinus

Explorations of the dynamic environment/ Cornelis
Franciscus Martinus Vermeulen. - Utrecht: LEd; Utrecht:
Onderzoeksinstituut voor Taal en Spraak (OTS). - (OTS
dissertation series, ISSN 0929-0117)

Ook verschenen als handelseditie: Utrecht : LEd, 1994. -
Proefschrift Universiteit Utrecht. - Met lit. opg.

ISBN 90-5434-029-0

NUGI 941

Trefw.: semantick.

Contents

Acknowledgements
1 First Steps in Dynamic Semantics 1
1.1 Dynamicsemantics v 1
1.2 A trip down memory lane 3
L3 “Theformal fesidie s ez sss s s mes s anwaas a4 5 6
1.4 The small unit principle 14
1.5 Facts and Agires « « wiw v s e e nm wdl v s s mams s e e s 19
I Variables in Dynamic Semantics 35
2 Preserving Information in Dynamic Semantics 47
21 Introduetion ¢ ¢ c s s e s v u v wEe v e R s R 2w 8 56 47
2.2 Sequence semantics o1
2.2.1 The language of dynamic predicate logic 51
2.2.2 The refined relational semantics 52
2.2/30 AJCOMPATISON wwvnr o0 50 5 5 0 vt 5 &0 3 58 0 wwiay 0 8 & 5 @ 57
2:3 Staticsemantics v v v o v v S G B S S EE T ST S 9 Y 59
2.3.1 Information structures 59
2.3.2: Static interpretation «x s v v v v uw wm v 22 2 5 65
2.4 'Topics in dynamic semantics 67
24.1 Thegeneralpoint 67
2.4.2 Ordering information structures 68
2.4.3 DMonotonicity 71
D44 Inférefce ¢ « ww v v 2 s a5 v n 356 E A 6 71
2.5 Update semantics 78

2:.5.1 Update SeMantiii: « v cenms v e s v mmv s s v 2 & 78

262 Might sezsmessssameas
2.5.3 Downdating
2.5.4 Finite variable fragments
276 ICONClUSION < s ¢ 5 5 o smer & = % 5% 3 w0 5 w5
ADPEndIX 25 U S PSR S P RE I8 S 3%

3 Merging Without Mystery

3.1 ‘Introduction’ . = 5 = e o v v s owe o
3.2 Contexts and contents
3.3 Referent systems
331 Variables.
3.3.2 Referent systems
3.33 Themerger
3.3.4 Referent systems in semantics . .
3.4 Properties of referent systems
3.5 Dynamic semantics with referent systems
36 .DS; DRSEAd-DPL, = 5 5o s 5 5w s % s 6 ¢
3611 BRT ssssnnmaansssmy
36.28 PP v v 06w wwsr w0 5 5 6 vep s
37 Diseussion =.c o5 95 4 e 6 55 25 G s
APHETADE « v 5 s 0 2 o0 50w v 0 & om0 % 5w

II Propositional Dynamics

4 The Dynamics of Propositional Structure
4.1 Introduction

4.2 Texts as sequences
4.3 Textsastrees
4.4 Trees as an update algebra
4.4.1 Update algebras
4.4.2 Partial trees
4.43 The merger of trees
4.4.4 Associativity
4.5 Treesand texts
4.6 Discussion

Appendix

95

96

98
103
103
104
109
111
113
118
125
125
129
133
143

145

5 Proofs as Texts 195

51 TAFOAUCEION « soe w v v v w5 e v vov w o i o 0 0om % W o w g 195
5.2 Dynamic proof theory: proofs astexts 197
5.3 The language of proof texts 201
5.4 The structure of formulas 206
5.4.1 Command relationson trees 207

5.4.2 Support relations on subformulas 210

5:4i3 JustifVIngiclaimeg « cvw o ¢ v moaew v v v % 5 o w s 212

Hudd ExampleS0wenei s 85588 EES 217

S8 OLHEE I6BIEE: » 5 o oo mne 55 5 % 1 0 cimin me v % 8 20 oo 8 8 220

5.5 Soundness and completeness 220
5.5.1 Soundness 222

8§52 Cofipletitiess o o « wow vov 0 5o im0 6w 8 e e w 225

5.6 Proof construction as text construction 226
56.1 Proofs 226

5:6:2 Natiural deduction: v o o w5 6w v & e mem - s 231

BT Conclusion » w3 ¢ 5 56 5§ 6 0 W 0 35 v 5 ¥ 9 & 5w 8 12 233
Appendix 243
Conclusion 245
Samenvatting 263

Curriculum Vitae 267

Acknowledgements

In the Dutch university system the procedures automatically provide each
‘promovendus’ with a period of approximately three months between the
completion of the manuscript of their thesis and the moment of its defense.
To some this may look like a typical example of bureaucratic nonsense, but
after four years of research in the Dutch logic-and-linguistics community
I found that these three months hardly suffice to compile a more or less
complete list of all the people whose support I wish to acknowledge. So
I hope that all those whose name belongs in this list, but has been left
out, will accept that this is certainly not because I have not valued their
support: it is simply a result of this time limit which is inherent to ‘the
system’.

First of all I am most grateful to my promotor, Jan van Eijck, and my
co-promotor, Albert Visser: they have put me on the right track in my
explorations of the dynamic environment when I started in September
1990 and they have done their best to keep me from going astray ever
since. Any AiO should already feel lucky to get the kind of support
that I got from Jan and Albert, but in addition I was so lucky as to
have Patrick Blackburn, Heleen Hoekstra, Tim Fernando, Marcus Kracht,
Michael Moortgat and Henk Verkuyl around. Each of them have, at
different times during the project, assisted me with useful advice, both
concerning the subject matter of my research and about the wonderous
ways of the academic world.

My PhD project was funded by the ‘AiO Netwerk TLI’, a national net-
work for PhD students in Language, Logic and Information. I would
like to thank Jacques van Leeuwen of the TLI-network for administra-
tive support. I am very glad that the TLI-network have found the OTS
(Research Institute for Language and Speech) of the Arts Department of
Utrecht University prepared to give me a place to work and I would like

to thank this institute—especially Sieb Nooteboom, Peter Coopmans and
Martin Everaert—for providing excellent research facilities.

Together the two institutions have consituted a truely dynamic environ-
ment in which I was happy to discover many colleagues and friends. 1
would like to mention in particular (in order of appearance): Wilfried
Meyer-Viol, Joost Zwarts, Dirk Heylen, Christ-Jan Doedens, Jules van
Weerden, Herbert Ruessink, Renée Pohlmann, Joke Dorrepaal, Glyn Mor-
rill, Maarten de Rijke, Willem Groeneveld, Erik Aarts, Teresa Solias,
Marten Trautwein, Emiel Krahmer, Vera Stebletsova, Giovanna Cep-
parello, Claire Gardent, Koen Versmissen, Dirk Roorda, Petra de Wit,
Anne-Marie Mineur, André Schenk, Martin van den Berg, Yde Venema,
Kees Trautwein, Natasha Kurtonina, Jaap van der Does, Martijn Spaan,
Willem-Olaf Huijsen, Herman Hendriks, Dorit Ben-Shalom and Annius
Groenink.

Finally T want to thank Catholijn Jonker and Mieke Rats. Through our
joint experiences at several ESSLLI summerschools we have become some-
thing of a mutual support group. Catholijn and Mieke have been most
effective in getting me through some of the bad patches in the dynamic
environment.

In the above list I have not included my family and personal friends: I
hope that they will prove me right in thinking that their support during
the past four years was not ‘work-related’ at all!

Matters of copyright

Most of the material presented in this thesis has already appeared or will
shortly appear in some other form. I am grateful to the publishers for
their consent for publication of revised versions of the following papers:

o ‘Sequence Semantics for Dynamic Predicate Logic’, in: Journal of
Logic, Language and Information 2, 1993 (copyright with Kluwer
Academic Publishers (Dordrecht), here the basis for chapter 2)

o ‘Merging without Mystery, Variables in Dynamic Semantics’, to ap-
pear in: Journal of Philosophical Logic (copyright with Kluwer Aca-
demic Publishers (Dordrecht), here the basis for chapter 3)

o ‘Incremental Semantics for Propositional Texts’, to appear in: Notre
Dame Journal of Formal Logic (copyright with University of Notre
Dame (Indiana), here the basis for chapter 4)

Chapter 1

First Steps in Dynamic
Semantics

1.1 Dynamic semantics

Since the publication of Kamp (1981) and Heim (1983) we have seen the
development of a new approach in formal semantics which we now call dy-
namic semantics. The contributions to this approach are large in number
and diverse in character. This makes it hard to give a good demarcation
of the area. Both Kamp (1981) and Heim (1983) were concerned with
problems in the semantics of anaphora in texts. Therefore one view on
dynamic semantics is that it is the area of formal semantics that is con-
cerned with the interpretation of anaphora in texts along this line. This
is not an unreasonable first attempt, but it seems that such a character-
isation is too restrictive. For example, there is a whole body of work on
presuppositions’ that has obvious connections with dynamic semantics,
but that is not captured by this characterisation.

There also is another way to look at dynamic semantics: all the devel-
opments in this field have in common that they use certain ideas and
methods which are genuinely new to the area of natural language seman-
tics. The introduction of these new ideas and techniques seems to be the
more interesting contribution of dynamic semantics. Therefore it seems
that these ideas about the semantics of natural language and the new

1Cf. Heim (1992), Van der Sandt (1989), Beaver (1994) and Van Eijck (1991b), for
example.

2 Chapter 1. First Steps in Dynamic Semantics

techniques that these ideas have induced can serve as a more interesting
criterion to determine what counts as dynamic semantics. In this thesis
dynamic semantics will be approached from this angle. The ideas that are
crucial to the development of dynamic semantics will be presented and
the technical consequences of an approach to semantics along these lines
will be illustrated in several situations. In particular we will see what
a dynamic approach means for the semantics of variables (part I) and
general principles will be proposed for the architecture of a semantics in
a dynamic setting (chapter 4). Finally the ideas from dynamic semantics
are applied to proof theory: this will lead to the idea of treating proofs as
texts (chapter 5).

The decision to concentrate on the general ideas behind dynamic seman-
tics on the one hand and the technical innovations that these ideas induce
on the other hand, implies that the linguistic phenomena that have mo-
tivated dynamic semantics will not always be in the spotlight. Of course
this does not mean that such applications are not the ultimate motiva-
tion for dynamic semantics, but it seems a good idea to abstract away
from some of the linguistic details to try and find the best way of being
dynamic in semantics.

In the remainder of this chapter we will first give a gentle introduction
to dynamic semantics. For a more thorough introduction the reader is
referred to the literature.? The dynamic interpretation of anaphora in
texts will be sketched informally. After that a more precise account of
the techniques used in DRT and DPL will be given. The relation between
these forms of dynamic semantics will be discussed. At this point prelim-
inary conclusions will be drawn about the nature of dynamic semantics:
we will argue that a major goal of dynamic semantics is to provide a faith-
ful picture of the step by step character of text interpretation. Finally
some of the familiar results about DRT and DPL will be listed, both as a
reminder for the reader and to fix some notations that will be used later
on.

2Esp. Kamp (1981), Kamp and Reyle (1993), Heim (1983), Groenendijk and
Stokhof (1991a).

1.2. A trip down memory lane 3

1.2 A trip down memory lane

Although there are several authors who can claim to have anticipated
developments in dynamic semantics — here I think of Seuren (1985),
Karttunen (1976), but also Kaplan (1979), Stalnaker (1978) and even
Montague (1970) — it is probably fair to say that the definitive start
of dynamic semantics is made in Kamp (1981) and Heim (1983). It is
their implementation of dynamic ideas about the semantics of discourse
that gave rise to what we now call dynamic semantics. Two important
characteristics of their approach are that:

o the semantic universe consists of information structures. These in-
formation structures do not only contain truth-conditional informa-
tion, but also extra, contertual information;

o the interpretation of a text is given in terms of the construction of
such an information structure.

Both Kamp and Heim® employ such a picture of discourse interpretation
in a formalisation of the semantics of anaphora. Here I will first give an
informal presentation of the interpretation of anaphora along such lines to
get across the basic picture of dynamic interpretation. Later the formal
details will be filled in in two different ways. The informal explanation
will be based on the following two sample discourses:

o A dog howled. It was lonely.
o If a dog howls, then it is lonely.

The first discourse consists of two sentences, where an anaphoric expres-
sion in the second sentence, it, finds its antecedent, a dog, in the first
sentence. The interpretation of this discourse leads to the construction of
a Discourse Representation Structure (DRS) that represents the informa-
tion conveyed by this example. Such a DRS consists of two components.
The first component contains a set of discourse referents. Discourse ref-
erents represent the topics of the discourse. An expression such as a dog

3Kamp calls his information structures Discourse Representation Structures, Heim
uses the metaphor of file cards that are updated with new information: we will con-
sider these as different ways of presenting the same intuitive picture of the process of
interpretation.

4 Chapter 1. First Steps in Dynamic Semantics

will typically be an indication of a new topic in the text. Therefore the
interpretation of such an expression will lead to the introduction of a new
discourse referent in the first component of the DRS.

In the second component truth-conditional information is stored about
the discourse referents in the first component. For example, the DRS
that we get by interpreting the first example will contain conditions on
the discourse referent for a dog indicating that it is a dog and that it
howled. Now, if we start with an empty DRS, (0, (), the interpretation of
the first sentence will lead to the construction of the following DRS:

({r}, {poG(r), HOWL(r)})

This DRS is the starting point for the interpretation of the second sen-
tence of the discourse. The second sentence contains the anaphor . The
interpretation of an anaphor consists of establishing a link with a dis-
course referent in the DRS under construction. In this case there is only
one discourse referent available, namely r, so this will be the referent we
link with. As a consequence of such a link the information that the sec-
ond sentence gives will be interpreted as information about the discourse
referent with which we have established a link. So the information in the
second sentence will be interpreted as information about r. This gives the
following DRS:

{{r}, {poG(r), HOWL(r), LONELY(7)})

Note that apart from adding truth-conditions to a DRS two kinds of
operations occur in the interpretation of this example: first we sometimes
have to add new discourse referents. This typically happens when we
encounter indefinite descriptions such as a dog. Secondly we sometimes
have to choose some discourse referent that already has been introduced
in the DRS that we are constructing. This is what the interpretation of
anaphors amounts to. The information that is given about the anaphor is
then interpreted as information about the selected discourse referent, its
antecedent. The information that is crucial for these links is stored in the
first component of a DRS, whereas the second component just serves to
collect the (truth) conditions on the referents from the first component.

In this set-up truth is introduced as a derived notion: it can be checked
whether some discourse is true, by checking whether it is possible to match
the discourse referents in the DRS with objects in the world such that all

1.2. A trip down memory lane 5

the conditions on the referents are satisfied by these objects. So this first
discourse will be true precisely if we can find an object that is a dog, that
barked and that was lonely. These are exactly the truth-conditions onec
wants for a discourse such as this.

In the interpretation of the second example we meet a new kind of oper-
ation on DRSs. This operation is triggered by the if... then construction
in this sentence. If...then sentences are taken to express complex condi-
tions on discourse referents. This complex condition is formed out of the
DRSs that correspond to the if-part and the then-part of the sentence.
The condition is represented as follows:

({r}, {poG(r),HOWL(7)}) = (@, {LONELY(7)})

Now in the interpretation of the second example, starting with the empty
DRS, (0,0), we only have to add this condition. The result is:

@, { ({r}, {poc(r),HoWL(r)}) = (B, {LoNELY(r)}) })

So for the second discourse to be true, this complex condition has to
be satisfied. This will be the case exactly if every way of matching the
referents from the first DRS to satisfy the conditions of the first DRS, can
be extended to a matching for the referents in the second DRS such that
the conditions in the second DRS are also satisfied. Here this means that
for any dog that howls, it must also be true that this dog is lonely. So
the second example is true exactly if all howling dogs are lonely.

More details will be filled in in the next subsection, where two ways of
making this informal account precise will be discussed. So far it should be
clear that the two points that were made above about dynamic semantics
indeed hold true. The explanation of the interpretation of texts that is
given is in terms of actions on information structures. Both components
of a DRS contain information that is essential for the interpretation of
anaphors: the set of discourse referents gives the information which an-
tecedents are available and the set of conditions is used to actually store
information about the anaphor. Therefore it is essential for an expla-
nation of anaphora along these lines that both kinds of information are
represented in the semantics universe, for example in the guise of a DRS.

6 Chapter 1. First Steps in Dynamic Semantics

1.3 The formal residue

This informal picture of the workings of the dynamic interpretation of
anaphora can be given a formal counterpart in different ways. This will
be illustrated by the two interpretations of £ that can be found below.
L is the formal language that will be used as a representation language
for texts here and throughout Part 1. Its relation to the usual repre-
sentation languages of DRT and DPL is spelled out in section 1.5. The
first interpretation of £ that is discussed is due to Zeevat (1991a), who
gives a very elegant formulation of DRT-semantics. Then an alternative
formalisation along the lines of Groenendijk and Stokhof (1991a) will be
presented. These two formulations nicely correspond to the two points
that we made above about dynamic semantics: while in DPL the idea
of interpretation-as-construction is modelled most elegantly, Zeevat-style
DRT gives a perfect illustration of a semantic universe that consists of
information structures with context information.

First we give the definition of £.

Definition 1.3.1 (£) We assume that a fized infinitely enumerable stock
of variables VAR 1is given and that some set of n-ary predicate letters P"
1s given for each 0 < n. Then we define L as follows:

1 1L e L;

2 P(xy,...,xz,) € L wheneverz,,...,x, € VAR and P € P";
3 dxr e L whenever x € VAR;

4 ¢o- € L whenever ¢, Y € L;

5 (d—v) e L whenever ¢, 1 € L.

The language £ is designed precisely to represent the actions that we
encountered in our informal account above: 3z will be used to represent,
the act of introducing a discourse referent, the atomic formulas L and
P(xy,...,x,) are the atomic conditions and the implication sign stands
for the construction of complex conditions as discussed above. So we now
have the following formal analogues for our examples:

o 3z - DOG(x) - HOWL(x) - LONELY(z)
o (3z - poG(z) - HOWL(x) — LONELY(7))

Note that formulas in £ are very similar to formulas of ordinary, static
predicate logic. The atomic conditions are the same in both languages

=1

1.3. The formal residue

and the connective - is analogous to the static connective A. However, in
our dynamic language 3z is a formula in its own right: it is simply the
formula that tells us to introduce the referent z. Since in the definition of
L 3z is treated as any other atomic formula, our definition has the shape
of the definition of a propositional language, while at the same time the
formulas look like the formulas of predicate logic. For now we simply give
this as an observation, but we will get back to this point later.

In the Zeevat-style interpretation the formulas of £ are interpreted in
a universe of information structures, called DRS-interpretations.* The
universe of DRS-interpretations is defined as follows.

Definition 1.3.2 Let some fized domain of interpretation DOM be given.
Then (X, F) is a DRS-interpretation whenever X C VAR 1s finite and
F is a set of assignments VAR—DOM.> We consider the following two
operations on DRS-interpretations:

(X,Fye (X F) = (XUuX,FnF’)
{(X,Fy=(X',F}y = (@0,{ge ASS |
Vf € F g=xf3h€ F' such that f =x h})

Here the notation ¢ =x f indicates that f and g differ at most on the
z € X.

These DRS-interpretations are very well equipped to represent the infor-
mation that is needed in the interpretation of anaphors along the lines
sketched above: the first component of a DRS-interpretation will contain
the discourse referents that have been introduced so far and the second
component can be used to represent the conditions on these discourse
referents.

Given an ordinary first order model M = (DOM, Int) L can be inter-
preted in the universe of DRS-interpretations as follows:

Definition 1.3.3 (DRT-interpretation) Let a model M = (DOM, Int)
be given. We define the DRT-interpretation of L as follows:

‘Here we give a formal definition of DRS-interpretations before defining DRSs for-
mally. This omission will be made up for towards the end of this chapter.
5We will call the mappings VAR—DOM ASS, for assignments.

8 Chapter 1. First Steps in Dynamic Semantics

1 [Llare = (0,0);
2 [P(z1,...,Za)lae = (B, {f] (f(21),..., f(zn)) € Int(P)});
8 [Bz]are = ({z}, ASS);
4 [[¢ 5 w]drt = [¢]dr£ &b [T.b drty
5 [(¢ = ¥)]ane = [¢lare = [¥]are
The atomic formulas L and P(zy,...,2,) are interpreted as conditions:

they only work on the second component of the DRS-interpretation, where
the truth-conditional information is stored. The interpretations of these
atomic formulas only allow those assignments that satisfy the conditions
that, the formulas express. Also (¢ — %) is interpreted as a condition: it
follows from definition 1.3.2 that (¢ —) only effects the second com-
ponent of the DRS-interpretation. The effect of such a condition will be
illustrated below, where we discuss the examples. 3z is the only atomic
formula that effects the first component of the interpretation: we see
that 3z introduces the discourse referent x in the first component. If
we combine DRS-interpretations with &, the discourse referents from the
first components are collected and the truth-conditional information in
the second components also is joined together: only those assignments
remain that satisfy the conditions in both DRS-interpretations.

As was explained above, in the informal presentation, truth is a derived
notion in dynamic semantics. We indicated how the truth of a text is
checked by finding a truthful embedding, i.e. an embedding of the dis-
course referents that obeys all the truth-conditions on the referents. In
the DRS-interpretations that we have defined above these truthful em-
beddings are stored in the second component. So a formula ¢ € £ is true
just in case the second component actually provides a truthful embedding
for ¢.

Definition 1.3.4 (DRT-truth) Let ¢ € L be given and let [¢]ae =
(Xg, Fy). Then we call ¢ DRT-true iff Fy # 0.

In order to illustrate the working of this interpretation we will use the
L-representation of the examples given above.

o Jr - DOG(x) - HOWL(x) - LONELY(2)

o (3z - DOG(x) - HOWL(z) — LONELY(x))

1.3. The formal residue 9

Now we can compute the DRS-interpretations of these examples. We will
write P* for Int(P).

o [3z - poG(z) - HOWL(z) - LONELY (2)]4re =
{{z}, {f| f(z) € DOG* N HOWL* N LONELY*})

o [(3z - poG(z) - HOWL(2) — LONELY(%))]ar: =
®, {g|Vf: g=: f & f(z) € DOG* NHOWL* — f(x) € LONELY*})

For the two formulas to be DRT-true, the second component of their
interpretations should be non-empty. We see that for the first example
this means that DOG* N HOWL* N LONELY* should be non-empty. So the
first formula is DRT-true precisely if there is some dog that howled and
was lonely. The second example will be DRT-true precisely if

{9|Yf: g=: f & f(z) € DOG*NHOWL* — f(z) € LONELY*} # 0)

If we look at this set more carefully we see that there really only are two
options: either DOG* N HOWL* C LONELY™, and in that case

{9IVf : g =:f & f(z) € DOG*NHOWL* — f(z) € LONELY*} = ASS.
Else poGc* N HOWL* € LONELY*. Then
{9|¥f: g=: f & f(z) € DOG*NHOWL* — f() € LONELY*} =0

So we see that the second formula is true precisely if DOG* N HOWL* C
LONELY*, i.e. precisely if every howling dog is lonely. So we get the
required truth-conditions for both examples.

It may seem that in this definition only one of the two main characteris-
tics of the dynamic set-up is represented: the semantics universe consists
of information structures, as promised, but it seems that the idea of in-
terpretation as a construction on these objects is not available here. It is
indeed true that the action metaphor is not very prominent in this for-
mulation, but it still is available implicitly in the following way. With
any DRS-interpretation (X, F') we can associate a canonical operation on
DRS-interpretations, f(x ry, that works as follows:

fxm((Y,G)) = (Y,G)& (X, F)

10 Chapter 1. First Steps in Dynamic Semantics

Intuitively the operation fix) represents the act of adding the informa-
tion (X, F) to the information (Y, G), that we had already. In case (X, F)
is the interpretation of some formula ¢ € L, this function precisely com-
putes the update with the information contained in ¢. So for each ¢ € L,
f1¢14-c Provides an interpretation of ¢ as an action on DRS-interpretations.
These two ways of looking at the interpretation of ¢ really amount to the
same thing, since the interpretation of ¢, [¢]4: can be obtained by up-
dating the empty DRS, (@, 0), with the information contained in ¢:

f1416.((0,0)) = [¢]are

As @ is an associative operation (see definition 1.3.2), it follows that
switching from [¢]u to fig),,, commutes with the & operation on DRS-
interpretations, i.e. fix ma(y,c) = fix.F)° fiv.c). Here o stands for func-
tion composition. Since it has become custom to use postfix notation
for function application in the literature on dynamic semantics, I will try
to follow that custom from now on. This means that the notation for
function composition has been adapted accordingly. So f o g is computed
by first applying f and then applying g. As a result it is no longer nec-
essary to have different notations for function composition and relation
composition.

Note that this way of making actions out of denotations can be applied
in a lot of situations. This observation was also made by Van Benthem
(1991), and is elaborated upon in Visser (1992a). Also see chapter 4.

There also is another natural and elegant way of interpreting £, which is
due to Groenendijk and Stokhof (1991a). In this second formulation each
formula of £ is interpreted as a relation on assignments. The idea is that
each assignment tells us which values the variables have. An information
state in general will consist of several assignments, each of which gives one
possibility for the values of the variables. The interpretation of a formula
will be an operation on such an information state. This operation can be
computed via the atomic information states: starting in some assignment
the interpretation of a formula can lead to several other assignments. The
result. of the interpretation of a formula on a set of assignments can then
be obtained, simply by taking the union of all the possible outputs of the
elements of the set. Therefore it suffices to specify the interpretation of a
formula as a relation on atomic information states, i.e. assignments.
The definition works as follows:

1.3. The formal residue 11

Definition 1.3.5 (DPL-interpretation) Let some model
M = (DOM, Int) be given. We define the DPL-interpretation of L as
follows:

1 [L)an = 0

2 [Plzyy--sza)lam = {{f,) [{(x1)f,....(xa)f) € Int(P)};

3 Balun = {(f,.9) | f =9}

4 o Plan = [dlap © [¥]api;

5 (&= ¥)lm = {{f, £} | V9 (f,9) € [#lap : 3R (g,h) € [¥]um}-
We see that the atomic formulas L and P(z,...,z,) work as tests or

conditions on the atomic information states: in the interpretation of such
a test it is checked whether the current assignment satisfies the condi-
tion. If this is so, then we can simply continue without altering anything.
Assignments that do not satisfy the conditions do not survive the test.
Also (¢ — v) has such a test-like behaviour. We will see how this works
when we discuss the examples below. 3z is the only atomic formula that
actually affects the assignment on which it operates: whenever we inter-
pret 3z in some assignment f, we are allowed to choose a new value for
the variable . This new value is the value that will be tested by the
conditions that follow. The interpretation of ¢ - ¥ is obtained by relation
composition. So if we want to interpret ¢ -1, we simply interpret ¢ first
and then 1.

Again we introduce truth as a derived notion. We will say that some
formula ¢ € £ is DPL-true if its interpretation succeeds in all assignments.

Definition 1.3.6 (DPL-truth) Let ¢ € £ be given. Then we say that ¢
is DPL-true iff

Vf € ASS 3g€ ASS: (f,g) € [¢)un
or, in other words,

dom([[(,f)]dp;) = ASS

So a formula ¢ € £ is DPL-true if every input assignment f € ASS
survives the interpretation of ¢. Recall that in the DRT setting truth was
defined in terms of truthful embeddings. We can compare this with DPL-
truth if we consider the DPL-interpretation as the construction of such a
truthful embedding: during the DPL-interpretation we will be allowed to

12 Chapter 1. First Steps in Dynamic Semantics

choose new values each time we meet 3z. This way we check whether it
is possible to find values such that all the conditions in the formula are
satisfied. This gives us an alternative outlook on DPL-truth: a formula
is DPL-true if we can construct a truthful embedding ¢ for the formula
regardless of the input state f.° Let’s see how this works out for the
examples that we have seen above:

o [3z - DOG(x) - HOWL(x) - LONELY ()]ap =
{{f,9)| f =2 g & g(x) € DOG* N HOWL* N LONELY*}

o [(3z - poG(z) - HOWL(z) — LONELY(z))]ap =
{{(f,f)|Yh: f=:h& h(z) € DOG*NHOWL* — h(z) € LONELY*}

We see that in the first example 3z-D0OG(z)-HOWL(z)-LONELY(z) is DPL-
true if we can always choose a value for x in DOG* N HOWL* N LONELY™.
This is the case precisely if there is a dog that howled and was lonely, as
required. For the second example to be true we need that for any choice of
h(z) € poG* N HOWL", h(r) € LONELY* holds automatically. This is the
case precisely if boGg* N HOWL* C LONELY*. So also the second example
gets the required truth-conditions with the DPL notion of truth.

In this DPL-style interpretation of £ the second main point of dynamic
semantics is dominant: the formulas of £ are interpreted as relations on
basic information units, i.e. assignments, and this clearly gives a proce-
dural flavour to the semantics. And it also seems possible to comply with
the first characteristic: it is tempting to try and use sets of assignments
as information structures. But we will see in chapter 2 that this does
not work. Although sets of assignments are reasonable candidates for a
sensible notion of information state, it can be shown that they do not
combine very well with the transitions that the DPL-interpretation gen-
erates: we run into the so-called non-eliminativity problem. In this case
the first characteristic of a dynamic semantics is somewhat lost: the DPL-
interpretations do not lead to a suitable notion of information structure.
In order to obtain a satisfactory notion of information structure from the
DPL-interpretations we have to add information to the DPL-relations. In
chapter 2 this point will be discussed in detail.

5We have to be careful with this analogy: crucial differences between the DRT and
the DPL notion of truth arise if we interpret formulas with more than one occurrence
of Jz. See section 1.5 for more details.

1.3. The formal residue 13

Dynamic entailment

Above we have discussed two dynamic notions of interpretation and the
two corresponding notions of truth. Here we complete the discussion be
presenting the corresponding notions of entailment.

Definition 1.3.7 Let ¢1,...,¢0n, ¢ € L be given. Call [¢:]are = (X, F3)
and [Y]ae = (Y,G). We define DRT-entailment, =prr, and DPL-
entailment, =ppy, as follows:
¢1:"'1¢nI:DRTw ?‘ﬁ ern{Fslslsn}EQEszYg
@1,..-,00 FppL ¥ iff range([d1]ap o ... 0 [@n)dp) C dom([tV]ap)

The dynamic notions of entailment simply follow the corresponding dy-
namic notions of implication that we have seen above. This means that
‘anaphoric links’ between the assumptions ¢; and the conclusion ¥ will be
effective. Therefore it is important to regard ¢,,..., ¢, in the definition
of Eppr, as a sequence of assumptions, not simply as a set. This makes
the DPL-notion of entailment sensitive to the so called structural rules
such as permutation, monotonicity etc. For example, it is in general not
harmless to permute two assumptions in the sequence ¢y, ..., ¢,: it can
occur that ¢y,¢2 =ppr ¥ while not ¢2,¢; FEppr . Here ¢ = 3,
¢2 = ¥ = P(z) can serve as an example.

The DRT-notion of entailment is not sensitive to the structure of the
assumptions. This could lead one to assume that the DRT-notion will be
easier to axiomatise. But this does not seem to be the case: for the DRT-
notion of entailment the situation gets complicated by other facts. As
an example we mention that DRT-entailment does not have the (strong)
deduction theorem: we do not have

¢11---1¢n |=D12Twiﬂ¢la---u¢n—l |=DRT (én%w)

which does hold for DPL-entailment. As a counter example for DRT-
entailment consider ¢; = 9 = P(z) and ¢, = 3z. Then we find:

¢1,¢2 Eprr ¥
but not

¢1 Eprr (62 = V)

14 Chapter 1. First Steps in Dynamic Semantics

1.4 The small unit principle

In the previous section we saw two ways of interpreting £ and we checked
that both styles of interpretation enable us to handle the anaphoric links
in the examples. Crucial for both solutions is that they encode informa-
tion about the available antecedents into the semantics. This makes it
possible to establish a link with a suitable antecedent whenever we have
to interpret an anaphoric expression. In the DRT-style semantics the in-
formation about the antecedents is made explicit in the first component
of the DRS-interpretations. The first component precisely contains those
discourse referents which are available as antecedent. In the DPL-style se-
mantics the required information is available implicitly: the DPL-relations
do not make explicit which variables are available as antecedent, but here
relation composition provides a uniform way of establishing the required
links implicitly. In this way we do not only pass on information about the
truth or falsehood of the formula, but also the values that are assigned
to the variables in the interpretation of the formula are passed on to the
next formula automatically. These are two methods of incorporating the
necessary non-truth-conditional information into the semantics.

Now we take a look again at the two features that we presented as general
characteristics of dynamic semantics:

o dynamic semantics uses information structures to encode not only
truth-conditional but also contextual information;

o in dynamic semantics interpretation is modeled as the process in
which information structures are constructed.

In the previous section we certainly have seen both characteristics at work.
The DRS-interpretations make the first feature more explicit and the use
of relations in DPL underlines the second point. But we have already
explained that implicitly also in DPL non-truth-conditional information
is stored and we saw that in DRT functions can be defined to restore the
construction metaphor of interpretation.

If we want to understand why these features should pop up in the se-
mantics of anaphora, it is useful to think about the general picture of
text interpretation. Here an important observation is that texts can be
rather big. Of course there also are rather big sentences, but the length
of sentences has never played a role in the set-up of sentence semantics.

1.4. The small unit principle 15

Perhaps this can be understood from the fact that long sentences seem to
be the exception rather than the rule. But the length of the expression
is also simply a fact that has been conveniently suppressed in the static
picture of sentence interpretation. Sentences are simply thought of as
nice, complete syntactic units that are easy to work with.

The attention for discourse phenomena has brutally disturbed the idea
that semantics works with such manageable units. Instead the attention
for discourse phenomena has made us aware of the fact that the expres-
sions we have to interpret are potentially big and usually unfinished pieces
of natural language text. This may seem quite an innocent observation at
first, but in fact it immediately gives rise to several constraints on models
of text interpretation. In particular, because texts arc big, it is less at-
tractive to work with models of interpretation that work on the text as a
whole. Instead the preferred picture of the interpretation of texts models
interpretation as a process, in which we gradually work through the text,
always working on one small part of the text at a time.

The demand that the model should provide such a picture of text interpre-
tation as a process, automatically introduces a new kind of concern into
formal semantics: we are not satisfied anymore with (compositionally)”
producing the right truth-conditions for natural language expressions —
as in sentence semantics — but now we also want to respect at least some
of the features of the process of interpretation itself. This is one important
aspect of dynamic semantics: the interest in the semantics of (anaphora
in) texts has made us aware of the fact that a good semantics should not
only worry about the result of the interpretation process, but should also
take into account the relevant features of the interpretation process qua
process. Apart from the fact that such a procedural flavour can help in
giving a more satisfactory account of the phenomena — as we have seen
in the case of anaphora — the idea of taking the interpretation process
itself more seriously is also simply one of the challenges that is inherent
in the scale enlargement that comes with the shift from sentence level to
text level.

As was already said above, one aspect of the interpretation process that
we consider to be particularly crucial, is the step by step character that
the interpretation process has: it is not a good idea to give a model of the

See also chapter 4 for discussion on the role of the compositionality principle in
semantics.

16 Chapter 1. First Steps in Dynamic Semantics

interpretation of a large text that works on the text as a whole. Instead
we should give a picture of text interpretation that works only on small
parts of the text at a time. We call this the small unit principle.

The result of this requirement is that we will have to be careful when
we try to model interactions between the meanings of different parts of
a text. Because we only work in small units, we will in general not be
able to work on different parts of a text at the same time. This means
that if we want to model interactions between different parts of a text it
does not help to simply make a syntactic rule that includes these differ-
ent parts: the small unit principle tells us that this global construct will
have to be analysed as the result of the interaction of small units anyhow.
Therefore also in the semantics we will have to make the information
about the interactions available locally in the text interpretations. This
is the reason why non-truth-conditional information plays such a crucial
role in dynamic semantics. It is precisely by adding non-truth-conditional
information that we are able to represent the interaction between differ-
ent parts of a texts without violating the small unit principle. We have
seen this in the dynamic semantics of anaphora, where information about
antecedents had to be represented in order to enable the interpretation of
anaphors. We will see other examples of the incorporation of contextual
information in the semantics in chapter 4.

But we can already see now that the consequence of the small unit prin-
ciple will be that the distinction between the level of syntax and the level
of semantics gets blurred. It is well known, and indeed one of the main
observations in Montague’s work (cf. Thomason (1974)), that syntactic
information has a crucial role to play in formal models of the interpreta-
tion of natural language. The syntactic rules steer the compositional in-
terpretation process. But in general syntactic constructions can be ‘large’
and we are only allowed to work in small units. Because of the small unit
principle it will not always be possible to work on some syntactic construc-
tion as a whole: we will usually have to break it up into little pieces. But
the syntactic information can be crucial for the interpretation. Therefore
we will have to code some of it into the semantic representations. So it is
inevitable that some of the structure that we like to think of as syntac-
tic information pops up in the semantic representations, because of the
small unit principle. Once it has popped up in the semantics, we will no
longer have to represent it in the syntax. So we see a kind of exchange
mechanism: we can make structure invisible in the syntax, breaking ev-

1.4. The small unit principle 17

erything up into small units, but as a result we find the structure back
in the semantics.® For example, we will be able to ignore the bracketing
structure of expressions and simply parse them incrementally, as long as
we are prepared to create some form of (bracketing) structure in the se-
mantics to compensate for this. This point may seem highly abstract now,
but will become clearer later, when it will be illustrated with a worked
out example in chapter 4.

There are several other slogans besides the small unit principle that cap-
ture the aspects of text interpretation that we want to represent in dy-
namic semantics. Several of these will be discussed in chapter 4 in detail,
but there is one slogan that we want to mention here already. This is
the idea that dynamic semantics takes the perspective of the hearer. This
suggests first of all that we try to model how we interpret a text as we
hear it. This is in contrast with the situation of someone who reads a
text. Whereas a reader can afford to leaf back and forth through the
text, the position of a hearer nicely captures the on-the-spot nature of
interpretation that we also try to capture with the small unit principle.
In addition the hearer perspective can also be contrasted with the per-
spective of the speaker. This contrast is less important for our purposes,
but also here there are several interesting differences with the position of
the hearer. For example, if we think of the use of indefinite expressions
such as a dog, it seems natural in the hearer perspective to model this as
the introduction of a new referent. But for the speaker the situation may
be different: the speaker may use the indefinite expression to express his
own lack of definite knowledge about the subject (which dog is it?), but
it can also be the case that he really knows which dog he is talking about.
In that case he could still use the indefinite, to indicate that this dog
is a new topic from the perspective of his intended audience. By taking
the perspective of the hearer instead of the speaker we avoid this kind of
complication.

So we see that general considerations about the interpretation of texts can
help us understand why the two features occur in dynamic semantics. We
saw that the fact that dynamic semantics is concerned with texts rather

8Visser (1992c) calls this phenomenon the flatness principle, since the result of this
move is that we see less structure in the syntax.

18 Chapter 1. First Steps in Dynamic Semantics

than sentences naturally leads to an interest in modelling interpretation
qua process, which explains why procedural formulations are so popular in
dynamic semantics. We have also argued that a model of interpretation
as a process will automatically lead to the incorporation of non-truth-
conditional information in the semantics. In what follows we will mainly
be concerned with the role that this non-truth-conditional information
plays. We will investigate the way in which it allows us to model the
interactions between different parts of a text. In other words: we con-
centrate on the first characteristic of dynamic semantics. This is first of
all a matter of choice: to us the small unit principle and its consequences
for models of these interactions pose a more direct and a more interesting
challenge than the general idea of using procedures in semantics. But
there also is some less subjective motivation for the choice. First, we have
seen that a procedural formulation can usually be recovered from an in-
formation structure based approach. Visser (1992a) discusses the precise
conditions under which such a reformulation is available.” So in a sense
we need not worry too much about the procedural metaphor as long as
we conform to these conditions.

Secondly, it seems that the metaphor of interpretation as construction
by itself is too vague to produce sufficiently precise questions that are
of immediate interest for the semantics of natural language. At present
there is in the literature an abundance of so called dynamic logics, in
which general properties of procedures, actions and transitions can be
studied.!® The development of this area is certainly fascinating and it
poses interesting challenges. And there is no doubt that some of these
theories of actions can be of use in dynamic semantics. But at present
it seems that the study of actions and procedures in abstracto does not
lead to a better understanding of the procedures that actually are used in
dynamic semantics and how we should use them. Therefore, before the
results from these theories of actions can be made productive in dynamic
semantics, we should make up our minds as to what kind of actions and
procedures will occur in dynamic semantics. As was said above, it seems
that the metaphor of interpretation as construction by itself does not do

9 Also see chapter 4.

0Here we think of Van Benthem (1993), Van Benthem (1994), Venema (1993),
De Rijke (1992), Blackburn and Venema (1993), Van Eijck and Visser (1994) and
also—with another motivation—Andréka et al. (1993), but also of the tradition of
process algebra (cf. Baeten and Weijland (1990) and references therein).

1.5. Facts and figures 19

this for us. But conditions such as the small unit principle are precisely
what can help us make up our mind here.

Warning:

In this section we have presented an informal argument for a certain way
of doing semantics. Such informal arguments are quite useful: we have
seen that thinking in these terms helps us understand the characteristics
of discourse semantics and we will see that it will also help us to formulate
other sensible constraints on the semantics of texts. In this way we can
develop some kind of methodology and indicate boundaries as to what is
and what is not allowed in dynamic semantics. In this thesis we use this
kind of argument frequently. But, of course, the informal arguments are
not decisive: the final test for our work will be in their application to hard
linguistic data.

1.5 Facts and figures

So far we have seen two versions of the semantics of £ that we have called
DRT-style and DPL-style. Probably this suggestive terminology did not
come as a surprise to the well informed reader, but here we will actually
make the link of these styles of interpretation with DRT and DPL precise.
Here we will give the usual presentations of DRT and DPL and make the
relation with our presentation of the semantics of £ precise. Then we will
discuss the relation of £ with predicate logic in its usual, static guise. We
will see that for both notions of truth that we have discussed we can give a
translation form L into static predicate logic that preserves truth. Finally
we will discuss the relation between the DRT and DPL style semantics for
L by constructing a relational presentation of the DRT semantics. This
way we can see where the differences between DPL and DRT lie.

None of the results that we present here are really new: they can all be
traced back to Groenendijk and Stokhof (1991a), Visser (1989), Zeevat
(1991a) or Kamp (1981). A useful overview is Krahmer (1993).

20 Chapter 1. First Steps in Dynamic Semantics

DPL

The relation between DPL'! and the DPL-style interpretation of L is
extremely clear. The only difference is in the treatment of Jz: in £ we
treat Jz as an atomic formula, in the standard presentation of DPL 3z is
treated as a connective.

Let’s make this precise by considering the standard presentation of DPL
in detail. The syntax of DPL simply is the language of first order logic.

Definition 1.5.1 We define the first order language over the alphabet
given above as follows:

1 € f,pg;

P(zy,...,%,) € Ly whenever xy,...,5, € VAR and P € P";
Jz¢p € Ly whenever ¢ € Lgy and x € VAR;

(pAY) € Ly whenever ¢, ¥ € Lau;

(0 =) € Ly whenever ¢, ¥ € Ly

So in the syntax DPL just follows standard, static logic. The dynamics
of DPL is located in the semantics.

Definition 1.5.2 (DPL) We define the dynamic interpretation of Ly as
follows:

[Lles = 0

IIP(I]s---sxn)]gs = {(f!f) . (f(xl):---af(‘rn)) € P'};
[33’3@5}95 = {(f: g) : Jh f = h& (h?g) € H¢]93}5

!qb A 2!”]]95 — [¢’]gs o ﬂ:@{"]]gs;

[(¢ = ¥)]gs = {{£.f) : Vg ([, 9) € [¢]gs 3h (g, h) € [¥],s}-

As one can see the only difference with the DPL-style interpretation of £
is in the clause for 3z¢. But we can see immediately that:

IIHZ'EQb]gs = [al ' ¢]dpt

Therefore it is clear that the following translations are meaning preserving.

Definition 1.5.3 (£ to £,) We define a translation function (—=)° : £ —
Ly as follows:

Here the appropriate reference is to Groenendijk and Stokhof (1991a). Also Bar-
wise (1987) already contains some of the crucial ideas.

1.5. Facts and figures 21

(L) = 1;

(B BrgpasBal)® = Pl)l
(3z)° = 3z T;

(¢-v)° = (@)° A (¥)°;
(¢ = ¥))° = ((¢)° = (¥)°).

Here T is an abbreviation for (L — L).

The translation in the opposite direction is even easier to find. It is
important to be aware of the fact that, although there are translations
in both directions, these translations are not each other’s inverse. This
means that we use the notion of translation without implying that in
general ((¢)°)o = ¢ or ((¢).)° = ¢ will hold. Here this will be spoiled by
the occurrences of Jz.

Definition 1.5.4 (£, to £) The translation (=), : Ly — L is defined
as follows: :

(L)o = 1;
(PlBsesdi)ls = PlipwreBi)
(BI ‘;b)c = Jz - (¢)o;

(P AY), = (¢)o- (¥)o;
(¢ =)o = ((@)o = (¥)o)

Now it is easy to check that:

[[¢°]93 = ﬂ¢]dpi and [é]gs = H¢o]dp£

DRT

The comparison of our DRT-style interpretation of £ and traditional pre-
sentations of DRT will be made via a formulation of DRT that is based
on Zeevat (1991a).'? In this formulation of DRT the Discourse Represen-
tation Structures, DRSs for short, are constructed from basic DRSs with
two operations, called merger and sub. DRSs are pairs of which the first
component is a set of discourse referent and the second component a set
of conditions on these discourse referents. Formally this works as follows:

12t seems fair to simply call this DRT, although in some of the details Zeevat (1991a)
deviates slightly from both Kamp (1981) and Kamp and Reyle (1993).

22 Chapter 1. First Steps in Dynamic Semantics

Definition 1.5.5 (DRT-syntaz) We define L4y, the DRT-language, over
the given alphabet as follows:

(@, {‘L}) € Edrl;

(0,{P(x1,...,7a)}) € Lare for anyz,...,v, € VAR and P € PV,

{z},0) € Lire for any x € VAR;

pot) € Lin for any ¢, € Lare;

(ﬂb = 1\[)) € ‘C'drt fOT‘ any ¢1 1|b € 'Cdri'.-
Here o and = are defined as follows:

(X,C)e (X',C") = (X VX, C0UC'y;

(X,C)=>(Xx",C") = (8,((X,C) = (X',C9))

and called merger and sub respectively. The formulas of Ly, are usually
called discourse representation structures (DRSs).

It can be checked that this definition is equivalent to the standard def-
inition, which uses a simultaneous induction to define both the set of
DRSs and DRC, the set of DRS-conditions.'® In other words, we get the
following proposition:

Proposition 1.5.6 (DRT-syntaz) We can obtain La by the following
simultaneous induction which defines both Lar, and the set of DRS-conditions,

DRC:

1 € DRC;

P(z1,.-.,%,) € DRC for anyz,...,Tn € VARand P € P%;
(¢ =) € DRC whenever ¢, 9 € Lin;

l_J(X, C) € Ly whenever C Cyin DRC and X Cpin VARM

We see that these DRSs look just like the DRS-interpretations that we
have used to interpret £. The only difference is that here the second
component consists of the (syntactic) conditions that the referents have
to satisfy, whereas in the DRS-interpretations the second component con-
tains the truthful embeddings. We can assign a DRS-interpretation to
each DRS if we replace the syntactic conditions in a DRS with the em-
beddings that satisfy these conditions. To be precise:

13 Also see Kamp (1981) for the traditional definition of a DRS.
“Here C i, stands for is a finite subset of.

1.5. Facts and figures 23

Definition 1.5.7 For each ¢ € Lg we define its interpretation [¢]. as
follows:

[0, {L - = (0,0);

[(0,{P(z1,....z))): = (0,{f € ASS: (f(z1),-..,f(zn)) € P*});
[{{z}, D)]. = ({z}, ASS);

[pe 1L’]z = [¢]. @ [¥]:;

[(¢ = ¥)]. = ([¢]: = [¥].).

Here & and = on the right hand side of the equations are the operations
on DRS-interpretations that we defined in definition 1.3.2.

The DRSs in Ly, are of a different format then the formulas of £: they
are pairs of sets whereas the formulas of £ are formulas in the usual sense.
Still there is an obvious correspondence between the basic DRSs and the
basic formulas of £: (§, {L}) corresponds to L, (0, {P(zy,...,z,)}) cor-
responds to P(zy,...,2,) and ({z},0) corresponds to 3z. This corre-
spondence can be stretched to complex DRSs if we compare e to - and =
to —. This way we can obtain meaning preserving translations from £ to
Ly, and vice versa. To be precise:

Definition 1.5.8 (£ to L4) We define a translation function (=)* :
L — Ly as follows:

(L) = (0,{L});
(P($11"'s$n)). = (01 {P(ffl,.-.,.’:ﬂ'n)}),’
(3z)° = ({=}.0);

(¢-9)° = (¢)* o (¥)%;

(o=) = ((9)* = (¥)°).

Definition 1.5.9 (L4 to £) The translation (=) : L4 U DRC — L
is defined as follows:

(J-)l = J—r-
(P(Ili"'1$ﬁ))' = P(:Cl,...,.ﬁ‘:n),'
(6= ¥))s = ((8)s = (¥)s);

(EL B35 oen B b e A C ey O}l = T v Ay 0] Janv oo (Caies

Note that the translation (=), : L4 — £ is not defined as an induction
on the construction of the DRSs from basic DRSs. This is impossible,

24 Chapter 1. First Steps in Dynamic Semantics

since different constructions of the same DRS would then result in different
translations. Therefore we use the alternative characterisation given by
the proposition.

Now it can be checked that these translations indeed are meaning pre-
serving, i.e.:

[[¢']: = |I¢’]]drt and [[fﬂ: = [¢-]drt

Predicate logic, static and dynamic

In this section we compare the dynamic semantics of £ with the static
semantics of standard predicate logic. The comparison will work via the
notions of truth that these three formalisms induce. We will give a trans-
lation of £ into £, that preserves DRT-truth and another translation that
preserves DPL-truth. Also truth preserving translations from £, into £
will be discussed.

There are several things that we can learn from these translations. First
they make us aware of the similarities and differences between the use of
quantifiers in dynamic and static logic. The translations show that, in
spite of all sorts of differences, the two styles of dynamic semantics of £
that we discuss, give £ exactly the same expressive power as standard
predicate logic. Here we use expressive power in the static sense, i.e. in
terms of truth-conditions: if we are only interested in truth-conditions, we
can simply choose whether we want to do this dynamically or statically,
because of the existence of truth preserving translations. Note that this
implies that we can use the deduction systems of static logic to discuss
the dynamic notions of truth: if we want to know whether some formula
¢ € Listrue in the DRT or DPL sense, then we first apply the appropriate
translation and then check whether the result is a theorem in the static
sense. Unfortunately the translations do not work in such a way that
we can translate the deduction systems in static logic in a rule-by-rule
fashion into a deduction system for the dynamic notions: it does not hold
in general that

¢ ‘:DPL P iff (¢)de |=p: (¢’)de

or

¢ I:DRT 'U»’) iff (¢)dr: '=p! ('\b)drt

1.5. Facts and figures 25

Here ¢ = Jz - P(z) and ¥ = P(z) can serve as an example.

Definition 1.5.10
For the formulas of L we define a DPL-based translation into Ly as fol-
lows:

1 (—L)dpl = J_,'

2 (P(Il,...,.’l‘.'ﬂ)}dp; = P(:r:l,...,:rn);

g (BI)dpg = 3$T,‘

4 (¢ Y)ap = 3z(¥)ap in case ¢ = 3x;
= (¢1-(d2°¥))apnt in case ¢ = @1 - Pa;
= (@)apt A (V) dpi else;

5 (¢— V)i = Vz(¥)dpt in case ¢ = Jx;
= (¢1 = (P2 = ¥))apt in case ¢ = @1 A ¢o;
= ((®)apt = (¥)apt) else.

We define DRT-normal-forms as follows:

1 (1)° = 1;

2 (P(Ilv---vxn))o = P(xlv-')xn);

3 (3z)° = Js

4 (6-9)° = Y- (0)° in case P = 3x;

= ((¢-41) - ¥2)® in case tp = oy - y;
= ¢% . ¢p° else;

5 (p—=v)° = (¢° = ¥°)

The operation (—)° pulls occurrences of 3x to the front of the formula.
The resulting formulas are the DRT-normal-forms. Now we can simply
apply the DPL-based translation: the DRT-based translation of L is de-
fined as:

(@)are = ((6)®)apt

Note that we have based the DRT style translation of £ on the DPL-
based translations of so-called DRT-normal-forms. It can be checked that
this is a safe move: for the DRT-normal forms the notions of DPL-truth
and DRT-truth coincide.' It is also easy to see that the operation (—)®
preserves meaning: all that is different in the normal forms is the order
of some of the conjuncts, to which the DRT-style interpretation is not
sensitive in the first place. So we get:

15 Also see the next, subsection for more on the relation between the DRT and DPL
semantics of L.

26 Chapter 1. First Steps in Dynamic Semantics

[[(:b]] drt = IKQS)O]G‘H

Now it just remains to be checked that the DPL-based translation indeed
preserves truth.

Proposition 1.5.11
Let ¢ € L be given. Then: ¢ is DPL-true iff (¢)° is true statically.O

We omit the formal proof-—which is simply an induction—but we do wish
to point out the crucial facts about the DPL interpretation on which the
proof relies. First note:

[(-¥) Xlam = [¢- (¥~ X)]am

and
(¢ ¥ = an = [(& = @ = X))]api-

This implies, in particular that:

[Bx-¢) - tYlam = [Bz- (¢~ ¥)]am
and

[(Bz-6) = X)am = [Bz = (¢ = ¥)]am-

For the forms on the right hand side the correspondence with static truth
is casy: 3z - (¢) can safely be translated into 3z(@)gy and (3z — @) cor-
responds to Vz(¢)4y, as we have seen in the examples. As one can see
in the definition, the DPL translation is based on the forms on the right
hand side: in the translation there is an implicit reduction to these easy
cases.

We can also give truth preserving translations in the other direction. This
is easiest for DPL-truth. Basically we can simply translate A as -, — as
—, Jx¢ as Iz - ¢ and V¢ as (3 — ¢). But a problem can arise if the
following kind of configuration occurs in the £,; formula:

3z ¢) A ¥

where x occurs freely in . In such situations problems can arise, because:

1.5. Facts and figures 27

(B2 ¢) Y)im = [Fz- (¢ V)]ip
as we have seen above, while not:
Jz(o A) (3z¢) A Y

in predicate logic. Therefore we make sure that such configurations do
not occur by systematically switching the order of the conjuncts:

Fzd) AY ~ ¢ A (3z¢)

Let’s call the formulas that we obtain after these switches ‘safe for DPL-
translation’.!® It can be checked that any formula can be made safe for
DPIL-translation without altering the static truth value of the formula.
Once this is done, we can apply the following translation procedure.

Definition 1.5.12 Assume that all £,-formulas on the left hand side are
safe for DPL-translation. Now define:

¢ s B = Lz

o (P(.?J'l,...,.?fn))?; = P(:rl,...,:.':n);
3 (dAY)p = (®)pt - (V)p;

i (6— d))pf = (@)t = (¥)n1);
5 (3 d)p = 3z (d)u;

6 (VT ¢)p = (3z = (¢)p)-

Again the claim is that this translation preserves truth.

Proposition 1.5.13 Let ¢ € Ly be safe for DPL-translation. Then:
¢ 1s true statically iff (¢)p is DPL-true.O

The proof is an easy induction, which works precisely because we avoid
the configurations (3z ¢) A .

In the case of DRT-truth there is one extra step to make: in the DRT-style
interpretation of £ it holds that:

[Bz-¢-3z. V] = [Bz- - V] are

16 Another popular way to avoid problems is by renaming variables, but it is useful
to see that this is not really necessary.

28 Chapter 1. First Steps in Dynamic Semantics

In the DRT-style interpretation the second occurrence of 3z is overruled
by the first occurrence. This makes the translation slightly more difficult,
since this is something that typically does not hold in static predicate
logic. Therefore we have to rename the bound variables first in such a
way that all bound variables become distinct from each other as well
as from all free variables. Once we have done this we can be sure that
the DPL-based translation will also preserve DRT-truth. For now the
translations automatically end up in the so called strict fragment of £
and we will see in the next subsection that in the strict fragment the DPL
and DRT interpretation coincide.

The meaning of dz

In this subsection we investigate the differences between the two styles
of semantics that we gave above. We will see that the crucial difference
between the DPL-style and the DRT-style interpretation is in their treat-
ment of 3z in conjunctions.

We will make the comparison by developing a relational version of the
DRT semantics for £. Of course this is only one way of comparing DRT
and DPL. As an alternative we could, for example, try to make precise
the relation between range([¢]a,) and the truthful embeddings of ¢. As
we discussed the notion of DPL-truth we already pointed out that one
can think of the relations in the DPL-semantics as a way of constructing
truthful embeddings. So we could try to compare the DPL and DRT in-
terpretation of a formula ¢ € £ by making this idea precise. For example,
if [#Jare = (X,F) and [@law = R (for some R C ASS x ASS), then
we can look whether there is some systematic relation between F' and
range(R) = {f € ASS: 3(g, f) € R}. It is easy to see that these sets
coincide for atomic ¢, but are not in general identical: it can be checked
that ¢ = P(x) - 3z is a counterexample.

Instead of working out the systematic differences along these lines we use
a relational formulation of the DRT-semantics. This relational form of
DRT can then be compared with the relational DPL-semantics. In the
formulation we use several constructions. In these constructions we will
need to know which of the variables in VAR are ‘important’ for a relation
R: we will define for each R the sets car(R) and unt(R). In the current
set-up — where we stay as close as possible to the standard way of using
relations in dynamic semantics — we have to extract this kind of infor-

1.5. Facts and figures 29

mation from the relations, as it is simply not available explicitly. Later
on, in chapters 2 and 3, we will find it convenient to include information
about the sets of important variables explicitly in the semantics.

Definition 1.5.14
o For R C ASS x ASS we define car(R), the carrier of R, by:
car(R)= {z: 3g, f) € R: f(z) # g(v)}
We say that R C ASS x ASS is input-indifferent if:

(o]

g € range(R) = (f,g) € R for all f =car(r) g

For R C ASS x ASS, we define unt(R), the set of variables un-
touched by R, as follows:

z € unt(R) iff
Y(f.9) € R: f(z)=g(x) & Vd € DOM: (fiz/a) gz/a)) € R

For a DRS-interpretation (X, F) we define the induced relation Rx
as follows:

Rixry = {(9,f): 9=xf& feF}
For two relations S, S' C ASS x ASS we define S+ S as follows:

(o]

o

o

S*S5' = Ricar(s)range(S))@(car(s")range(S"))

Here the notation fjq4 is used to denote the assignment that assigns d
to = and is equal to f on all other variables.

We see that car(R) is the set of variables that can get a new value in
R. A relation R is called input indifferent if it does not care about the
input values of the variables in its carrier set. On the intuitive level this
means that the first thing that the process R does is to set the value of
the z € car(R) to its liking. Only after that tests may be performed on
the values that have been chosen. Therefore it does not matter what the
input value of z € car(R) is. The variables in unt(R) are the variables
that R does not care about: if z € unt(R), then R does not change the
value of z (z & car(R)) and it simply allows all d € DOM as value of .
We will use these two notions in our comparison of DRT and DPL below.
It can be shown that R() is almost an injective mapping from DRS-
interpretations to relations: we find

30 Chapter 1. First Steps in Dynamic Semantics
R(x}p) = R(}’,C) iff /=G and (X =Yor F= @)

Note that in the relation R x r) that we assign to a DRS-interpretation
(X, F), X is the carrier set unless I is empty. So from the relation R x s
we can almost recover the information in the first component of the DRS.
The only cases for which a problem arises are cases where F' = 0, i.e. in
case of an inconsistency.

This constructions allows us to construct a relation from each [¢]ar¢. For
each ¢ we can simply define Ry, C ASS x ASS as follows:

Ry = Ry,

Again it can be checked that for atomic ¢ it holds that Ry = [¢]4u and
that this equality does not hold in general. We can make the discrepancy
between Ry and [¢]ap precise by giving an inductive characterisation of
R,.

Proposition 1.5.15

RJ_ = '9

RP(m Tn) T {(fv f) : (f($1):-'-:f(zﬂ)) € P*}

REI:: = {(f}g): f::-:Q}

R¢.¢, = R‘f’*l?‘lﬁ

DR((_:‘;—}'JU) = {(f:f) : V(] (fa'?) €R¢. ki (gah}ERd’}

We see that the difference between [.]4¢ and [.]4, lies in the difference be-
tween » and o. Therefore it would be nice to have an easy way of deciding
in advance exactly when R+ S = Ro S will hold. Unfortunately there is
no handy set of necessary and sufficient conditions that characterises this
situation. Instead we present an easy-to-work-with sufficient condition.
The crucial difference between x and o can be illustrated with the formula
P(z)-3x. This is the simplest formula that gives rise to differences in the
DPL and the DRT style interpretation: in the DPL relation, computed
with o, we will first check whether f(z) € P* and then we assign a new
value to z. This means that the output assignment g may not satisfy
g(z) € P*. In the DRT relation, computed with +, we make sure that
the output assignment g satisfies g(x) € P*. Then we allow for all input
assignments f that differ only on z from g. So now the input assignment
may not satisfy f(x) € P*. In fact we get precisely:

1.5. Facts and figures 31

{f,9) € Rpz)3: iff (g, f) € [P(z) - 3x]ap1.

In the example we see that the first relation, Rp(z), imposes a condition
on the variable x while the second relation, R3., allows us to choose a
value for this variable. This is precisely the sort of situation in which
* and o behave differently: x tells us to choose the value first and then
check the condition, while o tells us to check the condition first and then
choose a new value for the variable. The result below basically says that
* and o coincide as long as we avoid such situations.

Formally we try capture this idea using the two auxiliary notions car and
unt. Recall that the variables in the carrier car(R) are the ones that
gcan get a different value in R. Intuitively the variables in unt(R) are
the variables that R does not care about. So we need not worry about
the variables in unt(R) if we compute R+ S or Ro S: R does not care
what S does to them or when it does it. In the example above we saw
that = ¢ unt(R), while at the same time = € car(S). This means that
S changes a value of a variable that R does care about. This is a crucial
condition: we have to make sure that car(S) C unt(R), otherwise things
could go wrong. ‘

There is one extra complication that we have to take care of: all relations
of the form R % S are input indifferent, but not all relations of the form
Ro S have this property. This means that we have to build in a restriction
on R and S somehow to ensure that R o S will also be input indifferent.
It turns out that, in presence of the condition car(S) C unt(R), the
following works.

Proposition 1.5.16 Let R,S C ASS x ASS be input indifferent rela-
tions such that car(S) C unt(R). Then RxS = RoS.0

Note that we had to sneak in the extra requirement of input indifference
to make the proposition work. However, for our purposes this is not a
very high price to pay, since all relations associated with atomic formulas
are input indifferent.

The proposition shows that for input indifferent relations car(S) C unt(R)
is a sufficient condition. It can be checked that it is not a necessary con-
dition, for example by looking at 3z - P(z) - 3z - P(x). So in a sense the
condition in the proposition is bit too strong.

Here we have given a condition that works in terms of the behaviour of the
relations R and S. But for our purposes a condition that works directly on

32 Chapter 1. First Steps in Dynamic Semantics

the formulas is more convenient. Such a condition can be obtained quite
easily: we already observed that all atomic formulas give rise to input
indifferent relations. It can be checked that this also holds for the test
relations (¢ —). The fact that x € car(R,) shows that 3z occurs as a
conjunct of 1) and we can guarantee that = ¢ unt(Ry) by ensuring that z
does not occur in ¢. So the propositions tells us that as long as = does not
occur in a condition before 3z in a conjunction, the two interpretations
will coincide. Formulas that satisfy this condition have been called strict
in the literature and the set of strict formulas is sometimes called the
strict fragment of £. So as a corollary of the proposition we get:

Corollary 1.5.17 Let ¢ € L be strict. Then Ry = [¢lan will hold. As
a result ¢ will be DRT-true iff ¢ is DPL-irue.0

Note that the syntactic notion of strictness is even stronger than the con-
dition on the relations R and S that we gave above: there are non-strict
formulas ¢ - 1 that satisfy the condition of the proposition. Take for ex-
ample (P(z) = P(x)) - 3x.

On the road

Now we have made our first steps in dynamic semantics and we are on the
road. We have presented the phenomenon ‘dynamic semantics’ informally
and we have discussed two ways in which this phenomenon can be worked
out formally. In the previous section we have linked up our presentation
with what can be found in the literature.

In our presentation we have concentrated on DPL and DRT and thereby
ignored several other interesting developments in dynamic semantics. For
example, we have not discussed the Swedish dynamic tradition of Pagin
and Westerstahl (1993). There are many things that can be said about the
relation of their Predicate Logic with Flexibly Binding Operators (PFO)
and the dynamic theories discussed here, but since we will not, use any of
these facts later on we have decided to leave PFO out all together.

This underlines the fact that we have not tried to give an objective
overview of current developments in dynamic semantics. Instead the aim
has been to present a thoroughly subjective view on what dynamics is

1.5. Facts and figures 33

about. For a historically correct picture the reader can follow the refer-
ences to the literature that we have included.

In the remaining part of this thesis we will build upon the picture of
dynamics that we given here. In part I we will take a closer look at the
role of variables in dynamic semantics: the achievement of both DRT and
DPL has been the isolation of the semantic contribution of 3z in one small
unit. We will analyse the consequences of the way in which this has been
worked out formally. This will lead us to propose an improvement for the
dynamic treatment of variables.

In part II we confront the small unit principle with the phenomenon of
text structure. We will see how a step by step interpretation of structured
expressions can be obtained. Finally we will apply our conception of
dynamics to proof theory: we will discuss what a dynamic approach to
proof theory could lead to.

Part 1

Variables in Dynamic
Semantics

i

Variables in Dynamic
Semantics

The following chapters will be devoted to the role of variables in dynamic
semantics. First we will consider a specific problem with variables in dy-
namic semantics in the next chapter, the so called eliminativity problem.
The solution that we will develop for that problem will lead us into more
general considerations about the treatment of variables in dynamic se-
mantics. This will result in the definition of referent systems in chapter 4:
we shall argue that referent systems are the proper tool for the dynamic
treatment of variables.

Our attention for the treatment of variables in dynamic semantics has
a very simple explanation: the treatment of variables is crucial for the
semantics of anaphora. Some attempts have been made to represent
anaphoric phenomena in a representation language without variables (cf.
Purdy (1992a), Ben-Shalom (1994), Sénchez Valencia (1990), Bottner
(1992) etc.), but in many approaches the variables represent the anaphoric
links. Also in the dynamic approach to semantics, both DRT and DPL in-
terpret anaphors using variables. Since the semantics of anaphora poses
the problems that have motivated the development of dynamic seman-
tics, the treatment of variables is of crucial importance to the dynamic
enterprise.

Before we get to this we first wish to clarify the role that variables play
in semantics of natural language in general. Our views on this issue are
pretty standard as far as we can see. Still we have noticed that it quite
often happens that misunderstandings about the role of variables give rise
to serious confusion as to what is at stake in the semantics of anaphora.!”

1"For example, some people have had the impression that it was our aim to show
that working with indexed formulas is unnecessary. It will become clear that this is

37

38

We hope to prevent such misunderstandings by repeating some well known
truisms about variables and natural language semantics.

Variables and natural language

One inevitable observation about the relation between variables and nat-
ural languages is that natural languages do not contain variables. If we
look at a text in a natural language we may find a lot of things, but we
will not find the z-es and y-s that we use so abundantly in our formal ma-
chinery. Yet in the semantics of natural language it is very common to use
formal languages that do contain variables. In these formal languages the
variables are extremely important. There it are the variables that allow
us to make the binding and scoping relations between the different items
syntactically explicit. For example, only if two occurrences of a variable,
x say, are within the scope of the same quantifier, we may conclude that
the variable has the same ‘meaning’ in both positions.

We can see that this implies that a lot of facts about binding and scoping
of natural language expressions can only be transmitted into the formal
representation if we use the variables of the formal representation lan-
guage correctly. Therefore variables are of crucial importance in the rep-
resentation of the anaphoric links that we find in texts: if some anaphoric
element is to be identified with some antecedent, then we had better made
sure that the representations of both elements contain the same variable
and are in the scope of the same quantifier. Then the connection between
anaphor and antecedent will be interpreted as the semantic connection
that the representation language establishes between the two variable oc-
currences in the representation.

From this we can conclude two things. First we see that the meaning
that we give to anaphora in natural language simply #s the meaning that
we give to variables in the representation language. Since anaphoric links
are represented by variables, the interpretation of anaphoric links is fixed
by the semantics of the variables. So if we are working with formal rep-
resentation containing variables, then giving a semantics of anaphora is
the same thing as explaining how variables are interpreted. Secondly it
means that for the interpretation of anaphora the question which variables
arise in the representation of a text is crucial. If something goes wrong

not the case.

39

here, then the representation may not represent the anaphoric links in the
text correctly and as a consequence the interpretation of the text gets cor-
rupted. Therefore we will say something about the way in which variables
come into the formal representation in the next subsection.

Where do variables come from?

In the compositional picture of the interpretation of natural language we
usually distinguish two steps: the first step is the compositional transla-
tion of a natural language expression in a formal representation language.
The second step consists of the compositional interpretation of this formal
representation. Since variables are present in the formal representation
and not in natural language expressions as we usually encounter them,
they will have to be introduced into the picture somewhere before the
second step. But where should they come from?

We could hope that they are generated automatically by the compositional
translation procedure. Whether or not this is possible depends on the
kinds of demands that we place on the formal representations that the
translation procedure gives us. It depends in particular on what we expect
the formal representation to tell us about the anaphoric links that are
present in the natural language expression. For example, if we are allowed
to postpone the problem of representing anaphoric links correctly until
after the translation, then a compositional translation procedure might
very well be possible. In such a situation we can simply ignore the problem
of anaphora resolution during the translation. There are numerous ways
to implement this delay strategy. We can, for example, use variables that,
are indexed with natural numbers: z;, z,,.... In the representation of
the basic constituents we use fixed but arbitrary variables and whenever
we compose a representation for an expression from the representations of
its constituents, we make sure that the variables arising from the different
constituents are made distinct. We can do this, for example, by replacing
each variable z, in the left constituent with variable T10.n+1 and replacing
each variable in the right constituent with ...

Let’s illustrate this with an example:

A dog was sleeping in the room. A cat came in. It was spotted
immediately.

40

If we apply our ‘labeled-variable’ translation procedure to this example,
starting with variable zq in all basic representation, this would give rise
to something like:

321111111 - DOG(T1011111) - SLEEPING-IN-THE-ROOM(Z101111) -
337]0111 4 CAT(II.‘“]“) J CAME-IN(L‘L‘lm) . SPOT(IID)

So in this approach the representations (in £) can (probably) be built
up compositionally and the variables are introduced by the compositional
translation procedure.

This is all very well, but it is clear that the representation that we have
created is not very useful. Before we can give it the intended interpretation
we have to make sure that some variables z,, are identified with other
variables x,, in such a way that the anaphoric relations that are implicit
in the natural language expression get represented. In other words, this
might be a good point to perform the process of anaphora resolution
that we have postponed so far. Here this can be done by choosing some
equivalence relation on the indices that tells us which indices are to be
identified.!®

Clearly such an approach gives a translation of the natural language ex-
pression into a formal representation language. However, the formal rep-
resentation that we create does not yet reflect any of the anaphoric rela-
tions that are present in the natural language expression and this might
be considered cheating. What we would really like is a compositional
translation procedure in which the anaphoric relations get represented
correctly. This means that the translation procedure has to perform the
process of anaphora resolution — i.e. establishing the required connec-
tions between anaphors and antecedents — implicitly, as part of the larger
task of representing the meaning of the formula.

It is clear that such a translation procedure would indeed be preferable
over a procedure of the kind sketched above. But it is also clear that
such a procedure is hard to get. For in order for such a translation to
be compositional we would need a compositional procedure to trace all
anaphoric links in natural language texts. And this is just too much. Even
without going into the details of the problem of anaphora resolution'?,

18Note that there is a subtle difference between telling which variables are syntac-
tically identical and telling which variables have identical values. It is the first thing
that we are interested in here.

19Cf. Sidner (1983) and references therein for more detail.

41

we can see that it is very unlikely that all of anaphora resolution works
compositionally. We can see this from the following example:

The brick was thrown against the window. It broke.

If we regard this as one complete text, then the resolution process, however
it may work, will have to produce the links between the anaphors and
antecedents in this text. Presumably we would want a link between It and
the window.?’ Note that this procedure cannot just rely on the syntax
of the input text. For syntactically there seems to be no reason why It
should be the window and not The brick. So the compositional resolution
procedure would need as input not only the syntactic information, but also
other information, presumably about the meaning of the words. But let’s
assume that extra information of this kind is available in the compositional
translation procedure and that this anaphoric link actually is established
in the representation. Then we will get into trouble with the following
example:

John was surprised by the strength of the window. The brick
was thrown against the window. It broke.

Now the preferred anaphoric link is between It and The brick. In a compo-
sitional mechanism for anaphora resolution it will not be easy to account
for such a switch. The problem can be explained as follows: either the
first text is a component of this second text. Then it is clear that the
representation of the first text will be a component of the representation
of the second text. But we argued above that in this component It will
be linked to the window instead of The brick. So there is a problem. Or
else the first text is not a component of the second text. But it seems
quite unlikely that any discourse analysis will predict this. For in the text
the second and third sentence together play the role of an explanation or
elaboration of the first sentence. It seems reasonable to expect that this
kind of macro structure of texts will be respected by a good discourse
grammar.

So we have to conclude that it would be unrealistic to expect a compo-
sitional representation procedure to produce all anaphoric links by itself.

20Perhaps one would like to argue for the ambiguity of such texts. This amounts
to a strategy of postponing the resolution problem, at least to some extent. Such a
strategy was mentioned above and will be discussed further below.

42

Since these anaphoric links are encoded in the choice of variables, this
implies that the choice of variables cannot simply be part of the compo-
sitional translation procedure. This means that the choice of variables is
either fixed after translation, as in the labeled-variable approach discussed
above, or else the choice of variables is made before the compositional
translation. The first option is not at all unreasonable: then the resolu-
tion procedure could simply work on the formal representation?! rather
than on the natural language expression itself. Still, the second option
is preferred in most current approaches to natural language semantics:
it is usually assumed that the input to the translation mechanism is an
indered natural language expression, i.e. a natural language expression
in which variables have been added as indices to indicate the anaphoric
links. This is also what we will assume in this thesis. So instead of the
text above we will get the following kind of input:

John was surprised by the strength of the window,. The brick;
was thrown against the windows. It; broke.

Of course we have only sketched two extremes of a whole range of possi-
bilities: we have discussed approaches in which all anaphora resolution is
done in advance and approaches in which all the work is postponed until
after the translation process. No doubt a realistic account of anaphora
resolution has to be found somewhere in between these extremes. Prob-
ably there are a few reasonable side conditions on anaphoricity — such
as gender and number agreement — which can savely be implemented in
a compositional translation procedure.?> Then the remaining ambiguities
can be resolved by another mechanism.>® But since we do not pretend
to give a theory of anaphora resolution anyway, we can simply follow the
conventional choice and assume that anaphora resolution has been taken
care of in advance.

2ICf. Lewin (1994) for a worked out version of a similar approach.

?2Note that even gender agreement is not such a reliable side condition as it may
seem at first sight. In particular problems arise if there is a discrepancy between
syntactic gender and semantics gender. An example is the Dutch word for girl, which
has syntactic gender neuter. It turns out that in these cases both the feminine and
the neuter pronoun can be used for anaphoric reference.

23 A, Visser suggests that perhaps it makes sense to expect a compositional trans-
lation to produce resolution strategies, instead of anaphoric links. The result of the
compositional mechanism would then be a (partially resolved) representation plus a
compositionally derived strategy for resolving the (remaining) anaphoric links.

43

By now we are in a position to answer the question that was asked above:
“Where do variables come from?” We simply assume that they are there
already.

Anaphora resolution and indexing

Perhaps the discussion above has been a bit misleading about the re-
lation between anaphora resolution and indexing procedures. From the
previous section the reader might get the impression that we think that
these two phrases stand for one and the same thing. This is not true, of
course. What we can expect from the resolution procedure is that it will
indicate which anaphoric links exist in the text. This need not be repre-
sented by variables as indices at all. We could also get something like this:

The brickhit the window. hiroke. The window was still intact.

Here the arrows indicate anaphoric links.?* It seems that this is the
minimal information that the anaphora resolution process can be expected
to give: it gives exactly the anaphoric links between the items and nothing
else. As one can see, there are no indices in this picture and still all
the information is made explicit. However, there is a problem with the
picture as it stands: it cannot be fed into a compositional translator. This
is because all the links that we see in the picture make it impossible to
decompose the expression into components without losing the information
that these links give.

The briclhit the window. Hroke. The window was still intact.

We see that if we break up the text, and therefore also the links, into
pieces information gets lost. In order to prevent this we have to make the
information about the links available locally before we feed the text into
the translator. This way each component contains by itself the informa-
tion about its anaphoric intentions. This is what indexing does: it makes

24Note that the arrows point from antecedent to anaphor. They point in the direction
in which the information flows.

44

the information about the anaphoric dependencies available locally.

The brickit the window. Hroke. The window was still intact.
Lx L—y x—i

We see that indexing is in fact a mapping from the arrows in the picture
to variable names: we start with a picture with only arrows, then we add
a variable name to each arrow and then we can ‘decompose’ the arrows
without loss of information. In order for such a mapping to encode the
anaphoric dependencies in the right way it has to satisfy some special
conditions. For example, the mapping should not assign the same variable
name to two arrows that cross each other. We can see this in the example:
if we call both arrows z, then there is confusion after the process of
splitting up the arrows. It seems that this is not only a necessary but also
a sufficient condition on indexings: an indexing of the arrows preserves
all the information about the anaphoric connections, precisely if different
names are assigned to crossing links. A slightly stronger condition that is
certainly sufficient is injectivity: if the indexing function assigns different
variables to all arrows, then surely no information can get lost in the
decomposition process.

Of course there may be other ways of encoding the anaphoric dependen-
cies locally. It is not obvious at all that such an encoding should involve
variable names. It is also not necessary that the input for the composi-
tional translation procedure contain the variable names: also another local
encoding of anaphoric dependencies will do. But since variable names are
going to be used in the formal representation language anyway, we might
as well use them in our local encoding of the anaphoric information. If
the formal representation language uses another mechanism to encode
this kind of information, then we can use that other mechanism for the
‘indexing’-procedure.

The interpretation of variables

So we see that in the semantics of anaphora there is a very big problem
that cannot be solved compositionally: the anaphora resolution problem.
Therefore we will not try to solve this problem in a compositional se-
mantics. This does not answer the question where we should solve the

45

resolution problem instead, let alone how we should solve it. It is clear
that many different kinds of information interact in anaphora resolution:
not only syntactic information, about number and gender of antecedent
and anaphor for example, but also other information sources, such as the
meanings of the words, will typically be involved. And even when all
such features are taken into into consideration, there will probably be
cases where genuine ambiguities remain.

The fact that one of the crucial problems in the semantics of anaphora,
anaphora resolution, cannot be solved compositionally, does not imply
that compositional semantics should stay away from the semantics of
anaphora and instead a non-compositional interpretation procedure should
be developed. This line of reasoning could make sense, if our interest in
the interpretation of anaphora is crucially an interest in anaphora res-
olution. We will take the position that there are other aspects of the
interpretation of anaphora which are also interesting and which do re-
quire a compositional treatment. In fact we will allow ourselves to work
with indexed expressions, expressions of natural language to which indices
have been added to indicate the anaphoric connections. So we start at a
point at which the resolution problem has already been solved.

The indices that we start with will be transmitted into the formal rep-
resentations. So all that remains to be done is to see to it that in the
semantics of the formal representation language these anaphoric connec-
tions are indeed recognised as such. In other words, our major concern is
to find a representation language and a semantics for it in which the rep-
resentations of the components can be put together in such a way that the
required anaphoric connections really will be made. In the introductory
chapter we saw that this is not a trivial problem: if we choose the naive
representations in the language of predicate logic we will get into trouble.
This shows that the way that variables are treated in predicate logic does
not allow us to represent the links between the different components in a
satisfactory way. We have seen that dynamic formalisms such as DRT and
DPL do a lot better and this is where their contribution to the semantics
of anaphora lies. Their contribution crucially depends on how they treat
their variables. In the next two chapters we will take a closer look at the
way in which this actually works. In the end (chapter 3) this will result in
an improved treatment of variables in dynamic semantics using referent
systems.

46

Chapter 2

Preserving Information in
Dynamic Semantics

2.1 Introduction

In this chapter we will discuss the so-called eliminativity problem of DPL.
We will see that the eliminativity problem, which will be introduced
shortly, is a consequence of the treatment of variables in DPL. There-
fore our solution to the eliminativity problem will consist of a refinement
of DPL’s variable management. We will show that the refinement does
indeed lead to an eliminative semantics.

In the next chapter we will pick up the issue of the treatment of variables
in dynamic semantics in general. There our main aim will be to give
good overall picture of the role that we want variables to play in dynamic
semantics and we will propose a way of formalising this picture using ref-
erent systems.

In the introduction we have presented the relational semantics for £ due to
Groenendijk and Stokhof (1991a). Their Dynamic Predicate Logic (DPL)
is a synthesis of the insights of Discourse Representation Theory (DRT)
and the elegant formalism of predicate logic. The value of such a synthe-
sis is generally recognised, but at the same time some questions can been
raised. Several properties of the formalism have been discovered that sug-
gest serious problems for DPL. One of these problems, the eliminativity
problem, is the topic of this chapter.

47

48 Chapter 2. Preserving Information in Dynamic Semantics

The eliminativity problem was raised for the first time in Groenendijk
and Stokhof (1991b). There the relational semantics of DPL is compared
with the update semantics of Veltman (1991) Veltman provides a dynamic
theory of modalities. He specifies the meaning of a modal (propositional)
language in terms of operations on information states: the meaning of a
formula is its potential to update information states. This update poten-
tial is represented as a function from information states to information
states. Groenendijk and Stokhof reformulate the semantics of DPL as an
update semantics to make a comparison with Veltman'’s system possible.
Their update formulation has the following (defining) property.

Definition 2.1.1

Let ASS be the set of assignments. Let 0 € p(ASS) be an information
state. Let [¢]gs€ ASS x ASS be the interpretation of ¢ as a relation on
assignments. Then (¢])ys, the interpretation of ¢ as an update function,
18 defined by the following property:

o(d)gs ={g€ ASS:3f € 0. f[d]ys9}

It is this formulation of the semantics of DPL that is the basis for the
comparison with Veltman’s update semantics. The properties of the se-
mantics are discussed in terms of properties of the update functions. The
following observations are made:

Proposition 2.1.2

o DPL-updates are distributive, i.e. we always have'
0 (DDgs = U{ {S}(¢Des : f € 0}

o DPL-updates are not in general eliminative, i.e. for some ¢ and
a

not: o(¢),s C 0.

! The notation that we use here is not the one used by Groenendijk and Stokhof
or Veltman, but we hope that no confusion will arise. The subscripts v and gs are
used to distinguish Veltman's update functions from the DPL-updates. We will use
[.]-brackets for relational interpretations and (.)- brackets for update interpretations
throughout the chapter.

2.1. Introduction 49

This is in contrast with the situation in Veltman'’s system, where we have:?

o Veltman’s updates are not in general distributive, i.e. for some ¢
and o

not: o(¢)y = U{ {f}(8]. : f € o}.
o Veltman'’s updates are eliminative, i.e. we always have

o(¢)» C o.

Groenendijk and Stokhof conclude that these are genuine differences be-
tween Veltman’s update semantics and their own dynamic semantics, that
will have to be taken into account when an attempt is made to incorporate
a dynamic treatment of modalities along the lines of Veltman in DPL.
They do not seem to be worried about the fact that their semantics be-
haves as it does: non-eliminatively and distributively.

We have a different view on the meaning of these observations. The
property of distributivity allows us to compute the result of a function on
a set pointwise. For our update functions this means that we can compute
the result of an update on the whole information state by updating each
of its elements. It is convenient that this holds for the operations in
the DP L-semantics, but it cannot be expected to hold for all extensions.
There seems to be no intuitively compelling reason why sentence meanings
should be computable pointwise. For example, the dynamic modality that
Veltman considers typically is a case where one would not expect this.
(Also see section 2.5.)

For the eliminativity property things are somewhat different. In update
semantics the ordering O on information states corresponds to growth of
information. The eliminative functions are the functions that are mono-
tone along this order. Hence if an operation on information states is
eliminative this means that the operation causes an increase of informa-
tion. And if an operation is not eliminative this means that somehow we
have lost some of the information that we used to have. Therefore elim-
inativity is a property that we always expect if we process information,

*We will not be very precise about the details of Veltman (1991)’s update semantics
in this chapter. We just give the properties of his system to illustrate the differences
that Groenendijk and Stokhof (1991b) have found. Veltman (1991)’s semantics does
not work with sets of assignments as information states, but here this harmless mis-
representation of the facts that will facilitate the comparison.

50 Chapter 2. Preserving Information in Dynamic Semantics

as long as typically non-monotonic features are kept out of consideration.
DPL is not concerned with typically non-monotonic forms of information
processing: DPL is used for the representation of simple narrative sen-
tences. Therefore we would not only expect eliminativity for Veltman’s
system, but also — and perhaps even more so — for DPL. Thereby for
us the non-distributivity of Veltman's system simply is a fact of life, while
the fact that DPL-updates are not monotone poses a problem that has
to be solved.

This is so for the intuitive reason expressed above, but it is also essential
for a different reason. If we accept the non-monotonicity of PDL, while
intuitively by the interpretation of a DPL-formula information grows, then
we seem to accept a situation in which information content cannot be
represented in the DPL-formalism. This would be a very unfortunate
situation, given the picture of dynamic semantics that we have seen in
chapter 1. In fact, if DP L-semantics has nothing to say about information
content, then it is no longer clear that the DP L-semantics has anything
to say at all.

So we cannot afford to accept the non-monotonicity of D P L-semantics.
Therefore we aim for a slight modification of the semantics (section 2.2),
called sequence semantics for dynamic predicate logic, which will allow
us to represent growth of information. We will show that in the modified
semantics the spirit of the usual relational interpretation is preserved (sec-
tion 2.2.3): from the modified semantics of a formula we can reconstruct
its original DPL-interpretation. The modified semantics will give rise to
an improved notion of information state (section 2.3) and will allow for a
formulation as monotone update semantics (section 2.5).

The new notion of information state will be explored further (in section
2.4) and we will use it to shed a new light on familiar topics in dynamic
semantics. First we discuss the notion of monotonicity that comes with
the new notion of information state, then we attack some of the problems
that the DPL-notion of inference gives rise to. Finally we will discuss a
new option that becomes available in the sequence approach: down-dating
(section 2.5.3).

Although originally Groenendijk and Stokhof did not seem very concerned
about non-eliminativity per se, by now it has generally been recognised
that an eliminative version of DPL is called for. Several cures for the
eliminativity problem have been proposed in the literature, but only the

2.2. Sequence semantics 51

solutions that we present in this thesis® obtain eliminativity ‘without com-
promising’. Other attempts have had to compromise in several different
ways: for example, Dekker (1993)’s proposal amounts to a restriction to
the so called strict fragment of DPL, whereas Fernando (1991a) resorts to
the use of guarded assignment statements instead of ordinary DPL assign-
ment statements. Visser (1989) also presents a dynamic system in which
eliminativity is obtained by changing the notion of assignment. We will
show that such solutions by modification are not called for since it is possi-
ble to formulate DPL itself in an eliminative way. The preservation prop-
erty that we prove in section 2.2.3 shows that our presentation really is
a refinement, not a modification of the original semantics of Groenendijk
and Stokhof (1991a). Thereby this thesis presents the only eliminative
semantics? for DPL in which the formulas still mean what we think they
mean.

2.2 Sequence semantics

2.2.1 The language of dynamic predicate logic

Throughout this chapter we will work with £ as defined in the intro-
duction. So we have as examples of DPL-formulas: 3z - 3y, P(z,y, z),
3z P(z)-Q(z,z), (3y — P(y)). We have conjunction (-) and implication
(—) as logical connectives. Negation (—) is defined as: —(¢) = (¢ — 1)
and universal quantification as Vz(¢) = (3z — ¢).

As we have explained, we prefer to treat the existential quantifier as an
atomic formula. One reason for this is methodological: since 3z has a clear
interpretation as a relation in DPL, there is no reason not to regard it as a
distinet syntactic unit. We prefer to have an independent representation
on the syntactic level of everything that plays an independent role in the
semantics. Another reason is that this way DP L-formulas look more like
DRSs which makes a comparison of DPL and DRT easier. To us the
language DPL seems to be a medium in which both DPL and DRT
could be studied.

Working in £ also makes some proofs a bit easier. But we have seen
in the introduction that the semantics of £ corresponds naturally to the

3Here and in the next chapter
1Le. the semantics here and the one discussed in the next chapter.

52 Chapter 2. Preserving Information in Dynamic Semantics

ordinary DPL-semantics. So our results will not depend on the choice of
Li

2.2.2 The refined relational semantics

The refined version of dynamic semantics that we present is very similar
to the usual relational semantics. The inductive definition of the relations
that are the interpretations of the formulas of DPL is almost identical
that of Groenendijk and Stokhof (1991a). The refinement that we propose
is obtained by using a richer notion of assignment. Instead of working with
assignments that assign one value in the domain to each discourse referent,
we use assignments that assign to each discourse marker a finite sequence
of values. In the usual semantics we are forced to forget the current value
of the variable z if we encounter the formula 3z. If we consider, for
example, the formula P(z) - 3z - Q(z) - 3z - R(x), a pair of assignments
(f,g) that is in the relational interpretation [P(x)- 3z - Q(z) -3z - R(z)],s
will only reveal a value f(z) that is in the interpretation of P, and a value
g(x) that is in the interpretation of R, but we have no way of remembering
a value in the domain that is in the interpretation of Q.

We think that this is where the usual semantics goes wrong. If we throw
away values of some variable, then we lose track of the restrictions on
the values of this variable. These restrictions on the value of a variable
are the way in which information is represented in D P L-semantics. If we
throw away this information, there is no way of recovering it. If we work
with assignments that have sequences as values, we can see to it that the
value that is in @ is remembered. For example, if we find a pair (k, &) in
the refined relational interpretation [P(z) - 3z - Q(x) - 3z - R(x)]sass, such
that k(z) = (...,p) and h(z) = (...,p,q,7): this tells us that p € I(P),
q € I(Q) and r € I(R). This way no information is lost. We call these
assignments that have sequences as values, sequence valued assignments.

Definition 2.2.1

1. SASS, the set of sequence valued assignments, is the set that con-
sists of all functions f : VAR — DOM?*.

(Here DOM 1s the domain of interpretation, and DOM* =
U{DOM" : n>0}.)

2.2. Sequence semantics 53

2. (dy,...,dn) € DOM* = end((dy, ..., dy)) = dy
end(()) = ()

3. (dy,...,dn) € DOM* = pd({dy, ..., dn)) = (di,...,d_1)
pd(()) = ()

£ Wiy di); ferossstan) EDOME AR, o % (B1500nsm)
2 U v B BBy

the concatenation of two sequences.

It should be noted that the last component of the sequence f(z), end(f(z)),
is the current value of z. We have f(z) = pd(f(z)) * (end(f(z))). If the
empty sequence is assigned to (f(z) = ()), then we call f(z) undefined
and we say end(f(z)) = (). The fact that we allow the empty sequence as
a value introduces some form of partiality into our semantics. Therefore
we also call the elements of SASS partial, sequence valued assignments.
It is also possible to use partial assignments in the usual relational seman-
tics. Instead of working with total assignments, Groenendijk and Stokhof
could have used partial assignments f : VAR < DOM. (Here the par-
tiality is indicated by the —.) Let’s call the set of partial assignments
PABSS

In such an approach new questions concerning partiality have to be an-
swered. For example, if we want to define truth for a formula ¢ in such
an approach, we have two options:

¢ is true iff for any partial assignment f, there is a partial
assignment g such that f[d]g;

or

¢ is true iff for any partial assignment f defined on the free
variables of ¢, there is a partial assignment g such that f[¢]g.

If we always choose for the second kind of answer, this gives us a semantics
virtually equivalent to the usual relational semantics. We do not give the
details of this approach: it requires but a straightforward adaptation of
the usual semantics. We will use the notation [¢],,, to refer to this

5Note that ASS C PASS C SASS.

o4 Chapter 2. Preserving Information in Dynamic Semantics

version of the relational semantics.® Following the first option will give
us something quite different. It might be interesting to see what happens
in that kind of semantics, but we will not do that here.

In general some information about the occurrence of variables in some
formula ¢ is available in the interpretation of ¢. This is interesting, since
the occurrence of variables in the formal representation is closely con-
nected to the availability of anaphora in natural language. Consider for
example the ordinary formulation of the DPL semantics in terms of to-
tal assignments. From the interpretation of ¢ we might observe that the
value of some variable x is restricted: i.e. there is a d € D such that for
no (f,g) € [¢]ys we have f(x) = d. Then we can conclude that z occurs
in ¢. And also if in the interpretation of ¢ the value of can change —
i.e. there are (f, g) € [¢]ys such that f(z) # g(x) — we can conclude that
x occurs in ¢. But the total assignments do not reveal all the information
about the occurrence of variables.

For example, if ¢ = (P(z) — P(z)), then ¢ is a statement about z. We
admit that the information that ¢ gives about z is trivial, but still ¢ is
a statement about and not about any other variable. This implies for
example that a free = in a subsequent formula will be linked to this x. In
the interpretation with total assignments we cannot see such things: [¢]s
simply contains all pairs (f, f). But if we use partial assignments then
this information becomes available in the semantics: if (f, f) € [¢],s
then f will have to be defined on z, but not necessarily on any other
variable. So now we can see from the interpretation of ¢ that x occurs
in ¢. In other words, if we use partial assignments the interpretation can
tell us about which variables formulas make a statement.”

We could in fact try to define the set of variables that occur in a formula
from its interpretation with partial assignments:

vars(¢) = N{dom(f): f € range([d]pes}

This would then help us keep track of the anaphoric possibilities: the
variables that occur in vars(¢) correspond to the antecedents that are

6See for example Kamp and Reyle (1993), Dekker (1993) or Fernando (1991a) for
a presentation of semantics with partial assignments. Kamp and Reyle (1993) use
partial assignments for the semantics of DRT.

THere the analogy between formulas and computer programs might be helpful: even
if you want to run a trivial program, you have to make sure all variables that actually
occur are properly declared.

2.2. Sequence semantics 55

available in the corresponding natural language expression. Such a defi-
nition works quite well in most cases, but it typically breaks down with
inconsistent formulas: a formula such as (P(z) — (P(z) — L)) will have
an empty vars-set, but still offers one antecedent, x.

Although the use of partial assignments in the semantics helps us to some
extent to keep track of such issues, it certainly does not help to solve
the eliminativity problem. Clearly the use of partial assignments is not
enough to get a good representation of all the information a formula can
contain: we still loose information if a variable is used twice.® In our set
up with sequence valued assignments we will inherit the advantages of the
partial assignments, since we will allow f(z) = (). But we will also be
able to deal with multiple occurrences of variables.

Before we give this refined version of the relational semantics, where this
information is present, we introduce an important technical notion: we
define what it means for one (sequence valued) assignment to be a -
variant of another (sequence valued) assignment.

Definition 2.2.2 Let x € VAR, V € VAR, f,g € SASS be given.

1. We say that g is a x-variant of f,

f=hg iff
3d € DOM : g(z) = f(z) * () AVy: (y # 2 = f(y) = 9(»))-

2. We define the notion V-variant for sequences of variables V as fol-
lows:

f(x) Da & flaNg;
FEV *(z) hg © 3h € SASS: f{V Zh A h{z)g.

The relation ((z)) allows us to choose a new value for =, but we do not
throw away the old value: we build up a sequence of values instead. Note
that the z-variant relation is not symmetric. In fact we have f{(z))g =
= g{(z))f. Another important property of these relations is that (V) is

8In Dekker (1993) we see that even in the presence of partial functions a radical
trick has to be introduced to obtain eliminativity: in his EDPL all formulas in which
a variable occurs in more than one role (such as 3z - P(z) - 3z - Q(xz)) are regarded as
meaningless.

56 Chapter 2. Preserving Information in Dynamic Semantics

the same as ((V')) whenever V' is a permutation of V. So we have, for

example, (((z,y,z)) = ((y,z,z)).
Now we will define the refined relational semantics.

Definition 2.2.3

1. For each ¢ € DPL we define [¢]sassC SASS x SASS, the meaning
of ¢ as a relation on sequence valued assignments. Let f,q, h,k be
sequence valued assignments, I an interpretation function for the
predicates of DPL.

o flllsassg © f#f
o f[P(z1,Tn)]sassg &
f=g A (end(f(z1),.,end(f(zn))) € I(P)
o f[Balsssg & fzhg
o flo: ¥]sass © b flolsassh[¥]sassg
o fl(¢ = V)lsassg & f=9AVR: f[dlsassh = Tk A[Y]sassk

2. We define entailment as follows: let ¢, ¢y,...,¢n, 0 € DPL. Then:

(.1(’ |:suss Tf':’ R Vf:g : f[[';b]sussg = 3h: g[[wﬂsassh'

and

¢Ia---1¢n I=SGSST|‘{I A ‘i’l' 'an !zsass Ib

The definition is very similar to the original definition by Groenendijk and
Stokhof. The main difference is the kind of assignments that is used. This
has some interesting consequences. Note for example that in the definition
of [¢ - Y]sass the h such that f[¢]sessh[¥]sassg is uniquely determined by
f.9.

Now if we look at [¢]s.ss, we can find almost all the information that is
revealed by ¢: if we look carefully at the variables on which pairs (f, g)
that are in [¢]s.ss are defined, then we can find out which variables are
free in ¢, which variables occur quantified and how often a variable is
quantified over. For example, if we consider [P(z) - 3z - Q(z)]sass, we will
see that for all pairs (f, g) that are in this relation, we have that both f
and g are defined on z (i.e. f(z) # ()),which means that = must occur in
the formula; the fact that f will always be defined on z, means that there

2.2. Sequence semantics 57

is a free x in the formula. We will see that the length of the sequence
g(x) is at least two, which means that = occurs in the formula in two
(possibly different) roles. Since x already occurs freely, we can infer from
this that there must be exactly one occurrence of 3z in the formula. We
will also see that for any other variable y, there is a pair (f,g) where
f(y) = g(y) = (), indicating that y does not occur in our formula.

The exceptions to this story are still the inconsistent formulas. There-
fore we could choose to make this information explicit in the relational
semantics. If we add two components to our indices, we can build up the
set of the free variables of a formula and the sequence of the quantified
variables quite easily. Then [.];.ss would become a relation on triples
(A, S, f) where A contains the free variables and S gives the information
about the quantified variables and f € SASS. We will not make this
precise here, but the reader can see how it could be done in the static
semantics that we will present later.

2.2.3 A comparison

In this section we compare the refined relational semantics with the usual
relational semantics. We will show that for any ¢ the partial relational
interpretation, [¢],4, can be constructed out of the relational interpre-
tation [@]sass. This way we also establish a relation between [¢]sass and
[#gs, since [¢],s is just the restriction of [#],qs to total assignments.
We establish the relation between [¢],q,, and [#],4s with a mapping ®
that is defined as follows:

Definition 2.2.4
We define ® : p(SASS x SASS) — p(PASS x PASS) as follows:
®(R) =
{(g,f) : 3(k,h) € R:Vz € VAR : f(z) = end(h(z)) A g(z) = end(k(z))}

As one can see, we construct a relation between partial functions out of
a relation between sequence valued functions by restricting our attention
to the current values of the sequence valued functions. The result of such
a restriction is in general not a total function since we allow the value ()
for sequence valued functions.®

Now our claim about & is the following:

%In this context we mean by f(z) = end({)) that f(x) is undefined.

58 Chapter 2. Preserving Information in Dynamic Semantics

Proposition 2.2.5 For all € DPL we have ®([¢]sass) =[P]pgs-

The proof of the proposition is an induction on the complexity of ¢. It
can be found in the appendix.

The relation that @ establishes does not enable us for a given ¢ to con-
struct [¢]sass from [@],4s. As an example of this we consider the formula
¢ =3z P(z)- 3z - Q(z). If we know [¢],4s, we only can see which values
in the domain are such that they have property I(Q) (by checking which
values of & can occur as f(z) in a pair (g, f) € [¢]pgs). If we want to
have [¢]sass, we also have to know which part of the domain has property
I(P).

It is possible, however, to define the relation [.]s4ss in terms of the relation
[-lpgs- In other words: if we know [¢],,s for all ¢, then we can give [¢]sass
for all ¢. As an example again consider 3z - P(x) - 3z - Q(z). Knowing
[3z - P(z) - 3z - Q(z)]4s does not suffice to find [z - P(x) - 3z - Q(x)]sass-
But if we know both [3z - P(z)],s and [3z - Q(x)]ys then we do have
enough information to construct [3z - P(z) - 3z - Q(z)]sass. In general, if
we know how ¢ decomposes into conjuncts, then we can construct the se-
quence valued interpretation of ¢ from the sequence valued interpretation
of the conjuncts. This weaker correspondence suffices to guarantee that
the notions of validity for [.]sass, [.]pgs and [.],s are equivalent. There-
fore we have but one notion of validity, in spite of the subtle differences
between the different semantics for DPL. First we give the definitions of
entailment for [.],s and [.],gs-

Definition 2.2.6
For ¢, ¢ € DPL we define:

1. g 0 & Vf,g€ ASS: f[dl,sg = 3h e ASS: g[v]esh;
9. ¢ Fpgs ¥ & Vf, g€ PASS:

fl@)pgsg and g is defined on the free variables of 1 =
3h € PASS : g[¥]pgsh-

All definitions of ¢ |=, ¢ are based on the same idea: if we are able to
make a ¢-step, then we are always able to make a 1-step after that. Now
our claim is that also formally all notions of valid inference coincide, i.e.
we claim:

2.3. Static semantics 59

Corollary 2.2.7 For any ¢, the following clauses are equivalent:

1. f;f) }Zsass 71’;
2. ¢ ':pgs Y,
3. ¢ s ¥.

The proof can be found in the appendix.

In the proof 2 => 1 we need more than just [¢/],,st0 be able to construct
the required sequence valued assignment h: we needed all the [i;],4s
(where the 9; are the formulas of which v is the conjunction). This
confirms our remark above about the relation between [¢/]s.ss and [¢] s
not being an isomorphism.

By now we think that we have given sufficient proof of the fact that in
our refinement of the relational semantics the Groenendijk and Stokhof
semantics is preserved: we can reconstruct the original relations from our
refined relational semantics and we have preserved the original notion of
entailment.

2.3 Static semantics

2.3.1 Information structures

In this section we will introduce the notion of an information structure.
These information structures will provide us with a suitable notion of
information state. We will be able to interpret DPL-formulas as infor-
mation structures and thus give a static semantics to DPL. We will show
that this interpretation is compatible with the relational interpretation of
the preceding section: we will be able to construct the relational interpre-
tation from the static interpretation and we will see that the information
structure that we associate with a formula is just the set of possible out-
puts of the relation [.]sass-

At first sight the fact that dynamic DPL allows for a static semantics may
seem odd. Does this mean that dynamic semantics is static after all? It
might be helpful to think about the situation in terms of representation
or coding. The information structures that we will define can be used
to represent (or code) the relations that we have defined above. Not all
relations on SASS will have such a representation, but it turns out that all

60 Chapter 2. Preserving Information in Dynamic Semantics

DP L-interpretations can be represented by some information structure.
We already have a similar situation in the original formulation of the
DPL-semantics. There conditions, such as P(x), can be represented by
a set, the set of assignments that satisfy the condition. Given this set the
relational interpretation of the condition can be constructed. For example,
P(z) can be represented by the set P= {f € ASS: f(z) € I(P)}. Then
we can define [P(z)],s= {(f,9): f =g A g€ P}. But for other formulas
such a representation as a set is not available. With the new definition
of the relational semantics and the new notion of information structure a
similar reconstruction will be possible for all DP L-interpretations.

If we want to find a suitable notion of information state, then it is a good
idea to ask: What is the information revealed by a formula? Surely, a for-
mula gives information about the variables that occur in the formula. We
represent this by considering all the values that such a discourse marker
can take, i.e. our information structures will contain assignments of values
to the variables that occur in the formula. The range of values of a dis-
course marker is restricted by the conditions that we find in the formula.
So we will not find all assignments in the information structure, but only
those that satisfy the restrictions that are expressed by the formula.
Some of these variables are introduced explicitly in the formula: they oc-
cur in the scope of a quantifier. For these variables a value gets set when-
ever we interpret the formula. But a formula also might say something
about variables that it does not introduce itself: a formula might contain
free variables. It would be unreasonable to treat these free variables on
a par with the quantified variables. The formula does not instruct us to
assign a value to them, it simply assumes that we have done this already:
a formula asks for a value on its free variables. The information about
the free variables that the formula gives specifies further which value we
should have assigned to them. We include this information into our in-
formation structures by restricting the assignments according to these
conditions. To make sure that we do not lose sight of the specific status
that the restrictions on free variables have, we include in our structures
components that tell us which variables occur freely and which variables
are quantified over in the formula.

If the set of assignments that we have in our information structures really
gives information about the variables of the formula, it has to have, in
some sense, this set of variables as its “domain”. It is not yet clearly
defined what it means for an assignment to have that property. To make

2.3. Static semantics 61

the notion precise we give the following definitions.

Definition 2.3.1

1. With each sequence S € VAR* we associate a partial function as :
IN — VAR as follows:

a(z}(O) =
oy (n+ 1) = undefined for n € IN;
X (z)aS (0) =x;
aps(n+1) = ag(n) forn € IN.
2. We define the length of a sequence S as follows:

length(S) = maz{n € IN : ag(n) is defined} + 1.

3. For each S € VAR® we define what it means for f € SASS to be
defined on S.

[is defined on (z) iff length(f(z)) > 1;
f s defined on S * (z) iff f is defined on S and
length(f(z)) > min{length(g(z)) : g is defined on S}.

4. For a set V.C VAR we write seq(V') for the sequence consisting of
of the components of V.10

5. We define the relation <; on assignments in SASS:

Let f,g € SASS. Wesay f <; g iff Vz : 3o, : oz x f{2) =
g(x).

If f <1 g, then we say that f is a left restriction of g, or that gisa
left extension of f.

19Here we use some standard enumeration of VAR to order the elements of V in
seq(V). Such an enumeration is available since V AR is countable.

62 Chapter 2. Preserving Information in Dynamic Semantics

In definition 2.3.1.1 we associate a function defined on an initial segment
of IN with each sequence. The function ag gives for n € IN the nth
element, of the sequence S. The relation of such a function to the sequence
is the same as the relation of a characteristic function to a set: they
are interchangeable and we only distinguish them notationally to avoid
confusion.!’ Note how ag can be used to give a concise definition of the
length of a sequence.

The other clauses are concerned with making clear how we check whether
a sequence S is in the domain of a sequence valued function f. Defini-
tion 2.3.1.5 makes precise a notion of the extension of a sequence valued
assignment. If f <; g, then g(z) may be longer than f(z), but the extra
values of g(z) are added to the left, so the current value of = does not
change. We also call such an extension an irrelevant or left extension. If
g extends f to the left, we have for each x that f(z) and g(z) agree on
the relevant values, i.e. the last few values.!?

As an example, consider a model where I(P) = {a} and an assignment
f with f(xz) = (a). Then f satisfies the condition P(z): the current
value of z is in J(P). If we extend f to the left to g such that g(z) =
(b,c,d,e,b,d,a), then for the formula P(x) this extension of the value
of z is irrelevant. g is as good as f even though the new values on z
are not in I(P). The current value of z still is a, so g also satisfies the
condition. We can cut of an irrelevant part of g(x) to get for example
g'(x) = (b,d,a). Usually we will only be interested in the values of a
sequence valued assignment on the variables that actually occur in some
formula. For example, in the case of P(x) we are only interested in the
current value of z, in the case of P(z) - 3z - Q(x) we want to know the
last two values of x, ctc.

Now we are ready for the definition of information structures.

Definition 2.3.2 INFO C p(VAR) x VAR* x p(SASS) such that
(A4,S,F) € INFO iff

Sometimes finite sequences are simply defined to be functions defined on initial
segments of IN.

2In the appendix we give a lemma that says exactly what we mean when we say
that left extensions are irrelevant.

2.3. Static semantics 63

1 feF = f is defined on seq(A) x S
2 feFPAf<g S geF
3 fEFNgS fAg
is defined on seq(A)xS =g€F
(Here A is for asking, S is for setting and F is for function.)

In an information structure (A, S, F) the assignments in F contain infor-
mation about A and S. This means first of all that the f € F have to
be defined on both A and S: seq(A) * S is the minimal domain for the
f € F (condition 1). It also means that the values outside this minimal
domain should not matter. Hence the f € F should at least be defined
on A and S, but any extension outside this minimal domain should be
allowed. Furthermore the values outside the minimal domain should not
be restricted: value restrictions code information and we only want in-
formation about A and S, not about other variables. Conditions 2 and 3
have this effect: given an f € F defined on the minimal domain, 2 says
that all its (left-)extensions also are in F' and 3 says that if g € F, then
also all restrictions of g are in F, as long as they are defined on seq(A)=*S.
Later on we will see that the sequence S can be used to code up the
exact order of all the quantifiers in a formula. These are the variables for
which the formula sets a value. The set A can then be used to tell us
which variables occur freely in the formula. A formula cannot by itself
set these variables to the right value: it has to take over the value that
the context provides. One could say that the formula — and therefore
also the information structure — asks the context for a value for such a
variable.

Given an information structure (A, S, F) it is possible to reconstruct
seq(A) * S from F Up to permutation. we just have to find the mini-
mal domain of the f € F. Therefore it is possible, given F' and S to find
A and given F and A to find S.'® This suggests that we only need two
and not three components in an information structure. But that is not
the case: it is impossible to define the domain conditions on the F in an
information structure without knowing mentioning all three components.
It 2s true that — once the definition is given — the last two of the three
components suffice to find the first.

Our notion of information structure is motivated mainly by considering
formulas in DPL: it is natural that an information state contains some

13 Again, up to permutation.

64 Chapter 2. Preserving Information in Dynamic Semantics

set of assignments but the role of s and A can only be motivated by
looking at examples from DPL. Therefore it might seem rather artificial.
To give some more motivation we want to point out the similarity to
discourse representation structures (DRSs). A DRS also consists of a
component of discourse markers and a set of assignments that is to express
the restrictions on these discourse markers that we find in discourse. The
set A that we have in our information structures can be compared to
the set of anchored discourse markers. In DRT these anchors are mainly
used for deictic expressions. This is also something that we can use the
A-variables for.

For further motivation for the presence of this third component in our
information structures we compare our situation with the practice of com-
puter programming. In a program we are not allowed to work with un-
defined variable names. Nevertheless names can occur in a program that
are not declared in the program itself. Usually these names are called
constants, but this does not mean that they have never been defined.
Instead of being defined in the program, a constant can be said to be
defined in the program environment. Such a situation can also occur in
discourse theory, where we may want to study a discourse fragment and
not the whole of discourse. We then assume some discourse environment
in which the free variables are defined. Free variables could stand for
proper names, for example. We simply assume that proper names have
been introduced properly. We would not want to be forced to introduce
them in every bit of discourse in which we want to use them; they are
declared in the discourse environment.

It is also possible that we are simply not able to link the free variables
properly to the context. Such a situation arises, for example, if one over-
hears part of a conversation. Suppose there is a discussion going on be-
tween two people about a third person. To these two people it probably
is clear who this third person is. Therefore he (or she) will probably not
be represented as a free variable in their representation of the discourse.
But if we miss the introduction of this discourse marker, overhearing only
a part of the conversation, we will be forced to represent this person as
a free variable. We will assign all the properties that are assigned to this
person to our free variable. But our understanding of the discourse is
incomplete until we find out who it was that they were talking about; we
only have a partial understanding of that piece of discourse, because our
discourse environment is not rich enough. The component A represents

2.3. Static semantics 65

this kind of partiality of information.

2.3.2 Static interpretation

Now we will define the interpretation of DPL-formulas as information
structures. We will assign an element of INFO to each formula ¢, that
we will call (Ag, Sg, Fy).

Definition 2.3.3

1. For each DPL-formula ¢, we define the static interpretation of @,
(@], inductively as follows:

(1] =(0,(),0)

[P(z)] = ({},), {f : end(f(z)) € I(P)})
[32] = (0,(z),{f : 3g: g2 f})

[6- 9] = (A U (Ay\range(Sy)), Sy * Sy,

{f € Fy:3g € Fy: g(Su)f})
[(6 = ¥)] = (Ao U (Ay\range(Sy)), {),
{f:Vg e Fy: f(Sshg — 3h € Fyg{(Syhh})

2. We define entailment as follows:
(»6 Fstat Tp A Vg = Fqs Jh € F‘g, X Q‘«S‘b»h

The first component of [¢] is the set of the free variables in ¢.'* In the
second component of [¢] we build up the sequence of the quantified vari-
ables. That allows us to keep track of the order in which variables are
(re)introduced.'®

Example:
[P(2) - 3z] = ({z},(2),..)
[Q(z,y) - 3z - R(y, z)] = ({z, 3}, (z),..)

[P(2) -3z - Q(=,y) - 3z - R(y,)] ({z} U ({z,y}\{z}), (@) * (), ...)

{{21 ?J}, (.TT, LE), s)

*We have compared the variables in A with anchors, but while free variables can get
bound in larger contexts, anchors will always remain anchors. So it would be better
to consider the A-variables as temporary anchors.

!®Note that here [3z - P(z) - 3y - P(y)) # By - P(y) - 3z - P(zx)]. If this becomes a
problem, we can try to use multisets instead of sequences in the second component of
information structures. Then these two information structures become equal.

66 Chapter 2. Preserving Information in Dynamic Semantics

Here 3 is the conjunction of 1 and 2. We see that the x that is free in
2, is not free in the conjunction; it is bound by the 3z in 1. Therefore is
has to be removed from the set of free variables. Note that a variable can
be free only once, while it can occur many times in the sequence of the
quantified variables.

The assignments in the third component will all be defined on the free
and the quantified variables. It is also easy to check that the third compo-
nents of the interpretations satisfy the other conditions in the definition
of INFO. This means that indeed [¢] € INFO for any ¢ € DPL.
There is an obvious correspondence between this static semantics and the
refined relational semantics of the preceding section:

Proposition 2.3.4 Let [¢] = (A4, Sy, F3). Then:
1. f[¢lsassg & g € Fo A f(Sehg.
2' ¢ Izstat 129 A ¢ Izsass lb

O

(The proof is omitted.) If we had used a version of [.]sass that has three
components (cf. p. 57), this would mean that: [¢] = range([¢]sass)
(or T[¢)sass in the notation of Groenendijk and Stokhof (1991b)). The

proposition has the following corollary:

Corollary 2.3.5 For any ¢, the following clauses are equivalent:
1 ¢ v
2. ¢ F ¥y
3. & s Wi
4- ¢ Egs ¥;

Proposition 2.3.4 and corollary 2.3.5 guarantee that our interpretation of
formulas in /N F'O preserves the spirit of dynamic semantics. This means
that a relational formulation is not essential for the dynamic semantics of
DPL. This may seem surprising at first, but maybe not if we recall that
already in DRT we have a kind of static semantics that covers almost

2.4. Topics in dynamic semantics 67

the same evidence as DPL. Also recall our discussion in 2.3.1 where it is
pointed out that for certain extensions of dynamic semantics a relational
formulation could be essential (cf. section 2.5).

At this point we basically have done what we set out to do: we have given
a natural refinement of the original DPL-semantics in order to solve the
eliminativity problem. We have also checked that this semantics indeed
preserves the DPL-interpretations. The only thing that remains to be
done is checking that this semantics is indeed eliminative. This will be
done shortly, in subsection 2.4.3.

The rest of the chapter is devoted to the discussion of some other issues
concerning information content and DPL semantics. This way we get a
chance to see the improved notion of information state at work.

2.4 Topics in dynamic semantics

2.4.1 The general point

Now that we have an improved notion of information, we want to discuss
some topics in dynamic semantics in terms of it. One of the issues we
will discuss is monotonicity. Remember that we said (section 2.2.2) that
probably the defect of the original formulation of DPL was that we were
sometimes forced to forget the value of a variable. If we consider [P(z) -
3z - Q(z) - 3x - R(x)],s, we will only find the p such that p € I(P) and
the 7 € I(R), but no ¢ € I(Q). This means that if there is any ¢ € I(Q),
we would have [P(z) - 3z - R(z)],=[P(z) - 3z - Q(x) - 3z - R(z)],s. This
makes it impossible to have an intuitively acceptable notion of information
content based on these relations. Indeed, it makes it impossible to answer
questions about information by looking at the semantics.

In our set up we have created a new kind of information states. Now it
will be possible to define an ordering of the semantic objects, information
structures, that corresponds to our basic intuitions about the informativ-
ity of the formulas. We will define this ordering and show how it works.
This is the ordering along which we will check the monotonicity of our
semantics. Then we will try to use our ordering for the study of dynamic
inference. This will cause some problems that suggest that our ordering
is not “the unique right one”, at least not for all purposes.

68 Chapter 2. Preserving Information in Dynamic Semantics

2.4.2 Ordering information structures

We will introduce an ordering of information structures, that will be mo-
tivated by the intuition that more discourse contains more information.
We will discuss the basic properties of this ordering. There are basically
two ways in which we can give more information in discourse. First we can
say more about the objects that we already were talking about. We would
then add restrictions on discourse markers, and as a consequence elimi-
nate some assignments. The other way in which we can add information,
is by introducing a new object in discourse.

It is difficult to find a piece of discourse that does just this. One could
think of the indefinite article ’a’,’¢ but larger discourse fragments that
only introduce and do not restrict are hard to find. Usually as soon as we
introduce some object we say something about it as well. But maybe we
can illustrate the two kinds of information be contrasting the following
two sentences.

Example:
1. There is a unicorn.

2. There is a man.

The first sentence clearly is informative in both senses. An object is
introduced for us to talk about and a very interesting claim about the
object is made. From this sentence we can infer that unicorns exist.
Probably this is what the speaker wants to say with this sentence. From
the second sentence we can infer that men exist. But probably this will not
be what the speaker is trying to tell us in this sentence. Here this claim is
merely a side effect. The main goal of the speaker is to introduce an topic
that he wants to talk about. The first claim about it is already made —
that it is a man — but, surely, more will follow. Such introductory acts
are essential in the chain of information exchange.

In other words, although both sentences are informative in both ways, the
second sentence mainly serves to introduce the object for further discus-
sion. The first sentence in addition makes a remarkable claim about the

16Even for 'a’ the situation is not so simple. Sometimes 'a’ does more then just
introduce an object. Think, for example, of generic uses of the indefinite article.

2.4. Topics in dynamic semantics 69

object it introduces. Other, more artificial examples can be found in in
mathematics. In proving a theorem, in arithmetic for example, a phrase
such as

Let n be given.

is often used. Clearly the purpose of this phrase is just to make it possible
to talk about some number.

In DP L-syntax these two ways of giving information correspond, roughly,
to two kinds of formulas: the first kind of information is typically repre-
sented by DP L-conditions, and the second kind goes together with the
DPL-quantifier. We should be careful with this correspondence: when
we find a formula 3z in DPL, we are not sure that this z will really stand
for a new object, it might just be another name for an old object (cf.
section 2.4.4). Nevertheless, it is the formula 3z that makes it possible
to talk about new objects and therefore it seems reasonable to say that
3z contains positive information (in this sense). In our semantics the two
ways of giving information can be represented as follows:

Definition 2.4.1
We define an ordering > on INFO. Let (A,S,F), (A,S',F') € INFO
be given. Then (A, S, F) > (A", S, F') iff

1. 8"=8%85" for some S”;
2. ACA;
3. Vf e F':3f e F: fS")f'.

We have defined > in such a way that the smaller information structures
are more informative. In this definition 1 represents (part of) the second
idea about increase of information: the more informative state defines all
the discourse markers that are defined in the larger state and maybe some
more.

If we have a situation in which §” = (), the third clause reads as F' C
F. This is the easiest way to see that the first idea is also reflected
by the definition: if no more discourse markers are introduced, giving
more information simply means eliminating some assignments. What 3
actually says is that every assignment in F’ should be an extension (to
the right, so not irrelevant!) of an assignment in F. This corresponds to

70 Chapter 2. Preserving Information in Dynamic Semantics

a more refined notion of the elimination of assignments: we do not want
to say that an assignment is eliminated if it has “grown”. An assignment
is not eliminated if it gets a larger domain: it can only be said to be
eliminated if it does not reoccur at all, not even with a larger domain. If
we want to consider assignments as possibilities, it is this refined notion of
elimination that corresponds to the idea of eliminating a possibility. The
sequence valued assignments are like possible histories of information.
Just as history will not have to be revised because of developments in the
future, assignments are not eliminated if they become “longer”. Now we
can see that 3 corresponds to this notion of elimination of possibilities:
every f' € F' is an extension of an f € F, but some assignments f € F
might not reoccur in F”, they are eliminated. Note that 2 usually follows
from 1 and 3; the only exception is F = F' = (. (We have (A4, 5,0) €
INFO for all A,S.) It would be interesting to understand what this
exception means. It seems to say that when a contradiction arises, i.e.
F = 0, we have to make a choice: either we say that all contradictions
contain the same information or some give different information from
others. Here we have chosen the last option, not for any intuitive reason
but because it makes the formalism easier to handle.

Before we show what this way of ordering information structures means
for our D P L-interpretations, we give some abstract properties of the or-
dering.

Proposition 2.4.2 > is a partial order, i.e.
1. (A,S,F)> (A8 F) N (A,S,F)>=(A"S"F")
= (A, 8, F) > (A", 8", F")
2. (A,SF)z(A8,F) A A, S, F)=(A5F)
o (A4S F)= (4,8, F)

Proof:

2 ‘4 is obvious. ‘=": Clearly the antecedent implies S = S” and A = A'.
Therefore we find both FF C F' and F' C F, i.e. F = F".

1 S§" = §'«S* for some S*, and S" = S*S° for some S°. So 5" = S*xS°%S*.
Also, if f" € F”, we have f' € F' such that f'((S*)) f”, and for this
f" we have f € F such that f{{(S°))F’, and therefore f{(S°+S*))f".0

2.4. Topics in dynamic semantics 71

2.4.3 Monotonicity

In this section we show that our ordering of information structures works
fine for the easiest way of giving more information in discourse: we show
that larger discourse fragments are more (or: not less) informative in our
sequence based interpretation. We call this property of our semantics
monotonicity. As was explained in the introduction it is our view that
any good semantics for ordinary, narrative discourse should have this
property. It is simply true that we do not lose information if we continue
our story.'” And it is this kind of discourse that we want to represent in
DPL. So we want the following property for our semantics:

Proposition 2.4.3 Let ¢,v € DPL be given. Then we have [¢] > [¢-¢)].

Proof:

[0-9] = (AU (Ay\range(Sy)), Ss * Sy, {f € Fy : 3g € Fy: g{Se) f}),
[#] = (Ag, Sy, F). Now the proposition holds by definition of >.

O

At this point we can see in which way our semantics is an improvement
of the usual relational semantics for DPL. By using sequence valued
assignments, we have enriched the semantics in a natural way. As a result
we get the possibility of a systematic discussion of information in DPL-
semantics. We now have semantic objects that are rich enough to make
such an approach possible. The definition of information structures and
our ordering of these structures are examples of these new possibilities.
They have enabled us to see that DPL-semantics is monotone. It is not
claimed here that these two notions are all we will ever need, but they
show what kinds of things are possible in this richer environment, using
sequence valued assignments.

2.4.4 Inference
Dynamic inference in general

Inference is a notoriously difficult topic in dynamic semantics. Different
branches of dynamic semantics have given rise to different notions of in-

'7Of course, this does not mean that we never forget information, but forgetting is
not the result of ordinary narrative discourse.

72 Chapter 2. Preserving Information in Dynamic Semantics

ference and some have even produced more than one. The DPL-notion
of inference is defined as follows:

dEY o Vf,g: fllgsg = 3h: g[]gsh.

We have seen that this notion of inference is preserved in all the reformu-
lations of DP L-semantics that we have considered.

Update semantics has produced its own notions of inference. One of them
reads as follows'®:

¢ & Yo: o(é) Colo¥).

Both notions of inference make sense in the context in which they arise.
So it seems that dynamic semantics in general does not have one notion
of inference. Instead we find a whole spread of inference relations. Of
course, this gives rise to the question what the common features of these
relations are. Or — to put it ironically — is there any relation that is not
a dynamic inference relation?

This turns out to be a surprisingly difficult question. More about this
issue can be found in Van Benthem (1991). But here we do not aim at
solving this general problem. Instead we restrict ourselves to the DPL-
notion of inference. Note that the fact that this notion of inference has
survived the reformulations in this chapter, is evidence that it is indeed
at the core of DPL, even if in the more general picture it is just one of a
number of candidates.

We are especially interested in the way in which the inference relation
fits into our algebra of information structures. We know that for all
sorts of formal systems there is a nice fit between the algebraic semantics
and the inference relation. For propositional logic |= coincides with the
ordering in Boolean (or, in the intuitionistic case, Heyting) algebra. For
predicate logic and modal (propositional) logic it is the inclusion relation
on satisfaction sets. For linear logic the situation is less straightforward:
here |= can be defined in terms of ®, the tensor product of linear logic.'®
Now what kind of relation holds between the DP L-inference relation and
the ordering that we have defined on INFO?

18Notation as in introduction: v stands for Veltman.
19Cf. Troelstra (1992). A similar situation exists in Pratt’s action logic (Pratt
(1991)).

2.4. Topics in dynamic semantics 73

Inference and information

The idea that there might be a connection between the inference relation
of DPL and the ordering on INFO, is not just inspired by the fact that
this is so for other formal systems. There also is a clear intuition that
inference and information are related concepts. It seems that if we can
infer ¢ from ¢, this must be because ¢ gives all the information that
we need to conclude that 1. And, conversely, if i/ contains no more
information than 1, then, surely, we should be able to infer 1 from ¢.
In this chapter we have been concerned with the information contained
in DPL-formulas from a different perspective. We have been trying to
model the idea that “more discourse contains more information”. This
has given rise to a notion of information structure. Of course it is our
hope that this notion of information will also allow us to say something
about inference.

There are different relations between = and < that we could discuss.
We will start with the most obvious one and we will consider some other
options as we proceed. The first guess is that the inference relation simply
18 the <-relation on information structures:

oEY & [¢ <[y]
One example which supports this is:
du.P(5) =.P(x).

But unfortunately the first counterexample is not far away. If we turn
around the |=-sign in the above example we get a case where ¢ |= v but
not [¢] < [¢].

A somewhat weaker relation, which is still possible in view of these ex-
amples, is:

oY < [4] <[¥].

For, it is not the case that [P(z)] < [3z.P(z)], so the counterexample
that we had, is not a counterexample for this weaker correspondence.
This weaker correspondence would suggest that our ordering on INFO
is too strong: if [¢] < [4], then ¢ |= ¢, but even if not [¢] < [], ¢ |= ¥
can still hold.

But here there also is an easy counterexample: we can have ¢ and 1 such
that [¢] < [¢] but not ¢ |= 1, as the following example shows.

74 Chapter 2. Preserving Information in Dynamic Semantics

[P(z)-3z-—(P(z))] < [P(x)], but not: P(z)-3z-~(P(x)) F
P(zx).

That the first relation holds is true in view of the monotonicity result
that we established in the previous section: more discourse contains more
information. But it is also clear that not P(z)-3z-~(P(z)) E P(x), since
this would imply that the same instance of x would both have property
P and not have property P.

We can see what goes wrong in this example: in ¢ | ¢ the binding
between the antecedent ¢ and the consequent) makes that we are talking
about the same x both having and not having property P. But the x in
the antecedent that has property P is not the same as the x that has
property not P.

We could try to prevent this kind of anaphoric confusion as follows. In-
stead of comparing [¢] and [¢)], we compare [¢] and [¢.9]. If we do this,
we can take into account the bindings between ¢ and ¢ already if we are
looking at <. So this should help to prevent the unpleasant surprises that
these bindings, that are essential for the |=-relation, cause in cases as the
above. Therefore our next guess is that:

dEY & [8<[¢- Y]

Note that this guess reflects the same intuition about the relation between
information and inference: if ¢ |= 1, then what we learn from ¢.¢ is no
more than what we learn from ¢.2° In other words: given ¢, v contains
no new information. Also note that for most of the systems that we
mentioned above the two guesses coincide formally. For example, for
propositional logic and Boolean algebras we have that for two propositions
Py and Py, [Py] < [Po) iff [Py A P5) > [Py]. It might be the case that in our
situation this formulation with the conjunction is simply more suitable,
since in DPL anaphoric bindings are so important.

In the new situation the counterexample that we had no longer works.
For now [¢ -] = [P(z)-3z - ~(P(z))- P(z)] has to be compared with
[¢] = [P(z)-3z-—(P(z))]. We see that not [¢] < [¢]. Therefore we would
not expect ¢ |= 1 in the first place. But again there is a counterexample.
The counterexample is embarrassingly simple — and in fact it also defeats
our earlier guesses — but also very instructive:

20 Also note the similarity with Veltman’s notion of entailment.

2.4. Topies in dynamic semantics 75

3z - P(z) = 3y - P(y).”

Here we see that not [¢] < [¢ - 4], simply because ¢ - ¢ says something
about more variables than ¢ alone. Since the introduction of new variables
counts as an increase of information according to <, we do not find [z -
P(z)3y - P(y)] > [3z - P(2)).

Here we see the main problem for the comparison of = and <. < is
based on the idea that as a rule new variables are introduced to give new
information. But the variables that are introduced in the consequent of
k= typically are not introduced for this purpose. They are there to make
claims about old information.?? If we say 3z - P(z) |= 3y - P(y), than
we do not mean that some unknown object y has the property P, but
we claim that when we know 3z - P(z), we already know an object with
property P.

It seems that we are at a dead end: in order to model the idea that more
discourse contains more information, we had to count the introduction of
variables as informative acts. This was an important motivation for our
definition of <. We have seen that in the context of inference we typically
consider discourse that is not supposed to contain new information, but
nevertheless can contain new variables. These are conflicting requirements
on the ordering of information.

Multi-dimensional information algebras

The conflict that we have seen seems irreparable. In DPL information
is given by conditions on variables. These conditions can be represented
as restrictions of the values of the variables. Any sensible notion of infor-
mation state for DPL should show the variables that the information is
about as well as the restrictions on these variables that embody the infor-
mation. So the problem that we have sketched will arise for any sensible
notion of information structure that one might come up with. Always
the same question will arise: do more variables mean more information
or not? And always the answer will be both yes and no.

Therefore our conclusion must be that there is more than one way to look
at the information of a DPL-formula. These different ways give rise to

?Note that also 3z - P(z) |= 3z - P(z) is a counterexample. So the choice of the
variable in the consequent is not important.
22The same holds for the variables in the consequent of an implication.

76 Chapter 2. Preserving Information in Dynamic Semantics

different orderings of the information structures. We have already seen
two perspectives on information that give rise to two different orderings
of information structure. One is the perspective where we consider ¢ and
¢ -1 and ask ourselves which of the two we would prefer to hear. Of
course we would choose ¢ - 1, since it contains more information than ¢
alone.

In the other perspective we imagine that we are in a situation that we
have heard ¢ and we wonder whether we still need to hear 1. Of course we
only want hear 1, if given ¢ it contains new information. This situation,
in which we consider ¢ and 1 in a specific order and not as unordered
alternatives, gives rise to a different ordering of information structures.
We call this the diachronic information order. This is the ordering that
should correspond directly to |=. The situation where we can choose be-
tween ¢ now or ¢.1) now gives rise to a synchronic ordering of information
structures. This is the situation that we have considered in section 2.4.2.23
We can illustrate the difference between these two ways of looking at
information with an example from DPL. Consider the formula ¢ =
—P(z) - 3z - P(z). This is an example of a DPL-formula that does not
entail itself. Therefore it will behave funnily in a diachronic information
ordering. But in a synchronic information ordering it will not behave
funnily: synchronically each formula is of course as informative as itself.
We can think of these different orderings as the dimensions of the infor-
mation algebra. So the conclusion is that we have to work in a multi-
dimensional information algebra. Of course this cannot be the final word
about information orderings. Just as with the study of dynamic inference
the fact that there are several sensible information orderings gives rise to
further questions. We would like to know what kind of relations count
as information orderings, i.e. how many dimensions there are in our in-
formation algebra. Is there any relation on information structures that is
not an information ordering?

At the moment it seems to us that there is a feature that all ordering
relations should have in common. Let’s assume that our information
structures contain both a set of variables*® — the variables that the in-

*3The terminology is taken from Visser (1992a), who applies the distinction in a
slightly different context.

**Strictly speaking we should say “a set of variable instances”, for we will have to
distinguish different occurrences of variables (just as we do in sequence semantics),
according to the different roles one variable can play.

2.4. Topies in dynamic semantics 77

formation is about — and a set of functions embodying the restrictions
on the values of the variables. This is not only true for our information
structures but also — as we have argued — for any reasonable alternative.
Comparing the information contained in these information structures al-
ways amounts to comparing the restrictions on variables that we find in
the different information structures. If for every variable in one structure,
o say, we can find a variable in the other structure, ¢’, that is at least
as severely restricted, then we are inclined to say that ¢’ contains more
information than o.

This could be tested with a mapping from the variables in o' to the
variables in o. If we can find a mapping such that the restrictions on
the images of the variables are at least as severe as the restrictions in o,
then we would say that ¢’ is more informative than o. The severity of the
restrictions can, of course, be compared by looking at the assignments.
We intend to develop this general idea about the ordering of information
states elsewhere. Here we just check how the two information orderings
that we have seen relate to this general idea.

We find that both the synchronic and the diachronic information ordering
embody this idea. But both notions have some extra conditions on the
variables that we are allowed to compare, conditions on the mapping from
o' to o as it were. If we test whether (A,S, F) < (A, S, F'), we check
whether for any f’ € F’ there is an f € F that has the same values for the
variables in S’ as f itself. Here this comparison of variables in different
information structures is effectuated by the condition f{S")f’ (where S”
is such that S = S" « §”). This condition tells us which variable occur-
rences have to be compared For example, if (4,5, F) = (0, (z,z),F)
and (A", S', F) (0, (z), F"), then we will compare the last value nf
f'(z), not with the last value of f(z), but with the value before last:
f(z) = f'(x) * {(d) for some d.

For [= the relation with our general information ordering is less straight-
forward. The relation between entailment and the general ordering can
be made precise, but the technical details would take us beyond the scope
of this chapter. Suffice it to make the connection intuitively clear.

In checking intuitively that something like 3z.P(z).3y.Q(y).R(y) |= 32.Q(z
holds, we try to find (for z) in the antecedent a variable that satisfies at
least the condition Q. Here this variable is y. There are no restrictions on
the variable that we can choose: any variable will do as long as it satisfies

Q.

78 Chapter 2. Preserving Information in Dynamic Semantics

If we have a free variable in the conclusion (as in 3z - P(z) | P(z)),
then the situation is different. This time we do not have a free choice at
all. A free variable in the conclusion can be bound by a variable in the
antecedent. If this is the case, then this is the variable we should choose.
So in the example we can only compare the x in the conclusion with the
z in the antecedent. If the variable is not bound by the antecedent (as
in = (P(xz) — P(z))), then the conclusion has to hold for all values of z.
So we can see that also for |= we have to compare variables, taking into
account some restrictions.

The conclusion of this section is that there is no straightforward algebraic
relation between < and |=. In this respect DPL-semantics is less well
behaved then the formal systems we mentioned above. But the orderings
on information structures that < and }= lead to, seem to be instances
of one general scheme for the comparison of information. This general
information order will get more attention elsewhere.

2.5 Update semantics

2.5.1 Update semantics

In the preceding sections we have given interpretation of DPL in terms
of assignments that have sequences as values. We have checked that our
semantics is faithful to the original DPL-semantics (in section 2.3) and
we have seen that we can give both a relational and a static formulation of
our semantics. In this section we formulate sequence semantics as update
semantics. We will see that such a formulation is available. Then we
will discuss the issue of eliminativity again. We have addressed this issue
already in terms of the static semantics (section 2.4.3), but if we formulate
the notion of monotonicity in update style, this will make the comparison
with the original discussion by Groenendijk and Stokhof (1991b) more
straightforward.

First we define an operation on information states, that we call the
merger.

Definition 2.5.1 We define the merger of information structures, e :
INFO — INFO, as follows:
(A,5,F)e (A", 5" F') =

(AU (A'\(range(as)), S * 5", {f € F' : 3g € F : g(S')/}-

2.5. Update semantics 79

We use this operation to define the interpretations of formulas as update
functions on information structures.

Definition 2.5.2 For a DPL-formula ¢ we define the update function
(¢) : INFO — INFO as follows:*

(A,S,F)ﬂ:qﬁD - (A,S,F).[¢]

Here we have defined (¢) in terms of [¢], but it is an easy exercise to
show that we can also define (¢]) directly in such a way that the defin-
ing property holds. Note that the update functions make it possible to
build up the static interpretation: for example, if (4, S, F) = [¢/], then
(A, S, F,)(¢) = [¢-+]. This explains the notation for the merger as e: it
is the semantic analogue of ’-’. Now we can find the interpretation of a
conjunction by updating the state of no information, (@, (), SASS), step
by step. In other words:

Proposition 2.5.3 Let ¢g,...,¢n € DPL be given. Then we have:
We can also give a definition of inference in terms of update functions.

Definition 2.5.4
Let (0, (), SASS)(¢) = (A,S,F) and (0,{),SASS)(v) = (A, S F').
Then we define:

dERY © VfeF:3ge F': f{S)g.
Because of the close relationship with the static interpretation that we

have established in proposition 2.5.3, it can be checked easily that this
notion of inference coincides with the one(s) discussed before.

Corollary 2.5.5 ¢ =, ¥ < ¢ | 9.

Now we can formulate the monotonicity property in terms of update func-
tions.

ZRecall that we use postfix notation for update functions.

80 Chapter 2. Preserving Information in Dynamic Semantics

Proposition 2.5.6 Let ¢ € DPL be given. Then (@) is monotone de-
creasing, i.e.:

(A,S,F) > (A,S,F)(g) for all (A,S,F) € INFO.

The proof of the proposition again relies on the correspondence between
the static and the update interpretation. Because of this correspondence
the result simply follows from the monotonicity result for the static inter-
pretation (section 2.4.3).

We see that for the improved notion of information state the DPL-
updates are monotone, or — in the terminology of Groenendijk and
Stokhof (1991b) — eliminative. Now that we have discovered this im-
proved notion of monotonicity, we can check what this property amounts
to in terms of the relational semantics, i.e. we can reformulate > in terms
of the original relational formulation of DPL-semantics. We find, by a
careful reconstruction, the following reformulation of monotonicity:

Proposition 2.5.7 Let 0 € ASS, ¢,1 € DPL be given. Then:®
Monotonicity Vf € o(¢ - ¥)y39 € 0(¢)gs such that g{(range(as,))f.

Truth property o(¢-)y #0 = o(o)),s # 0.
Hence the truth of ¢ - i implies the truth of ¢.

Proof: [Monotonicity] From the monotonicity property for our update
semantics we learn that o e [¢] @ [t)] < o e [¢]. For o = (0, (), SASS),
this means that all f’ in the static interpretation of ¢.1) are extensions of
some ¢ in the static interpretation of ¢. Because of the relation between
the sequence semantics and the original relational semantics we see that
this means that for any f € range([¢.4/],;) there is a g € range([¢],s)
that differs from f only on the variables occurring in 1. This proves
the proposition for o = (@, (), SASS). The proof of the general case is
completely analogous.

[Truth property] Follows immediately from the Monotonicity property.0

*"Here we abuse the notation {{.)): we use it for a set instead of a sequence. Of
course we mean the usual notion of resetting a function here, where f{X))g allows us
to reset all the values of the variables in the set X.

2.5. Update semantics 81

Of course, this does not look anything like the eliminativity constraint
that Groenendijk and Stokhof considered. Since they were not careful
in the choice of their notion of information state, their notion of elim-
inativity is inappropriate as well: it does not correspond to the notion
of information growth. Since for Veltman’s system this is exactly what
the eliminativity property is about, the resulting comparison of DPL and
Veltman'’s update semantics is confused. Now we are in a position to clear
up the confusion and we find the monotonicity property that we should
expect for DPL.

2.5.2 Might

Veltman does not introduce update semantics just as a nice way to present
dynamic semantics. He has some substantial applications in mind (see
Veltman (1991)) in the dynamic semantics of modalities. The simplest
system that Veltman applies the techniques of update semantics to is
propositional logic with an operator &, might. The update semantics
enables us to give a dynamic interpretation to might. What we mean by
this is shown by the following example:

Example:
1. It might be raining. ... It is not raining.

2. It is not raining. ... It might be raining.

The first sentence says that we first think that it might be raining and
later find out that it is not raining. This is all right. But in 2 we still
think that it might rain after we have found out that it is not raining.
That is nonsense. This example shows that a dynamic treatment of might
is needed. Only a dynamic might could explain why the first sentence
seems acceptable, and the second not. Veltman has succeeded in giving
an elegant semantics for propositional logic with < that deals with this
phenomenon.

In this section we will see whether an easy extension of our system with
a dynamic kind of modality is available. We will show that it is possible
to define a dynamic might operator in our system. The semantics of this
operator, <, cannot be given “pointwise”. We mean that it is not possible

82 Chapter 2. Preserving Information in Dynamic Semantics

to compute the effect of O¢ in some complex state, by first computing its
effect on the atomic substates and then simply adding the results to find
the effect on the complex state. This is in contrast with what we have
seen so far: for our DPL-updates we have:

Proposition 2.5.8 Update functions for DPL-formulas are “pointwise”:
(AvSs F)([frbD = (A:S!s U{Gf : f = F}):
where for all f € F (A, S, {f}(¢) = (A, 5,Gy).

The fact that such a result cannot be obtained for the semantics of < is
not a defect of our semantics: it is an essential property of the meaning
of ©. ©¢ induces a test on our current state of information: the test
succeeds if ¢ is compatible with our information. Then it leaves the state
of information unchanged. If ¢ is incompatible with what we already
know, the test fails. Then the result ©¢ is total confusion: the information
of ©¢ gives a contradiction.

If we try to perform such a test bit by bit, we will (possibly) throw away
some information, since it is incompatible with ¢, while we leave other bits
of information intact. Then, if we add up the resulting bits of information,
we could only retrieve some of the information that we started with. This
is in contradiction with the test character of ©¢. Hence a pointwise
approach to the semantics of might does not stand a chance.

We can define the concept of acceptability or compatibility that is asso-
ciated with ©, as follows:

Definition 2.5.9
¢ is acceptable in (A, S,F) iff 3f € F:3g € Fy: f{(Ss)g.

Remember that we defined :
¢ is valid in (A, S, F) off Vfe F:dg€e Fy: fSs)g.

So, while validity says that ¢ should hold in all possible cases, acceptabil-
ity says that ¢ should hold in at least one possible case. In this context we
can think of the set F' as the set of possibilities (or possible information
histories).

Now we can explain the meaning of ¢¢ as follows: checking whether ¢¢
holds in a situation (A, S, F) means checking whether ¢ is acceptable in
(A, S, F). So we define:

2.5. Update semantics 83

Definition 2.5.10 For each ¢ we define (O¢)) as follows:*"
(A, 5, F)(O¢) = (A,S,F) if ¢ is acceptable in (A, S, F);
(A, S, F)(C¢) = (A,S,0) else.

It can happen that for some formula ¢, (C¢).—(¢) is acceptable, while
—(¢).(O9) is not acceptable, just as in the example above. Consider, for
example, the formula P(x). We find that, in a model where there is some
p € I(P), while not I(P) = DOM:

(0,(z),{f € SASS : length(f(z)) 2 1})([(CP())(~P(z)]) =

(0, (z),{f € SASS : length(f(z)) > 1})(~P(z)) =

(0, (z),{f € SASS : length(f(x)) 2 1 A not: end(f(z)) € I(P)}),
but also:

(0, (), {f € SASS : length(f(z)) 2 1})(~(P(2))) (O P(2)) =

(@, (z), {f € SASS : length(f(z)) > 1 A

not : end(f(z)) € I(P)})(OP(z)) =
(@, {z),0).

This confirms that what we have defined is a dynamic might operator.
However, the non-commutativity of (¢]), which is the clue to its dy-
namic character, holds only for a restricted class of formulas: the non-
commutativity can only hold if ¢ contains free variables. This can be
checked as follows:

Suppose that ¢ contains no free variables, i.e. A, = 0. We know that
¢ is acceptable in (A, S, F) iff 3f € F3g € Fy: f((Sg)g.

But if A4 = @ then this is the case exactly if:
VfeF3geFy: (S

*"Note that (©¢) is not representable as an information structure!

84 Chapter 2. Preserving Information in Dynamic Semantics

(This follows from the irrelevance lemma that we proof in the appendix.
The remark there about free variables is important here.) But this is the
definition of validity. So formulas without free variables are acceptable
iff they are valid. And if ¢ is valid, then —(¢) is not acceptable, so
(A, S, F)([—(¢)) = (A, S,0). But then we find that in case ¢ does not
contain free variables

¢ is acceptable in (A, S, F) <
(A, S, F)([©¢) = (A,S,F)=>
(A4, S, F)(©d)(~(¢)) = (A,S,F)(~(9) = (4,5,0).

Hence:

(©¢ - ~()) = (~(¢) - @9

This restricts the applicability of our ¢ as a dynamic might operator. We
can understand the restriction from the technical point of view, but it does
not seem to make sense intuitively. If something might exist, then usually
it does not follow that it does exist. Still the fact remains that < gives
us a consistency test for DPL as an operation on information structures.
And for a non-trivial fragment of the language this consistency test has a
dynamic character.

2.5.3 Down dating

In the section on monotonicity we explained why the semantics of DPL
should be monotone: DPL is to be the language of ordinary discourse in
which more and more information is revealed by the speaker and gathered
by the hearer. We also said that for some other situations it might be
handy to have a language and a semantics of forgetting or down-dating,
as we will call it. In this section we extend DPL with atomic formulas zE
— read as “z exit” — for any variable z, that will be interpreted as an
instruction to forget the current value of x. We will see that down-dating
helps us to formulate old ideas more elegantly.

The interpretation of zE is essentially relational: 2E does not give infor-
mation, it is purely an action.?® We define the relational interpretation
of zE as follows:

*8This means that it can not be represented by some information structure.

2.5. Update semantics 85

Definition 2.5.11
[2E)sass = {(f,9) : pd(f(2)) = g(z) A (y # . = g(¥) = f(¥))}.”°

In this extension of the language we can have local variables: for example
in 3z - ¢ - rE. We can also give an update formulation of the meaning of
a down-date.

Definition 2.5.12 (A, S, F)(zE) = (A, S {g:3f € F: g{z)f}),
where S is obtained from S by removing the last x. If there is no occur-
rence of z in S, S' = S and we remove x from A: A' = A\{z}. If x does
not occur in A either: A' = A.

Note that (zE]) works best if there is at least one z available in (A4, S, F).
If there is no z, then (A, S, F)(zE) = (A, S, F).

Now it is possible to establish another relation between [¢]sass and [¢]s.
As one can see:

{Hx]pgszﬂxE] s N PASSH PASS
and
[Elx]]w:[:r:E it sy - ASS XASE.

This is no surprise: the original interpretation of 3z told us to replace
a value of z. In the refined semantics this can be established by two
separate actions: first throw away the old value of x with zE, then add
the new value with 3z. Thereby we are able to translate ordinary dynamic
predicate logic into the enriched language by replacing all quantifiers 3z
by zE - 3z. If we call this translation o, we find:

Proposition 2.5.13 Let f,g € PASS. Then: f[¢°]assg < f[@)pgsg-
Corollary 2.5.14 Let f,g € ASS. Then: f[dlys9 < f[¢°]sass9-

(The proof is omitted.) The restriction that f,g € PASS is added be-
cause [.],g is defined on PASS. The corollary follows immediately from
the proposition, since [.],, is the restriction of [.],,s to total assignments.
It is also possible to use down-dating to give an elegant definition of
dynamic validity, [=. First we introduce some notation:

* Again pd({)) = ().

86 Chapter 2. Preserving Information in Dynamic Semantics

Notation: We will write |(z)g for the assignment f such that
9[2E]sassf- For Lz} (... (Kz1)(g))...) we write Wx1,...,2.)(g)

and if G is a set of partial assignments, we write [(z1,...,z,)(G)
for {‘«L{xh T ,1?,;)(9) ‘g€ G}
We define:

Definition 2.5.15
1. < is a relation on states defined by: (A, S, F) < (A, S, F') & F C
15'(F").
2. For any state (A,S,F), L(A,S,F), the projection (or domain) of
(A, 5, F), is defined by: L(A,S,F) = (4,(),1S(F)).

So to find |(A, S, F), we simply forget the values of the variables in S.
This way the functions in |S(F') are exactly the ones that have an {(S))-
extension in F. We see that for any ¢, }[¢] is the input state, or domain,
for ¢: ¢ asks for values on the variables in the first component of |[¢] and
accepts only those assignments that are in the third component of |[¢)].
L S(F,) is for [¢], what dom([¢],s) is for [¢],s.

It can be checked that < corresponds exactly to dynamic entailment. ILe.
we claim:

Proposition 2.5.16 For any ¢, : [¢] € [¢] & ¢ E 9.

Proof: By comparing the definition of < and, for example, =, using

the fact that f{S)hg <1S(g) = f.
|

This result seems rather strong, but in fact it is already known for the
original DP L-semantics that

¢ v & range([¢]ys) C dom([¥],s).

Here we see that the same relation holds, but now it is possible to define
domains in terms of a more primitive notion: the down-date operator.
In the extended language it is even possible to give for each formula an
ezpression that gives the domain of the formula: we simply add the right
amount of xE’s for each variable. If we call this expression for the domain
of ¢, 1@, we get for example:

2.5. Update semantics 87

Example:
1 P(z) = P(z);
{ 3z - Rlz;y)) = 3z-Riz,y) -=E
1 (3z- R(z,y) -3z P(z)) = 3z- R(z,y) -3z P(z)-zE . zE

The fact that we are able to model down-dating in sequence semantics,
shows how powerful sequence semantics really is. In the applications that
we have given, we have shown that some familiar notions in the semantics
can be redefined elegantly in terms of the down-date operator. It remains
to be seen how down-dating can be used in the study of phenomena that
are genuinely non-monotonic. Perhaps zE could be used to model some
cases of belief revision, but that will have to wait.

2.5.4 Finite variable fragments

Above we pointed out that zE - 3z is the proper analogue of 3z in Groe-
nendijk and Stokhof’s presentation of DPL. This shows that our extended
language allows us to distinguish two aspects of DPL’s 3z: whereas [3z],,
at one and the same time throws away the old value of z and introduces
a new one, we have made this into two distinct steps here.

We can also compare our extended language with static predicate logic in
this respect. In static predicate logic the quantifier is a sentential operator
— 3z(—) —, where the ‘(-bracket indicates the moment at which a new
value for 2 may be set and the ‘)’-bracket throws away this value. So also
in static predicate logic the two actions can be located at distinct points
in the formula, as in the extended language, but unlike ordinary DPL. In
this respect static predicate logic is more like our extended language with

Jz(as the analogue of 3z
and
) as the analogue of zE.

However, the extended language is more flexible than static logic: in static
logic 3z(and) always travel in pairs, whereas 3z and zE can float around
freely in the extended language. This gives us an extra bit of freedom. In
particular it allows us to ‘mix scopes™ in the extended language we can

88 Chapter 2. Preserving Information in Dynamic Semantics

close the scope of some quantifier while a quantifier that is nested deeper
in the formula remains active. We can have, for example:

dr-¢-Jy-p-xE-x-yE

where z is thrown away before y, although y was introduced later than
2! This situation has no analogon in static predicate logic:

Jz(d A Jy(y A ..

At first sight this may seem a useless sort of trick, but we can see that
it can pay of by looking at the so-called finite variable fragments. In the
search for decidable (efficient, ‘attractive’, etc.), but reasonably expres-
sive fragments of predicate logic special attention has been paid to these
finite variable fragments. For each n € IV we can look at the formulas
of predicate logic that use at most n variables. The intuition is that the
number of variables influences the amount of memory that is used. Re-
strictions on the number of variables should then give us ‘easier’ formulas,
computationally speaking, since they need less memory space.*

Also for our extended DPL language the notion of a finite variable frag-
ment makes perfect sense. Static predicate logic can be translated into
DPL (cf. section 1.5) and this can again be translated into the extended
language, as indicated above. Hence (some of) the computational atroci-
ties of predicate logic transfer to our extended language. In particular it
inherits the undecidability of static predicate logic. So also here it makes
sense to look for expressive, yet efficient fragments of the language by
restricting the number of variables that can occur in a formula.

Although it is clear that also in the extended language restrictions on the
number of variables will have consequences (just try to express 3z - Jy -
P(z,y) with one variable only), we will show that here the consequences
of such restrictions are less severe than in the case of static predicate logic.

Let’s first fix some notation:

Ly 1s the set of sentences from L, the language of static predicate logic,
that use at most n variables (free or bound)

30Cf. Van Benthem (1993) and references therein.

2.5. Update semantics 89

L is the set of sentences from L., the extended language that includes
zE as an atomic proposition, that use at most n variables (free or
bound)

It is clear from the translation of £, into £ that we have seen in section
1.5 that £ is at least as expressive as £},. To be precise:

for all ¢ € L7, there is a ¢* € L] such that: ¢ is statically true
iff ¢* is dynamically true.

But the converse does not hold in general. We consider n = 2 as an
example. There are several well-known examples of properties that cannot
be expressed in Ef,,. We consider the ‘square property’ as an example:

JrIyFzFu(z<y Ay<z Az<u A u<zx)

This formula expresses the property that the interpretation of < contains
a ‘square’ Ozyzu. In static predicate logic we need three variables to
express this property, but in £, we can do it with two variables, as follows:

Jr-Jy-rs<y-Jr-y<z-Jy-z<y-zE-y<z

Here it is crucial that we can ‘close of’ with zE while leaving the latest y
intact.

If we consider languages with =, we can do a more famous example:
relation composition. In static predicate logic it is impossible to express
the fact that R C So U, i.e.

VaVy(zRy — 3z(zSz A 2Uy))

using only two variables. But there is an £2-formula that says exactly
this:

(3z-3y-zRy — Jy-zSy-3z-x=y-yE-2Uy)

These examples show that £2 is strictly more expressive than Cf,,.

Note that we need = to express relational composition. Therefore it
may be expected that £2 without equality still gives a fairly significant
restriction of the expressive power. But our first experiments with £?
with = suggest that in the presence of = anything goes.

The fact that we can express relation composition in the extended lan-
guage with = immediately gives us the following result:

90 Chapter 2. Preserving Information in Dynamic Semantics

Proposition 2.5.17 Any first order definable operation on binary pred-
icates that can be written in static predicate logic with = using only three
variables, can be expressed in L2 with =. O

This is an immediate consequence of a result by Tarski®': he proves that
any first order definable operation on relations defined with three variables
(and =) can be written in relation algebra with only N, U, ~, id and
0.3 Since we can express all these operations in two variables in the
extended language, the proposition follows. This shows that the way we
use variables in the extended DPL-language gives us a lot more expressive
power.

This discussion suggests that the intuitive connection between the number
of variables and the expressivity may have to be reconsidered. It seems
that it is not the number of variables simpliciter that counts, but also the
way we handle these variables. In this respect the variable management
in our extended language L, is significantly more flexible than what static
predicate logic gives us.

2.6 Conclusion

The main conclusion of this chapter is that it is possible to give a formal-
isation of the ideas of Groenendijk and Stokhof (1991a) in which the in-
formation content of a formula can be represented correctly. This means
that interesting questions about information can be discussed in DPL-
semantics such as the growth of information that is the effect of the in-
terpretation of DPL-formulas.

We have obtained the improved representation by using sequence valued
assignments. The use of these assignment inspires a suitable notion of
information structure. We have shown that different ways of looking
at information in DPL lead to different orderings on the information
structures.

Perhaps it is useful to point out here that as we are distinguishing dif-
ferent perspectives on information in dynamic semantics, different ques-
tions regarding information growth come into play. The non-eliminativity

31Cf. Tarski (1941), Maddux (1983).
32Here ~ stands for converse, the unary operation on binary relations that exchanges
input and output: i.e. {z,y) € Riff {y,z) € R~

Appendix 91

problem is concerned with the preservation of information content as the
updating process proceeds. This is a concern with information growth in
the ‘synchronic dimension’ while moving along ‘diachronically’. But also
other concerns about the preservation of information arise in a multi-
dimensional setting. For example, we could aim at keeping all possibil-
ities for ‘diachronic interaction’ open while accumulating information in
the ‘synchronic dimension’. Here this would amount to preserving all op-
tions for anaphoric linking as one is accumulating information. Clearly
this is not a sensible requirement for the full DPL-language (with its
intended meaning), but there could be situations in which such a require-
ment makes sense. The advantage of our discussion here is that we are
now in a position in which we can separate these two questions: we have
seen that the requirement of preservation of truth-conditional information
is independent from the question for the availability of antecedents and we
have developed techniques that make this formally precise. We will follow
up on this observation in the next chapter, where we discuss the different
roles that variables play in the dynamic accumulation of information.

At some point in the future we hope to improve our understanding of
the ways in which information can be compared in dynamic semantics in
general. We think that the ideas that we have developed about comparing
information will be of use there.

We were also able to define a down-date operator in our semantics. This
operator is an instruction to forget the value of a variable. We have looked
at the relation of down-dating with the original semantics for DPL and
with the DP L-notion of entailment. Maybe down dating can also be used
to model genuinely non-monotonic phenomena, such as belief revision, but
this falls outside the scope of this thesis.

Appendix

In this appendix we present a proof of proposition 2.2.5 and corollary
2.2.7. In the proofs we will use the following lemma:

Lemma(Irrelevance):

1. k[¢]sassh=> k'[@]sassh’ for all k', k' such that for all = K(x) =op%
k(z) and h'(z) = o, * h(zx) (for some sequence o).

92 Chapter 2. Preserving Information in Dynamic Semantics

2. k[@lsassh = k"[¢)sassh” for all k", h" such that for all z k(z) =
o, * k"(z) and h(z) = o, * h"(z) (for some sequence o) and k"(z)
extends end(k(z)).

The lemma says that if (k, k) is in the relation [¢];qss, only those values
of k and h are relevant that occur after end(k(x)). This corresponds to
the fact that we always add the current value of a variable at the end.
(end(k(z)) itself is relevant if x is free in ¢.) We will not prove the lemma:
the proof is an easy induction.

Now we will prove proposition 2.2.5:

Proposition 2.6.1 For all ¢ € DPL we have ®([¢)sass) = [0]pgs-
Remember that @ is defined by:

Definition 2.6.2 We define ® : p(SASS x SASS) — p(PASS x PASS)
as follows:
®(R) =

{{g,f):3(k,h) € R: ¥z € VAR : f(z) = end(h(z)) A g(x) = end(k(z))}.

Proof (of 2.2.5): We have to prove that:

14g,f) € @([¢)sass) = 9[Slpgsf
2 gl8lpesf = (9,) € T([D]pgs)-
We prove this by a simultaneous induction on the complexity of ¢. We
will need 1 as induction hypothesis for the —-clause of 2 and vice versa.

1. P(x) Suppose (g, f) € ®([P(x)]sass)- Then there are h, k such that
k = h and end(h(z)) € I(P) and Vy : g(y) = end(k(y)) and
f(y) = end(h(y)). Hence f = g and end(h(z)) = f(z) € I(P),
ie. g[P(x)]pesf-
3 Suppose (g, f) € ®([3z]suss). Then there are h,k k[(x)]h and
Yy : f(y) = end(h(y)) and g(y) = end(k(y)). Obviously g[3z],gf.

Y- x Suppose (g, f) € ®([¢ - X]sass). Then there are h,k,l such
that: k[Vy, * Vi]h and h € F, and I[V,]h and | € F; and Vy :
g(y) = end(k(y)) and f(y) = end(h(y)). Define m such that
m(y) = end(l(y)). Then (m, f) € ®([x]). Also, since k[Vy]l,
(g,m) € ®([¢]). Hence (ind. hyp.): g[y - xlpgsf-

Appendix 93

(¥ = x) Suppose (g, f) € ®([(¥ = X)lsass). Then there are h,k
such that k[(¥» — x)]sessh and Vy : g(y) = end(k(y)) and f(y) =
end(h(y)). Then f = g, k = h. Now let f[¢],,sm. Then
2 gives us [[Y)sassn. Now the lemma gives us n' such that
h[])sassn’. By assumption this means that there is a n” n'[x]sassn”.
By the definition of ®, this gives a p such that (m, p) € ®([x]sass)-
Now the induction hypothesis for 1 guarantees m[x],4sp. Hence

9l = X)]pesf-

2. P(x) Suppose g[P(z)]pgsf- Then g = f and end(f(z)) € I(P). So
we can choose h = k = f to prove that (g, f) € ®([P()]sass)-

3z Suppose g[3x],sf. Then Vy: g(y) = f(y)and y =z A f(z) is
defined. Choose h such that h(z) = g(z) * (f(z)) and h(y) = f(y)
for all other y, and choose k such that k(z) = pd(h(z)) and
k(y) = h(y) for all other y. These h, k guarantee that (g, f) €

O ([3z]sass)-

(¥ = x) Suppose g[(¥ = X)lpgsf. Then f =g and Vm : g[],esm
In : m[x]pgsn. Let k = f = g = h. We prove that k[(¢» —
X)]sassh: suppose k[¢]sassl. This gives (g, p) € ®([tV]sass) for
p such that p(y) = end(l(y)) for all y. Hence, by 1, g[¢/],4sp-
But then, by assumption, there must be a g such that p[x],sq-
By induction hypothesis for 2 we get /', 1’ such that I'[x]sassh’
and Vy : end('(y)) = q(y) and end(!'(y)) = p(y) = end(1(y).
Using the lemma we find that there is a h” such that {[x]sassh".

Y- x Suppose g[t) - x],gsf- It suffices to consider the cases in which
X is not of the form x'- x".

a x = P(zx): Then g[v],f and f(z) € I(P). By induc-
tion hypothesis for 2 we get h, k such that k[¢]sassh and
Vy: f(y) = end(h(y)) A g(y) = end(k(y)). But then
end(h(z)) € I(P). So these h, k also do the job for 1 P(z).

b x = 3z: Then there is a f’ such that f' does not differ from
f on variables other than z and g[y],f". By the induc-
tion hypothesis for 2, there are k, A’ such that k[¢)sassh’
and Vy : end(h'(y)) = f'(y) A end(k(y)) = g(y). Now we
define h such that h(z) = h'(z) = (f(z)) and h(y) = k'(y)
for all other variables. Then h, k do the job for 1 - Jz.

94 Chapter 2. Preserving Information in Dynamic Semantics

cx = (p = 7): Then g[],esf and f[(p = 7)]pesf- By
the induction hypothesis for 2 there are k, h, i’ such that
k[¢]sassh and K'[(p — 7)]sassh’, where for all z end(h(z)) =
end(h'(z)) = f(z). By the lemma we find that also h[(p —
7)]sassh- But then (g, f) € ®([¢]sass)-

O

Note that the proof of the proposition is not difficult. It is just hard work.
The same holds for the proof of corollary 2.2.7. This time we will provide
less details.

Corollary 2.6.3 (2.2.7) For any ¢, the following clauses are equiva-
lent:

1. Cb 1:3033 T.b;
2. ¢ [Fpgs ¥;
3. 9{’ }:gs 1}5

Proof (corollary 2.2.7): We sketch the proof of 1 <> 2 and leave 2 < 3
to the reader.

1 =2 Assume ¢ =05 ¥. Let f,g € PASS be given such that f[¢],gs9-
We have to find h € PASS such that g[1],ysh. Now, since PASS C
SASS, it follows from the assumption that we find a A’ € SASS
such that g[i].ssh’. But then ® gives a h € PASS such that

9O([V)sass), ie. g[¥]pgsh-

2 = 1 Assume ¢ |=p45 ¥. Let f,g € SASS be given such that f[¢]sassg.
We have to find h € SASS such that g[¢]sessh. @ gives for f,g
f',g' € PASS such that f'[¢],,.¢'- By the assumption this gives
an h' € PASS such that ¢'[¢],4sh'. If we decompose ¥ into atoms
Yo, ..., Un, then we can see all the changes of values that we need
to build the h € SASS such that g[t/]sassh.

Chapter 3

Merging Without Mystery

In the introduction to this part we have discussed the relevance of the se-
mantics of variables for dynamic theories of meaning. After that we have
looked at one particular problem that arises in a particular theory of dy-
namic semantics, the non-eliminativity problem of DPL, and we showed
that in fact this problem was closely connected with the treatment of
variables in DPL. So now we have two good reasons for looking at the
notion of variable in dynamic semantics: first of all the motivation from
anaphora and secondly the technical motivation of the previous chapter.
Therefore in this chapter we reconsider the concept ‘variable’ in the light
of the general objectives of dynamic semantics. We will see that this leads
in fact to a shift from the Fregean notion of a variable, that pervades tra-
ditional logic to a notion of variable which is more reminiscent of the
outlook on variables that we find in computer science. For the purpose
of dynamic semantics it turns out to be extremely useful to distinguish
for each variable three things: the name of the variable, the variable qua
storage facility, and the value of the variable. The three level picture of
variables allows us to distinguish between the different roles that variables
play in dynamic semantics. This picture will be formalised by the notion
of a referent system. Then we go on to show how a dynamic semantics
based on referent systems works.!

! Although the eliminativity problem is not the topic of this chapter, it should be
pointed out that also the use of referent systems allows us to define the DPL semantics
in an eliminative way.

96 Chapter 3. Merging Without Mystery

3.1 Introduction

We have seen that in a dynamic semantics along the lines of Kamp (1981)
and Heim (1983) we obtain a semantics of anaphora that deviates from
the narrow path of traditional, static logic. Crucial for the way in which
Kamp and Heim interpret anaphora is the attention in the formalism not
only for the results of the interpretation process, but also for aspects of
the process itself.

The idea underlying both DRT and FCS is that, when we have to inter-
pret an anaphoric expression, we have to establish a connection with an
antecedent. In both formalisms the potential antecedents can be found in
a representation of the result of the interpretation process so far. Inter-
preting an anaphor now amounts to establishing the link with the correct
antecedent. In the introduction we saw such an account in the particularly
elegant formulation due to Zeevat.

We have also seen the relational formulation of this idea, namely in the Dy-
namic Predicate Logic (DPL) of Groenendijk and Stokhof (1991a). There
the procedural aspect of semantics becomes the main point of attention.
Now each sentence has as its meaning a relation between an assignment
that is provided by the context (for example by the interpretation of
previous text) and the assignments that can be obtained from the input
assignment by interpreting the sentence. In this approach an interpreta-
tion can set a variable at a certain value in its output state. This output
state is the input state for the interpretation of the next sentence. Thus
the interpretation of one sentence can pass on a value to the interpreta-
tion of the next sentence. This is the way in which DPL represents the
act of linking antecedent and anaphor.

The success and the elegance of Groenendijk and Stokhof’s formulation
and also the development of another interesting formalism with a proce-
dural flavour, namely Veltman (1991)’s Update Semantics (US),? has led
to an interest in the logic of procedures per se. For if the basic objects
in our semantic universe are going to be actions (either represented as
relations (DPL) or as functions (US)), then we should try to discover
which are the general principles governing the behaviour of actions. This
interest lead to various logical investigations centered around DPL.* Thus

20f course Veltman’s system is not designed for the treatment of anaphora. It gives
a dynamic treatment of modalities. The details of his system need not concern us here.
3Here we think of the Hoare Logic approach of van Eijck (Van Eijck (1991c), Van Ei-

3.1. Introduction 97

interest in the logic of actions is one important development in dynamic
semantics.

But we have seen that in a Zeevat style formulation the dynamics comes
in in another way. Zeevat's DRS-interpretations are not actions. Instead
he uses semantic objects which are context-content pairs. In this set-up
the context component allows us to understand the interaction with the
context, the content component collects the information content. The
interaction between context and content is captured by the merger, an
operation on the pairs that tells us how to compose meanings. Thus all
the dynamic effects of DRT get an elegant representation in an algebraic
framework, without representing meanings as procedures.

This formulation of DRT leads to a new look on the old idea that the
implementation of the context-content distinction is very useful for formal
semantic in general. It enables us to distinguish different kinds of semantic
contributions and to study their interaction in an elegant way. Actually
we already find this idea in Universal Grammar Montague (1970)’s, and
later in the work of Kaplan (1979) and Stalnaker (1978). But Zeevat’s
presentation leads to a new outlook on it and has inspired Visser (1992c)
to develop general techniques for a semantics with context-content pairs.
In this chapter we will to reformulate Zeevat’s treatment in a manner
that permits both the ideas underlying DRT and the ideas underlying
DPL to be captured. As a context-component we will use machinery that
allows us to describe the interaction of variables in dynamic semantics
in a particularly elegant way, introducing the notion of a referent system
(section 3.3). Thus the referent systems will model the linking behaviour
of variables, i.e. they will be the crucial ingredient for the semantics of
anaphora. The motivating ideas behind our definition of referent systems
lead to a natural notion of the merger of referent systems. Some abstract
properties of the algebra of referent systems are presented in section 3.4.
Then we show how they can be used in dynamic semantics (section 3.5).
We will discuss the relation of our semantics with both DRT and DPL
(section 3.6). It will be argued that the use of referent systems is philo-
sophically preferable to the treatment of variables in both systems. We
will also argue that a clear implementation of the distinction between the

Jjck and De Vries (1992b)), modal logical approaches, especially using two-dimensional
modal logic (Blackburn and Venema (1993)), and relation algebra approaches (De Ri-
jke 1992). Similar considerations have driven the development of Arrow Logic by Van
Benthem (1994).

98 Chapter 3. Merging Without Mystery

different roles that variables play in semantics — as part of the context
component on the one hand, but also as a carrier of information content
on the other hand — is the obvious step to make in a dynamic setting. A
clear implementation of this distinction will also make the system more
robust: it will allow us to make adjustments in one of these areas (e.g.
the context component) without disturbing the balance in the other com-
partment (i.e. the content component). Finally there is some general
discussion on the use of variables in the semantics of anaphora (section
3.7

But before we do all this we need to look at Zeevat’s proposal in some
detail.

3.2 Contexts and contents

In Zeevat’s formulation of DRT we find a discourse representation lan-
guage in which discourse fragments are represented as pairs. These pairs
are the discourse representation structures (DRSs). The first component
of a DRS consists of a number of discourse markers. They are the topics
that have been introduced by the corresponding discourse fragment. In
the other component conditions on these discourse markers are stored.
Thus for a piece of discourse such as

A dog barked. It was lonely.

we can expect a representation such as

({r}, { dog(r), bark(r), lonely(r) }).

In the first component of the representation we find the discourse markers
introduced in the example. In fact there is just one such marker, the dog.
In the second component we see the conditions on this marker that the
piece of discourse expresses.

In the semantics these representations are interpreted as pairs: the set of
discourse markers is simply copied and in the second component of the
semantic objects we store all assignments of values to these markers that
satisfy the conditions in the second component of the DRS (cf 1.5). So
the interpretation of the DRS given above is:

4For more details, also on the relation with Kamp’s formulation, cf Zeevat (1991a)
and the introductory chapter of this thesis.

3.2. Contexts and contents 99

{r},{f: MARK — DOM : f(r) € dogn barkN lonely}).

Here D is the domain of objects in (our model of) the real world. M ARK
is the set of discourse markers.® The second component represents the
actual testing of the information content of the DRS in the real world.
The role of the first component in the interpretation of anaphora becomes
clear as soon as we see how the interpretation of a large text is composed
from the interpretations of its parts. The DRS-interpretation we see
above can be described as the result of such a composition process.

({r}, {dog(r), bark(r)}) ~ ({r}, {f: f(r) € dog N bark})
(0, {lonely(r) }) ~ (0, {f: f(r) € lonely})

{({r},{ dog(r), bark(r),
lonely(r)}) ~ ({r},{f: f(r) € dogn bark N lonely})

We see that if we put two first DRSs on the left hand side together, we get
the DRS on the third line and the condition in the second DRS, lonely,
is linked to the marker r that is introduced in the first DRS. In the
semantics the process of linking is handled by the first components of the
DRS-interpretations. This is what the first component is for.

Zeevat simply takes set union as the operation on the marker sets. Thereby
the markers from the different components are simply put together. As
a consequence we can also simply put together the conditions on these
markers. The corresponding operation on the sets of assignments is in-
tersection. So we find:

(V, F)e(W,G) = (VUW, FNG).
Zeevat uses assignments f that are defined on all the markers in VAR. We

can slightly facilitate the discussion if instead we use assignments f that
are only defined on the markers that actually occur in the corresponding

%In this chapter we have a slightly different notation for sets of variables and variable
names: whereas the rest of the chapter simply uses VAR for ‘the variables of the
language’, in this section we use M AR for the (countably infinite) set of discourse
markers. Later we will then use NOM for the set of variable names. The difference
in notation is used to underline the view on variables that we are developing in this
chapter.

100 Chapter 3. Merging Without Mystery

DRS. This way we get pairs (V, F) such that for each f, f' € F dom(f) =
dom(f') and V C dom(f). Note that we do not demand that dom(f) =V,
as will be clear from the second DRS in the example above: there f(r) is
defined, but » ¢ V. Now the DRS-interpretation will look like:

({r}, { f: {r} = D : f(r) € dog N bark N lonely }).

Now also our definition of the merger will look slightly different, since we
are no longer using total assignments. When we simply lump together the
conditions that we find in different DRSs, we now have to glue together
assignments from F and G which may have different domains. Let’s write
f @ g for the function that has domain dom(f)Udom(g) and assigns f(r)
to r when r € dom(f) and g(r) when r € dom(g). Note that f @ g is
only defined if f and g agree on dom(f) N dom(g). & simply glues f to
g, provided this can be done. The operation & on sets of assignments F'
and G can then be defined in the obvious way:

F&G = {f®g: fdgisdefined & fe F & g€ G}.
Now we get:
(V, F)e(W,G) = (VUW, FeG).

as the analogon of Zeevat’s merger.

We see that if we use this definition of the merger, the link between the
marker that is lonely and the marker that is a barking dog, is established
in the required way. This was the result of our decision to simply lump
together the two sets of markers. If we make other choices for the opera-
tion on the marker sets we can steer the linking process in the semantics
in another way. In fact the definition of the merger that we gave above
generalises to the following definition schema:

(V, F)e, (W, G) = (VxW, F*&G).

We see that different choices for the operation * on the marker sets, lead
to different operations e, on the DRS-interpretations.® The idea is that

SThe notation F* suggests that (—)* simply is a function on sets of assignments,
but we will see that in general it can also depend on other information, in particular
V,W,G.

3.2. Contexts and contents 101

the choice of x will represents our ‘theory’ about the behaviour of dis-
course markers. The Zeevat ‘theory’ is plain and simple: markers should
simply be lumped together. But other ‘theories’ are possible. Once we
have chosen our ‘theory of markers’, everything is fixed: the behaviour of
the discourse markers will automatically lead to a transformation of the
domains of the assignments. Thus it will induce a corresponding trans-
formation on the sets of assignments — which we write as (—)* — and
once these transformations are performed we can simply add these sets in
the usual way.

As an example, consider the following alternatives for the definition of
the merger:

(V, F)oq (W, G) = (VUW, Fl'a GY)
(V. F)e2 (W, G) = (VUrgW, F'ré & Gyg)

Both U and Up will stand for some form of disjoint union, thus imple-
menting a linking strategy that keeps referents that occur both in V' and
W distinct. But, as we will see shortly, Ll implements this idea less care-
fully than Upg. The details are as follows:

Vuw
VUpeW

(V x{1})u (W x {2})
(V\W) U (W\V) U X
such that XNV =XNW =0, |X|=2-|[VnW|
and X Ndom(h) =@ forallhe FUG

We see that U is disjoint union in its most insensitive guise: in V U W
we simply make two new sets V' x {1} and W x {2} which have the same
size as V and W respectively and of which we can be sure that they are
disjoint. In the definition of V Upg W we are more careful: here we only
disturb elements from V and W if this is really necessary and we make
sure that the new elements X that we choose are not used in the domains
of the assignments in F and G.7

Both U and Up, give rise to transformations on the marker sets V and W.
Thus they transform the domains of the assignments in F' and G. This

"Recall that when f € F V C dom(f), but not necessarily V = dom(f). In fact
these examples show that it would be convenient to have dom(F)\V available explicitly
in the DRS-interpretations, but here we stay faithful to the traditional discussion.
Later on, in our referent systems these variables will be made available explicitly in
the semantics.

102 Chapter 3. Merging Without Mystery

induces transformations on the assignments in the obvious way, resulting
in the sets FY, FUrc, GY, FYrc, For example:

f' e FUiff

3fe F: f'((v,1))= f(v) forveVand f'(z) = f(z) forz ¢ V
g € GV iff

JgeG: ¢((w,2) =g(w) for we W and ¢'(z) = g(x) forz ¢ W

We can illustrate the differences between the three definitions of the
merger with an example:

(V.F)=({r}{f:{r} = DOM: f(r) € dog)

(W,G) = (0,{f : {r} - DOM : f(r) € bark)

(X,H)={r},{f:{r} = DOM : f(r) € bark)
Now we see that in (V, F)e(X, H) the condition on r in (X, H) is linked to
the condition on r in (V, F'), but this does not hold for e; or e;. Whereas o
regards the two conditions as conditions on the same r, the operations e;
do not make this identification: e; keeps the two occurrences of r distinct
and as a consequence it also keeps the information about these occurrences
separate. This is the dividing line between e and e;.
In (V,F) e (W,G), the condition on r expressed by G is added to the
condition on r that is expressed by F. e does not distinguish between the
r € V and the r € dom(g), g € G. This way a link is established and this
is in fact the kind of link that corresponds to the anaphoric link in the
example. We see that the same connection is established by the careful
version of disjoint union, Upg: since {r} N0 =0, we find that

(V,F) e (W,G) = ({r},{f : f(r) € dog N bark}).

So e, also establishes the anaphoric link, as required. However, if we use
e, instead, things go wrong. Now we get:

(V.F) ey (W,G) = ({(r,)}, {f : f(r) € bark & f((r,1)) € dog}).

Because e; automatically replaces r by (r,1), we do not only keep the
markers from V and W distinct, but we also disturb the relations between
V and dom(g) (for g € G). Here this has the effect that we do not get
an anaphoric link where we would have expected one, but we can also get
the reverse effect. For example, consider

3.3. Referent systems 103

WG =@,{f:{(r,1)} = D: f((r,1)) € bark).

If we now compute (V, F) e (W',G"), r and (r,1) will get confused and
the conditions on these referents will be joined together.

We see here that it is indeed the first component that steers the linking
process. By varying the operation + on the marker sets, we can implement
all kinds of ideas about anaphoric linking. But once the first components
have decided which referent goes where, the sets of assignments have to
follow these decisions. Thus the two tasks that are involved in the in-
terpretation of anaphora are nicely separated in this format: the first
components establish the anaphoric links between different pieces of dis-
course and the second components compute the joint information content
(and truth-conditions) according to these links.

3.3 Referent systems

3.3.1 Variables

What Zeevat’s formulation makes clear is that in the semantics of anaphora,
we need to distinguish carefully between control features and information
content. Here control amounts to linking the variables in the appropriate
way, analogous to the linking of anaphors to antecedents in natural lan-
guage. Therefore it is a good idea to conduct a more serious investigation
into the notion of variable and the role it plays in semantics.

Logic traditionally uses the ‘Fregean’ notion of variable. In such an ap-
proach it is not correct to think of variables as having a denotation. To
say that a variable has a reference of some sort, would merely provoke the
question what it is that a variable denotes. Probably the answer would
be something like: variables denote arbitrary objects. Attempts to make
sense of this answer would, according to Frege®, lead us to problems that
we do not even want to think about: certainly he showed that this was
not necessary in standard predicate logic.

However, Frege's objections against other concepts of variables may have
been too hasty. For example, in the work of Fine (1985) it is shown that
it is possible to have a sensible theory of variables as arbitrary objects,
something that Frege strongly rejects. Moreover in computer science, for

8In Frege (1979): Logische Méngel in der Mathematik.

104 Chapter 3. Merging Without Mystery

example in denotational semantics (cf. for example Schmidt (1988)), a
notion of variable is used that is very different, from the Fregean notion of
variable, but nevertheless makes perfect sense. In the computer science
notion of variable a distinction is made between the syntactic variable or
variable name, and the real variable, which is usually thought of as some
location (in the memory of a computer) where information can be stored.
Thus it becomes possible to distinguish three things for each variable: its
name, the variable itself and the information that is stored in the variable.
It can be suspected that some such notion of variable will be particularly
useful for us, who are trying to distinguish between the control features
that have to be represented in dynamic semantics, and the information
content. With this notion of variable we can think of variables as storage
facilities and their names as the mechanism by which we manipulate the
variables and thereby indirectly the information that we have stored in
them. So for us the interesting control feature is the way we manipulate
the variables via their names.

In what follows we will give a formal treatment of such a notion of variable.
We will then use the new techniques to do dynamic semantics. We will
see how in the new formulation the referent systems are used to describe
the control features essential for the explanation of anaphora.

3.3.2 Referent systems

In the formal definition of the referent systems we will use a fixed stock
of names, NOM = {zy,25,...}. We will usually write z,y,z,v,w for
elements of NOM. We also need some set theoretic representation for
the variables, or referents as we shall be calling them.® Remember that
referents in our set-up are just locations in memory that we happen to
have reserved to store a particular piece of information. We do not want to
include in our model any assumptions about the nature or the structure
of memory. We regard memory as an unstructured substance that has
no properties that are of interest to us: memory gets all its interesting
properties by our actions on it. One such action is the declaration of
a variable, whereby we reserve some arbitrary part of memory for the
storage of information. This action actually creates the variable: before

9In fact we use the words ‘variable’, ‘referent’ and ‘discourse marker’ interchange-
ably. Note, however, that when we talk about the Fregean notion of variable, we are
not talking about referents.

3.3. Referent systems 105

we performed the action there was nothing. After the declaration there
is a variable. We will assume that at each point it is possible to perform
such a creation.

An advantage of this way of looking at variables over the use of a fixed
stock of variables, declared in advance, is that we will now always have
just a finite amount of these storage facilities. Since there is, in principle,
no limit to the amount of variables one can use, working with a fixed
stock would imply working with an infinite amount of variables from the
start. In our approach we will always just have a finite set of variables in
our model, the ones we actually use.

Also note that the use of a fixed stock introduces a moment of choice in
the way of dealing with variables: whenever we need a variable, we have
to decide which one to use. This is a kind of complication that we choose
to avoid, both for reasons of technical convenience an because this issue
does not fit our intuitions concerning variables.!® The complication can
be avoided as described above, by creating new variables ‘on the spot’.
The lack of structure and properties of memory is inherited by the vari-
ables. They are simply arbitrary parts of memory. This is another reason
why it would be unfortunate if the variables in our model would all come
from a fixed set. This would inevitably give them properties that real
variables do not have.

Hence, if we want to find a set theoretic representation of some set of
referents, it seems that no set is good enough. Or, if we look on the
bright side, any set is equally good. When we are at a point where we
have created some referents and we want to represent this situation set
theoretically, then there is no natural choice for the set of referents: any
set of the right size will do equally well (or equally bad). Therefore we
can use any set as a set of referents, as long as we keep in mind that
nothing forced us to choose this set instead of another one (with the same
cardinality).

This leads to the following definition of referent systems.

Definition 3.3.1 A triple (I, R, E) is a referent system iff:
1. R is a finite set, the referents;

2. I is a partial injection from NOM to R, the import function;

!Note that such a ‘moment of choice’ does apply on the level of variable names, as
was argued in the introduction to this part.

106 Chapter 3. Merging Without Mystery

3. E is a partial injection from R to NOM, the export function.

(From now on we will use postfir notation for function application
and function composition. We will omit brackets whenever this is
convenient.)

At the core of a referent system (I, R, E) we find the referents R. To this
we have added an import function and an export function. They allow us
to manipulate the referents.!! Recall that referent systems will be used
later to model the way we manipulate variables in dynamic semantics.
In section 3.3.4 we will see examples of this, her we just give the general
picture. The idea is that the import function tells us which referents are
picked up from the context and under which name. So if I = r, then
this means that the referent r is not created in this referent system: it
was created before and is now picked up from the context under the name
z. Hence r will be the referent that was called « already.

The export function E tells us which referents in R can be picked up in
what is to follow and under which name. Hence, if rE = z, then z is the
current name of this referent. This means that the next referent system
can import 7 under the name z. In such a situation the first referent sys-
tem exports what the next referent system wants to import: a transaction
can take place. Thereby a referent can interact with the context to its left
via the import function and with the context to its right via the export
function. Thus we create a model in which the (chronological) order of
our actions on variables is represented.

Every referent system comes with a dual. It can be obtained, as it were,
by reading the original referent system from right to left. So the dual of
(I,R,E) is (E~',R,I™"). From this duality we can learn that E~' will
have to behave like a proper import function or, dually, that I~! has to
behave like a proper export function. We will use this duality of referent
systems whenever we can.

Remember that the choice of the set R is arbitrary. R is just a finite set of
the right cardinality, but any other set of the same cardinality would have
done equally well for a set theoretic representation of the same referent
system. Therefore we should not use set theoretic identity as the identity
criterion for referent systems. We will introduce a notion of isomorphism

1 Below (proposition 3.4.7) we will see that in important cases alternative, inductive
definitions of interesting classes of referent systems are available.

3.3. Referent systems 107

for our representations of referent systems that will provide us with the
sort of identity that makes sense for referent systems.

Definition 3.3.2 Let two referent systems (I, R, E) and (I',R',E’) be
given. A homomorphism ® : (I,R,E) — (I' R, E') is an injection
R — R' such that:

1. dom(I) C dom(I') & zI® = zI' (for all x);

2. dom(E) C dom(®E') & rE = r®E' (for all r).
(Note that this is not the dual of the previous clause.)

By @ we can recognise the referents of (I, R, E) in (I', R', E') in such a
way that the names that a referent has in (I, R, E) are also present in
(I',R', E"). Note that the conditions (1) and (2) can be rewritten as:

ocr
and
ECoF.

In a picture:

NOM @ NOM

Now we can make the following observation: referent systems and ho-
momorphisms form a category. Hereby the familiar notion of isomor-
phism from category theory becomes available:'? two referent systems
(I,R,E) and (I',R',E’) are isomorphic iff there are homomorphisms
®:(,RE)—- (I'R,E')and ¥ : (I''R,E") — (I,R, E) such that
QY = id(; p,p) and ¥® = idp g py. The following proposition gives us
easy way of recognising isomorphic referent systems.

2Recall that we use postfix notation.

108 Chapter 3. Merging Without Mystery

Proposition 3.3.3 There is a bijection ® between R and R' such that
I® =1" and E = ®E' iff (I, R, E) and (I',R', E') are isomorphic.

Proof:

Clearly such a bijection ® induces a homomorphism (I, R, E) — (I', R', E')
and ®! induces a homomorphism (I',R',E') — (I,R,E) such that
PP = id(;‘g‘g} and ®71¢ = id(p‘RrrEr).

On the other hand if ® and ¥ are homomorphisms such that ®¥ =
id(1,r,p) and ¥® = id(y p), then we know from the definition of homo-
morphism that

1. that ® is a bijection R — R’ (with inverse ¥);
2. IdCI';
3. I'V C I

From (2) we get dom(I) C dom(I'). From (3) we get dom(I') C dom(I).
This means I® = I'. Similarly we can prove £ = ®E'.0O

The proposition shows that, the notion of isomorphism that we have de-
fined is indeed the one we were looking for: two triples are isomorphic if
the only difference between them is the choice of the set of referents. As
we have explained, two such triples represent the same referent system.
Therefore we will no longer distinguish them. At this point our only use
for the notion of homomorphism of referent systems is that it allows us
to make the notion of equivalence of referent systems precise. The reader
who feels uncomfortable with these notions can rest assured: in the rest
of the chapter he can simple use proposition 2.3 as a definition of the
equivalence of referent systems. But we suspect that at some point we
will have some other use for it.!

13We expect, this for the following reason: in dynamic semantics we should not only
be concerned with the question whether some sentence is a part of some text, but also
which part it is exactly. So we are not interested in some ‘part of’ relation <, but we
need to keep track of the precise location. This kind of distinction can easily be made
in category theory. Therefore it seems that at some point the use of categories in text
semantics will be inevitable. Also see Visser (1992c) for more details on the use of
categories in dynamic semantics.

3.3. Referent systems 109

3.3.3 The merger

In the previous subsection we have explained what the import and export
function are for. The export function tells which referents are passed on
by the system and under which name, the import function tells which
referents are needed by the system by giving their names. This is how
the communication between variables in different parts of a text will be
modelled (cf. section 3.3.4 for examples). With this explanation in mind,
we define the merger of two referent systems as follows: (We use a dot "e”
for the merger because that reminds us of the way sentences in discourse
are merged into a text by the full stop.)

Definition 3.3.4 Let two referent systems (I,R,E) and (I',R',E') be
gwen. We define the merger of the two referent systems, (I", R", E") =
(I,R,E)e(I' R',E"), as follows:

1. "=(R®R)/ ~

where @ stands for disjoint union and ~ is the smallest equivalence
relation such that forr € R, ' € R' we have:

r~1 ff rEI =1,
(We will write r for r € R as well as for the image of r in R & R’
and also for the equivalence class of r in (R&R')/ ~ if no confusion
can arise.)
2. zI" =zl if I is defined;

zI" = xI' if I’ is defined and zI is not defined and for no r €
R: r~al;

zI" is undefined otherwise.
3. E" is defined dually, i.e.

rE" =rE' ifr € R' and rE’ is defined;

rE" = rE if r € R and rE is defined and for nor' € R r ~ '
and for nor' € R' v'E' =rE;

rE" is undefined otherwise.

110 Chapter 3. Merging Without Mystery

Before we discuss this definition, we will show in a picture how the merger
works. In the picture the sets of referents are represented as vertical
blocks. Their import names, if any, are found on the left hand side, their
export names on the right hand side. We have tried to make this example
such that you can see for each of the import clauses of (2) how they work.
By duality a good example for the export clauses can then be obtained
by turning the page upside down.

Example:
o] o]
X —= | O — x —= |0
Ol v e vV — (0O = o
z —&= | 0| —= vy y —e |0 —=x z —>= 0] —=> X
= ;. —= |o e}
U —= |0 u —= | O

Note that it is the import of z by the first referent system that is preserved
in the merger of the two systems. Also note that the variable called v has
now become invisible: it has become a local variable.

Now if we consider the definition, we see that clause (1) contains no
surprises: two referents get identified iff a transaction can take place, i.e.
iff rEI' = r'. In other words, two referents are identified iff they have the
same name at the time of a merger. The new import and export functions
are defined in clauses (2) and (3). To understand these definitions it is
important to keep in mind that the left to right order is to correspond to
the chronological order. Of course the merger of the two referent systems
still exports all the referents the second referent system exports (the first
part of clause 3). And if no transaction has taken place, then the export
behaviour of the first referent system should be taken over by the merger
as well. For, there will still be the possibility to export the referents
that the first referent system provides—unless the second referent system
already provides them.

A difficulty arises when the two referent systems both supply a referent
with the same name, i.e., for some r € R, ' € R' rE = r'E’. This will

3.3. Referent systems 111

only cause problems, of course, if the second referent system does not
import the referent r. For when this referent will be imported by the
second referent system, the merger of the two systems will only try to
export one referent, »’. But if rE =+'E’ and fornor”" € R: rEI' =",
then there will be a serious competition between the two systems for the
export of a referent with name rE. It seems natural to assume that in
this case the second referent system will win the competition since it will
be ‘closer’ to the candidates that may want to import a referent called z.
Hence rE" = rE’ whenever rE’ is defined (first option in 3), while we
can only have rE” = rE if not rE € range(E’). We have this priority
rule for export functions, because the order of the referent systems is to
reflect the chronological order. Hence, if some referent with name z is
imported later on, then the importing referent system will not wait for
the first referent system to make a transaction: it will just import the
referent that the second system — that is closer — has to offer.

As we have said, I” is defined dually. This is the first time that we can
see that duality can save a lot of work. But because it is the first time we
have given the details anyhow. By duality we know that I”~! will be the
export function of (E'~!, R, I'"!) ¢ (E~', R,I""). This means that it will
behave like I and like I' (if there are no transactions) and that in case of
a clash (i.e. € dom(I) Ndom(I')) I will have priority over I'. As one
can see, this is what is (2) gives us.

Note that we are only interested in referent systems up to isomorphism:
we do not care about the particular set R that is used to represent the
referents. Therefore it should be checked that the definition of the merger
preserves isomorphism of referent systems. Given the characterisation in
proposition 3.3.3 this is not difficult.

3.3.4 Referent systems in semantics

We want to use the referent systems for dynamic semantics: with each
formula we will associate a referent system that tells us all about the vari-
ables that occur in the formula. We will do this in detail later, but we
can already give some examples. A formula ¢(x) with a free variable z
will give rise to a referent system with a referent, r say, such that zI = r
and 7E = z. The referent and its name are simply passed on. The refer-
ent system of P(z), for example, will be: ({(z,7)}, {r},{(r,z)}) or, in a

112 Chapter 3. Merging Without Mystery

x-_n’H_n'x

Quantified variables are exported, but they do not have to be imported.
So Jz gets the referent system

Thereby 3z only allows for interaction with the context to the right, while
P(zx) can interact both ways. By merging the two referent systems in the
right order we get the referent system for 3z.P(z):

B_H

The priority rule for the export function will be used to handle repeated
quantification: the formula 3z.P(z).3zQ(z) gets the referent system:

picture:!*

B ' —_— ——
[]
H ') '

This is what we predicted: the first referent is still there, but it no longer
has a name.

In pictures we prefer to represent referents as (featureless) os. In the text we will
still use letters r,r’ etc.

3.4. Properties of referent systems 113
3.4 Properties of referent systems

The purpose of this section is to study the formal properties of referent
systems. First we will define some special referent systems. They are
special for two reasons: first because they are probably the easiest ones
you can think of and second because they are in a way the basic referent,
systems.

Definition 3.4.1 (Special referent systems) For each finite set V €
NOM we define:

1. Z=(0,0,0);

2. O[V] = (0,V,0);

3. I[V] = (idy, V,0);
4. E[V] = (0,V,idy);
5. T[V] = (idvy, V,idy).

When V = {v}, we will omit the brackets.

Here we have chosen the names as (representations of) referents. Of course
this is not essential (compare section 3.3.1): it is just a very convenient
choice. Note also that we use capitals I, E here, that are also used for
import and export functions. This is because here I and E also stand
for ‘import’ and ‘export’. Furthermore, T stands for transport and Z for
zero.

We can use these special referent systems to show how calculations with
referent systems work. Some easy results (and their duals) are in the
following proposition.

114 Chapter 3. Merging Without Mystery

Proposition 3.4.2 Let VW C NOM be given.

o (The clauses on the left hand side are the special case where V =

w.)
(i) E[V]eI[V]=O0[V] EW]eI[V]=
EW\V]eOWNV]eI[V\W]
(ii) T[V]eT[V]=T[V] TW]eT[V]=T[WuUV]

(i) E[V]eE[V]=O0[V]eE[V] E[W]eE[V]=
OWnV]eEWUV]

(iv) I[V]eI[V]=1I[V]eO[V] I[V]eI[W]=
TIVuW]eO[VNW]

(v) E[V]sT[V]=E[V] E[W] e T[V] = E[W] e TV\W]

(vi) T[V]eIV]=I[V] T[V] e I[W] = TV\W] & I[W]
In T[V] e E[V], I[V] e T[V] and I[V] e E[V] no transactions are
posstble.

o (Non-associativity)
(EV] e E[V]) o I[V] # E[V] « (EIV] « I[V]) (V # 0);
E[V] e (IIV] « I[V]) # (EIV] « I[V]) « I[V] (V £ 0).

Proof:
Omitted. We will just give a picture of an example of a situation where
the merger is not associative. We take V = {v}.

B_M .v_u.B . v_,,B

Either this reduces first to:

and then to:

3.4. Properties of referent systems 115

or it reduces first to:

I]—h-v L] vV —D

and then to:

a

The results of the proposition are easy, so we have omitted the proofs. On
the other hand, they are representative for the way referent, systems work,
so we will discuss them in a little more detail. Note that the statements in
the first column are just instances of the statements in the second column.
In (i) we see that we can create local variables explicitly: first we export a
variable, then it is imported. Note that the statements in (i) and (ii) are
self-dual. In (iii) we find another way to create local variables: we already
have variables called V and then we declare new variables called V. Now,
by our priority rules, the old variables lose their names and become local.
Clause (iv) is the dual of (iii).

The second item shows that the merger is not an associative operation.
From a technical point of view this is an unpleasant property.'® It will

" There are also methodological reasons for preferring an associative operation in
text semantics. We will not go into that here: this will have to wait until part 2 of the

116 Chapter 3. Merging Without Mystery

complicate the calculations with referent systems. It should be noted,
however, that the example of non-associativity that we have here is rather
subtle: it involves both a transaction between referent systems and a clash
of names. Therefore we can still hope that there are natural classes of
referent systems in which this does not occur and in which the merger is
an associative operation. Let us consider a few of those natural classes.

Definition 3.4.3

1. A referent system (I, R, E) is partially persistent (PP) iff
IE Cidynowm;

2. A referent system (I, R, E) 1s extending iff dom(I) C range(E);
3. A referent system (I, R, E) is faithful iff dom(I) = range(E).

These classes of referent systems are all defined by a condition on the way
they handle the names of referents. This is a natural kind of condition
to consider for referent systems, since this is what referent systems were
introduced for. For example, a restriction on the number of referents in
R would make much less sense. The first condition says that if a referent
r is imported with a name, = say (i.e. I = r), then, if the referent is
also exported, its export name is still z (if 7E'|, then rE = z). Note that
a referent can lose its name in a PP system, it is only a change of name
that is not allowed.

The extending referent systems are such that the names that are imported
are also exported. It is possible that there are also other export names or
that some old name now stands for another referent, but the old names
still have a reference.

Faithful referent systems have a fixed set of names. Again the reference
of the names may change, but not the presence of the names.

These three classes of referent systems have the following closure property:

Proposition 3.4.4

1. The PP referent systems are closed under merger.

2. The extending referent systems are closed under merger.

thesis. (Also see Vermeulen (1993a), Visser (1992c).)

3.4. Properties of referent systems 117

3. The faithful referent systems are closed under merger.
O

It is easy to see that the counterexample against associativity that we
have, is built up from partially persistent referent systems. Therefore
the merger is not an associative operation on partially persistent referent
systems. With some effort it can be shown that merger is associative
within the other two classes. We will not prove this now, because it is an
easy consequence of a more general result:

Proposition 3.4.5 Let referent systems o, T and p be given. Then:

(ceT)ep = ce(Tep) iff
range(E,) N dom(I;) Ndom(I,) C range(E;) Udom(I,) and
dom(1,) Nrange(E;) Nrange(E,) C range(E,) U dom(I,).

This result is proved and discussed in the appendix 3.7. It gives rise to
the following corollary:

Corollary 3.4.6

1. The merger is not associative in the class of partially persistent ref-
erent systems;

2. The merger is associative in the class of extending referent systems;
3. The merger is associative in the class of faithful referent systems.

a

The referent systems that will actually occur in our semantics are all
partially persistent and extending. So we will get an associative merger
in our semantics.

We conclude this section with an observation:

Proposition 3.4.7

118 Chapter 3. Merging Without Mystery

o The class of partially persistent referent systems can be generated
from referent systems of the form Z, I[v], E[v] and T[v].

o The class of partially persistent and extending referent systems can
be generated from referent systems of the form Z, O[v], E[v] and
T[v].

O

This proposition shows that a lot of referent system can be seen as the
result of some very basic actions, such as importing or exporting one
referent. This gives us the possibility to check the properties of the most
interesting classes of referent systems inductively.

3.5 Dynamic semantics with referent sys-
tems

In this section we show how we can use referent systems for dynamic
semantics. In fact we will use referent systems in the semantics of Lppy,
our language for dynamic predicate logic.!® The referent systems will be
used to interpret the variables of this language: the syntactic variables of
Lppr, are the names in NOM.

We will call the interpretations of Lppy, discourse structures (DSs). They
will consist of a referent system and a set of assignments of values to the
referents in the system. We use assignments to referents, not to their
names, because the information that we find in Lppy, is not information
about the syntactic variables but about the ‘real’ variables that have the
syntactic variables as names.

The formal definition is given below. As usual we will assume that the
domain of interpretation of our model, D, is given. The notation f|y is
used for the restriction of the function f to domain X.

Definition 3.5.1 (Discourse Structures)

1. A discourse structure & is a pair (05, Fs), where o5 = (I5, Rs, Es) is
a referent system and Fs is a set of assignments from Rs to D;

15Recall that in this language we can define abbreviations such as Vz(¢) = (3z — ¢)
and ~(¢) = (¢ — L1).

3.5. Dynamic semantics with referent systems 119

2. A homomorphism of discourse structures ® : § — & consists of a
homomorphism of referent systems ®, : o5 — o. and a function
Dy F. — Fs such that forall fe F.: [Py =0 f.

(TherebyVf € F.3g€ Fs: g=®,0f.)

We say: ®y gives the restriction of f to o5 according to ;.

3. If 0 and € are discourse structures, then the merger v = 0 e ¢ where
0, =0s5e0. and

F'r:{f: Rﬁ-a_)D:.”R&EFE

R € FE}.

R5-—-—---

Again we are only interested in the referent systems up to isomorphism.
The notion of homomorphism of discourse structures shows how we can
extend this notion to discourse structures. For the homomorphisms of
discourse structures ® we introduce a notation convention: we will simply
use @ instead of ®; if no confusion can arise.

In the discourse structures we have sets of total functions: they are total
on the set of referents of the structure. If we merge two discourse struc-
tures, we glue these total assignment together, if possible. The result is a
total assignment on the new referent set.

The definition of homomorphism, as we have given it, requires some ex-
planation. The idea is that there is a homomorphism from § to e, iff ¢
contains more information than §. Therefore it is natural that we require
that € has ‘more’ referents and that ¢ has better access to the referents.
This is guaranteed by the presence of a homomorphism of referent sys-
tems. It is also natural that the more informative DS should allow less
assignments. This is what the mapping ®, takes care of: it guarantees
that no new (configurations of) values are allowed.

120 Chapter 3. Merging Without Mystery

Now we can interpret Lppr. In fact we have already seen most of the
crucial examples in section 2, where we defined referent systems. Here we
will extend the apparatus with the construction of the referent system for
implications. Once this is done we can straightforwardly add the second
component of the interpretation, the set of assignments.

Definition 3.5.2

1. For two referent systems o, T we define (6 — 1) as follows:
(6 = 7)=(,R,F),
where I = I,e;, R =range(I) and E = .

2. For two DSs 8, £ we define (6 — €) as follows:
(0—=¢) = ((0s > 0e), F)
where f € F iff f: Rigys0,) =+ D : Vg€ Fy:
f|dom(y)§g—>3hEF5“: fSh & g <h.
We will discuss this definition shortly, but first we give the interpretation

of Lppr. (Here the notation XV is used for all the functions from Y to
X and P is the extension of P.)

Definition 3.5.3 Fach formula of Lppr is interpreted as a discourse
structure according to the following clauses:

o II-L]]dS == (Za 0):

o [3a]as = (Elz], D¥);

o [P(z1,.,Za)lis = (T[x1, - Ta, {f € DB} 2 (zy f, 2, f) € P};
o [¢-¥]as = [Plaso[¥]as;

o [(¢ = ¥)]as = [Slas— [¥]us-

A first remark about this definition is that all the referent systems that
we find in it are partially persistent and extending. From this it follows
that the merger is an associative operation on £ppy, interpretations.

We can see that the sets of assignments for simple formulas are just the
sets that were to be expected: the formula 3z does not restrict the values

3.5. Dynamic semantics with referent systems 121

of the assignments and an atomic formula, P(z) say, gives rise to the obvi-
ous restriction that the value on the referent of x should have property P.
For the conjunction of formulas, ¢.1, we have to glue together the assign-
ments of [¢]qs and [¥]4s. This will only be possible for some assignments.
For example, if we try to glue together assignments from [P(z)]s with
assignments from [-P(z)]q;, we will see that this cannot be done: any
assignment from [P(z)]qs will assign to the referent called = a value in
P, while the assignments in [~P(z)]4, will assign values outside P to the
referent called x. By the definition of the merger, these referents called x
are to be identified in [P(z).-P(x)]4s. Hence no assignments will survive
the glueing procedure. As a result we get: [P(z).—(P(x))]as= (T[z], 9).
The clause for implication requires some explanation. We see that in the
referent system of an implication, (¢ — 1), we find the referents that are
imported in ¢.10. So we get, for example:

for (P(z) — Q(z)), a singleton set, {z} say;
for (3z.P(x) — Q(x)), the empty set;

for (P(z) — 3z.Q(x)), a singleton set containing just the first referent
called .

In general we get the referents that correspond to the free variables in
(¢ = o) (with the DPL notion of binding and freeness in mind). These
‘free referents’ are simply transported through the referent system: they
have the same im- and export name.

The assignments that are allowed in (¢ — 9) are the assignments of which
any assignment that satisfies ¢ can be extended to an assignment that
satisfies ¢.10. This is just the usual construction from DRT and DPL.
There are some subtleties involved that have to do with the domains of
the assignments that we have to consider.

First we have to restrict a function f that is defined on)| ——
to Rs. This is necessary for implications like (P(z) — Q(y)),
where there are free referents that do not occur in the an-
tecedent.

Then any extension of the resulting assignment that satisfies
¢ should be extendible to an assignment that satisfies ¢.1).

122 Chapter 3. Merging Without Mystery

But there is a further requirement on this assignment: it has
to agree with the original f on the free variables of 1. That
is why we also have to demand f < h in the definition.

This can be illustrated with the formula (3z.P(x) — Q(z,y)): f will
be defined on {y}. First this f will be restricted to the empty function.
Now every extension of the empty function that assigns to x a value in P,
needs an extension h such that (zh,yh) € Q. But we are only interested
in extensions h that assign to y the value yf.

The definition of [(¢ — 1)]as can be motivated further: we can compare
it with the notion of entailment that we will develop for discourse struc-
tures. We will see that the implication that we have defined is just the
implication that goes with the notion of entailment for DSs.

In the definition of entailment we will touch upon the issue of partial-
ity. So this is a good opportunity to make some general remarks about
partiality and referent systems. Since a DS represents the information
expressed by some discourse fragment, it will, in general, only give partial
information about the underlying model. For not every discourse frag-
ment gives complete information about the whole world. This is the first
kind of partiality we have to distinguish.

We have seen already that this does not give rise to the use of partial
functions in our DSs: all assignments in a DS are defined on all the
referents in the DS. The partiality is expressed in other ways: first by
the limited (finite) number of referents that we have in one DS. This
reflects the fact that we only have information about a limited number of
objects. Then there is the fact that we work with a set of assignments, not
with one assignment. By allowing ourselves to consider several values for
one referent we reflect the partiality of our information about this referent:
we do not always know exactly which entity the referent is a stand in for,
we just know some conditions that limit the range of possibilities.

This kind of partiality is important, of course. But it is not—or should
not be—typical for dynamic semantics.

However, there also is a kind of partiality that is directly related to the
dynamics. It has to do with the context components of the DSs. In a
DS, ((I,R, E), F) say, not only F gives information about the referents
in R. I and E also reveal some relevant facts. If a referent is exported,
rI2 = x say, then this means that more information about r can be given

3.5. Dynamic semantics with referent systems 123

in what is to follow. If a DS imports some referent, I = r say, then this
means that this DS will depend on the context—some other DS—to get
the referent r.

This is important information about r. In particular if a referent is
imported this reveals a strong kind of partiality of our information: in
the context component of the DS it is not really known where r comes
from. The context component is not saturated. This kind of partiality,
partiality-as-context-dependency, is typical of dynamic semantics. It cor-
responds more or less to the distinction of free and bound variables in
traditional logic.

With this kind of partiality in mind we define entailment as follows:

Definition 3.5.4

1. Let two referent systems o and o' be given. Then:
o =o' iff dom(1,) C range(E,)
2. Let two DSs & and ' be given. Then: § =& iff
o5 = op
and
VieFs:feFs 3f e Fy: Ipf C E71f.
3. For two formulas ¢ and v we define entailment as follows:

¢ |= 1\[} I_ﬁ. [¢]ds ’:[[d)]ds-
4. A formula ¢ is valid iff (Z, {0}) E [¢]as-

(Recall that Z = (0,0,0).)

In clause (1) o }= o' can be read as: o provides a suitable context for o:
the context set-up by o supports ¢’. In general in these clauses one can
read the |= sign as ‘supports’. Here we are talking about truth-conditional
and contextual support at the same time.

Of course we want § |= § to express that the information in &' follows
from the information in 4. But, as we have seen, &' does not only give
information about Ry, it also requires information about the origin of the
referents in range(ly). This means that if § |= &', then these referents
have to be supplied by 4. In other words, we want o5 = 05. But we
also want all the assignments in F; to have a corresponding assignment in

124 Chapter 3. Merging Without Mystery

Fs to guarantee that ¢’ allows more values for the referents than 4. For
otherwise there is more information about those referents in ¢’ than in 4.
This is what clause (2) says.

Now we can look at the definition of [(¢ — ©)]4s again. Our observations
about partiality do not apply here. A formula (¢ — %) can occur in
a context in which the imported referents of i/ have been introduced
properly, even if this is not done by the formula ¢.

Think for example of

32.(3y.P(y) = Q(z,v)).

We have argued that [3y.P(y)]asE[Q(z, y)]as cannot hold, because the
referent of z is not supplied by [3y.P(y)]4,- Similarly, the formula (3y.P(y) —
Q(z,y)) cannot be valid. But this does not mean that the formula
(3y.P(y) — Q(z,y)) does not have a meaning. It just means that the
context component of its meaning will have to import a referent called z.

In this situation the best relation between inference and implication that

we could hope for is:!”

[6)as = [¥]as iff Fiomm #0 & Ijgoen = Iigl-

This says that truth-conditionally—i.e. in terms of assignment sets—both
situations are equivalent, but for entailment we have the extra requirement
that the context component of ¢ supports the context component of .
It can be checked that this is indeed what we get. This gives another
justification of our definition of implication: it is just the internalisation
of the notion of validity for DS's.

Note that our concern with the partiality of the context is not standard
in DPL or DRT. Above we have argued that this kind of partiality is
typically a concern of a dynamic semantics, but nevertheless it is usually
ignored in presentations of DRT and DPL. We will see in the next section
that our interpretation of implications corresponds to the familiar notions
in DRT and DPL. This will, at the same time, make clear how our notion
of entailment relates to what we find in those formalisms: they agree up
to partiality.

'"Here we use the notation [¢]ss = (Ifg], Ryeps Efe))-

(]

3.6. DS, DRS and DPL 12

3.6 DS, DRS and DPL

In this section we compare the DS semantics, which uses referent sys-
tems, with the relational DPL semantics and the representational DRT
semantics. DPL likes to see its variables as just syntactic entities, in the
Fregean sense. On the other hand the notion of discourse marker that we
find in DRT seems to be closer to the notion of a storage facility than to
the strictly syntactic notion of variable.

Therefore we would expect to find that we get something very much like
DRT if we ignore the names of the referents in our referent systems, while
ignoring the referents and concentrating on the names instead should give
us something very close to DPL. We will see that this is indeed what we
find.

3.6.1 DRT

Technically the comparison with DPL will be straightforward, since the
language we use is the DPL language. DRSs cannot be compared with
DPL formulas as easily: DRSs are just a different kind of things. They
live on an intermediate level between syntax and semantics: in a DRS
we find both the discourse markers, which also belong to the semantic
domain, and the conditions on these markers that live on the level of
syntax. Hence for the comparison it is convenient to introduce a similar
intermediate level in between the DPL formulas and DS interpretations.
We will call the intermediaries DPSs, Dynamic Predicate Structures. The
DPSs can be defined inductively as follows:'®

Definition 3.6.1 We define DPSs and DPS-conditions by a simultane-
ous induction:

1. an atomic DPL-formula is a DPS-condition;
2. if é and &' are DPSs, then (6 — &') is a DPS-condition;

3. for each referent system o and set of DPS-conditions C, (0,C) is
a DPS.

Now we can give for each DPL formula a DPS that represents it.

'®This definition closely follows the definition of a DRS in Zeevat (1991a).

126 Chapter 3. Merging Without Mystery

Definition 3.6.2 For each DPL formula ¢, we define [¢] = (04,Cy), the
DPS of ¢, as follows:
[L] =(2,0)

[33:] = (E[x], DOM{I});

[Py e s30)] = (T2 B AP e s B })i
(¢ —)] = ((op = o), {([8] = [¥])});

[0.9] = (0 @0y, Cp0Cy).

Here Cy o Cy indicates that the names of the variables as they occur
in C, and Cy should follow the identifications and dis-identifications of
04 ® gy. For example, [3z.P(z)] = (E[z],{P(z)}) and [3z.Q(z)] =
(E[x],{Q(z)}). But if we merge the referent systems the two referents x
will not be identified. We have to make this visible in the conditions:

Bz.P(2).32.Q(z)] = (Olz'] e Elz], {P(z'), Q(2)})-

The interpretation of the DPSs as DSs is obvious: we simply replace
the set of conditions C' by the set of assignments (on the referents) that
satisfy these conditions.

Now we have a representational level in our interpretation with referent
systems and we are able to compare the referent systems approach with
DRT.

T]
N 0N

[[DRS]] , [[DRs 11,

(IDRS]. stands for the class of DRS-interpretations as discussed in sec-
tion 3.2 and defined in the introductory chapter (also see Zeevat (1991a)).)

3.6. DS, DRS and DPL 127

The diagram gives the picture that one should keep in mind. Most of the
links in the diagram have not yet been defined properly. But their formal
definition can easily be constructed from what has been said so far. The
o-links, for example, rely on the following operation:

Definition 3.6.3 For each referent system o = (I, R, E) we define the
reduction of o to a set as follows:

set((I,R,E)) = {re R: redom(E) & r ¢ range(I)}.

Now if we want to make DRSs out of DPSs or DRS-interpretations out
of DSs, we just have to apply this set function to the first component of
the DPS or DS. Our claim is, of course, that the diagram comimutes.
We will make this claim precise in the following proposition, but we will
omit the proofs. They are tedious but straightforward.

Proposition 3.6.4 For each DPL-formula ¢ we claim that:
l[#]] =[¢las DPSs are intermediate between DPL and DS's;
[[9]°l = |[@]|° the DRS-interpretation of a reduced DPS is
the reduced DS.

We give an example of all the links in the diagram:

3 x.DOG(x),BARK(x)

|

(E[x], [DOG(x), BARK(x)})
o
(E[x], {f: dom(f)=(x] and xf ¢ DOG and xf¢ BARK]) ((x], [DOG(x),BARK(x)})

N

({x], {f: dom(f)=(x} and xfe DOG and xfe BARK])

Our conclusion from this comparison with DRT is that DSs are ‘just’
DRSs with import and export functions. We have a set of referents

128 Chapter 3. Merging Without Mystery

and a set of conditions on these referents, just as in DRT. But we also
have import and export functions that make our manipulations of these
referents explicit.

These manipulations are crucial for the semantics of anaphora. They han-
dle the question which referents are to be identified and which referents
are to be kept distinct. But precisely this point is usually left implicit in
formulations of DRT. There it is usually assumed that we have automat-
ically chosen the referents in a way that solves all problems. For example,
it is usually assumed that the sets of new discourse markers U and U’
are disjoint whenever we merge two DRSs (U,C) and (U',C"). This is
not unreasonable if discourse markers are indeed to be compared with
our referents. If they are indeed just featureless storage facilities that we
have created during the interpretation, then—by definition—they cannot
be the same.

But if referents are indeed featureless, then it is unclear how we can work
with them at all: if they have no features we cannot recognise them.
For example, we cannot see from two markers whether they have to be
identified because of some anaphoric link unless these markers have a fea-
ture that shows this. The import and export function add such features,
names, and thereby make it possible to be explicit about the interaction
of the referents. _

So although these details are usually ignored in formalisations of DRT,
we see that this is not necessary. In our machinery we have not only the
featureless storage facilities, but also labels for them, that allow us to do
something with them.

Apart from allowing us to be explicit about the manipulation of referents,
there are also some other pleasant consequences of our set-up. Since we
have the referents we inherit all the advantages of DRT: an intuitively
appealing story about how we store antecedents in memory, a situation
where at each point we will only have a finite number of these antecedents,
etc. Furthermore, now that we have an explicit representation of the
syntactic variable and the semantic variable, we are in a position where we
can distinguish properties of variables as syntactic objects and properties
of variables as storage facilities. For example, while it is by definition
impossible to create the same referent twice, we can use the same words
as anaphors over and over again. Therefore it is reasonable to allow re-
using element of NOM, syntactic variables, although the idea of re-using
a semantic variable makes no sense. So we have obtained a more flexible

3.6. DS, DRS and DPL 129

machinery in which we can implement the DRT-ideas about anaphora in
a more felicitous way.

3.6.2 DPL

The comparison with the relational DPL semantics is technically more
straightforward. We have an interpretation of the DPL language as re-
lations and another one as DSs. We will show that the relational inter-
pretation can be obtained from the DS interpretation. We will do this
in two steps: first we construct a relational interpretation in terms of ref-
erent systems from the DS interpretation. Then we will see that these
new relations are closely related to the relational interpretation that we
know already. So the picture is as follows: (DPR is the class of Dynamic
Predicate Relations, that we will define shortly; [DPL],s the usual rela-
tional interpretation; [DPL],,, the extension thereof to partial functions.)

PP, ™ ps " DER

D
[DPL]

[(DPLI] ;¢

At the DPR level we find pairs (o, f) consisting of a referent system o
and an assignment f on the referents of that referent system. We create
relations on these objects from DSs as follows:

130 Chapter 3. Merging Without Mystery

Definition 3.6.5

1. For each DS € = (0., F.) we define the binary relation [¢] as

follows:*?

(0,9)[e](o’, h) iff dom(I,,) C range(E,,) & o' =ceo. & h=
g@® f for some f € F.. 20

2. For each formula ¢ we define the relation [¢] as follows:

[¢] = [[#]as]:

The relation [¢] works with assignments that are defined on referents. The
usual relational interpretation is defined on assignments that are defined
on (all) variable names. We will obtain this kind of relation in two steps:
first we switch from referents to names and then we switch from partial
to total functions. The switch to names is made as follows:

Definition 3.6.6

1. For each binary relation R on DP R-pairs we define the following
relation on partial assignments f: NOM — DOM.

f|Rlpg iff 3(a, '), (0", 9") = (0, f)R(d"g) & f=E;'f & g=
Eglg"

2. For each DPL formula ¢ we define a relation on partial assignments
as follows:

|91, = 1[4]l,-

Definition 3.6.6 gives us an interpretation of formulas ¢ as relations on
partial functions NOM — DOM. From this relational interpretation we
obtain a relation on total assignments NOM — DOM by restricting |¢|,
to total functions. This gives us the usual relational interpretation. We
will prove this shortly, but first we try to gain some insight in the relations

[4)-

19Be careful: in this subsection we use the same brackets as in the previous subsec-
tion, but with a different meaning!
20Here & glues g and f together.

3.6. DS, DRS and DPL 131

Lemma 3.6.7 Let (o,g), (1,h) be suitable pairs. Then:

(0,9)[L](7,) if 9+#g9;
(Uv .Q)[P(I)](T! h) iff o=7& g=h & zl;heP;
(0,9)[3z](7, h) iff r=o0eE[r] & h=gU{(zl,,d)}
for some d € D;
(0, 9)[0-¥)(T, h) ff T=oce(ose0y) & IfEFsy: gdf=N

(019)[@—*?11)](7: h‘) Eﬁ T=0®0(44y) & h=g & V(,O,k):
(@,9)[21(p, k) 3(u, 1) = (o, K)W) (1, D).

We omit the proof of the lemma.
Now we are ready for the following proposition (proof in the appendix):

Proposition 3.6.8 Let g and h be partial assignments NOM < DOM.
Then:

gl L|h f 9#9;

g|P(z)|,h iff x€dom(g) & g=h & zh e P;
g|3z|,h iff xe€dom(h) & (y#zx = zg==zh);
glo.|ph f 3k glolk & k[Ylh;

gl@—=¥)h iff g=h & Vk: gl¢|,k = 3A: k||l.

The proposition says that the usual clauses for the relational interpreta-
tion of DPL define the relational interpretation with partial functions.
From this it follows that the restriction of |.|, to total assignments really
is the usual DPL interpretation.

The proof of the proposition will be given in some detail in the appendix,
partly because there are some interesting constructions involved, partly
also because we want to make up for the lack of detail in our proofs so
far. From the proposition it is clear that the restriction of |.|, to total
functions is indeed the usual relational DPL interpretation.

This means that we indeed get DPL by forgetting the referents themselves
and retaining only their names. This confirms that DPL sticks to the
Fregean notion of variable.

In DPL the basic objects in the semantics are the assignments of values
to variable names. These objects are used to model the way in which
we store antecedents in memory when we interpret texts with anaphors.
Of course it would be better, for an intuitively acceptable explanation
of this process, if finite assignments were used instead of total, infinite
assignments (cf. Fernando (1991a) for discussion). But this requires but
a small adaptation of the standard formulation of D P L-semantics.

132 Chapter 3. Merging Without Mystery

Another interesting point is that DPL-variables can be re-used. This
is what we can expect with a syntactic notion of variable: just as pro-
nouns (and other anaphoric expressions) in natural language, a variable
name can be used over and over again with different meanings in different
contexts. But since DPL does not distinguish the variable name from
the ‘real’ variable, the re-use of a variable name can have nasty side ef-
fects. For whenever we give a new use to a variable name z, with 3z,
we are forced to forget the information that was previously attached to
that name. In the DSs, where we can also re-use variable names, such a
re-use will only result in the creation of a local variable, a variable that
no longer has a name. Thereby we no longer have access to that variable,
but we will not be forced to throw this variable itself away and we save
the (truth-conditional) information that was stored in it. In DPL, how-
ever, we do not have such an option. Whenever we re-use a variable we
automatically lose the information that was attached to it. This causes
the non-eliminativity problem, as discussed in the previous chapter (also
see Groenendijk and Stokhof (1991b) and Vermeulen (1993c)).

It has been suggested that this problem for DPL can easily be prevented
by using different variables all the time, but this is an option that really
does not, go very well with a syntactic notion of variable. Syntactic ele-
ments, lexical items, typically can be used over and over again. It seems
unelegant to put a semantically motivated restriction on the syntax, espe-
cially since the whole problem can be prevented by using the machinery
developed here. Again we see that having explicit representations of both
the syntactic and the semantic variable makes the machinery more flex-
ible and allows us to give a natural representation of all the phenomena
involved.

We conclude that the distinction between variables and variable names
allows us to formulate the crucial ideas about the dynamic semantics of
anaphora. It makes it possible to show explicitly how the link between
an anaphor and its antecedent is established. Furthermore, our semantics
with referent systems has enabled us to keep two kinds of tasks separate:
the task of manipulating the variables can be described separately from
the task of computing the (truth-conditional) result of these manipula-
tions.

This distinction also has the advantage that it allows us to recognise the
fact that variables and variable names are different kinds of things with

3.7. Discussion 133

different kinds of behaviour. This way we can do justice both to our
intuitions about syntax and to our intuitions about semantics.

3.7 Discussion

In this chapter we have developed techniques for passing on information
that is stored in variables. The techniques are of general interest for
all situations where information is manipulated, but were designed with a
special application in mind: anaphora. We have shown that, the machinery
of the referent systems can compare with the two major alternatives in
this field: DRT and DPL.

Still some questions about the precise relation between our formal ma-
chinery and the situation in natural language remain that we would like
to go into in some more detail. These questions are of a rather general
nature and apply not only to our semantics for anaphora with referent
systems, but to any formal treatment of anaphora. Still we feel we have to
say something about these questions, since we have noticed that confusion
about these general points has led to misjudgements of our intentions and
our results.

Sometimes the aims of formal semantics are formulated in terms of purely
practical problems, such as translating natural language into a formal lan-
guage. Although the idea of translation of natural language has provoked
many interesting developments in formal semantics, we do not feel that
it is correct to judge all developments in semantics from this perspective.
Thus the question which formalism is better for semantics, for us, is not
the same as the question which formalism allows the smoothest transla-
tions. There can be improvement in the semantic representation without
much improvement in terms of translation. Perhaps the system that we
have developed is not much of an improvement from the translational
point of view, but we have argued that it does improve our representation
of the situation in natural language, indeed we would argue that it gives
clearer insight into the mechanisms operating in natural language.

To make the point plain, we consider the issue of re-occurrence of vari-
ables. Arguably the translational perspective has led to confusion here.
Some problems in dynamic semantics, such as the eliminativity problem
(cf. chapter 2, Groenendijk and Stokhof (1991b)), are connected with
the possibility of using a variable name more than once. Now, it has

134 Chapter 3. Merging Without Mystery

been suggested that these problems do not require much attention since
these situations can easily be avoided by a suitable translation proce-
dure: simply choose new variables as often as you can in your translation
(cf. Dekker (1993)). This is of course a sensible remark from a typically
translational perspective on semantics. However, from the point of view of
semantic representation in general it does not make much less sense. The
strategy to avoid problems in the semantics representation by choosing
‘suitable translations’ is unsatisfactory for several reasons. Let’s look at
the eliminativity problem first: the point here is that by choosing a new
variable for each (indefinite) noun phrase we obtain translations which
have the required eliminativity property. So, if good translations are all
we are after in semantics, the eliminativity problem is hereby solved. But
as we have seen in the previous chapter, there is no real connection be-
tween the precise choice of variables and the eliminativity property that
we are looking for: in chapter 2 we gave an eliminative semantics for the
full DPL-language. This shows that in this particular situation a purely
‘practical’ attitude towards formal semantics leads to a misconception of
the issues involved: the translation outlook suggests that eliminativity is
a choice-of-variables problem, but it really is a completely independent
issue.

There is another remark to be made about this fresh variable strategy for
translation. If we use such an approach for the analysis of anaphora in
natural language, then we are bound to misrepresent at least one other
important aspect of this phenomenon: anaphora is a typical example of a
situation where one and the same lexical item can have radically different
denotations in different parts of a text. Think, for example, of a pronoun
such as i¢. This is typically a word that we use all the time, but not
always with the same denotation in mind: its denotation varies with its
antecedent. In other words, one of the remarkable things about anaphors
is that their denotation varies with the (linguistic) context. To us this
seems to be one of the crucial properties of natural language anaphora and
one of the main challenges for a formal semantics is to represent precisely
this property. On the formal side the counterpart of this challenge is
given by the variables: in the formal machinery it are the variables that
can obtain radically different denotations depending on the context. It
is clear, however, that a fresh variable translation, however practical it
may be, will obscure this issue: if we choose fresh variable names all the
time, then we will end up with representations in which each variable has

3.7. Discussion 135

only one denotation. This is another example of how the practical and
the principled questions in semantics can lead to different choices. It is
clear that with respect to this phenomenon our formal system allows us
to stay ‘closer to natural language’, which seems to be a good thing even
if it has no clear practical use.

Of course lots of points still remain where our formal system deviates
from the system we use in natural language. For example, all the con-
nections between anaphors and antecedents are represented in our system
by identity of variable names. But in the natural language an anaphoric
expression is typically not syntactically identical with its antecedent.
Such a deviation from real life is potentially a bad thing. But in this case
it is not so clear that there is actually something wrong with our system.
In the formal representation we distinguish radically between on the other
hand the things that are said about some discourse marker, the informa-
tion content which is typically represented by some predicate, and on the
other hand the machinery by which we manipulate this information, the
referent names in NOM. This radical distinction is not made in natural
language. It seems that there the same words serve both purposes. If we
say, for example:

A man and a woman came in. The man was wearing a black
coat.

Then the word man does not only serve to give information, but can also
be used when we want to name the referent associated with it. This is
what we do when we say the man. So in natural language we sometimes
do two things with one word. This does not mean that the distinction
between these two aspects of the meaning of one word that we have made
is wrong. The insight that words have this double role is an important
one and we do not have to be ashamed that we make it in our formalism.
However, there is a follow up to the criticism that to me seems quite
correct. Although there is no harm in separating formally things that are
not always explicitly separated in natural language, it is desirable that
the aspects that we have separated are represented correctly. We think
that it is fair to say that the contribution to the information content via
predicates is sufficiently close to real life for our purposes, although it may
require improvement in other situations. But our representation of the
linking machinery with variables is admittedly too simple. Here we meet

136 Chapter 3. Merging Without Mystery

the resolution problem again, with all the complications that it involves
(cf. chapter I). We already have admitted that the resolution problem in
general may be a task for which compositional semantics is not very well
suited. But if we compare the simple minded resolution strategy of our
formal language and the complex mechanism that we employ in natural
language, there is also clearly room for some improvement. For example,
in natural language there are many different clues that can be used to link
up with an antecedent. Consider for example the following alternatives
for the above example:

A man and a woman came in. He was wearing a black coat.

A man and a woman came in. The former was wearing a black
coat.

We see that already in this simple example there are at least three ways
of establishing the anaphoric link. But in the formal system we only have
one clue for each antecedent, its current name.

Fortunately there is ample room for improvement in that area within our
set-up. We could, for example, have instead of one current name for each
referent, a set of names. This would amount to replacing the import and
export functions with functions of type: R = p(NOM).

This is but a simple adjustment of the definition of a referent system, rep-
resenting the situation where there are several ways to refer to a variable,
just as in natural language. But already this simple change allows us to
do very wild things in the definition of the merger. We could, for example,
identify a referent with the most suitable antecedent at this point. A first
attempt to model this strategy is given by a condition such as:

In merging (I, R, E) and (I', R', E') we identify r' € R' with

r € R under the following condition:

r=r & maz{s€R: E(s)NI(")} = E(r)NnI() &
E(r)nI(r') #0.

(We ignore for the moment all sorts of details, such as the problem of
non-unique maxima.)

Perhaps a definition of this sort could also begin to account for the unsta-
bility of anaphoric links.2! For if a referent system is preceded by another

21 Technically this instability will be difficult to capture.

Appendix 137

referent system, then the choice of the preferred antecedent might thereby
be influenced. In natural language we sometimes have a similar situation.
Take the (extended) example:

A man and a woman came in. He liked her.

John was looking at the door. A man and a woman came in.
He liked her. But he hated him.

So there is room for criticism in our overly simple representation of the
linking mechanism involved in anaphora, but there is also room for im-
provement. The advantage of our set-up is that this kind of improvement
in the context component need not have any side effects in the content
component. This is so because we have neatly separated the two ways in
which variables contribute to dynamic interpretations.

Now that we have distinguished in our semantics the different problems
involved in interpreting anaphora—the linking problem on the one hand
and the computation of information content on the other—one can easily
imagine that systematic influences on the linking process could be rep-
resented in the referent system without making it necessary to re-think
the definition of the other component of our meaning objects.?? Taking
the context-content distinction serious in the semantics is the big step.
After that improvements of either one of the components should be just
a matter of fine tuning.

Appendix

Associativity

In this appendix we pick up the question of the associativity of the merger.
We will prove the following

Proposition 3.7.1 (Proposition 3.5)

(ce7)ep = ge(rep)iff
dom(E;")Ndom(I;)Ndom(I,) C dom(E;*)Udom(I,) and
dom(I,) Ndom(E') Nndom(E;') C dom(E;") U dom(I).

2Work by Zeevat (1991b) in this direction, in particular in unification formalisms,
is in this spirit.

138 Chapter 3. Merging Without Mystery

(We have written dom(E; ") instead of range(E,) to make it easier to see
that the two conditions are dual.)

We will see that these conditions say that there is no "clash” of names
that can be prevented by a transaction under one of the bracketings.
This is exactly what does happen in the counterexample against associa-
tivity that we have seen:

(E[v] @ E[v]) @ I[v] :there is an export-clash;

E[v]e(E[v]eI[v]) :clash prevented by the transaction between
E[v] and I[v].

In such a situation the import-export behaviour will not be independent
of the bracketing.

Now we can see that the second condition of the proposition captures this
situation. The intersection on the left hand side of the condition says
that a transaction between 7 and p is possible and that an export-clash
between 7 and o is possible. The union on the right hand side is to
prevent the trouble that we have seen in the example. (In the example
the rhs-union is empty.)

If something in the intersection is also in dom(I,), then this means that
there is not only a transaction between 7 and p, but also between ¢ and
7. This means that there is no clash that can be prevented. This is what
happens for example in E[v] e T[v] e I[v].

If something in the intersection is also in dom(E, '), the clash is not really
prevented, it is merely delayed. This happens for example in E[v]e E[v]e
T[v].

The first condition can be illustrated by looking at the dual of our exam-
ple, i.e. E[v] e I[v] e I[v]. (Remember that to find the dual, we have to
read from right to left and consider import as export and vv.)

We see that the conditions of the proposition can be understood by look-
ing at these basic examples.

Proof:

=

Assume that both conditions hold. Also assume that we have chosen the
symbols for the referents (r,7’, etc.) in such a way that no confusion
can arise if we simply speak of a referent without mentioning its referent

Appendix 139

system (i.e. we will say r and zI simpliciter instead of r € R, 2] € R/,
etc).
Notation:

L = I(ﬂ-f)lpl
L = Iperep)-

We will check that I; = I,. Then E; = E; follows by duality (note that
the two clauses in the proposition are dual). Strictly speaking we have to
check two things: first that dom(I;) = dom(I;) and second that for all
x in the domain zI, = zI,. We will concentrate on the second task and
perform the first one implicitly.
‘We consider the definition of z1;:
zly, =xl,e, if € dom(lyer)
=zl, if x € dom(I,)\(dom(Iper) Udom(E,].))
ie.
xly =zl, ifxe€dom(l,)
=zl if x € dom(I,)\(dom(I,) Udom(E;"))
=xl, ifz e dom(l,)\(dom(I,)U (dom(I;)\dom(E;"))
U dom(E;") U (dom(E, 1}\dom (1))
The definition of I, gives us:
zl, =azl, ifzedom(l,)
=al., ifx € dom(l;.,)\(dom(I,)Udom(E;"))
Le.
zly, =z, ifz € dom(l,)
=zl if z € dom(I;)\(dom(I,) U dom(E;'))
=al, if xz € dom(I,)\(dom(I,) U dom(I,)U
dom(E; ") Udom(E;1)).
We see that the only difference between xI; and z1, can occur if the third
clause of the definitions is activated. But in the proposition we see that
by the first condition we have that for = € dom(I,) :

x € dom(E;')Udom(I.) = =z € dom(E;")Udom(l,).
Hence for x € dom(1,) :

z & dom(I,) Udom(1I,) Udom(E;) Udom(E;") iff

z & dom(I,)U(dom(I;)\dom(E;"'))U(dom(E;) Ndom(I,))
dom(E ") Udom(E;!) iff

x & dom(I,) U (dom(I;)\dom(E; 1)) Udom(E; ') Udom(E;).

140 Chapter 3. Merging Without Mystery

If we apply the same trick again by splitting up dom(E;!) into:
(dom(E;")\dom(I,)) and dom(E; ") N dom(I,), we find:

z & dom(I,)U(dom(I,)\dom(E;))udom(E; 1) U(dom(E; 1)\
dom(I,)) iff

x ¢ dom(I,) Udom(I,) Udom(E;') Udom(E;").

We conclude that: I} = I,.

=

Suppose that the first condition of the proposition does not hold. (The
case where the second clause fails is dual.) Then we have x € dom(E;')N
dom(I;)Ndom(1,) but = & dom(E;')Udom(I,) for some z € NOM. Now
if we look at the import functions I; and I, we see that in both cases the
first two clauses do not apply. Hence we have to consider the third clause
of the definitions. We see that since z € dom(E, ') Nndom(I,.) N dom(I,),
also € dom(I,) and therefore x € dom(I,) U dom(I,) U dom(E;') U
dom(E;"'). This means that zI, is undefined.

But if z € dom(E; ') Ndom(I,) Ndom(1,), then = & dom(I,)U (dom(I;)\
dom(E; ")) Udom(E ') U (dom(E;')\dom(I,)). Therefore zI; is defined
and in fact xf; = 1.

So we find that z1; is defined, while zI5 is undefined. Hence (ce7)ep #

oe(Tep).

This completes the proof of the proposition.O

DPL and DS

In this section of the appendix we prove the following proposition from
section 5.

Proposition 3.7.2 (Proposition 5.7)
Let g and h be partial assignments NOM — DOM. Then:

glLlph iff 9#g;

g|P(z)|,h iff redom(g) & g=h & zheP;
g|3z|,h iff zedom(h) & (y#£z = xg=zh);
dbdlph iff I gldlk & Kllh

glle = V)h iff g=h & Vk: gldl,k = 3 kY[l

Appendix 141

We use the following two results:

Corollary 3.7.3 Let three referent systems p, o and T be given such that
o and T are partially persistent and extending. Then pe(cer) = (pec)er.

Proof:
Follows immediately from the associativity result that is proved above.O

Lemma 3.7.4 (Extension lemma) Let (p, k), (0,9), (7, h) be given:

o if p is partially persistent and extending, then
(0,9)[¢](7, k) = (0, 9) @ (b, K)[](7, k) ® (p,);
o if o is partially persistent and extending, then
(0, 9)[8)(7, k) = (p, k) ® (0,9)[¢](p, k) ® (7, h).
Proof :
Direct. (1) requires partial persistence and extending to keep the vari-

ables linked to the same referents. In (2) the condition is used to make
sure that the merger is associative (see corollary).O

Now we can prove the proposition:

Proof:
The proof is a lengthy induction in which a construction of suitable par-
tially persistent and extending referent systems is implicitly defined.

1. The case where ¢ is L is obvious;

2. G| Py o cyBn)|ph
there are (o,¢'), (1, k') such that (o, ¢')[P(z1,...,z.)](1, k') & g =
E;lgf
& h=E-Wiff
there are (o, ¢'), (7, ') such that (0,¢') = (1,}') &
range(g’) 2 {z1,...,an} & (219',...,209') €P & g=E;'¢
& h=E;W iff

142

Chapter 3. Merging Without Mystery

g=h & (z1g,...,2,9) € P.
For the last 'iff’ we need a construction. The following will do:

take 0 = T[dom(g')], ¢ =g, T=0 and ' =¢".

g|3z|ph iff

there are (0, ¢'), (, ') such that (o, ¢')[3z](r,#') and g = E;'¢’ &
h=E'h' iff

oeE[z]=7 & W =g @ (z,d) forsomede D & g=E;'g' &
h= E;'R iff

y#x = yg=yh & z € dom(h).

For the last 'iff’ we need a construction. Take o as above and take
T = o e E[z]. Then ¢’ =g and h' = h & (z,d) will do.

glo-plph iff

there are (o, '), (7, h') such that (o, ¢')[¢.)](7,h') and g = E;'¢" &
h=E- W iff

there are (o,g"), (,h') such that 7 = ceosy & W =g&(f® ')
for some f € Fyand f' € Fy & g=E;'¢ & h = E;'h iff (by
corollary)

there are (o,¢') and (7,h') such that 7 = (ceogy)eoy &
W=@gef)®f

& g=E;'g' & h=E;'W iff (take p = ceosand k' =¢' & f)
there is (p, k') such that (o, ¢')[¢](p, k') and (p, &) [¢](7, h') &
g=E;'¢g & h=E 0 iff

there is a k such that g|¢|,k|¥|,h.

The last "iff’ requires a construction. The extension lemma tells us
that the constructions that we find for ¢ and ¥ by induction hypoth-
esis can be combined to one for ¢.10. (Check that the construction
gives partially persistent and extending referent systems!)

9l(¢ — ¥)[ph iff
there are (o, g'), (7,') such that (o,¢')[(¢ — ¥)]|(1,h') and g =
E;j'¢" &

Appendix 143

=B N il
there are (0,¢'), (1,h') such that o =7 & ¢'=h"' &
Vo, k) 2 (0,9)[8(p, &) 3w, 1) = (o, K[(1, 1)

Now the induction hypothesis, the extension lemma and the con-
struction procedure tell us that this holds iff:

for all k such that g|¢|,k there is a I such that k[l

Part 11

Propositional Dynamics

145

Why Go Propositional?

In this part of the thesis we will concentrate on propositional texts. This
means that we will be using propositional languages to represent texts.
There are two lines of motivation for this choice:

o The phenomena that we want to discuss typically arise on the propo-
sitional level. Here we think of the structural organisation of texts.
It makes good sense to look at this kind of structure in isolation
and try to get a good picture of the extent to which the idea of a
dynamic semantics applies here.

o In the end all genuinely dynamic representation languages will be
‘propositional’ in nature. In fact in addition to a lot of proposi-
tional constants a dynamic representation language ultimately will
have only one connective left: concatenation. This is the ultimate
consequence of the small unit principle.

As one can see the second line of motivation is more radical than the first:
1t says that the attention for propositional languages should not be seen
as a temporary restriction, that we can give up later on. Rather it is only
a first step on our way to really dynamic representation languages, which
only have concatenation as a connective.

To understand this more radical motivation, it is good to remind ourselves
that already DRT and DPL essentially live on the propositional level: both
in DRT and in DPL the analogue of the existential quantifier behaves like
Just another atomic formula. The language £ which, as we have shown, is
a good language for discussing the semantic phenomena common to DPL
and DRT, is really just a propositional language with connectives - and —.
The formulas 3z are propositional constants, i.e. atomic propositions with
a fixed interpretation. So in a dynamic framework predicate logic arises

147

148

as a particular propositional logic. This makes clear that in a dynamic
setting the restriction to the propositional level does not imply that we
cannot cope with quantificational phenomena.

Still to some the propositional character of £ may seem a bit of an acci-
dent: for example, one may feel that once other, generalised forms of quan-
tification are considered, we will really need to look at non-local structures
in order to represent these quantificational phenomena correctly. Then
we would no longer be able to get the required quantificational force by
the introduction of special propositional constants. In principle this could
be the case. But notice that this would mean that we would have to give
up the small unit principle. We have argued for the small unit principle
in chapter 1 and will give further motivation for it in the next chapter.
Basically the small unit principle tells us that a dynamic semantics will
have to work on a small scale, making small steps at a time. We see that
the treatment of Jx as a propositional constant is typically in the spirit of
the small unit principle: a quantifier is not treated as a global operator,
but instead the quantificational contribution is located in a (small) propo-
sition. So we do not only observe that £ is a propositional language: we
also see that dynamic languages in general will have to be propositional,
because of the small unit principle.

This shows that the choice for the propositional level can be seen as a
consequence of the small unit principle. By the small unit principle one
of the tasks of a dynamic semantics precisely is to obtain the effect of
‘global’ constructions in small steps, i.e. in ‘propositional’ languages. We
will take this line of motivation one step further in the next chapter: in
the end the only connective that we can allow ourselves to use according
to the small unit principle is concatenation.

We will show in the next chapter that this restriction does not mean
that other connectives cannot be expressed in the language: we will see
that in a set up with only concatenation as a connective other proposi-
tional connectives — we will look at implication as an example — can
be reconstructed by using appropriate constants. In fact, we will argue
that our way of recovering the propositional connectives also extends to
quantificational structures of the form Qz(¢,v¥): we will argue that the
standard semantics of such quantificational structures can be reproduced
using only small units.

So from the second line of motivation it follows that working with proposi-
tional languages is certainly not a restriction: even propositional structure

149

should be regarded as a luxury that we will have to give up, as the ulti-
mate consequence of the small unit principle.

But even if this were not so, the first line of motivation still gives a good
enough reason for looking at propositional languages, in particular be-
cause these languages allow us to focus on the macro structure of texts.
In the previous chapters we have been preoccupied with the semantics of
variables and this has also been the main point of focus in the literature
on dynamic semantics. The reason for this preoccupation has been given
in the introduction to part I: traditionally dynamic semantics is typically
concerned with anaphoric phenomena and as far as compositional seman-
tics is concerned, the semantics of anaphora is the semantics of variables.
Still, the subject of dynamic semantics not just the semantics of anaphora:
dynamic semantics is concerned with the intepretation of texts in general.
Since semantics so far has mainly been concerned with the interpreta-
tion of sentences, there are several new things that a dynamic semantics
will have to cope with that did not play a role traditionally in semantics.
Anaphoric relations between different sentences so far have been the most
popular example of such a phenomenon. But dynamic semantics will also
have to deal with other text level phenomena such as the macro struc-
ture of texts. Most of the example discourses that we have considered
so far consist of only one or two sentences. Usually in these examples
the discourse as a whole can be interpreted as the conjunction of these
sentences. In general, however, the sentences of a text can have many
different relations to one another: a text is typically organised into blocks
which stand in certain discourse relations to each other. These discourse
relations are also relevant to the interpretation of the text. For example,
one block or paragraph may provide an ezplanation of what was claimed
in another paragraph, or perhaps it is one of the items in an enumeration.
Such things are usually indicated by special words or phrases, such as:
therefore, in the third place, etc. In the next chapter we will concentrate
on the situation where one part of the text is an assumption of a claim
elsewhere in the text. Again such relations are things which, at least
at first sight, have a global character and therefore pose a problem for
a dynamic semantics. So this is a topic that we will have to deal with
at some point and it typically is something which can be studied at the
propositional level. This is another way to motivate the attention for
propositional texts.

150

We see that there is more than one good reason for looking at propo-
sitional texts. In this part we will look in particular at propositional
languages that represent proof-like texts, texts consisting of assumptions
and conclusions. We will first use these as an example to develop our
ideas about the way in which a dynamic semantics could deal with the
macro structure of texts (chapter 4). Then we will look at the possibili-
ties of using these texts for the development of a genuinely dynamic proof
theory: we try to work out the idea that proving a theorem is in fact the
same as constructing a text which proves the theorem. So according to
this idea the construction of a proof is a special case of the construction of
a text (chapter 5). In chapter 5 the restriction to the propositional case
really will amount to a drastic simplification of the situation, because
there we will not only exclude ‘global’ constructions from the language,
but also exclude all the interesting quantificational constants—such as
32— from the picture. Here the only excuse is simplicity: we have not
yet been able to obtain a genuinely dynamic proof system for systems
with quantificational constants, such as DPL or DRT.

Chapter 4

The Dynamics of
Propositional Structure

4.1 Introduction

We have seen that dynamic semantics involves a shift of attention from
the semantics of sentences to the semantics of texts. So far this shift
has resulted in a new outlook on the semantics of anaphora (in Kamp
(1981), Heim (1983), Groenendijk and Stokhof (1991a) etc.) and some re-
lated phenomena, such as presuppositions (Van der Sandt (1992), Beaver
(1994), Van Eijck (1991b), Krahmer (1994)). But the shift to the seman-
tics of texts also has broader consequences. In this chapter we are con-
cerned with the consequences of this shift of attention for the requirements
on the formal methods that are used. The all important methodological
constraint in sentence semantics is compositionality. Traditionally this is
the principle that fixes the treatment of sentence structure. But it seems
that the compositional view on the role of structure in semantics, as it
stands, is not appropriate for the semantics of texts. Therefore we propose
several other constraints: incrementality, (pure) compositionality and the
break in principle. All these constraints can be seen as ways of making
the small unit principle concrete. Recall that the small unit principle was
introduced as a natural constraint on a semantics of texts. Since texts
can be really large objects, it is hard to imagine that someone who inter-
prets a text works on the text as a whole. Therefore a reasonable model
of text interpretation should reflect how we interpret a text bit by bit.

151

152 Chapter 4. The Dynamics of Propositional Structure

The three constraints that we impose here make different aspects of this
idea precise. Apart from discussing the motivation of the constraints, we
will also develop an semantics for propositional texts in this chapter that
satisfies the three principles. Hence our semantics will illustrate the way
in which these principles work for a simple, propositional language.

The incrementality principle is inspired by the observation that we can
interpret texts as we hear them. If we want to understand a text we
do not have to wait for the text to be completed before we can start
our interpretation. We can simply start as soon as we hear the first
word and then we build up our interpretation step by step. It is also
clear that for large texts this is the only possible procedure. We cannot
first read a large text, a book say, and only after that start to interpret
it. So we do not only want to work in small units: we also want to
process these small units incrementally. Of course, in real life we do not
always choose to work strictly incrementally — sometimes it might be
convenient to wait a bit, for example until the end of the sentence —
but this waiting cannot be extended indefinitely. And anyway, it should
never be necessary. Although it might be convenient to wait sometimes,
in principle the text should allow us to interpret it without delay.

This is the way we want to look at our observation concerning incremen-
tality. It simply is not true that we always do interpret texts incremen-
tally. There are numerous occasions on which we chose to read a text
not simply from beginning to end, but in some other order. Perhaps
this is exactly what the reader has done with this text. But all the time
we rely on the fact that a text allows for an incremental interpretation.
And this will also be our constraint on the formalism: we do not demand
that everything is done incrementally, but merely that everything can be
done incrementally. Note that the incrementality constraint makes even
more sense with respect to spoken text: it is much harder to imagine a
non-incremental treatment of a spoken text.

Here we are talking about the text level. It does not necessarily follow
that everything that happens in the semantics of natural language has to
be accounted for incrementally. In principle it is not excluded that some
micro level phenomena behave differently. Intuitions about incremental-
ity typically are especially strong about the macro level and this is also
the level for which text semantics is designed. Still, we would like to argue
that also at the micro level an incremental treatment makes sense. This
may seem a rather radical claim at this point, but perhaps this will have

4.1. Introduction 153

changed by the time we reach the end of the chapter. Then we will have
developed our incremental treatment of the (macro) structure of texts and
it will be easy to see that the techniques apply quite generally. For exam-
ple, it should not be problematic to give an incremental interpretation of
quantified structures of the form Qz(¢, 1) along the lines set out in this
chapter. Hopefully at that point one will start to wonder what kind of
phenomenon could resist an incremental interpretation.

The incrementality constraint gives rise to an important difference with
what we were used to in sentence semantics. In sentence semantics we
allow ourselves to use information about the structure of the sentence
in its interpretation. When we start interpreting a sentence we assume
that its structure is known. Then we can let the structure tell us how
the meanings of the sentence parts have to be glued together to form
the meaning of the sentence. This is the compositionality principle for
traditional sentence semantics. But in the current, incremental set up we
cannot use this method. For we want to do justice to the observation that
we can interpret a text as we hear it. Thereby we cannot let some kind
of structural analysis precede the interpretation process. Instead it seems
that the analyses of meaning and structure have to be performed at the
same time. Therefore the compositionality principle, in its usual form, is
not appropriate for text semantics.’

Instead we will use a more modest form of compositionality than we are
used to in sentence semantics. We want to preserve the idea the meaning
of the text as a whole is composed from the meanings of the parts of the
text: we do not aim to consider the influence of ‘foreign elements’ on the
interpretation of a text here. But we will not assume that information
about the structure of the text tells us how the parts have to be put
together. The structure of the text has to be discovered at the same time
as the meaning of the text. Therefore we impose a modest form of the
compositionality, which we will be called pure compositionality: it simply
states that the meaning of a text depends on nothing but the meaning of
its parts. Note that also the pure compositionality principle goes together
nicely with the small unit principle: we can simply decompose a text into
small units and the interpretation of these small units is all we need to
compute the meaning of the text as a whole.

'Of course this does not mean that the classical compositional approach is wrong:
it just does not work for the questions that we are interested in.

154 Chapter 4. The Dynamics of Propositional Structure

Another constraint that we impose on text semantics is the break in prin-
ciple. We have argued that it is always possible to interpret a text, even
if it is clear that the text is as yet incomplete and that more is to follow.
This gave rise to the incrementality constraint. But then it is inevitable
that also our interpretations will be incomplete: they will be partial in
this sense. We do not mean that there will be room for doubt about the
meaning of such an incomplete text. What we mean is that the interpre-
tation of a text will allow for combination with material from other parts
of the text, the parts that are to follow.

Now, if we follow this line of reasoning a little further, we see that it
is not only natural to require that we be able to interpret unfinished
texts, but also other kinds of incomplete texts. In fact we want to be
able to interpret all continuous parts, or segments, of texts. It seems
that not only if we have not yet heard the last part of a text, but also
if we have not heard the first part of a text, we are able to understand
exactly what is being said. Of course we may have missed some important
clues in such a situation. So our understanding of what is being said can
again in general only be partial. But this partiality is in the result of
the interpretation only. We can interpret everything that is being said
completely, yet the information that we get out of such a text fragment
is only partial: the information becomes complete in combination with
other, previous, partial interpretations.

This seems to be what happens when you hear in on a conversation:
you can understand everything that is being said, even though you may
have missed the beginning of the story. This leads to the formulation of
the break in principle, that guarantees that wherever we break in in a
text, we will always be able to understand what is being said. In other
words the break in principle says that every segment of a text should be
interpretable.

From what has been said it should be clear that the break in principle
can only hold if we have in the semantics objects that are partial mean-
ings. Here we use partial in the sense explained above: they are typically
unsaturated objects, i.e. objects which like to interact with other objects.
Having partial meanings is also something which corresponds nicely with
the small unit principle: a text may contain some construction that is
too big to handle in one go. Then we will have to interpret the parts of
this construction first. These interpretations will be partial or unsatu-
rated in this sense: later we will have to glue them together to get the

4.1. Introduction 155

interpretation of the complete construction.

This principle has serious consequences in presence of the compositional-
ity principle. According to the break in principle anything is a meaningful
part of a text. Hence a text can be decomposed in many different ways and
it seems reasonable to assume that each of these decompositions should
allow us to compute the meaning of the text. It is also desirable that
different decompositions lead to the same result, as long as we are not
considering texts that are ambiguous. Thereby the three principles to-
gether demand that text meanings form an associative algebra: we want
the meaning of the whole to be composed uniformly from the meanings of
the parts and each decomposition into parts should give the same result.
In particular an incremental decomposition has to be available.

So the situation is as follows:

Pure Compositionality: The meaning of a text can be com-
puted (uniformly) from the meaning of its parts.

Incrementality: The meaning of a text can be computed by
a process of interpretation that strictly follows the order of
presentation.

Break in principle: Any segment of a text can be inter-
preted. (In general its meaning will be partial.)

Together these requirements amount to:

Associativity: Text meanings form an algebra with an asso-
ciative operation (which we will call the merger) by which the
meanings can be glued together.

We see that the general story for text semantics is quite different from
what we are used to in sentential semantics. In sentential semantics we
allow ourselves to use information about the structure of the sentence
and we can postpone our interpretation process until all the structural
information is available. We cannot afford to treat the structure of texts
in the same way: we have to be able interpret a text as we hear it.

The semantics we give in this chapter incorporates the three principles:
we give an incremental semantics of texts that satisfies the break in prin-
ciple. The texts that we study are very simple: they are built up from

156 Chapter 4. The Dynamics of Propositional Structure

propositional variables, the atomic texts. The only kind of text structure
that we consider is the kind we find in proof-like texts. This kind of struc-
ture is usually indicated by phrases such as ‘suppose that,’” ‘assume for
the moment,” ‘hence,” ‘so,” etc. It also occurs at sentence level, typically
in ‘if...then’ sentences.

In general it can be quite difficult to detect the structure of a text: often
it is only indicated vaguely or implicitly. Then it can be quite hard to
determine what is going on. But the problem of the detection of text
structure does not concern us here. We will focus on the (dynamic) in-
terpretation of text structure. At this point it may not be entirely clear
to the reader what interpretation of structure is supposed to mean. But
this will become clear later on when we see in practice how structure and
meaning interact in our set up.

Since we are not trying to deal with the detection of (implicit) structural
clues here, we might as well assume that all clues are given explicitly.
In our formal language if, then and end are used for this purpose. The
intended interpretation of a text of the form if ¢ then v end is the impli-
cation (¢ — v).2

The formal language that we will work with is defined as follows.

Definition 4.1.1 Let a vocabulary of atomic texts A be given. We define
the texts over A, Text,, as follows:

if, then ,end € Text 4
1 € Texty
pEA = peTexty

¢ € Texty & 1 € Texty = ¢ € Texty

As one can see, we treat if, then and end simply as basic texts — even
though we plan to use them as structural indicators — and there are no
structural restrictions on texts: they are simply built up by concatenation.
Sometimes the concatenation of texts can be pronounced as ‘and’.

This way we can get funny texts that have no sensible interpretation.
This agrees with the view on text structure that we developed above: the

2Note that we only consider texts in which the assumptions are given before their
conclusions.

4.2. Texts as sequences 157

structure of a text has to be analysed at the same time as its meaning.
We cannot assume beforehand that the texts that we have to analyse are
well formed. If the text is not well formed, then we will have to find this
out as we proceed.

Maybe it is good to recall that an atomic text such as if does not only
stand for the word ‘if’, but also for a phrase such as ‘let’s assume the
following’. So an expression such as if p, which at first sight seems highly
ungrammatical, can correspond to a quite sensible text such as Let’s as-
sume that p holds.

Proofs are a good example of texts that have this kind of structure. They
typically consist of a network of assumptions and conclusions of a kind
that is very similar to the structure of the texts of Text,. Therefore, one
of the things that we would like to do is to develop a deduction system in
which proofs are considered as a special kind of texts, texts of which the
construction satisfies a number of additional syntactic constraints. We
will not develop such a deduction system in this chapter, but we will get
back to this in the next chapter.

In the end we would also like to have a sentence level semantics that
satisfies the incrementality constraint and the break in principle. We
already explained above that it is not automatically clear that this can be
done. But then we can just try and see which phenomena exactly resist
an incremental treatment.

4.2 Texts as sequences

In this section we present our first attempt at an incremental update se-
mantics for T'ext 4. The final version will be presented in the next section.
This first attempt serves to illustrate one important feature of our ap-
proach. It can be seen as a solution to one important problem that arises
in incremental semantics: non-associativity. It was pointed out above
that an incremental semantics satisfying the break in principle will al-
ways be associative. So non-associative features of texts are problematic.
In Text, an ‘if...then’ construction intuitively causes non-associativity.
For the interpretation of a simple concatenation of basic texts p € A, we
do not have to worry about non-associativity: (pg)r and p(gr) give the
same information. So any bracketing of such simple texts will do. But if
the special elements if, then and end occur in a text, then we have to be

158 Chapter 4. The Dynamics of Propositional Structure

more careful.

Consider, for example, the text p if ¢ then r end. This text gives the
information that p and also that if ¢ then r end. This suggests that
we have to interpret if ¢ then r end first as one component of the text
before we can add it to our interpretation of p. This corresponds to a
bracketing p (if g then r end). But we have to allow for an incremental
interpretation of this text. So it seems that we will only be able to handle
the bracketing (((((p if) q) then) r) end).

The solution that we give for this problem in this section will work in gen-
eral when an incremental treatment of such non-associative phenomena is
needed. The solution can be summarised by one word: memory. In our
semantics we will allow ourselves to have more than one slot where infor-
mation can be stored. We will not only have a slot for our current state
of information, but we will also have slots for some specific information
states that we used to be in. So we remember our information history.

Now, when we have to interpret p if q then r end, we can first interpret
p. We store the information that p in our memory before we interpret
q. This information is again stored before we interpret r. Now we can
construct from the information that we have stored the information that
if q then r. Finally this information can be added to the information
that p. Note that we do not need brackets to tell us how we have to store
the information: the special elements if, then and end will tell us exactly
what has to be done.

This story can be formalised as follows. In the semantics we will always
assume that some Heyting algebra (HA for short) I is given to provide
the basic information items.

Recall that Heyting algebras are defined as follows.

Definition 4.2.1 1. A lattice is a structure L = (L, A, V), such that
the binary operations A and V satisfy the following conditions:

(anb)Ae = an(bAc) (associativity of A)
(avb)ve = aVv(bVve) (associativity of V)
aAb =bAa (commutativity of A)
avVb = bVva (commutativity of V)

4.2. Texts as sequences 159

aha = a (idempotency of A)
ava = a (idempotency of V)
aA(aVvb) = a (first absorption law)

)
aV(anb) = a (second absorption law)
In a lattice L we can define an ordering by:
a<b & anb=a.

2. A Heyting algebra is a structure I = (I,A,V,L,—), such that
(I,A,V) is a lattice, L is the least element of I and — is a binary
operation such that

(1[} Ay < 32) A (2.(] < —= 12).

We call the elements of I information states. An information history is a
finite, non-empty sequence of information states. We define the interpre-
tation of texts ¢, [¢], as a partial function on information histories. We
will assume that for each atomic text p € A an information state ¢, is
given: 1, is the information that p.?

Definition 4.2.2 We define for each ¢ the update function [¢] as follows.*

Let an information history o = (o1,...,0,) (n > 1) be given.
oll] = (o1,--+,0n_1,0, A L)
olp) = (01,-+,0n-1,00 A 1p)
O'[Ef] = (011- --von—lvgm—r)
ofthen] = (01,...,0n-1,00,T)
glend] = (o1,...,00-2 A (a1 = 0,))
olg] = (ofg))[¥]

Furthermore we define truth as follows:

For 1 € I we define (1) = ¢ iff (2)[¢] = (1). We say that ¢ is true in 1.
We write |= ¢ iff (T) |= ¢. We say that ¢ is true (in I).

3Since we are running out of brackets we will not make an attempt to keep the
notation in this part consistent with the notations in part I and chapter 1. As we will
not be interpreting formulas of £ her, but only look at Text 4 this need not cause any
confusion.

“We will use postfix notation for function application and we will adapt the notation
for function composition accordingly.

160 Chapter 4. The Dynamics of Propositional Structure

A good example of an information algebra I that the reader can keep in
mind in what is to follow can be found, for example, in [Veltman]’s update
semantics. He uses an information algebra that is defined as follows:

Definition 4.2.3 Let a vocabulary A of atomic expressions be given.
Let W=p(A). we W is called a possible world (or possibility);

Let I=p(W). 1 is the information algebra (over A), ordered by C. The
elements o € I are called information states.

Here the w € W are called possible worlds because each subset w C A
corresponds to a way the world might be: the atomic propositions, or
possible facts, in w might be exactly the things that are true, while all
other atomic propositions are false. In information state o we know that
one of the w € o is the real world, but we do not know exactly which one.
It is clear that I is a Heyting algebra since I = (W) is an (atomic)
Boolean algebra. So Definition 2.2 applies. The canonical choice for 2,
(pe A)is: 23, =t({p}) ={w: {p} Cw}.

There is nothing deep behind our choice of HAs as information algebras.
We have chosen HAs because we do not want to worry here about the
definitions of the conjunction and implication of information states. Thus
working in a HA allows us to concentrate on the other problems for our
semantics and this is in fact all that we want from them. Therefore any
other structure with well defined operations of conjunction and implica-
tion can serve equally well as I. One interesting example of a suitable
information algebra I that is not a HA is the algebra of DRS meanings
as defined in Zeevat (1991a).

A similar remark applies to our choice for implication as the additional
connective. The choice for implication is motivated by our interest in
proof-like texts, but the construction of a sequence interpretation would
work for any other connective as well.

Definition 4.2.2 gives us the right result for texts like p if ¢ then r end:
it is easy to check that now:

51t is even possible to treat quantificational constructions in this fashion if we
decompose something like Qz(¢,v) into startg: - ¢ middleg: - ¥ - endg,, where
startg, middleg, and endg. are new constants in our language.

4.2. Texts as sequences 161

(T)[pif qthenrend] = (3, A (2, = 2,))

And the semantics is incremental and associative, as required. This is
clear since function composition is associative. But the semantics is not
satisfactory in every respect: the structural contribution of the special
elements i f, then and end is not represented in the best possible way. We
see, for example, that in our semantics i f and then get the same meaning:
[if] = [then]. Thereby also [if p then q end] = [then p if q end). This
implies that for our semantics the texts i f p then q end and then p if q end
are equally acceptable, which intuitively, of course, they are not. So our
semantics cannot distinguish a coherent from an incoherent text. This
would imply that we will still have to determine in advance whether or
a text is coherent or not. Which brings us back to the treatment of
text structure: if we had a grammar of texts that would simply rule out
then pif q end as ungrammatical, no problems would arise. But we have
already explained that this is not the way things should be done in text
semantics. Even if we have a text grammar that rules out then p if q end
as ungrammatical, we still want to find out during the interpretation that
the expression is illegal according to this grammar. We need a situation
in which un-wellformedness is indicated in the semantics by some kind of
failure or error behaviour.

At this point the only kind of semantic failure that occurs is partiality:
some expressions generate partial functions. This indicates that the text
is left incomplete, i.e. we need some preceding material to be able to make
sense of the text. For example end will only be defined on information
histories of length greater than two, indicating that it should be preceded
by two expressions that generate locations in memory.® But unfortunately
end is not able to distinguish if-locations from then-locations. Therefore
the partiality in the semantics cannot rule out then pif q end.

Here we see in a concrete example how the interplay between syntax and
semantics is a crucial topic in incremental semantics. We have introduced
the incrementality requirement on the semantics of texts, since we feel
that we can interpret texts as we hear them. But if we are only able to
interpret well formed texts, then we also have to be able to decide about
the well formedness of a text as we hear it.

In what follows we will usually concentrate on the meaning of texts, but

SIn fact all partiality in the semantics of definition 2.2 originates from the partiality
of end.

162 Chapter 4. The Dynamics of Propositional Structure

in fact ever more refined incremental well formedness tests will become
implicitly available in our machinery as we proceed.

4.3 Texts as trees

In this section we attack the problem that we discovered for the semantics
with information histories. We saw that we cannot see in the semantics
whether a text is well formed or not. The reason for this is that the
different locations in the information histories do not show why they where
created: were they created by if in order to store an assumption or were
they created by then in order to store a conclusion? Once we can answer
this question we are done.

Therefore we want to be able to distinguish the if places from the then
places in our information histories. In order to do that we simply add
structure to the information histories: instead of using sequences to rep-
resent our memory, we will use binary trees. We will use the left branches
in the trees to (temporarily) store the antecedents of implications and the
right branches will be used for the conclusions. The [end] command will
tell us that the implication is complete. Clearly this way the if infor-
mation can be distinguished from the then information by its position in
the structure. This will enable us to decide in the semantics whether a
text is well-formed or not. We call this idea, that the information that we
find in texts is structured in a tree-like configuration, the texts as trees
perspective.

The use of tree structure in the semantics may seem far fetched at first
sight. But note that the job that we are trying to do is to account for the
structural interaction of text components in the semantics.” Therefore
the introduction of structure in the semantics is quite a natural step to
make. Also note that we have made this kind of move before: when we
had to account for the links between the variables in different parts of a
text, we added a component with the required information about these
variables.

Whenever we meet an end we can actually construct the implication in
the Heyting algebra, and we no longer need the tree structure. As a

"This has become necessary because of the new methodological principles that we
have embraced.

4.3. Texts as trees 163

consequence not all binary trees have to occur in the semantics. We can
restrict ourselves to trees of the following kind.

Definition 4.3.1 Let a Heyting algebra I be given. We define the update
trees over I, Uy, as follows:

Ifi1 €1, then (1) € Ur;

Ifi€1 and o € Uy, then (2,0) € Uy;

Ifiel,/€l,ocelUy then (1, (), 0) € Ur;

Maybe one does not immediately recognise these objects as binary trees.
They can be read as follows: the general format is (2, ('), o) where o is
itself an update tree. The first component contains the information so far,
1. We think of it as a flag at the root of the tree. The second component,
('), contains the material that we have assumed. It is stored in the left
branch of the tree. The third component, the right branch, is used for
the conclusion. If one of the components is not in use, we do not write
it down.® So we simply have (1) if we are not processing an implication
at the moment, and we have (z,0) if we are building up the antecedent
of an implication. All components are filled, (z, ('), o), if we have arrived
at the conclusion of the implication. Since we always compute the effect
of an implication as soon as we can (see the definition of [end] below), at
most one of the three components — the rightmost — is not an element
of I. So we can keep the following pictures in mind.

a tree of the form a tree of the form

w (Lo

a tree of the form

(1)ha)

8We could have chosen to fill the places that are not in use with a dummy tree,
but we prefer not to introduce a foreign element into the picture. As it is the tree
consists of elements of the Heyting algebra only. (Note that (T) cannot play the role
of the dummy tree! If we use (T) as dummy we will get confused if we are processing
expressions such as if T then T end.)

164 Chapter 4. The Dynamics of Propositional Structure

Each time the simplest example of such a configuration arises when o is
of the form ().

Before we define the interpretation of our texts on these update trees, we
introduce the notion of the final segment of a tree. This notion will be
of use in the definition of the update semantics. The fact that we can
distinguish the final segment in a tree from the other parts shows that
the structure of the trees as we have defined them can be interpreted
‘historically’: from a tree we reconstruct its construction process. We can
tell which parts were built first and which parts later.

Definition 4.3.2 We define for each tree 7 its final segment, segs(7), as
follows:

segs((2)) = (2);
segs((z, (1)) = (1 ());
segr(((), (") = (2, (), (2"));
segy((2, o)) = segs(o)

if o #();
segr((1, (), 0)) = segs(o)

if o # (2").

We will write a(p) for o to emphasise that segs(o) = p and o{p'/p} for
the tree that results from replacing p, the final segment of o, by p' in 0.
If it is clear from the context what p is, we simply write o{p'} .°

We can now define the incremental semantics of our propositional texts:
with each proposition ¢ we associate a partial function on update trees,
[¢], as follows.

®The notation is analogous to the notation ¢(z) in predicate logic to indicate the free
variable z in ¢ and the notation ¢(a) for ¢ with x substituted by a. Note that here two
different notations are necessary because we do not have, in general, segs(0{p'/p}) =
p'. Take for example o = (2,(2'),(T,(T))) and p' = (+"). Then segs(c) = (T,(T))
and segs(a{p'/(T,(T)))} = (, (), ("))

4.3. Texts as trees 165

Definition 4.3.3 Let o0 € Uy be given. The following clauses define the
update functions [¢] for ¢ € Text,.

o(@) [L] = o{(A L)}
o((,) [L] o{(', A L))} ;
o (", (), () [L] o{(", (), A L)} ;

o) [p]
a((', () [p]
a((", ('), @))) [p)

o{(A)} ;
o{(, (e ny))} 5
o{(", (), A))} S

Il

a() [if]
a((, () [if)
o, (@),) [if]

a{((TN} ;
o{(, (0, (T)))} ;
a{@", (), (. (T} ;

I

a((',(2))) [then]
o((", ('), (1)) [end] a{(@" A =12)} ;
oloy] (alaD[¥].

In these clauses the update functions are defined for certain configurations
of the final segment of o. If the final segment of o does not have this
configuration, the function is undefined. As before, we can define truth as
follows:

o{(, (), (T)} ;

I

For 1 € 1 we define (1) = ¢ iff (2)[¢] = (2). We say that ¢ is true in 1.
We write = ¢ iff (T) = ¢. We say that ¢ is true (in I).

Note that for [L], [p] and [if] we do not need the entire final segment:
only the very latest information state in the configuration, 1, is required.
In [then] and [end] we see how the structure of the final segment matters
in the updating process: if the final segment has the wrong shape the
update functions are undefined.

In the following example we see how the updating process works.

166 Chapter 4. The Dynamics of Propositional Structure

Example:
(T)[if pthengend] =

(T,(T))[p then q end)]

(T, (2))[then q end]

(T, (%), (T))lgend] =

(T

(

(

Il

1(1P)!(T /\zq))[end] =
=T A1)
_)

Il

1

P 1q)

We give pictures for two of the stages in the process.

/T /T\
1 1 1
P P q

(T)[itp] (T)[ifpthen q]

Now we can introduce a provisional well formedness test for the texts in
Text 4.

1. [¢] is grammatical if [¢] is a total function and (T)[¢] = (2) for some
1el

2. [¢] is right incomplete (but left complete) if [¢] is a total function
and (T)[¢] # ().

3. [¢] is left incomplete (and possibly right incomplete) if [¢] is a partial
function but [¢] # 0.

4. [¢] is incoherent if [¢] =

5. The texts that are not incoherent are called coherent.

Here we use grammatical for well formed in the strict sense. In the loose
sense all coherent expressions are well formed: they can occur as a segment
of a grammatical text. For example, in our terminology if p then ¢ is

4.4. Trees as an update algebra 167

coherent — it falls under case 2 — and if p then ¢ end is grammatical.
then p if q end is an example of an incoherent text. Note that, for now,
among the left incomplete texts we cannot distinguish the right complete
from the right incomplete texts: both then ¢ end and then g fall under 3.

At this point we have an incremental semantics for our propositional texts
that can distinguish if from then. This means that structural deficien-
cies of a text of Text, can be detected as we are interpreting it. The
methodological constraints are also satisfied: for any text segment we can
compute its meaning as an update function. Since composition of (par-
tial) functions is an associative operation, associativity is satisfied. This
means that we have done our job. But we have done it in a special way:
using update functions as meanings. In the remaining part of the chapter
we will see whether it is necessary to use an update formulation of the
semantics.

4.4 'Trees as an update algebra

4.4.1 Update algebras

So far we have given the semantics of texts in terms of update functions.
For some purposes the meaning as update view is misleading. Sometimes
we do not only want to see the effect of a sentence meaning: we also want
to look into the meaning of a sentence. In Visser (1992a) we find the
notion of an update algebra. If an update semantics can be defined in
terms of an update algebra, then there is a natural harmony between the
update view on meaning and the so-called representational view: in this
case the elements of the update algebra represent the update functions.
If the update functions allow for such a representation, then clearly no
conflict between the different ways of looking at meanings arises.

In this section we present trees as an update algebra. Thus a represen-
tational interpretation of texts is obtained which is in harmony with the
update interpretation that we have defined in the previous section. Visser
defines his update algebras as follows:

168 Chapter 4. The Dynamics of Propositional Structure

Definition 4.4.1 A merge algebra M is a structure (X, S,id, ®), where
id € S C X and where (X,id,) is a monoid (with identity element
id).
S is the set of states of the algebra, o is called the merger.

A merge algebra M = (X, S,id,) is an update algebra if M satisfies
the following principle, called OTAT: rey € S =z € S.

Intuitively, the states are the information objects that are not partial.
They do not have to be interpreted in the light of previous information.
They can be combined with other information objects, but this is not
necessary. The other objects in X are partial: they steel bits of infor-
mation from previous information states.!? In an update algebra adding
information later, on the right hand side does not help to satisfy such
a demand for previous information, on the lefthand side. Visser calls
this the Once a Thief, Always a Thief, or OT AT principle. The OT AT
principle introduces the essential asymmetry in the formalism.

The elements of a merge algebra (X, S, e,id) generate canonical update
functions on the set S of states as follows:

For each =z € X we define ®, : § — S as follows:

sP, =sexif sex € S. Otherwise s®, is undefined.

It is not clear in general which functions should be allowed as update
functions. Of course the set of update functions over S should contain
the ®,. But apart from the canonical update functions that we have
defined above one might want to consider other functions, for example a
might-operator as in Veltman (1991).

It is clear that the class of update functions should be closed under func-
tion composition: if you update your information state with some up-
date function and then update the result with another update function,
then, surely, this whole process should also count as an update function.
Hence the update functions over S form a monoid, say (Fs, o, Id), where
{‘I’x e X} C Fs and Id= (I)‘_d_ll

197t might be helpful to think about the partiality of information in terms of eval-
uation: the truth value of the information from a state, s € S can be determined
independently. But partial information (z € X\S) can be evaluated only if it is pre-
ceded by a suitable context.

Here o stands for function composition.

4.4. Trees as an update algebra 169

Now the notion of an update algebra is inspired by the following fact:

Proposition 4.4.2 Let a merge algebra (X, S, e,id) be given. Consider
the monoid of update functions (Fs,o,®i). Define ® : (X, e0,id) —
(Fs, o, ‘I’,‘d) by P = ‘I)I. Then:

® 15 a homomorphism of monoids iff (X, S, e,id) is an update algebra.O

The proof is elementary. It can be found in Visser (1992a).
The fact that ® is a homomorphism guarantees that ®,,, = ®,0®, .
This implies that

Druye:) =

$,0Py,. =

P,0(Py0d.) = (P,0P,)0d, =
(Pzey) 0 D

D(zey)e:

(by associativity of function composition). Thereby updating with the
elements of an update algebra is a process that can be done incrementally
and satisfies the break in principle. So in update algebras the method-
ological principles are always satisfied.

4.4.2 Partial trees

Now we show that update trees fit the update algebra picture. We define
a monoid of trees such that we find the update functions of definition 4.3.3
among its canonical updates. Then it will be clear that the text seman-
tics that we have developed so far can be handled in a representational
semantics as well as in update style.

In order to make an update algebra of trees we have to find a suitable
notion of partial tree. We obtain this notion by taking a different per-
spective on trees: instead of regarding trees as fixed objects, we now treat
them as things that grow. In our set up it is the process of growth that
we are mainly interested in, since this is where the update functions come
in: we have seen that updates with the information that we find in texts
are represented as instructions to build update trees.

The construction process follows a fixed route through the tree: the left-
to-right, top-down path. If we want to analyse the construction process

170 Chapter 4. The Dynamics of Propositional Structure

of some tree we simply have to follow this path. In this way the stages
of the construction process are represented in the tree by the segments of
the path.!?

Now we make the following step: we no longer distinguish between a
tree and its construction process. So we think of trees only in terms of
the left-to-right, top-to-bottom path through the tree. Then it is but a
small step to consider the segments of such a path as partial trees. We
take these segments as the elements of the update algebra. Note that
among the elements of update algebra we will find segments that actually
correspond to an update tree. These will be the states of the update
algebra.

In the following definition we describe the tree segments systematically.
We will use the terms (partial) tree, (tree) path and (tree) segment to refer
to them.

Definition 4.4.3 We define the (partial) trees over some HA 1, Ty, in-
ductively. In our definition we have to distinguish the subclasses downTy,
for the down trees and upTy, for the up trees.'®

1. 1el = (1) € downTy N upT;

2. 1€l o€ downTy = (1,0) € downTr;

3. €1, o€ uply = (o,2) € upTr;

4. 1,7 €l, o €downly = (v (?),0) € downTy;

5 1, 7€l oeuly = (0,(2),?) € upTy;
downTy UupTy C T3

6. (1,0) € downTy, (0’,2) €euply = (o',1,0) € T;; ™

7. A€ uply, p e downTy = (A p) € Ty;

8. 0eTr.

Each of these clauses corresponds to a kind of segment through an update
tree. Note that we distinguish down trees and up trees. The down trees
— cases (2) and (4) — are the segments that actually correspond to an
update tree. These paths start at some root 2 and then go down into the

12Maybe the reader has noticed that our habit of collapsing completed subtrees some-
what disturbs the analogy between the construction and the path. For the moment
we will ignore this mismatch, but it will be taken care of later.

13This terminology will be explained below.

1"Note that either o = A for some A € upTy or o = ((2'), A) for some o' € I, A € upTy.
Similarly for o'.

4.4. Trees as an update algebra 171

tree below that root. With these segments we can simply think of the
pictures of trees that we also used in the previous section. We just have
to add arrows to indicate the direction of the path.

a generic down tree

a down tree of the form a down tree of the form

(Lo) L)0)

The up trees — cases (3) ans (5) — are the mirror images of the down
trees. They are segments that start somewhere in a tree and then go up to
its root. For up trees we use as pictures the mirror images of the pictures
for down trees.

a generic up tree

an up tree of the form an up tree of the form

(o,1) (o,(1 ')

Now we have seen the path segments that start at a root and go down
into the tree and the path segments that start somewhere in the tree and
climb up to the root. This leaves two cases to consider: the segments that
both start and finish at a root and the segments that neither start nor
finish at a root.

The first case gives those segments that actually describe a completed
subtree. Since we are in the habit of collapsing completed subtrees, we
will not find many of these paths in our trees. Only the degenerate case
can occur, where a path starts at a root and does not leave it. This case

172 Chapter 4. The Dynamics of Propositional Structure

is handled by (1) in the definition. Such a tree is both a down and an up
tree.

The second case, of the segments that neither start nor finish at a root,
can again be divided into two cases. First there are the paths that describe
a jump from assumption to conclusion. These paths not meet the root of
the tree in which they occur. They are the bridges between left and right
branches of trees. We describe them in case (7) and we use the following
pictures for them.

a tree of the form

(A.p)

But there is another kind of segment that does not start or finish at a
root. This case is described by (6). Here the comparison with paths in
binary trees breaks down. As one can see in (6), we are in a situation
where an up tree is followed by a down tree. The up tree moves up to
some root, and then the down tree moves down from this root. In the
path of a binary tree this cannot happen: each node has just one subtree
below it and if we have completed the path through this subtree, the only
way to continue the path is by going to the next node (on the right hand
side). This is the point where we see how our habit of collapsing subtrees
somewhat spoils the analogy with the paths. For in our situation, if the
path through some subtree is completed, we collapse this subtree and
add the result of this collapse to the node. After we have collapsed the
tree, there is only a node left. Then we can simply start a new subtree
from this same node. Case (6) describes this moment when one subtree is
completed and the next one is built at the same node.!® For this situation
we use the following kind of picture:

15We will use these situations in the representation of the conjunction of two impli-
cations:

if p then q end if r then s end.

The information of both these implications should be stored at the same node.

4.4. Trees as an update algebra 173

’ a tree of the form
(o *,1,0)
|

Finally there is the tree 0. In fact O is not really a tree: we will use 0 to
describe the situation in which the construction process has reached the
error state: something has gone wrong and we no longer know what to
do. So 0 does not correspond to the empty tree.!® In fact it is just the
opposite: the empty tree is harmless and really does not do anything. 0,
on the other hand, is lethal in all situations.

Now we know how to think about partial trees as tree paths. Sometimes
it is even easier to think of them in terms of their basic components. This
brings an inductive definition of the class af partial trees within reach.
We distinguish the following basic trees.

Definition 4.4.4 We distinguish the following basic trees in Ty:
(2) is a basic tree for each » € 1. (Think of an atomic text ‘p’.)
(T,(T)) s a basic tree. (Think of the instruction %f’.)

((T), T) s a basic tree. (Think of the instruction ‘end’.)
((T),(T)) is a basic tree. (Think of the instruction ‘then’.)

In a picture:

7 AL\

W (TAT) A(THT Y ((T)HT)

We can think of all tree segments in terms of these basic segments: big
segments are obtained by glueing together these basic segments. Before
we can make this precise, we have to explain how tree segments are glued
together. This is the topic of the next section.

15Here (T) plays the role of the empty tree.

174 Chapter 4. The Dynamics of Propositional Structure

4.4.3 The merger of trees

In this section we describe how segments of tree paths can be merged into
bigger segments. This merging operation will be the monoidal operation
of the update algebra of partial trees.

The basic idea behind the merger of trees is easy: if two tree segments 7
and 7' have to be merged, we first complete the path described by 7 an
then we simply continue along the path described by 7. Or rather, we
try to continue along 7'. For, if we try to merge two paths, something can
go wrong.'” Consider the following examples of such a situation. '*

N N 7

If we simply glue together the segments as indicated in the pictures, we
get something which, although it makes sense geometrically, is useless in
our set up. For it is clear that the result is not a segment of a (left-to-
right, top-down) path through a binary tree. In these cases we reach the
error state, for which we have introduced 0. So 0 can also be read as
‘undefined’.

In most cases, however, things will not go wrong. For example, if 7 is a
down tree, i.e. a path downwards from some root, and also 7’ is a down

tree, then it is clear that the result of glueing 7 and 7' together, will
always be a sensible path through an update tree. In fact it is clear that

"It may help to compare the cases where the merger goes wrong with the cases
where the update functions of the previous section were undefined.

18We use e as notation for the merger and o to indicate the point where the segments
are glued together. Note that this is not really necessary since the arrows already give
enough information to determine what should go where.

4.4. Trees as an update algebra 175

the result will be a down tree as well.

A AR

There are also cases where 7 is not itself a down tree, but does look like a
down tree at the point of contact. These cases — where 7 is of one of the
forms (0,2,0) or (A, p) (for a non-trivial tree p) — work similarly so we
do not have to discuss them separately. This is why we will ignore this
kind of situation in what follows. We can concentrate on what happens
at the point of contact.

In the dual case, where two up trees meet, we cannot meet any problems

aa g

A third kind of situation where the merger cannot go wrong is the situa-
tion where an up tree is merged with a down tree. As was noted above,
this is a case where our geometrical intuitions about paths have to be
stretched a little. In these cases the first tree, which is an up tree, and
the second tree, which is a down tree, should be thought of as hanging
at the same root, but not at the same time. The second tree can only be
built after the collapse of the first tree. In pictures this looks as follows.

176 Chapter 4. The Dynamics of Propositional Structure

But the merger of trees can give rise to problems when a down tree and
an up tree meet. In such a situation the second path, up the tree, has to
fit in the tree associated with the first path.

We have already seen situations where this goes wrong. In both examples
it was easy to see in advance that something would go wrong, but in
general this can be quite difficult. Fortunately we do not have to see it in
advance. We can simply check it step by step, as we are performing the
merger. In each step of the merging process our actions will be determined
by what we find locally, at the point of contact. There we just have to
check whether the final segment of the first tree and initial segment of
the second tree match. We have already defined the notion of the final
segment for update trees, i.e for down trees. Here we extend this notion
to partial trees. We also define the dual notion of the initial segment
of a tree, that gives for each path the configuration that we find at the
beginning of the path. As long as we were dealing with down trees only,
we always found a root at the beginning of our paths. But since we also
have up trees, there are more ways in which a path can start.

4.4. Trees as an update algebra 177

Definition 4.4.5 We define the functions segy and seg; on trees in Ty
as follows.

segr((2)) = (2), segi((2)) = (1);
segs((0,2)) = (2); segi((z,0)) = (1),
segr((x () = ((2, ())); segi(((¥'),2)) = (('),2);
segy((2,0)) = segy(o), segi((0,1)) = segi(0),
if o # (V); if o # (7');
segs((n (¥), (")) = (0, (), (0"); segi((("), (), 2)) = ((2"), ('), 2);
segy (1, (), 0)) = segy(0), segi((o, ('), 1)) = segi(o),
if o # (2); if o # (");
segs((d',1,0)) = segs((1,0)); segi((d',1,0)) = segi((¢”,2));
segs((A, (2))) = (A, (2)); segi((2), p)) = ((2), P);
segs((A, p)) = segs(p), segi((A, p)) = segi(A),
if p# (2); i A # ()
segs(0) = 0; seg;(0) = 0.

We will keep the same notation for final segments, writing 7(p) to indicate
that segs(7) = p and 7{p'} if we have substituted p’ for the final segment
of 7. For initial segments we introduce similar notation: (A)7 and {\'}r.
If we want to indicate the final or initial segment in a picture, this looks
as follows.

a down tree with an up tree with
final segment indicated initial segment indicated

We need the final and the initial segment to keep track of shape of the

178 Chapter 4. The Dynamics of Propositional Structure

path at its end and beginning respectively. Note that up trees have a
trivial final segment, of the form (z), and that down trees have a trivial
initial segment. Another interesting case are the trees of the form (A, p),
but we will not discuss this case until we need it.

We have included a clause for 0 in the definition. Of course the final
or initial segment of the undefined tree is not a particularly meaningful
notion, but this way segy and seg; become total functions. This will make
some technical details slightly more elegant later on.

Now we can get back to our description of the merger of a down tree with
an up tree. We see that when a down tree and an up tree meet, there are
two possibilities. Either the final segment of the first tree and the initial
segment of the second tree clash as in the examples above. Then we reach
the error state: there is a local mismatch between the two paths.

Or else the final and initial segments have one of the following shapes.

| A4
A A A

collapse

I

In the two cases indicated here we see that locally the paths match. The
final segment and the initial segment together form a complete subtree.
Now we can simply compute the information of this subtree, collapse the
subtree itself and add the information at its root.'® Then the two trees
will have a new final and initial segment, and we can check again whether

19\We have to chose in which of the two trees to store the information of the subtree.
We will prove later on that the choice does not really matter. If the reader cannot
wait for this, she can also store the information in both trees.

4.4. Trees as an update algebra 179

these match. Continuing in this fashion, we either reach the error state
at some point or we reach a situation which is no longer of this type. In
that case either the down tree of the first path is absorbed by the second
path, or the up tree of the second path is absorbed by the first path.
Then we are in a situation where at the point of contact it is no longer
the case that a down tree and an up tree meet, i.e. we are no longer in a
problematic case.

Before we make formal sense of this pictorial explanation, we have to
consider one more case. This is the case where one (or two) of the trees
is of the shape (), p). We already explained above that, if the first tree
is of this form and in case p is not a trivial tree, (A, p) behaves just like
a down tree at the point of contact. But if p = (2) for some 2 € I, then
the bridge shape of (A, p) is relevant. This explains the definition of the
final segment: if p = (2), then seg;((A,p)) = (A, p). Else we just get

segr((A, p)) = segs(p).

In such a bridge shaped situation a clash can occur, for example in:

/\ . = 0

If we simply glue together these paths, then we get something that cannot
occur in a binary tree. What we get reminds us of the second example of
a mismatch discussed above.

There can also be a match between the bridge and the initial segment.
This again reminds us of something that we have seen before. But now,
even if the trees match, we never get a complete subtree. So we do not
get a collapse. In a picture:

180 Chapter 4. The Dynamics of Propositional Structure

/\ .

N

We see that we do not get a complete subtree, so there is no collapse.
Of course the symmetrical situation, where the second tree is ((z), p), is
handled analogously.

Now we are ready for the formal definition of the merger of partial trees.
It will simply be summary of the explanation above.

Definition 4.4.6 We define the merger of two trees T and 7', To7'. We
distinguish the following cases, considering all combinations of final and
initial segments:

Te0

7((w)) ® ()7’

We distinguish four subcases -

I
o
Il
=]
°
-1'\-.

o)e(u) = (wAu)
(a,zu) (n) 2 (0,20 A1)
(0) ® (1,0") = (0An,0)

(G,zo)-(zl,a) £ (0,90 A1y, 0')

[les

7((0, (1)) ® ((22))7’
7((20)) ® (((22),22))7’

7{(20, () ® ((2))7)}
{(T((0)) o (u1),22)}7’

[

4.4. Trees as an update algebra 181

(10, (1), (2))) ® (37 = T{(0, (1), (12) ® ((12))7")}
(@) ® (1), (2).1))7 = {(T((0)) @ (1) ,(22),20)}7"
T((o, (), (2)) ® (((13),2a))T = (T{(10)} ® (11 = 22 A25)) ® {(2a)}7’
7((10, (1)) ® (((22), (3),24)) 7’ = T{(0)} ® ((11 Ao — 13) ® {(1a)}7")
(A (0)) @ (@)™ = (A, (20) ® ((1))7")
(@) ® ((1),p) 2 (T(()) ® (u),p)
(A (10)) ® ((@)22)T 2 {(N (o) » (1) ,22)}7"
(0, () ®((12),0) 2 T{G0, (1) () ,p)}
(0, (1)) ® (((2),))7 2 0
(0, (1), (12))) ® (((1a), ()s2s))7" 2 0
7((0, (1), (12))) ® ((13),p) Z 0
(A (10)) ® (), G2))7 2 0
(A () @ ((),p) = 0

The definition contains a lot of cases: one for each combination of final
and initial segment. For each case there is also a symmetrical one. In our
presentation each case is followed by its mirror image.

Each case in this definition has already been covered in the pictorial ex-
planation above. The cases (3), (5) and (9) are cases where the second
tree is a down tree. These are easy cases, where we can just glue the paths
together and nothing can go wrong. The cases (4), (6) and (10) are dual:
here the first tree is an up tree. Case (2) is the situation where an up tree
is followed by a down tree. This is also a situation in which nothing can
go wrong. The real work has to be done in the remaining cases, (11)-(17),
where either a down tree meets an up tree or else one of the trees has a
bridge shape. Here we can make one step of the computation as indicated
and then we continue with the new situation.

We give one last example of how this works in pictures. In the example
we see how a down tree and an up tree are merged. In the first step the
final and initial segment match. So a subtree is completed and the result,
(tL Ak — p), is added to the second tree. In the next step we see that the
final segment and the initial segment do not match. We reach the error
state, 0, and the computation stops.

182

Chapter 4. The Dynamics of Propositional Structure

K K

A A

Now it is not difficult to prove our claim that the class of the trees over
I can be generated from the basic trees with the merge operation e.

Lemma 4.4.7 (Generation Lemma) If 7 € Ty, then 7 can be con-
structed from basic trees with a finite number of applications of e.

Proof: In the proof we follow the inductive definition of Ty. We will
assume that the conditions of its clauses are satisfied. (Recall that for all
7 € downTy, seg;() is of the form (2) and that for 7 € upTy, segs(7) is
of the form (2).)

1.
2.

(2) € T3 is a basic tree.

If o is constructed from basic trees, then (2) o ((T,(T)) e o) gives a
construction of (z,0) from basic trees.

If o is constructed from basic trees, then (o e ((T),T)) e (z) gives a
construction of (o,1) from basic trees.

If o is constructed from basic trees, then (z) o ((T,(T)) e ((2')
(((T),(T)) e 0))) gives the required construction of (z, (+'), o).

If o is constructed from basic trees, then (((c e ((T),(T))) e (')
((T), T)) (2) gives the required construction of (o, (2'),2).

If o’ and o are constructed from basic trees, then (o' e (((T),T) e
() @ ((T,(T)) ®a)))) gives the required construction of (¢',2,0).
)

If X and p are constructed from basic trees, then Ae (((T),(T)) e p)
gives the required construction of (A, p).

4.4. Trees as an update algebra 183

4.4.4 Associativity

Now we go on to prove that the merger is an associative operation on
partial trees, thus ensuring that what we have defined is a monoid. We
find that, because of the generation lemma, the following result suffices
to prove associativity.

Proposition 4.4.8 (Basic Associativity) Let two trees 7 and 7' and
a basic tree 3 be given. Then (Te3) e =T (Be7').

Proof: Appendix. O
We can extend this associativity result as follows:

Proposition 4.4.9 (Full Associativity) Let three trees 79, 71, 7 € T}
be given. Then:

(oeT) e = o ® (11 ®T2).

Proof: By the generation lemma we can write the 7; as products of basic
trees. Let n; be the number of basic trees we need for ;. The proof will
be by induction on n;.

If n; =1, then 7 is a basic tree and we are done by the previous propo-
sition. So let ny = n + 2 and assume that the statement holds whenever
ny < n+ 2. Then 7, is a product of basic trees and can be written (by
the induction hypothesis) 7 = 7 e § for some tree 7 and a basic tree (3.
Now:

(oem)em =

(toe (e 3)) e = (by induction hypothesis on 7,)
((roe7)e3)em = (by induction hypothesis on 75 e (7 e 3))
(toe7)e (B e7) = (by induction hypothesis (for n; = 1))

184 Chapter 4. The Dynamics of Propositional Structure

e (re(Be7)) = (byinduction hypothesis (7 is smaller
than 7!))
Toe((Tef)eT) = (by induction hypothesis on 7o (e 7))

To® (71 ®T2).

This proves the proposition.
O

Now it is clear that the partial trees as we have defined them in this section
form a monoid. This means that the partial trees may provide a suitable
setting for text semantics: in section 4.1 associativity was introduced as
the methodological constraint on text semantics.

The next step is to check that the partial trees actually form an update
algebra, as the title of this section promised, with as states the update
trees of the previous section. After that we have to see whether the update
functions of section 4.3 really can be represented in this update algebra.

Proposition 4.4.10 (71, downTy, e, (T)) is an update algebra.

Proof: We know that (T3, e) is a monoid. It is clear that (T) is its unit.
It is not difficult to check that OT AT holds:

if 7 e 7' € downTy, then already 7 € Tj.

4.5 Trees and texts

In section 4.3 we have seen that texts can be interpreted as update func-
tions on down trees and in section 4.4 we have seen how trees form an
update algebra. In this section we make the relation between the seman-
tics of section 4.3 and the trees of section 4.4 precise. First we define the
tree representation of a text.

4.5. Trees and texts 185

Definition 4.5.1 For a text ¢ € Text, we define its tree representation

[¢] € Tx.
[= (L)
[Pl = ();
/1 = (T.(T));
[then] = ((T),(T));
[end] = ((T),T);
[¢4] = [¢] e [¥].

Now we can check that this tree representation indeed generates the up-
date functions from section 4.3.

Proposition 4.5.2 Let a text ¢ € Texty be given. Then [¢] = Ppgy.

Proof: The proof for the basic cases L, p, if, then and end consists of a
careful comparison of the clauses of definition 4.3.3 with the corresponding
clauses in definition 4.4.6.2° For compound texts, ¢, the result is a direct
consequence of the fact that 77 is an update algebra:

[6¢] = [¢lo[¥] = Prgo Py = Ppelepy] = Previ-

a

So we have an equivalent representational semantics for the update se-
mantics of section 4.3.

Thereby we also inherit the notion of truth from section 4.3. The following
corollary can even been seen as an explanation of the notion of truth we
defined there: it turns out that texts that are true (in I) have (T) as
representation.

Corollary 4.5.3 Let a text ¢ € Texty be given. Then ¢ is true iff [¢] =
().

220f course we have to read 0 as undefined (or vice versa).

186 Chapter 4. The Dynamics of Propositional Structure

Proof: Recall that ¢ is true iff (T)[¢] = (T). Hence ¢ is true iff
(T)e o) =(T)iff [¢] =(T). O

With the tree representation of texts we have obtained a more refined test
of well formedness: the grammatical texts have a trivial tree representa-
tion — (2) for some ¢ € I — the coherent texts are precisely the texts
that are not represented by 0 and the left (respectively right) complete
texts are the texts that have a down (up) tree as a representation. The
advantage over the test with the update functions is that we can now
easily distinguish among the trees that are both left and right incomplete
from the texts that are just left incomplete.

4.6 Discussion

The main conclusion of this chapter is that an incremental semantics (of
texts) is feasible, even if typically non-associative phenomena occur. We
have used implication as an example of a non-associative operation, but if
we look at the techniques that we have used, we see that these techniques
do not depend on the nature of implication. They are applicable to any
n-ary operation which has a well defined semantics. Suppose that we have
an n-ary construction op(¢, ..., ¢,) that corresponds in the semantics to
some n-ary operation OP. Then we simply add sufficiently many extra
constants to the language, start,,, mark;,, and end,, say. Now we can
represent op(dy, ..., ¢n) as start,,¢; mark,,, ... mark,_y,, ¢, endy,. In
the case that we have worked out here, the binary operation is implication
and we have added constants if as a start symbol, then as a marker
between the argument places and end as a closing symbol. This binary
operation gave rise to binary trees in the semantics, in the general case
we will have n-ary trees. In the interpretation of this expression we store
the n arguments of OP in the n branches of such a tree. When we meet
the constand end,,, we compute the operation OP on the n branches. So
we have developed a general strategy to deal with these phenomena by
exchanging non-associativity for structured memory.

It was also shown that the update view on semantics and our tree se-
mantics are compatible. We have been able to fit our update functions
in the general frame of Visser's update algebras. In an update algebra
the static meanings generate update functions canonically, but it is not

4.6. Discussion 187

excluded that also other update functions exist. This seems to represent a
very reasonable view on the relation between static and dynamic seman-
tics: it is hard to imagine static meanings that do not give rise naturally
to update functions, but, at least at first sight, it is not clear that all
ways to update information states should be representable statically, as
the meaning of some text:?! our text language simply may not be rich
enough.

We have used binary trees to represent the slots in memory that we need
for proof-like texts. For the kind of texts we consider this is not an
unreasonable choice. But our ways of reasoning do not always fit the
binary format.?* For example, we tend to use intermediate conclusions,
as in

Suppose Mary shows up. Then she will bring her dog along
with her. And therefore Bob and his cat will be forced to
leave.

If we want to represent such situations in our approach, binary trees will
not be sufficient. We would need structures of flexible length to handle
an arbitrary number of intermediate conclusions. This would make the
objects in our semantics more complex. Another problem would be the
semantics of end: there we would have to compute the content of such a
complex structure. But it is not obvious how this should be done. The
relation between the three statements in the example clearly is not very
simple and there is room for discussion about what exactly this relation
is. For example, is the fact that ‘if Mary shows up, then she will bring her
dog’ part of the evidence on which we base our conclusion that ‘Bob and
his cat will leave™ Or does the conclusion only depend on the information
that ‘Mary shows up’and that ‘she will bring her dog along with her’ and
not on the connection between these events?

Perhaps we should also make a remark about other kinds of texts. The
texts in this chapter are all of the same kind, the kind that comes with
if ...then structure. But in the general case different types of texts are
mixed. We find small arguments in long stories, in which not only a course

#! Although the idea is already implicit in Visser (1992a), it was Patrick Blackburn
who pointed out to me that one can think about the relation between update semantics
and static meanings in terms of representable functions.

**In Zeinstra (1990) an attempt is made to work with a more flexible language. She
also makes an attempt at an incremental semantics.

188 Chapter 4. The Dynamics of Propositional Structure

of events is described, but also more or less extensive comments on these
events are included. Each of these kinds of texts has its own peculiarities
which have to be taken into account in the semantics. In fact it seems
that in a text we find a nesting of these types of texts, each of which
has features that are crucial for the interpretation of the text and the
sentences of which it is made up. In our approach this will give rise to
different kinds of trees in the semantic universe. In such a mixed semantic
universe we will have to include information that tells us what kind of tree
we are working in currently. In this chapter this is not yet necessary, since
there only is one kind of tree. But once this kind of information is added,
the extension of the approach should be straightforward.

So we see that the techniques that we have developed are quite powerful.
They can be adapted easily to treat other operations instead of implication
and with a little extra help they should also suffice for a dynamic semantics
of ‘mixed texts'. Still there seem to be some generalisations that we are
missing. If we compare the semantics that we have developed here with
a DRT-style solution for the semantics of anaphora, then we see that
in both cases a similar move is made. In DRT the meanings of texts
are context-content pairs, (X, F'). Here the component X was added to
the semantics in order to account for anaphoric phenomena in texts. So
the truth-conditional information F' had to be embedded into a context
before the anaphoric interaction of the text meanings could be described
satisfactorily. Here we see a similar move: instead of just working with the
truth-conditional information ¢ € I, we have to embed this information
in bits of tree structure. These bits of tree structure serve exactly the
same purpose as the context sets of DRT: they allow us to represent
the interaction of the truth-conditional information in different parts of
the text, depending on their place in the structure of the text. So we
see that there is a general problem in dynamic semantics: representing
the interaction of information-in-context. We think that this point is so
crucial to dynamic semantics that it deserves to be the main point on the
agenda for years to come. The main contribution of a dynamic semantics
for natural language can then be a systematic account of the way in
which on different levels of meaning contextual information interacts with
information content.?® It is well known that this is important for the

23Note that here we use context and content as relative notions: we have seen that
the context-content pairs of DRT together can serve as the content component in our

Appendix 189

semantics of anaphora and presuppositions. We have shown that it is also
of great use in the interpretation of text structure. And probably there are
even more phenomena in the semantics of natural language which could
benefit from such an approach. On the technical side this means that it
would be a good idea to develop general techniques for the combination
of contexts and contents. In recent years Visser ((Visser 1992a), (Visser
1992b), (Visser 1992¢)) has made a start with the development of such a
theory, but it is clear that a lot of work in this area still remains to be
done.

Appendix

We use this appendix to present the proof of the basic associativity result
(proposition 5.7) that is essential for the associativity of e. The notation
Is as in section 5.

Proposition 4.6.1 (Basic Associativity) Let two trees 7 and 7' and
a basic tree 3 be given. Then (Te) o7 =Te(fe 7).

Proof:
We can assume that 7 =7(p) and 7’ = (A\)7".
Now we distinguish two situations:
either:** seg;(re3) = seg;(pe3) and seg;(Be7') = seg;(fo).
or
not: segs(7 e 3) = segs(p e B) and seg;(B e 1') = seg;(F o \).
First we discuss the situation where not segs(r e 3) = seg;(pe 3) and
segi(fe1') = segi(B e N).
Assume first that segs(7 e 3) # segs(pe 3). This can only happen if 7o 3
gives rise to a collapse. Then either

p= (zUv (31): (32)) and ﬂ = ((T)v T)
or
p = (w,(u)) and g = ((T),(T), T).

tree semantics.
2 This first case includes the case where one of P, A is equal to 0.

190 Chapter 4. The Dynamics of Propositional Structure

We will discuss the first case. The second one is handled analogously. So
T o =7{(10)} ®(21 = 12).

Note that it is not possible that also 3 e 7' gives rise to a collapse. So
we know that seg;(3 e 7') = seg;(3 e A). This means that seg;(f e 7') =
((T), T Ay) = Be(2), where 1, is the leftmost node of A.*

This gives us:
(repB)er’ =
(T{@)} o(' — ")) o 7'
and
re(Ber) =
Te ((T),u)Be7 =
(T{@} o(' = 2")) & {()}(BeT).
Since seg;(Be ') = B e (1)), we see that {(2,)}(8e7')=7". So the result

follows.
The case where seg;(3 e 7') # segi(3 e A) follows by symmetry.

In the second case segy(7 e 3) = segs(pe B) and seg;(Be7') = segi(Be)).
Now it suffices to check that for all choices of p, 8, A we have

(pef)eX = pe(fel).

It is clear that this suffices, since e is specified entirely in terms of the final
and initial segments. We have to check the following 64 combinations®®
of p; e G e A;.

[p=seg(r)[B [)=seq(r) |
(1) (%) (2) (%)
(2) (w0, (1)) | (T, (7)) | ((21),%)
(3) (10, (11)1 (32)) ((T)! T) ((2’2)1 zfl)v Ef])
(4) (A, (1)) | ((T), (7)) | ((20). £)

25The terminology leftmost node should be clear: it is the point where the path
segment A starts. We could define this notion properly, but feel that this would only
confuse matters.

26We skip the really trivial cases where p;, A; = 0.

Appendix 191

We distinguish cases according to the value of k. For each case we handle
the easy combinations, i.c. the combinations where either the error state,
0, is reached or else three trees with the same ‘direction’ have to be
merged. For also if p;, B and A; are all down trees (or symmetrically
all up trees), then associativity is obvious. For each case we will specify
which are the remaining combinations.

k =1: Note that now 3 does not change the form of the final or the
initial segment. Therefore p; @ 51 @ A\; = 0iff p; @ A; = 0. This
isthecaseif: i=j=2,i=5=3,i=j=4or{i,5} = {3,4}.
Also if all three trees are down trees or all three trees are up trees,
no problem can arise. This is the case if one of 7, j is equal to 1.

There are four remaining cases: p; ® f; @ \; for i =2 and j € {3,4}
or, symmetrically, j = 2 and i € {3,4}.

k =2: Note that 3, is a down tree. Hence the final segment of p; e /3,
will have the same shape as 3,. This implies that p; e Se\; = 0
iff 3,8 A; = 0. This is the case precisely when j = 2. The other
easy combinations are those where all trees are down trees. This is
the case whenever j = 1.

The eight remaining combinations are those where j € {3,4}.

k =3: By symmetry with the previous case we may conclude that the
cases p; ® 3 @ \; with i € {3,4} remain.

k =4: Note that $; has both a non-trivial initial and final segment. This
means that it behaves both as a down tree (when merging with ;)
and as an up tree (when merging with p;). As a consequence there
are no easy cases with just three up trees or just three down trees:
we only have 0 cases as easy cases.

We see that p; @ 3,8 \; = 0 can be the case only if already
pi®fBy = Oorfie); = 0. This is the case whenever i € {3,4}
or j € {3,4}.

The four remaining cases are those in which {3, 5} C {1,2}.

We find that there are 4 + 8 + 8 +4 = 24 cases left to consider. By
symmetry it suffices to check twelve of these (if these twelve are chosen
carefully). For example, checking the following twelve cases suffices to

192 Chapter 4. The Dynamics of Propositional Structure

finish the proof.

p2e e (20, (11)) (2) ((13), (1), %)
P2 B e (20, (1)) (2) (%), p)
p1ef2e A () | (T,(T)) | ((5), (1), %)
P22 ®As (0, () | (T,(T)) [(), (1), %)
pzePae s || (0, (1), (22)) | (T,(T)) |((%), (%), %)
pie e (A () | (T, () | (%), (1), %)
p1e B2 () | (T,(T)) | ((:0),0)

P2 B2 e\ (0, (m)) | (T,(T)) | ((%0):P)
paefae s | (w0, (u), () [(T,(T)) | ((%),0)
paeBre X (A () | (T.(T) | ((w).0)
p1eBie (w) | (), (7)) | (20)

p1efie A (o) | (M), (M) | (%), %)

We leave it to the industrious reader to check these cases. (In fact the
cases where either p; ® §;. or (i e A; collapses have already been discussed
above.)

This completes the proof of the proposition. O

We have to admit that the proof is a bit clumsy. But at least it is pretty
straightforward as well: the main work is a lot of trivial case checking.
By general observations we have been able to reduce the number of cases
that actually have to be checked to twelve.

An alternative proof has been proposed by Albert Visser. It is possible to
embed the partial trees in a term rewriting system, Termtree say, such
that the term rewriting procedure actually computes the merger. The
terms of Termiree would be sequences of basic terms among which we
find our basic trees. A typical rewriting rule for Termitree would look
something like:

(20, (1)) ® ((12), (23)) ~ (20, (1 A 22), (13)).

Now the proof of the associativity would follow from two observations
about Termtree:

o The normal forms of Termiree are exactly the partial trees of T7;

o Termiree has strong normalisation.

Appendix 193

Then we would know that different ways of rewriting the terms (or: com-
puting the merger) would give the same result.

We have chosen not to present this proof in detail, although it is more
elegant than the direct proof. One reason is that we would have to intro-
duce a lot of notions for no other reason than to make the proof readable.
Another reason is that the resulting proof is not really shorter: the term
rewriting system has a lot of rules (it has to do the same thing as the def-
inition of the merger which has 17 cases), which makes the normalisation
proof tedious.

Chapter 5

Proofs as Texts

5.1 Introduction

In the previous chapters we have seen how the dynamic approach provides
a new perspective on semantics. We have seen how several assumptions
that are traditionally made in sentence semantics have to be adjusted in
a satisfactory account of the semantics of texts. The crucial idea behind
many of the adaptations that we discussed was the small unit principle:
since texts are big, any reasonable model of the way we interpret texts
should work with small units. Any formal model of text interpretation
has to show that it is possible to work through a large text in small steps.
As a result of this small unit principle we came to the conclusion that the
crucial ingredient of a dynamic semantics is the way it accounts for the
interaction between different parts of the text. Since dynamic semantics
can only work with small units, the global relations between different
parts of a text, will have to be coded up locally in a dynamic set up. We
have seen that this applies to the semantics of variables but also to other
levels of interpretation, such as the interpretation of text structure.

In this chapter we make a shift from semantics to proof theory: we try to
develop a dynamic proof theory. This means first of all that we are looking
for the proof theory for the formalisms that we use in dynamic semantics.
For example, a dynamic proof theory in the end should tell us how we
can build proofs for DPL. But we do not only want the proof theory to be
dynamic in the sense that it works for dynamic semantics: we also want
to find back some of the crucial ideas about dynamics in the way the proof
theory works. In fact it is this second aspect of dynamic proof theory on

195

196 Chapter 5. Proofs as Texts

which we will concentrate: we will develop a proofs system that treats
its proofs as texts and models proof building as text construction. Then
the dynamic perspective on the way we deal with texts will automatically
apply to our proofs system. For example, the small unit principle will tell
us that we have to build up the proof texts bit by bit, just as the other
texts.

Note that it is not hard to give a deduction system for DPL if we are
prepared to drop our second aim in dynamic proof theory. If all we want
is a way of deciding whether:

¢ EppL ¥

then things are easy. We know that ¢ ppr ¥ iff =ppr (6 — ¥).! Since
we have a truth-preserving translation from DPL-formulas to formulas in
standard predicate logic, we can simply translate this problem to predicate
logic and answer the question there.? So it is clear that it is the second
aim that makes dynamic proof theory interesting: it only makes sense to
give a deduction system for DPL if this deduction system itself also has a
dynamic flavour. But before we can start to do this we have to make up
our mind as to what a deduction system with a dynamic flavour is. This
is what we intend to do in this chapter: we will propose the proofs as
texts perspective as the suitable form of dynamics in proof theory. Then
the second step would be to actually develop a deduction system for DPL
that has a dynamic flavour. Unfortunately we will not be able to make
this second step in this thesis: this will have to wait until some other
occasion.

So in this chapter we will restrict ourselves to developing the idea of
a dynamic proof theory. We will first do this informally in section 5.2.
Then we will make the informal ideas precise in an example: we will give a
dynamic proofs system for a fragment of intuitionistic propositional logic.

'Here we ignore our earlier remarks in chapter 3 about partiality for a moment:
we consider the notion of validity as defined in Groenendijk and Stokhof (1991a) (cf.
section 1.5).

2 Also see Van Eijck and De Vries (1992b), who give use a Hoare-calculus for DPL
to do this in an ‘on-line’ manner.

5.2. Dynamic proof theory: proofs as texts 197

5.2 Dynamic proof theory: proofs as texts

The origins of the proofs as texts perspective lie in our attempts to come
to grips with the proof theory of the formalisms that are currently used in
dynamic semantics. Dynamic semantics originated as an attempt to find
an elegant and natural representation of phenomena of text coherence,
such as anaphora. These dynamic investigations have led to a different
look on the formal objects that are used in the semantics to represent
the meanings of natural language expressions. The formulas used to be
treated as if they were sentences, but in dynamic semantics it is more
appropriate to treat formulas as if they were (small) texts. This view
of formulas as texts has had several interesting consequences for the ar-
chitecture of formal semantics. We will not go into the details of these
developments, but we will try to give a feel for the issues that arise when
we try to give a proof theory for such formalisms.

First we note that the kind of anaphoric links that we saw in our exam-
ple can also occur between the assumptions and the conclusions of some
argument in a text. For example in:

Assume a man owns a house. Then he also owns a garden.

the man in the conclusion is definitely supposed to be the same man as
the man in the assumption. It seems natural to require that a proofs
system for dynamic semantics should take such possibilities into account.
This means for example that one of the theorems of dynamic logic should
be:

If a man owns a house, then he owns a house.

Therefore, when we try to decide in our formalism whether ¢ P, we
should allow for anaphoric links between ¢ and 1 to occur as if ¢ occurred
before i in some text. These anaphoric phenomena give rise to unexpected
complications in the logic. For example, a logic that can handle anaphoric
links should be able to explain what happens in the following example:3

If a man owns a house, he owns a garden.
If he owns a garden, he waters it.

Therefore: if a man owns a house, he waters it.

3Due to Johan van Benthem.

198 Chapter 5. Proofs as Texts

It is quite clear, intuitively, what goes wrong here: the anaphoric link
between a house and it that we find in the conclusion is not justified by
the assumptions. The other link, between a man and he, is perfectly all
right. It turns out to be rather difficult to find a formulation of the logic
that explains these things in a natural and elegant way.*

These complications have led us to believe that a different design of the
deduction system could be of great use in improving our understanding of
the logic of these formalisms. For example, as was already pointed out, in
¢ b 1 one should treat ¢ as if it occurred before ¢ in a text. Therefore a
presentation of the logic in which this order is reflected is to be preferred
in a deduction system for dynamic logic. This shows that anaphoric links
do not only suggest changes in the design of the semantic machinery, but
also in the set up of the deduction systems for dynamic logic: at the very
least these deduction systems should respect the order of the formulas in
some way or other.

Here we will go one step further: we will not only consider the expression
& F 9 as if ¢ occurred before v in some text, we will in fact treat the
whole expression as (the representation of) a text. For example, we read
the expression ¢ v as:

Let’s assume that ¢ holds. Then we may conclude that .

If we do this, the anaphoric links between ¢ and v will be represented
correctly and later also other phenomena of text coherence that we may
want to represent will automatically fall into place.

Note that it is not at all unreasonable to think of a proof as a text. For
usually proofs are presented to us as texts. They are a special kind of
text, of course: they are the kind of text that has been written in such
a way that every step that is made in the text preserve validity. It is
only natural to try and use these proof-texts in a deduction system for a
formalism in which the formulas themselves are also (representations of)
texts. Designing the proof objects as if they were these proof texts has
the additional advantage that we obtain a representation of such proof
texts. It is a well known fact (cf. Fine (1985)) that the way we like to
present our proofs in real life—e.g. in math books— is quite different
from the way proofs are built in the deduction systems we use for, say,

4Cf. Kamp and Reyle (1991), Vermeulen (1989), Saurer (1993), De Vrijer (1990).

5.2. Dynamic proof theory: proofs as texts 199

predicate logic. But the official criterion for the correctness of a mathe-
matical result still is the question whether it can be recast into a formal
deduction in some (sound and complete) deduction system. Typically the
way mathematicians like to present their proofs is very far from the way
proofs work in formal deduction systems, but here the proofs as texts idea
could help. If we succeed in designing a proofs as texts deduction system,
this may help to bridge the annoying gap between the proof theory and
proof practice.

These are the two main reasons for choosing a proofs as texts presentation
of a dynamic logic: many proofs in real life are indeed presented to us as a
special kind of text and by treating proofs as texts we will automatically
be in a situation where we can discuss all phenomena of text coherence
that we may want to cover in our logic. Note that by chosing to regard
proofs as texts, we immediately make the methodological principles that
we have discussed for texts in general applicable to proofs systems. So it
is clear from the start that the proofs as texts idea is going to mean: we
will have to present a picture of proof building that is in agreement with
the small unit principle.

In this chapter we concentrate on developing this idea as such and we
will apply it to a very simple example. We will not try to give deduc-
tion rules that can cope with anaphoric links: our language will be too
poor to represent such links. Here we will present a prototype of the kind
of deduction system that we will try to use later to get at the logic of
anaphora. So we intend to develop a satisfactory account of the logic
of texts in several steps: we first give a rudimentary proofs system and
then we intend to refine this later to include (other) phenomena in the
machinery that are especially important in texts. Anaphora is the most
salient example of such a phenomenon. An aspect of texts that we will be
concerned with from the start is the structural coherence of a text. We
will see that the structural organisation of a text is the main tool in the
formulation of a logic in proofs as texts style.

The choice for the proofs as texts perspective has interesting consequences.
We are now in a situation where we have a formalism in which we represent
texts, while at the same time the proofs for this formalism are also texts.
So the proofs will form a special subset of the set of all formulas and the
usual convenient distinction between the level of the formulas and the
meta-level of the proofs over these formulas is no longer available. We

200 Chapter 5. Proofs as Texts

represent the proofs at the same level as the formulas.

This situation could easily lead to a proliferation of connectives in the
representation language: besides the usual connectives that occur in a
sentence we now also have to represent connectives between sentences,
i.e. ways in which sentences can be combined into texts. But fortunately
the two ways of combining sentences into texts that we are interested
in here have a natural counterpart on sentence level with more or less
the same meaning. Therefore we can use just one connective on both
levels. An example of this situation is conjunction: this is represented
within one sentence by expressions such as and and but. But also different
sentences can be presented in such a way that it is clear that they should
be interpreted in a conjunctive manner. In fact this seems to be the
default option if two sentences occur after each other. So one symbol for
conjunction is enough.

Another example of such a situation is provided by implication and valid
inference. Within one sentence implications occur in the guise of if-then
constructions, but there are several constructions that do the same thing
between different sentences. Think of constructions such as

Assume that Then it is clear that

Also here we can use just one symbol for both situations: both if-then
sentences and the entailment relation between different sentences will be
represented with the same symbol. The technical justification for this
move is the fact that we have the deduction theorem for our logic. If
this were not the case, we might be forced to work in a language with
two implications, one for ordinary implication and one for the entailment
relation. Conjunction and implication are the only two connectives that
we will use in this chapter.

So we see that we get a representation on the level of formulas of all
sorts of operations that we used to think of as operations on the level of
proofs. For example, we now have a connective to represent the notion
of valid inference in our formulas, namely the connective that we also use
for implication. But we also find that notions that we used to think of a
sentence level notions now apply to proofs. For example, now that a proof
is ‘just another formula’ it makes sense to talk about the meaning of a
proof in the same sense as about the meaning of any other text. This is
an interesting observation that we will not follow up here, but the reader

5.3. The language of proof texts 201

may wish to consult chapter 4, Vermeulen (1994b) for more details on the
issue of the meaning of proof texts.

We already pointed out that in a proofs as texts deduction system the
criteria that we discussed in chapter 4 apply to our proof objects. This
gives the other constraints on the way the proofs system should work. In
particular, texts are usually written incrementally or, to be more precise,
usually we expect texts to be written in such a way that they can be
read incrementally. In chapter 4 we have argued that this means that
texts should allow for an incremental interpretation: the intuition that
texts have this incremental quality seems too strong to ignore. Here we
will also try to incorporate it in the design of our proofs system: the texts
that are the proofs of our deduction system will be built up incrementally.
Thus we get a picture in which proofs are texts that are built up step by
step, taking care that validity is preserved along the way: theorem proving
is modeled as text construction.

The rest of this chapter will be devoted to the development of an example
of a proofs as texts deduction system. We will apply the ideas discussed
above to the {A, —, L }-fragment of intuitionistic propositional logic. First
we will define the language of this fragment in a particularly suitable way
and we will discuss the structural notions that will play an important role
throughout the chapter. Then we will go on and give a characterisation
of derivability in terms of these structural notions. We will prove that
our calculus does indeed give us precisely the theorems of intuitionistic
logic. We will use the calculus to present an incremental proofs system
for the logic. We have included an appendix with some familiar proof
theoretic results about the fragment of intuitionistic propositional logic
that we discuss.

5.3 The language of proof texts

In this section we define the language that we will use for the represen-
tation of proofs. As was announced above, we will restrict ourselves to a
propositional language and we will identify sentence level and text level
operations. We have chosen to keep the sentence level notation. Hence
our formulas will contain — as a sign both for implication and for entail-
ment. Similarly A will be used for conjunction within a sentence as well
as for concatenation of sentences. We will ignore all other connectives.

202 Chapter 5. Proofs as Texts

The objects of our proofs system will be (special) formulas of our language.
We want to formulate the rules of our proofs system as conditions on the
construction of these formulas. The conditions will have to guarantee
that the formulas we build are exactly the valid formulas of the language.
These construction conditions will depend heavily on the structure of the
formulas. The information about the structure of a formula tells us how
the connectives in the formula are nested. In particular it will tell us how
the implications in the formula are nested and thereby we will be able to
tell which part of the text contains the assumptions that we can use at
some point in the construction. We will use a representation of formulas
as trees to characterise the structural information that we will need. Thus
we will not only have a left to right order in the proof texts, but also a
hierarchical order. These two ways to impose order on a text together
will allow us to formulate proof rules as rules for building valid texts.

So the language that we will use is well known: it is simply the {A, —
, L}-fragment of propositional logic. But instead of the usual inductive
definition of this language, we define the formulas to be a special kind of
ordered labelled trees. Of course there is an implicit tree structure in the
formulas as we usually define them: their construction or parsing tree.
Here we choose to make this structure explicit and identify the formulas
with their parsing trees.

We make this move for simplicity only: since there is a one-one correspon-
dence between formulas in the usual sense and the (parsing) trees that
we will use as formulas, none of the results depend on this move. But as
it is the structure of the parsing trees that we use for our characterisa-
tion of validity (in section 5.4.3), we can save some work by making the
identification of formulas with their parsing trees from the start.

Definition 5.3.1

o A tree is a pair (N, <), where N is a set, the set of nodes of the
tree, and < is an ordering on N such that:

> there is a mazimum element r € N, called the root of the tree,
i.e
dJre Nvne N: n<r.

> for each n € N the set of nodes above n, t(n) = {m € N :
n < m}, is linearly ordered by <. So:
Vn € N :t(n)xf(n) N < is a linear order on f(n).

5.3. The language of proof texts 203

o Given a set LAB of labels we can define the notion of a tree with
labels in LAB, or, for short, a labelled tree, as follows.

A labelled tree is a triple (N, <,1), such that (N, <) is a tree and l
is a mappingl: N — LAB.

o An ordered labelled tree is a quadruple ¢ = (N, <,l,{<n.:n € N}),
where (N,<,l) is a labelled tree and {<,: n € N} is a family of
relations such that each <, is a linear order on the daughters of n.

Now we focus on a special set of ordered labelled trees: the formulas of
our propositional language. In the definition we use D(n) for {m € N :
m <n & -3k: m <k < n}, the set of daughters of n.

Definition 5.3.2 Let ALPH = {A, —, L, po, p1, ...} be the set of
labels. Now we define L, to be a subset of the ordered labelled trees with
labels in ALPH :

an ordered labelled tree (N,<,l,{<,: n € N}) € L, iff the following
conditions are satisfied:

o If D(n) =0, then l(n) & {A, =}.

o If D(n) # 0, then D(n) contains ezactly two elements and l(n) €
{n,—}.

In the definition of £, we have ensured that each tree in £, is binary
branching and that the labelling is such that the leaves of the tree are
labelled with atomic propositions and all the internal nodes are labelled
with a connective. This way we make sure that all the trees in £, look
like the parsing trees of the formulas in the usual sense.® So although we
have chosen to define the language as a special set of labelled trees, it is
clear that a formula in the usual sense can be obtained from a labelled
tree by reading off the labels of the nodes.

Also the usual notions defined on formulas can easily be reformulated in
tree terminology. When ¢ is given, the nodes of ¢ give us all the informa-
tion about the subformulas of ¢ and their occurrences in ¢. A formula v
is a subformula of ¢ iff there is a node in ¢ such that 1 is (isomorphic to)

5Note that this way of defining construction trees works for every context free lan-
guage. For more details on the correspondence of context free grammars and labelled
trees we refer to Kracht (1993b).

204 Chapter 5. Proofs as Texts

the tree below this node. Each node that has this property determines
a different occurrence of v in ¢. The root of the tree corresponds to the
only occurrence of ¢ as a subformula of ¢.

In the rest of this chapter we will use the lower case Greek letters ¢, 1,
Y, ... as variables ranging over nodes. Thereby, strictly speaking, they
correspond to occurrences of subformulas. But we will allow ourselves to
use the same variables for subformulas if we feel that no confusion can
arise. Note that the tree ordering < automatically gives us an ordering
on the subformula occurrences of ¢, the suboccurrence relation. We will
also use < for the subformula relation that can easily be obtained from
the suboccurrence relation. In our notation we will use = for the equal-
ity of subformulas and = for the equality of subformula occurrences, 1.e.
of nodes. % is used in defining equations. Another important notation
convention is that we will write down the formulas in the ‘usual’ way.
Although officially formulas are trees we will use the traditional linear
notation. So (p — ¢) stands for the tree with only three nodes: a root
node and two daughter nodes, where the left daughter is labelled p, the
right daughter is labelled ¢ and the root has label —. We will not spell
out in detail how the traditional notation can be obtained for an arbitrary
tree in £,: we trust that the reader can see how this is done.

Recall that we will not think of the formulas of this language as sentences,
but more generally, as texts. A formula such as (p — ¢), for example, can
stand for a text fragment such as:

Let’s assume p. Then it is safe to conclude g.

Note that in the texts that we use in real life to represent proofs all sorts
of things are allowed that cannot be represented in our simple formal
language. For example, in a proof text it can happen that the assumptions
for some claim are given after the claim itself, as in:

Then n? will be an even number if n itself is even.

We cannot represent such a situation in £,. Another thing that is quite
common in proof texts, but that will not be considered here, is the use
of intermediate conclusions. In a proof text we usually find constructions
such as:

Assume that n is even. Then n? is even as well. So n? + 1 is
odd. Therefore 1(n? + 1) is not an integer.

5.3. The language of proof texts 205

Here the second and the third sentence are intermediate conclusions that
lead up to the final conclusion that 3(n® + 1) is not an integer. Such
intermediate conclusions do not exist in £,. In the implications of £,
we only have room for the assumptions and the final conclusion. If we
want to represent the intermediate conclusions we have to use a trick:
for example, we could form a conjunction of both final and intermediate
conclusions.

We choose to work within these limitations because we want to keep
our representation language £, as simple as possible. Thus we will be
able to concentrate on the main point of the proofs as texts perspective:
everything is a text.

As was explained above, in this approach we will represent theorem prov-
ing as text construction. And while we are constructing a text we will
have no other information at our disposal than what we find in the for-
mula itself. In fact all that is left for us to use in formulating proof rules is
the structure of the formulas. In the next sections we will see that this is
really all we need: the interaction of the linear and the hierarchical struc-
ture of texts together gives all the information we need in our deduction
system.

The deduction system that we will develop for intuitionistic propositional
logic gives us an example of a deduction system in the proofs as texts
style. The system is developed in three steps: first we will discuss some
important notions concerning the structure of formulas. Then we will
show how these structural notions allow us to formulate criteria for the
validity of the formulas of £, (section 5.4.3). We will prove soundness
and completeness theorems for these criteria in section 5.5. Next we
will actually define the deduction system in proofs as texts style (section
5.6): we will formulate rules for building formulas in such a way that
validity is preserved. The rules will rely heavily on the criteria of section
5.4.3. Finally we will consider an alternative presentation of the deduction
system that is reminiscent of the linear notation for natural deduction
proofs.

206 Chapter 5. Proofs as Texts

5.4 The structure of formulas

In this section we define some notions concerning the structure of formu-
las. We will use these notions later to give a structural characterisation
of the valid formulas. The main idea of this characterisation can be illus-
trated with a few examples.

o For a formula of the form (¢ — ¥) to be valid, the information that
we find in ¢ has to justify the information in 1. For example in
(p — p), the first occurrence of p justifies the second occurrence of
p, but in (¢ — p) there is no information — only ¢ — to justify the
occurrence of p.

olIn (¢ = (¥ = X)), (¥ = x) as a whole has support ¢. We saw
above that in (¢ — x) v is support for x. Hence both ¢ and) may
serve as evidence to justify the occurrence of . For example, both
in (p— (¢ = p)) and in (¢ = (p — p)), the second occurrence of p
is justified by the first occurrence of p.

olIn ((¢ = ¥) = x), (¢ =) is the support for x. This implies
that we can use ¥ to support yx, provided we have sufficient support
for ¢. For example in ((p— (g = 7)) — (¢ — (p — r))) the final
occurrence of r has as support p, ¢ and (p — (¢ — r)). From
(p = (¢ — r)) we may conclude (g — r), since we have support for
p. But then we may conclude r, since we have support for ¢. Hence
there is sufficient support for r. We may conclude that the second
occurrence of r in this formula is justified.

This kind of reasoning suggests that in a formula we can systematically
locate the subformulas that may be used to justify the occurrence of other
subformulas. In (¢ —), ¢ is there to justify 1. But this observation
generalises to other formulas: we will develop a general notion of ‘justifi-
cation’ along these lines that will allow us to recognise all valid formulas.
In section 5.6 we will use this notion to give instructions for building valid
formulas. Since we regard these formulas as texts, such a system of in-
structions is in fact a proofs system: it tells us how to build texts with
preservation of validity.

5.4. The structure of formulas 207

5.4.1 Command relations on trees

Recall that the set of subformula occurrences of ¢ is ordered by the rela-
tion <. Each node in (the derivation tree of) ¢ represents an occurrence
of a subformula of ¢. Thus we can describe the structure of formulas in
terms of structural notions on trees. Such notions are well known from
the literature. The two kinds of relations on trees that will be crucial
for us are familiar from the literature on natural language syntax: com-
mand relations and precedence relations. For a general discussion we refer
to Kracht (1992), Kracht (1993b), here we will restrict ourselves to the
relevant examples of such relations.

We will use these relations to characterise the support relation on subfor-
mulas: we will say that one occurrence of a subformula supports another
occurrence of a(nother) subformula, if we can use the first occurrence to
justify the second occurrence. In the definition of the support relation
we use precedence relations and command relations. The precedence re-
lations are used for the following reason: a subformula occurrence 3 of
¢ can only support a subformula occurrence y if the two are separated
by an — sign. 1 has to be in the antecedent—i.e. left subtree—of this
implication and y has to be on the conclusion side, the right subtree.
This will be what the —-precedence relation gives us. Note that here the
linear structure of texts is important; a subformula can support another
subformula only if it occurs to the left of that formula.

Let us call the set of nodes in ¢ that have as label —, Sub_,(¢). Then we
can define the relation Precy’ as follows:

Definition 5.4.1
Let a formula ¢ be given and let ¥, x < ¢. Then Precy’ is the smallest
solution of the following equation:®

wPrec;’x of

IB—7)€Subs(g): v<B & x<1.

Here the notation 3(8 —) € Sub_,(¢) is used as shorthand for Ja €
Sub,(¢) : 38,7 : D(a) = {8,7} A B <a 7. The following picture

%In the rest of the chapter we will also only be interested in the smallest solution
of such equations, even if we don’t mention this explicitly.

208 Chapter 5. Proofs as Texts

illustrates the situation.

a=(B-=>7
y B
1 Sy

The other structural relation that is important for the characterisation
of the support relation is the command relation. We know that for i to
support x they have to be on alternate sides of an — and this is what
the precedence relation gives. But this is not enough: for example in
((p = q@) — p), p and p are on alternate sides of an implication sign,
but clearly p does not provide support for p in this situation. p can
only support the material that occurs after the first implication sign that
follows p. This means in the tree terminology that when 1 supports x,
the first —-node above 1 will be above x as well. This is known as a
command relation. The command relation keeps an eye on the nesting of
implications in a formula: it codes the hierarchical structure of a text.
We give the following definition.

Definition 5.4.2 Fiz ¢ € £, and consider an arbitrary ¢ < ¢.

o fo,(¥) is the smallest subformula of ¢ that is larger than v and of
which — is the main connective;

x=¢&-IX.xuxa (X =0 =2 xa) & <x' < 9))

5.4. The structure of formulas 209

o ¢ Comy’ x, we say P —-commands x in ¢;

Y Comz x ¥ x < fL(¥)

The following picture illustrates the situation: f(3)) is the first —-node
above 1 that is also above y. Note that it is not excluded that there
are —-nodes in between x and f(/). We only demand that there are no
—-nodes between 1 and f(¢).

We have argued that for ¥ to support x, 3 has to —-precede and —-
command x: the supporting subformula has to occur before the supported
subformula and it should be nested into the implicational structure of the

formula in the right way. Therefore we define the —-precede-and-command
relation.

Definition 5.4.3 Let ¢, v, x € L, be given. 1 PCY x
¥ PCG x def Y Comy’ x & ¥ Precy’ x.

So, for example, in ¢ = ((p — ¢) — p) we see a situation where p Preg]'n;
but not p Comy’p. Therefore p does not precede and command p in this
formula. On the other hand, in (p — (¢ — p)) we see that both p Precyp
and p Comy'p, so in this formula the first occurrence of p does precede
and command the second occurrence of p. Note that the first occurrence
is not preceded and commanded by the second occurrence in either case.

210 Chapter 5. Proofs as Texts

It is important to notice that in the definition of the command relation we
do not find an existence condition: we take ¢ itself as a default value for
f—(2)). But the precedence relation, as we defined it, demands that there
is at least one subformula in Sub_, of which both 1 and y are subformulas.
Hence in ¥ A x, ¥ will =-command x but it does not —-precede x. Hence
1 will not precede and command y in this case. This way we can make
sure that 1) does not count as support for y in ¥ A x.

We have defined precedence and command relations with respect to the set
of —-nodes in ¢. But the notions of precedence and command make sense
for any set of nodes S in ¢. Hence the definitions generalise to definitions
of S-precedence, written Preci, and S-command, written Comg, if we
replace Sub_,(¢) by S in the definitions. In what follows we will treat
S = Sub_,(¢) as default. We will allow ourselves to omit the superscripts
unless S # Sub_,(¢).”

5.4.2 Support relations on subformulas

In this subsection we apply the structural notions —-precedence and —-
command to define the support relation ¥ C, x on subformula occur-
rences of ¢. We define C4 in such a way that i Ty x implies that the
subformula y really needs support. For example in (p — g¢) it is ¢, not
p, that needs support. p is just an assumption an it is always allowed to
make extra assumptions. Therefore we do not want to find ¥ C p for any
1. But for ¢ the situation is different: if we intend to write down ¢, we
have to be careful to preserve validity. ¢ really needs support. We will
call such subformula occurrences that need support claims. For each ¢
the set of claims of ¢ can be defined as follows.

Definition 5.4.4 Let ¢, ¥ € L, be given. We define Cly(v), to express
that v is claimed in the proof text ¢;

Cly(¢) &
Cly((¥1 A2)) = Clyg(th) & Cly(¥) &
Cly((y = 92)) = Cly(n)

7Cf. Kracht (1992), Kracht (1993b) for more on command relations in general.

5.4. The structure of formulas 211

Examples are:

o pAg: Clong={p, ¢ PAq}
o (p—=q): Clypsg={g, p—4q}
Now we define the support relation as follows.

Definition 5.4.5 Let 1, x < ¢ be given. Then

Vs x & Clg(x) & ¢ PCyx

So we say that a subformula occurrence supports a claim, precisely if
it precedes and commands the claim. We can illustrate this with the
following example: in the previous subsection we saw that in (p — (¢ —
p)) the first occurrence of p precedes and commands the second occurrence
of p. Since the second occurrence is in a claim position we may conclude
that p supports p in this case. We can also see that the first occurrence
of p precedes and commands ¢g. But since g is not a claim of the formula
p does not support q.

It is on this notion of support that our characterisation of valid formulas
will be based. The basic idea is that a formula is valid iff all its claims can
be justified. The notion of justification will be defined recursively: either
a claim is justified directly because the formula contains an occurrence of
the claim that supports it — as in (p — p) — or the claim is supported
indirectly, as will be explained shortly.

The connection of this notion of support with our interest in texts that
represent proofs is as follows: in reading a proof text we might at some
point want to check a claim by the author. At such a point we have to
know where we can find the standing assumptions: does the author still
assume that ¢ holds or has this assumption already been cancelled? To
check this we have to look at the place in the text where this assumption
was made and see whether it was cancelled between that point and the
point where we are now. This is exactly what our support relation does
for us: given two places in the text, it tells us whether the assumption
that we find in one place is still in force at the other place. Whenever
we are reading a proof text we implicitly use the support relation to keep
track of the standing assumptions.

212 Chapter 5. Proofs as Texts

5.4.3 Justifying claims

In this subsection we define a predicate Just(1, ¢) that will express that
the claim 1 of the text ¢ is justified. Our way of checking this was in-
dicated at the beginning of this section: for a claim 1 we check whether
there is sufficient support. This means that we search among the formulas
that support the claim — as defined above — for material that actually
justifies the occurrence of the claim. For example, in (p — p), the sup-
porting material p clearly justifies the occurrence of the claim p. We will
have several proof rules that determine which conclusions can be drawn
from some set of supporting material.

In the examples that we have given we see that the justification of a claim
consists of a trip through the formula searching for support. Thus a suc-
cessful attempt at justification can be represented by the subformulas that
we meet on such a trip. We could include a representation of these trips.
That way we can have some kind of annotation of proofs in our system.
Then we would have to define a three place predicate Just(&,, ¢), that
expresses that £ represents a justifying trip for the claim ¢ that occurs
in ¢. Here we will not follow this direction. Right now we are content
to ignore to possibility to add annotation, in order to keep things simple.
We already made a similar decision when we chose our representation
language. Thereby our language of proofs itself has become too poor
to actually contain any kind of annotation. Adding the annotation now
would be a rather artificial attempt to make up for this limitation. There-
fore we will just stick to our strategy of keeping things simple: we define
the two-place predicate Just(y, ¢) to express that 1 is a justified claim
of ¢. If ¢ is fixed by the context we will write Justys(y) or even simply
Just (1)), instead. We will adopt a similar convention for Cl,. Recall that
the variables ¢, ¥, x, € ... range over nodes, i.e. subformula occurrences.
If we use = this means that we are only interested in the subformulas
below the nodes.

Definition 5.4.6 Let ¢ € L,.

def

Just(p,9) =

(direct proof)
H: T & (=9 Vv £=1)

5.4. The structure of formulas 213

(conjunction of proofs)
Vo Thie: v = (i AYe) &
Just(Yy, ¢l := 1)) &
JILSt(‘l,bg, qﬁ[’lf) L= wg])

(proof of an implication)
Vo 3 Y= (=) &
Ju’St(wﬂa ¢)

(generalised modus ponens)
v o 3 (Cle(y) &
Just(A{x : x Cev}, ol = Mx:xCe?}]) &
Just(&, o[= €)))
V ((Cle(Ll) &
Just(A{x: x Cel}, o[:= AMx:xCel}]) &
Just(€, ol = €))

Here ¢[¢ := x] stands for the result of replacing the occurrence ¥ in ¢
by x. We write A A for the conjunction of all the formulas in the set A.
We can either rely on the fact that specific bracketings and orderings of
conjunctions are irrelevant or else use some fixed bracketing and ordering
strategy.

This is the structural characterisation of validity that we were after. We
will prove this in the next section, by proving soundness and completeness.
But first we discuss the definition in some more detail. The definition
looks rather threatening, but the examples later on will surely help to get
a feel for the system.

The definition of Just distinguishes four cases. The first case is the case
of direct justification. Here the claim that has to be justified is one of
the subformulas that support it or else the claim is supported by L.
Prototypical examples are

Just(p, (p — p)) and
Just(p, (L — p)) and
Just(p, (p A q) = p)).

The second case says that we can justify a claim of the form (v, A) by
justifying both v, and 1,. An example of this is

214 Chapter 5. Proofs as Texts

Just((pA q),(p = (g = (p A Qq))))-

The third case treats claims of the form (¢ —). In these cases it
suffices to justify the claim of this claim, i.e.). Note that case two and
three are similar in that they both say that to justify a complex claim
it suffices to justify the sub-claims of this complex claim. In case of a
conjunction this means that we have to justify both conjuncts, in case
of an implication we have to justify the consequent of the implication.
Thereby one justification strategy that one could follow, is to look for
justification of the atomic claims of a formula only. According to cases
two and three this will suffice to justify all claims.® But this is not always
the most efficient strategy. For example in

(p—=q)—= (p—1q)

it. suffices to justify the second occurrence of ¢, the only atomic claim
of this formula, and in fact this can be done, using generalised modus
ponens. But it is easier to justify (p — ¢) as a whole, using the direct
proof rule.

Case four can be seen as a generalised version of modus ponens. It can
be applied in case the claim that has to be justified occurs as a claim of
some other formula that would itself be a justified claim at this point. So
if we have no direct evidence for a claim, 9 say, but we do have evidence
for &, which has 1 as a claim, then we can try to apply generalised modus
ponens (gmp) with this €. In this case we call £ the major premise of the
application of generalised modus ponens. For the rule to be applicable it
must be the case that all the formulas that support ¥ in &, {x : x C¢ ¥},
are now justifiable.

Note that we also have the case where not 1, but L occurs as a claim of
&. So in general we are looking for a £ that has a claim that gives a direct
proof of our current claim.

A prototypical case of an application of gmp is

(pA(p—=4q) —q).

Here the second occurrence of ¢ is a claim that has to be justified. There
is no direct support for ¢, but one of its supporting formulas contains ¢

8More on this topic can be found in the appendix where we prove an Inversion
Lemma that makes this statement precise.

5.4. The structure of formulas 215

as a claim, namely (p —+ ¢). Now the direct proof rule tells us that this
supporting formula would be a justified claim at this point. According to
the generalised modus ponens rule it suffices to justify all the subformulas
of this alternative claim that support the claim. In our example this means
that it suffices to justify p, which is the only support for ¢ in (p — ¢).
Since p is in fact one of the formulas that supports our claim ¢ we are
done.

The example shows that the rule has modus ponens as a special case. But
the rule allows for more than that. Basically it generalises modus ponens
in three ways. First note that in a nested implication the rule allows us
to eliminate several assumptions in one sweep. To justify

((prg)A(p—=(@g—71))) =)

we only need one application of generalised modus ponens. In a natural
deduction formulation of the logic we would have to apply modus ponens
twice: once to eliminate p and once to eliminate g from (p — (¢ — 7)).
But here both assumptions are eliminated at once.

The second kind of generalisation that is built in is that there can be some
‘implicit conjunction elimination’ going on in generalised modus ponens:
our version of modus ponens will also work if the required conclusion is
only one of several claims of the major premise. For example in

(PA(p— (rAg))—a)

¢ can be justified with one application of generalised modus ponens.
These first two generalisations of modus ponens are an advantage of our
system: they allow us to ignore parts of the structural organisation of
a text that are not relevant now. We only have to know which formulas
support the current claim and not the precise way in which these formulas
occur in the organisation of the text.

With the third generalisation that is built into the generalised modus
ponens rule things are different. This third generalisation is the recursive
nature of the rule. If we apply generalised modus ponens with some
major premise &, we have to justify both ¢ itself and all the formulas in &
that support our claim . Each of these justifications can in principle be
a justification by generalised modus ponens. We are then in a situation
where we have to apply generalised modus ponens with one major premise
in order to be able to apply modus ponens on another major premise. The
simplest example of such a situation is

216 Chapter 5. Proofs as Texts

(p=aA(g—7) = (p—=1))

Here the justification of the claim r might proceed by modus ponens on
(g — 7). This major premise itself is easily justified (by direct proof), but
we also have to justify ¢. In order to justify ¢ we can then again apply
modus ponens, with major premise (p — ¢) this time. In this second
application the major premise itself is easily justified (by direct proof)
and this time also the justification of the supporting material p is easy
(also direct proof). So we see that in the application of generalised modus
ponens on (¢ — r) another application of generalised modus ponens is
invoked.

This third generalisation is not so attractive. It is because of this kind
of implicit recursion that it is quite hard at times to recognise a text in
our system as a proof. It would be nice if we could make some of this
recursion explicit in the text, but as it stands we do not have this option:
we have chosen to work with a poor representation language in which such
information cannot be represented. So we will have to accept this kind of
implicit recursion for now. But, clearly, we can improve on this at some
point in the future by enriching the representation language.

Another way of viewing the situation is as follows: at this point we have a
proofs system in which we can check whether validity is preserved through-
out the text. This certainly is an important issue that any proofs system
will have to take care of in some way. But if we think of a proof as a text,
then we would like to be able to make a distinction between a proof and
an arbitrary valid text. Certainly a proof is more than a text in which
the validity of each step is guaranteed: it is a text in which the validity of
each step is obvious. In a proof all the ideas have been elaborated on to
the point where only very simple deduction steps remain. The validity of
each proof step by itself should be obvious. Since we are using a simple
representation language we have a system with proof texts of which the
semantics is obvious, but which are not so obvious gua proofs because of
the recursions that may be involved in applications of the gmp rule.
Probably the best choice in the end will be to include some of the anno-
tation in the texts. For example, in an application of generalised modus
ponens the major premise has the flavour of an intermediate conclusion.
We already said that we may want to include intermediate conclusions in
the proof texts at some point, so this is a good candidate for annotation
that we may want to include in the texts. But for now we stick to the

5.4. The structure of formulas 217

strategy of keeping all the annotation out of the text.

Now we are at a point where we have defined a system by which we can
check whether a certain claim in a text is justified. In the following subsec-
tion we give some more examples of the way in which this system works.
Our goal in the end is to construct texts which are themselves justified,
i.e. we want to construct texts which have the following property:

Definition 5.4.7
Tf(6) = Just(d,)
expressing that ¢ 1s a justified claim of ¢, i.e. ¢ is a justified text.

This is what we discuss in section 5.6.

5.4.4 Examples

In this section we show how justifications of formulas can be obtained.
We give two extensive examples of formulas and their justification. The
reader who wants to know what happens to formulas that do not have a
justification is referred to the appendix, where a decision procedure is dis-
cussed and it is shown that Peirce’s Law cannot be justified in our system.

In these examples we use the inductive character of the definition: Just is
the smallest set that is closed under the inductive clauses. So we can show
that some pair (v, ¢) is justified by producing a sequence Just(iy, ¢,) ...
Just(n, ¢n) where ¥, = 1, ¢, = ¢ and each component of the sequence
is either an instance of direct proof or follows from previous components
in the sequence by an application of one of the inductive clauses. We
will construct these sequences in the reverse order: starting from our goal
Just(, ¢) we look for subgoals Just(1);, ¢;) until we get instances of di-
rect proof.

The first example is the law of contraposition: v = ((¢ = ¥) — (¢ —
1) = (¢ — 1))).° Our aim is to show that Jf(vy). To do this we show

9 Actually this is not a formula, but a formula scheme. As a consequence we will
not find a justification, but a scheme for justification. Note also that in intuitionistic
logic this formula is true but the implication cannot be reversed: we do not have

(= L) = (6= 1) = (6= ¥)).

218 Chapter 5. Proofs as Texts

that:

Just(7,7).

We start by justifying the smallest claim of v, i.e. L. This can be done
as follows.

We try to use generalised modus ponens. We need a £ such that:
o Gle(_J_)
o Just(¢,1[L = €])
o Just(A{x: xCe L} v[L :=A{x: x Ce¢ L}])
We take £ = (¥ — L), so we now need:
o Just((=+ L), (6—=¢)=((¥—=1)—= (6= (¥— 1))
o Just(v, ((¢—)— ((¥—L)—(6—))))

We see that the first statement follows by direct proof. For the second
statement we perform another application of generalised modus po-
nens. This time we will use (¢ — 9) as major premise:

o &Li=(p—>)
o Just(§y, (¢ = ¥) = (¥ = L) = (¢ = &1))))
o Just(¢, (¢ = ¥) = ((¥ = L) = (6 = ¢))))
Now we see that in both cases we can use direct proof.
Now we have justified the smallest claim of v, L. It follows (by several

applications of proof of an implication) that v itself is justified.

The second example we present will be used as an axiom in the formu-
lation of intuitionistic logic that we use in the next section. We consider
the axiom a = ((¢ = (¥ = x)) = (¢ = ¥) = (¢ — X)) and try to show
Jf(a). So we have to show that:

Just(a, a)

Again we start by justifying the smallest claim first:

Just(x, ((¢ = (¥ = x)) = (¢ = ¥) = (¢ = X))

5.4. The structure of formulas 219
This can be done as follows:

We apply generalised modus ponens:

o {=(¢—(¥—x))
o Just(&, ((¢ = (¥ = x)) = (¢ = %) = (6 = £))),
o Just(d A, ((¢ = (¥ = x)) = (6 = ¥) = (¢ = (¢ AY)))).

These two justifications are obtained as follows:

o the first statement holds by direct proof.

o the second statement follows by conjunction of proofs, as fol-
lows:

> Just(o, (6 = (¥ = x)) = (¢ = ¥) = (¢ — ¢))) and
> Just(y, (6 = (¥ = X)) = (0= %) = (¢ = ¥)))

again the first statement follows by direct proof.

for the second statement we need another application of generalised
modus ponens, with & = (¢ —) as major premise. Now both

o Just(&, ((d = (v = x)) = (¢ > ¥) = (¢ = £))) and
o Just(&, ((0 = (¥ = X)) = (6 = ¥) = (6 — ¢)))

follow by direct proof.

From this justification of the claim y in a we get a justification for o itself
by several applications of the rule for the proof of an implication. This
way we get:

Just(a, a)

as required.!?

19Perhaps the reader will find it useful to check which routes through the tree/text
are made in these examples of justifications.

220 Chapter 5. Proofs as Texts

5.4.5 Other logics

So far we have concentrated on intuitionistic logic, and this is also what
we will do in the remaining part of the chapter. But the choice for intu-
itionistic logic over some other logic was completely arbitrary: the proofs
as texts approach makes sense for any logic. So now that we have given
the definitions for intuitionistic logic it may be helpful to think about
using a similar system for other logics, just to make clear that our choice
really was made for convenience only.

For example, if we want to obtain a system for classical propositional
logic, we will have to include a rule for double negation one way or the
other. The easiest way is probably to first add a direct proof rule that
says that if ((¢» = L) — 1) [, ¥, then ¢ is justified. Then we can
extend the rule for generalised modus ponens: at present we search for §
such that either Cl¢(y) or Cle(L) whenever we want to prove a claim ¥
with generalised modus ponens. If we extend the rule to allow for § with
Cle(((w = L) — 1)), then we will obtain a system that is equivalent to
classical logic.'!

Thus we can obtain a stronger logic by strengthening the rules. Simi-
larly a weaker logic could be obtained by weakening certain rules. For
example, we could try to make the system resource sensitive by checking
exactly which part of the supporting material of a claim is actually used
in its justification. Then appropriate restrictions on the use and re-use
of this material will have to be formulated. We will not go into details
here. Suffice it to say that in the case of substructural logic the need for
annotation of proofs becomes even more urgent, but once suitable anno-
tation is added nothing seems to prevent us from formulating so-called
substructural logics in proofs as texts style.

5.5 Soundness and completeness

In this section we prove that our system for justification of claims in
formulas gives us exactly the (intuitionistic) tautologies. In particular we
will show that:

"'This can be shown with a straightforward extension of the soundness and com-
pleteness proofs in the following section.

5. Soundness and completeness 221

=
S

Finy = Jf(¥)

and

Jf(f,ﬁ) = l";L qﬁ

In other words, 1 is a theorem of intuitionistic logic if and only if there
is a justification for .

To prove this we first fix some formulation of /L. We will use a formulation
of the calculus in Hilbert style. The details of the formulation are not
essential, but it will help us fix our thoughts.

Definition 5.5.1 We define the calculus IL as follows:

o IL is based on the following axiom schemata:

> ((0AY) = 9)
((6Ay) =)
> (¢ = (¥ = (6 A D))
(
(
(

o

> (¢ (¥ —9¢))
> (0= @ —=x)—=(¢—=9) = (6= x)

> (L — o)

o The only rule of IL is modus ponens:

Frio(0—=v¢) & Frod = by

o ¢ is a theorem of IL, brp, &, iff ¢ is an instance of one of the axiom
schemata or ¢ is derived from such instances by a finite number of
applications of modus ponens.

Since the calculus 7L is sound and complete for the intended interpreta-
tion, we can confuse it with any other such calculus or with the (semantic)
entailment relation of intuitionistic logic whenever this is convenient.

222 Chapter 5. Proofs as Texts

5.5.1 Soundness

Now we can prove the following proposition.
Proposition 5.5.2 (Soundness) Let ¢ € L, be given. Then:
Jf(¢) = Fmd

Since the Hilbert system presented above is complete for the intended
interpretation, the proposition does in fact imply that what we can justify
in our system can also be proved in the Hilbert system. In other words
from the proposition we get:

Corollary 5.5.3
Jf(@) = k¢

The proposition is a direct consequence of the following lemma.
Lemma 5.5.4 Let ¢, ¥, £ € L, be given. Then
Just(¥,¢) = {x: xCe ¥} Enn ¢

Proof:
Note that Just(¥, ¢) is defined inductively. Thereby there is for each v,
¢ such that Just(vy, @) a sequence

Just(y, d1) ... Just(Yn, dn)

such that ¥, = v, ¢, = ¢ and each component of the sequence is either
an instance of direct proof or can be obtained by one of the other proof
rules from components that precede it in the sequence.

The proof is by induction on the length of these sequences. In the proof
we will omit the subscript in |=;p.

In some steps we will make use of the following lemma:

Lemma 5.5.5
X Cy Tvb lﬁx Efﬁ[f.\'}::u] @

This lemma says that C only depends on the structure of the tree,I not on
the material that is stored there. The proof of the lemma is omitted.

Now the inductive proof proceeds as follows:

5.5. Soundness and completeness 223

o Basic cases:

> L Cy .
Since L = 9, clearly also {x : x Ty ¥} E .

> Cs .
Since ¢ = 9, clearly also {x : x Cs ¥} E ¢.

o Conjunction of proofs:

Now 9 = (¢4 A) and Just(¥s, @[y == ¥i]).

By the lemma we know that:

{x: xGo v} = {x: XCy=py 1} = {x:
X Coly:=yy] ¥2}-

Now the induction hypothesis gives us (for i = 1, 2):
i Cofw:=wi] ¥i} E ¥

Hence, by the lemma:
{x: xCo¥} .

From which we may conclude
{x: xCo ¥} E (%1 At)

as required.

o Proof of implication:
We know that Just(1)s, ¢).
The key observation is that

{x: xCo v} and {¢h} U {x: xCs ¢}
are logically equivalent. (This can be checked easily.)

The induction hypothesis guarantees:

{x: xCs r} E 90

By the key observation this reads as

224

Chapter 5. Proofs as Texts

{x: xCo ¥} U {th} F ¢
and thereby

{x: xCe ¥} E (1 = ¢)
as required.

Generalised modus ponens:

Now a major premise £ is given and either Cl¢()) or Clg(L). We
consider the case Clg¢(1): the other case is similar.

J]ﬂst(!\{x; X Ce ¥}, o[v := AM{x; x Ce ¥}]) and Just(€, ¢[v :=
£])-

If we apply the lemma to the induction hypothesis we get first:
{x: xCe ¥} F Mx: xCe ¥}

and second:
{x: xCe v} &

Since Cl¢(3)), we know that £ is of the form
¥ i I R L T L |, SN,

where each a; is a x such that x C¢ .
Our first conclusion from the induction hypothesis guarantees that

{x: xCo ¥} F .
for1<i<n.

Now we can apply modus ponens n times to the second conclusion
from the induction hypothesis to obtain

{x: xCo W} E(--APA.L)

From this we obtain

{x: xCs ¥} EY

by several eliminating the superfluous conjuncts, as required.

5.5. Soundness and completeness 225

5.5.2 Completeness

Now we go on to prove the following proposition:

Proposition 5.5.6 (Completeness) Let ¢ € L, be given. Then:
Fio = Jf(e).

The proposition can be proved as follows:

Proof:

In fact we will show that Fr;, ¢ = Jf(¢). Then the completeness will
follow from the completeness of IL.

The proof is an induction on the length of the derivation of - ¢. In the
proof we will omit the subscript of ;.

o First we justify the central claims of the axiom schemata.

Just(p, (¢ AY) = ¢);

Just(y, (¢ AY) = ¥);

Just(p A, ¢ = (Y = (6 AY)));

Just(¢, ¢ = (¥ = ¢));

Just(x, (¢ = (¥ = X)) = (6 = ¥) = (6 = X)));

This has been done in section 3.4.
> Just(d, (L = ¢));

v

v

v

v

v

Now the justifications for the axiom schemata themselves can be
obtained by several applications of the ‘proof of an implication’
rule. For example, since Just(¢, (L — ¢)), we have Just((L —
®), (L — ¢)), as required.

o Next we consider an application of modus ponens in IL.
Suppose - (¢ — %) and - ¢.
Then (by induction hypothesis):
Just((¢ —), (¢ — ¢)) and Just(¢, ¢).
Now we can use generalised modus ponens to conclude that
Just(yp, 9), as required. O

226 Chapter 5. Proofs as Texts

We can conclude that the predicate Jf(.) that we have defined in the
previous section picks out exactly the theorems of intuitionistic logic.'?
This shows that our enterprise of regarding proofs as (special) formulas
is not without a chance: we have shown that, if we regard our formulas
as texts, we will actually be able to check for each text whether it is the
kind of text that represents a proof. We are able to do this by using the
structure of the text. The structure of the text tells us which assumptions
are in force at each point in the text. Once we know this, things are easy:
we just check whether the assumptions warrant the conclusion, either
directly or indirectly via some applications of modus ponens.

The next step will be to use the criteria that we have developed to check
whether some given text is valid as criteria for building texts that are
valid. This is the topic of the next section.

5.6 Proof construction as text construc-
tion

In this section we will use the structural characterisation of validity to give
rules for the (incremental) construction of valid formulas. Since the for-
mulas are considered as representations of proof-like texts and the proofs
are the valid proof-like texts, this will in fact give us a deduction system
for our logic: we will haves rule for building up proof texts.

At the end of this section we will give a presentation of the deduction
system that is reminiscent of linear presentations of natural deduction.

5.6.1 Proofs

As we are constructing valid formulas of £,, we will sometimes have to
work with constructs that are not strictly speaking in £,. As we are
building up the proof step by step we will go through stages in which
what we have cannot be represented as a formula of £,. Consider for
example a situation where we have just made a few assumptions and have
not yet drawn any conclusions from these assumptions. Then we are in a

12In the appendix we prove some interesting properties of our system. The properties
we discuss are familiar from (intuitionistic) proof theory. In the appendix we will see
how they look in the new set up.

5.6. Proof construction as text construction 227

situation which cannot be described properly in £,: we are building up
an implication, (¢ — 1), and have just completed the antecedent ¢ of the
implication, but we have not yet drawn any conclusion. So our construct
looks something like (¢ — In chapter 4 we have developed special
machinery for describing and interpreting precisely these incomplete texts.
The machinery could very well be used in the present situation, but this
would perhaps lead to confusion. Therefore we use the following trick
to represent incomplete texts instead: we introduce a new propositional
constant * to represent incompleteness. The resulting language will be
called £,*. L£,* inherits all structural notions, such as the definitions of
precede and command relations, from £,. In £,* we can distinguish the
complete texts from the incomplete text by testing whether » < ¢.

Note that this way we do not only get unfinished — i.e. right-incomplete
— formulas in £,*, but also formulas with holes in the middle or even at
the start. We do not only get

(¢ = (¥ = x) A %),
but also

(0= (x> x)AE),

(*x = (¥ = x)AE), ete.

For the proofs system we will not need formulas with holes: we will build
up the proof texts step by step from left to right, so only unfinished
formulas can occur. We will call such formulas prooflike.

The following definition summarises this discussion:

Definition 5.6.1

o L,* is defined as L,, but we replace ALPH by ALPH* = ALPHU
{x}.

o We call $ € L,* incomplete iff x < ¢. Else we call ¢ complete.
o We call ¢ € L,* prooflike iff for all 3 < ¢:

* Precg ¢ = Il(¢) ¢ ALPH and
x Precg ¥ = I(y) ¢ ALPH.

228 Chapter 5. Proofs as Texts

We see that prooflike formulas are such that wherever a % occurs, every-
thing to the right of this is also a #. This way no holes can occur in a
prooflike formula.

In our proofs system we will be building up these prooflike formulas.
Here the act of building up will be represented by substituting material
for occurrences of . By substituting only for the leftmost occurrence of *
we can make sure that the substitution of prooflike formulas in prooflike
formulas results in a prooflike formula. Note that intuitively the leftmost
* indicates the point where we are in the construction process.

There are two kinds of construction steps to which two kinds of substi-
tution will correspond: first there will be the substitution of a complete
formula for a *, which actually makes the construct ‘more complete’. But
we will also need to substitute of more xs for a * sometimes. These sub-
stitutions will represent decisions about the structure of the proof. For
example, each proof will start from scratch: we start with just one =*.
Then we may decide that we want to make some assumptions. This will
lead to substituting (*x —) for x to get (* — %). Now the first x in-
dicates the point where we actually are and we see that this is indeed a
point where assumptions can be made. If we now decide that in fact the
assumption we want to make is a conjunction, we will replace the first x
by (% A %), after which we can start filling in the first conjunct of the as-
sumption. Filling in the first conjunct of our assumption, p say, will then
be represented by * := p, a substitution of the first kind which results in
the more complete formula: ((p A %) — *).

Now defining the proofs system will simply amount to restricting the
substitutions of the first kind in case the leftmost * is in a claim position
in the prooflike formula. Of course we do not want any restrictions on the
substitutions if we are not in a claim position, because we want to be able
to make any kind of assumption. It is only the conclusions, which will be
in claim positions, that we have to be careful with. There we will want to
check whether we can justify the claim, before we actually make it. And
for this purpose we can simply use the techniques that were developed in
the previous section.

The following definition makes this description of the proofs system pre-
cise. We will define ‘being-a-proof” as a property of formulas in £,*, but
the recursive definition of this property can be read as a set of instructions
for building proofs.

5.6. Proof construction as text construction 229

In what follows we will use the notation (¢ := 1) for a substitution of
1 for the leftmost occurrence of ¢. If ¢ does not occur, the operation
(¢ := ¢) has no effect. We will say claim(¢) if the leftmost + in ¢ is a
claim of ¢.

Definition 5.6.2 We define Proof, the set of proofs, as the smallest set
such that:

1 (start) * € Proof
2 (construct =) ¢ € Proof
= ¢(x = (x = x)) € Proof
3 (construct A) ¢ € Proof
= ¢(x:= (x A %)) € Proof
4 (assume) ¢ € Proof & —claim(¢)
= ¢(x:=) € Proof
for any formula ¢y € L,
(direct proof) ¢ € Proof & claim(¢)
= @(x:=) € Proof
fyCoxor LTy
6 (modus ponens) ¢ € Proof & claim(¢)
= ¢(x =) € Proof
if there is a £ with ¢(x := &) € Proof
and etther:
Cle(v) and ¢(x := AM{x: x Ce ¥ }) € Proof

or:

Cle(L) and ¢(x := A{x: x Ce¢ L }) € Proof

15,1

We see that we have 6 rules for building proofs. The first rule gets us
started. Each construction starts with an application of that rule. It rep-
resents the stage where we have an empty page before us and decide that
we want to build a proof.!® The second and third rule are construction
rules. They allow us to construct implications and conjunctions in any
part of the proof. Rule 4 tells us how to make assumptions in a proof: we
can fill in any assumption ¥ at a place that is not a claim of the formula.

13 Usually in such a situation we also have a theorem in mind that we want to prove,
but we cannot write this theorem down in our system. We always write the conclusions
after the assumptions, so in our representation we will not see the theorem that we
want to prove until the proof is completed.

230 Chapter 5. Proofs as Texts

The rules 5 and 6 are the real proof rules: they tell us which conclusions
we may draw. By convention an occurrence of a claim * is always jus-
tified. So, given the discussion in the previous section, we simply could
have replaced 5 and 6 by:

(conclude) ¢ € Proof & claim(¢) = ¢(x:=¥) € Proof
and Just(y , p{(x = ¢)).

It is easy to check that this would give an equivalent proofs system. We
have chosen for our formulation, because it makes the proof steps more
explicit.

Note that in steps 4, 5 and 6 we allow ourselves to substitute complex
formulas for some . This is in contradiction with the small unit principle:
according to the small unit principle it should only be allowed to draw
atomic conclusions and make atomic assumptions. But fortunately the
system that we get when we restrict 4, 5 and 6 to atomic 3 gives us the
same proof strength: if we only allow the substitution of atomic material
in 4, 5 and 6, then the other rules will enable us to build up complex
assumptions and conclusions step by step. Here the Inversion Lemma
(proved in the appendix) is essential. It guarantees that all formulas that
are justified can be justified via their atomic claims.

Of course our claim is that this system is in fact ‘the same’ as the system
in the previous section. If we try to make this precise then we see that
there are two ways of making a comparison between the system of the
previous section and this deduction system. One is by simply restricting
the attention to the complete formulas in £,*. Then we can compare:

Jf(¢) and Proof(¢)

forp e L,N L,

But we can also extend the comparison to incomplete formulas. Then the
comparison works by defining a completion operation on formulas of £,*.
For example, let for each ¢ € £, the completion of ¢, ¢ be defined by:

¢° = p{x 1= TH™.

Here T is some fixed tautology and n is the number of s in ¢. So ¢¢ € L,,.
Then we can go on and compare:

5.6. Proof construction as text construction 231

Jf(¢°) and Proof(¢°)

for ¢ € £,*. Both approaches are essentially the same and in both cases
the similarity between the definition of Jf and the definition of Proof
makes it immediately clear that these predicates coincide. Therefore the
soundness and completeness of this system is simply inherited from the
soundness and completeness of Jf(¢).

5.6.2 Natural deduction

In this subsection we show how the building up of prooflike formulas can
be represented in a linear style natural deduction system (cf. GAMUT
(1991)). In such a system a proof looks like a column of formulas with
vertical lines to its left—they indicate the scope of the assumptions—and
annotation is added to the right of the column to indicate which rules
have been applied.

Such a presentation for our proofs system can be obtained by performing
several geometric transformations to the prooflike trees. The first step is
to turn a tree in such a way that left to right order turns into top to bot-
tom order. Now the atoms at the leafs of the tree appear in a (vertical)
column and the atoms that used to occur to the left of some atom now
can be found above the atom in the column. The second step is to ignore
the conjunction structure: the conjuncts are simply listed on consecutive
rows of the column. The third step is to replace the triangular shapes
of the branches of the tree by squared braces, just as in linear natural
deduction systems. Then finally we delete the part of the tree where only
*S OCCUI.

We give an example to illustrate the idea. First consider the proof ((p —
(g—=7)) = ((p = q) = (p— *))). This is part of the proof of one of the
axiom schemata from our Hilbert system for /L.

232 Chapter 5. Proofs as Texts

When we turn this around in the appropriate way we obtain:

1:p

2:q
3:r

4:p

5:q

r 6:p

Let’s agree that assume is the default rule. Then we only have to write
comments to the right of claims to indicate which rule is used to derive it.
Here there are no claims yet: all atoms have been obtained by the assume-
rule, that allows us to add material in positions that are not claims. (In
the picture we are not explicit about the construct rules that have been
involved in the proof.)

We could now complete the proof of the axiom by applying modus po-
nens. Annotation is added to indicate which formulas are involved in the
application of the modus ponens rule.

5.7. Conclusion 233

1:p

4p

5:q
6:p

7: r, modus ponens (on 3)

Of course the proof rules on the trees can be converted into proof rules
on these natural deduction-like objects. For example, the basic structural
notion of one formula preceding another can be replaced by the notion
of one formula being above another. Thus we can obtain a more familiar
format for the proofs-as-texts system. Of course, from the proofs as texts
point of view, the horizontal, tree-like representation is preferable for those
who tend to write their texts from left to right.

5.7 Conclusion

We can conclude that it is possible to give content to the slogan proofs as
texts. Indeed in this chapter we already have given an indication of what
the slogan can lead to.

Our starting point has been the assumption that the formulas of our lan-
guage represent texts. Since proofs can also be represented as texts, we
concluded that in our situation both proofs and sentences should be rep-
resented in the same language. Once the distinction between an object
language (for representing sentences) and a meta formalism (for represent-
ing proofs) is removed, we find that the only thing left to rely on is the
structure of the formulas. In fact we are able to use the structure of the

234 Chapter 5. Proofs as Texts

formula to formulate rules for building texts in such a way that validity is
preserved, i.e. for building proofs. This is one of the points of the proofs
as texts perspective: we model theorem proving as text construction.

So the main consequence of the proofs as texts perspective that we have
been able to illustrate is how the information about the structure of a text
comes to rescue once the distinction between an object level and a meta
level is lost. We have also made an attempt to implement the fact that
texts are built up incrementally. The way in which this has been done here
— by introducing a new propositional constant x — is not very elegant.
We have proposed another strategy to deal with incomplete formulas in
chapter 4, but we have refrained from implementing this strategy here,
since this would take up too much space.

Other properties that are typical of texts have not yet been implemented.
In particular we have postponed the discussion of the use of anaphora in
proofs by restricting ourselves to a propositional language. So the obvious
next step in our programme is the extension of the approach to predicate
logic. Here we could either try to give a system for (static) predicate
logic, or we could aim to give a proof theory for Dynamic Predicate Logic,
a variant of predicate logic developed especially to deal with the semantics
of anaphora. In both cases we will have extra labels for the quantifiers.
The idea that we would like to pursue is that nodes that carry these labels
systematically regulate the use of the material that we find at the nodes
in their environment. For example, if a node is labelled with 3z, then it
will not allow us to use all information with a variable x freely. The nodes
labelled with 3z tell us which nodes that have information about x can be
used at some point in the text. This will depend on the relative positions
of the 3z node and the node with information information about z. The
difference between ordinary predicate logic and dynamic predicate logic
should then turn out to be a difference in the way in which the quantifier
nodes regulate the use of information at other nodes. We realise that this
gives only a very rough indication of how the extension of the system to
predicate logic should proceed, but it will have to do for now. We hope
to discuss it in more detail elsewhere.

Other points that have not been dealt with here are the treatment of other
connectives, such as disjunction, the proper treatment of intermediate
conclusions, situations where conclusions precede assumptions, etc. For
some of these issues it will be easy to find a treatment in our system, others
will require more work. For example, if we include new connectives in our

Appendix 235

language, then this can seriously complicate the structure of the formulas.
As a consequence the definition of the support relation will become more
complicated.

But as it stands there is no reason to suspect that any of the topics
mentioned will lead to problems that cannot be solved within the proofs
as texrts perspective.

Appendix: a little proof theory

In this appendix we give some properties of the system that was defined
in section 5.4.3. The properties will discuss have natural analogues in
intuitionistic proof theory and will lead up to a decidability result:'"* we
will be able to give a decision procedure to find out whether Jf(¢) for any
¢ € L,

At this point the development of the proof theory of our system is in a
stage where we reproduce familiar results about intuitionistic logic in our
setting. But we hope that in time our new approach to the proof theory
of IL will lead to new theorems about IL or will lead to considerable
improvements of the proofs of some familiar theorems.

Inversion Lemma

In this section we show that two of our proof rules, conjunction of proofs
and proof of an implication, can be inverted. As it stands these rules
allow us to build up justifications of complex claims from justifications
of smaller claims. Here we show the converse: if we have a justification
for some claim, then we can construct from it a justification for all its
subclaims.

Lemma 5.7.1 (Inversion Lemma) Let v; < () 01) < ¢ be given
(i=1,2, 0o =A,—). Then:

o Just((h A), d) iff Ble(ws,d) (i = 1,2)
o JuSt((Ipl —+ le)aqb) Eﬁ Jble(%a‘i’)

MCf. for example, Troelstra and Van Dalen (1988) for discussion of such results.

236 Chapter 5. Proofs as Texts

Proof:

<«: This is given by the rules conjunction of proofs and proof of an
implication.

=: Assume that Just((y; A2), @) has been established. We distinguish
the following cases according to the last rule that has been applied in this
justification:

o (direct proof) Either (¥1 A1) Ty (1 Ath2) or L Ty (1 Atn). In
the first case we see that 1; C4 ¥;, so we have a direct proof of each
;. In the second case we see that L T4 ;, so again we have a
direct. proof of ;.

o (conjunction of proofs) Then we knew before the last step in the
justification that: Just(v;, ¢). So we are done.

o (proof of an implication) Does not apply.

o (generalised modus ponens) Let £ be the major premise. There are
two cases: Cle(¢; As) or Cle(L). We see that £ also allows for the
conclusion of each of the ¥; (since either Cle¢(v);) or Clg(L)), so the
same application of generalised modus ponens also justifies the ;.

Next assume Just((1; = ¢2), ¢). We distinguish the following cases:

o (direct proof) Either (¢, = ¥») Ty (¥1 = ¥2) or L Ty (Y1 — 92).
In the first case we apply generalised modus ponens with major
premise () — ¥). We know (via the hypothesis) that this major
premise is justified and we see that 1, is justified by direct proof.
So this gives a justification of 1.

In the second case we see that L T 12, so in this case we have a
direct, proof of ;.

o (conjunction of proofs) Does not apply.

o (proof of an implication) Now we know that Just(is, ¢). So we are
done.

o (generalised modus ponens) As above. O

Appendix 237

The Inversion Lemma is interesting by its own right, because it shows
that there is a kind of symmetry in our system. But the main reason
why we are interested in the Inversion Lemma is that it gives rise to the
following corollary.

Corollary 5.7.2 A formula can be justified iff all its atomic claims can
be justified.

This is the first step on our way to a decision procedure: we now know
that to decide whether a claim can be justified it suffices to check whether
all its atomic subclaims can be justified.

Subformula Property

In this subsection we prove the Subformula Property for our system. The
subformula property guarantees that a justification of some claim in a
formula can be built up from justifications of other parts of the same
formula. So we do not have to leave a formula/text to justify it.

For most proof rules this is clear: the rule for direct proof does not re-
quire other justifications at all and the rules for conjunction of proofs
and proof of an implication typically rely on justifications of subelaims of
the current claim. The crucial rule is generalised modus ponens: here we
use justifications for the major premise and for some subformulas of the
major premise, but there is no restriction on which formulas we can use
as major premise. So for the proof of the subformula property will have
to show that applications of generalised modus ponens where the major
premise is a subformula suffice to justify all justifiable claims.

In fact we will prove something slightly stronger: we will show that the &
that we use in generalised modus ponens can always be chosen from the
formulas that support the current claim. Justifications in which only such
applications of generalised modus ponens occur will be called non-alien.
Other justifications are called alien.

In the proof we will frequently use a slightly stronger version of the In-
version Lemma: we will use that a non-alien justification of a claim exists
iff non-alien justifications of its subclaims exist. This follows immediately
from the proof of the Inversion Lemma as we have given it. So we state
without further proof:

238 Chapter 5. Proofs as Texts

Lemma 5.7.3 (Strong Inversion Lemma)

o There ezists a non-alien justification of Just((yy A ¥2), @) iff there
exist non-alien justifications of Just(y;, ¢) (i =1,2)

o There exists a non-alien justification of Just((¥y — ¥2), @) iff there
exist non-alien justifications of Just(y;, ¢) (i =1,2)

Proposition 5.7.4 (Subformula Property) If Jble(i), ¢), then there
erists a non-alien justification of ¥ in ¢.

Proof:

We prove the statement by showing that the deepest alien application of
gmp (generalised modus ponens) can be eliminated. Since there can only
be finitely many alien applications in a justification, this shows that all
alien justifications can be eliminated.

So we are in a situation where Just(v, ¢) has been established by alien
generalised modus ponens, but no other, deeper alien application of modus
ponens is required. By the Strong Inversion Lemma we may assume
1 = p. Then we have a major premise £ such that:

o Cle(p) (or Cle(L)),
o Just(€, ¢[p := £)),

o Just(A{x: x Ce p},0lp:= AM{x; x Cep}])
(or Just(é1, A{x: x Ce L}, 0[p = A{x: x Ce L}])).

Here the last two statements can be verified without alien generalised
modus ponens.

In what follows we will ignore the case Cl¢(L), but it is easy to extend
the proof to include this case.

Since Cl¢(p), also Clyp.=¢g(p). The strong inversion lemma (applied to
Just(€, ¢[p := €])) gives a justification of this claim: Just(p, ¢[p := ¢]).
Now we can consider this justification of p: how does it work?

1. It was obtained by direct proof. So p Cypp.=¢) p- We distinguish two
cases: the supporting occurrence of p occurs in ¢ or the supporting

Appendix 239

occurrence occurs in &. In the first case we find an alternative justi-
fication for p in ¢ (namely by direct proof) that does not uses alien
rule applications.

In the second case we also find such an alternative. For then p €
{x : x C¢ p} and by assumption there is a justification of p in ¢
that does not use alien rule applications.

2. Conjunction of proofs or proof of an implication do not apply, since
p is atomic.

3. We used non-alien generalised modus ponens.

We see that we can eliminate the alien gmp unless it is followed by a
non-alien application of gmp. So it suffices to show that such non-alien
gmps can be eliminated. We will do this by replacing the two gmps by
one big gmp. We see to it that this big gmp will again be the deepest
alien gmp in the resulting justification. This will prove that case 3 can
be avoided. So only case 1 remains and we can eliminate the alien gmp.
Since we are past the deepest alien gmp, the next application of gener-
alised modus ponens must be non-alien. So the major premise ¢ is such
that:

o Clc(p)

© ¢ Colp=t] Py

o Just(xa A... Axn, B[P = E]lp:=x1A... A Xn))
where x; A... A xan = A{x: x C¢p}

Now we construct a big gmp that does on its own what £ and ¢ do together.

By the strong inversion lemma we get a non-alien justification of each of
the &[p := x;] in ¢[p := £[p := xi]]. We also have the non-alien justification

of A{x: X Cep}ing[p:= A{x: x C¢ p}] in the big gmp. From these we
can construct a non-alien justification of {[p := x1|A...A€[p := xa] AN{X :

X C¢ p} in:

p:=(Elp:=xi] A . A€[p:=xa] AN{X : x Cep}))-

240 Chapter 5. Proofs as Texts

By hypothesis we also get a non-alien justification of {[p := (] in ¢[p :=
&[p := (]]. Now if we replace each of the x; in this claim by &[p := xi,
we will be able to make a non-alien justification of this claim too. This
construction is similar to the construction of a justification of (a = ((a —
B) — 7)) from a justification of (a = (8 — ¥)).

So we get a non-alien justification of the claim

€lp = (Clxa =¢&lp=xall ... [xn := [P = xa))]
in glp := €[p = (Chx = &lp == xa]l. - - [xn = &[p == xal]]:

This is the major premise of the big (alien) gmp that we are looking for.
Note that we have made sure that this alien gmp is again a deepest alien
gmp in the resulting justification.

So we can eliminate each deepest alien gmp. We may conclude that for all
claims 1 a justification without applications of alien generalised modus
ponens is available.

a

The proof of the Subformula Property is the second big step on our way
to finding a decision procedure. From the Inversion Lemma we know
that we only have to consider atomic claims. Now we know that in the
justification of these claims no alien applications of modus ponens have
to be considered.

Decidability

At this point we can see that the following three kinds of steps will suffice
to find a justification of a claim, if there is one.

1. If the claim we aim to justify is complex, we may break it down into
atomic claims.

2. Then we check whether there is a direct justification for these atomic
claims.

3. If not, then we try to apply generalised modus ponens with some
supporting formula that has the same atomic claim, or that has L
as a claim.

Appendix 241

The three steps give a search procedure for justifications, but as it stands it
is not guaranteed that this procedure will terminate. If we are not careful
we might end up trying to apply generalised modus ponens infinitely many
times.

Consider, for example, ¢ = (((p = q¢) = q) = (p — q)). If we start
looking for a justification for this formula, we will, after some steps in the
procedure, have the following goal:

Just(q, @).

At this point the only option we have is to use generalised modus ponens
to justify ¢, i.e. we perform step 3. Then our new goal is:

Just((p = q),(p—=q9) = a) = (p— (p—q)))).

Then, again after some steps in the procedure, we have to justify:

Just(g,((p—=q) = q) = (p—= (p—=4q)))).

And again there is no other option then generalised modus ponens. If
we do not check for loops now, we can go on like this for ever, always
substituting (p — ¢) for g. The following lemma will help us to prevent
such infinite searches.

Lemma 5.7.5 (Finiteness Lemma) If in a branch of the search pro-
cedure where we try to justify some claim v with supporting material
{X1, .-, Xn} we arrive at a position where we have to justify ¥ again with
supporting material {x1,...,Xn}, then we may close this branch of the
search tree.

Proof:

At each point in the search procedure the search after that point is com-
pletely determined by the claim that we are trying to justify at that point
and the supporting material that is available at that point. So the search
tree after the first point where we try to justify ¢ from {x,..., Xn} 18
isomorphic to the search tree after the second point where we try to jus-
tify ¢ from {x1,...,xs}. Therefore if we are looking for a finite branch
in the search tree we need not look beyond the second point where we
try to justify ¢ from {x;,..., x»}: any finite branch that exists there can

242 Chapter 5. Proofs as Texts

also be found in the isomorphic tree after the first point where we try to
justify ¥ from {x1,...,Xa}. O

This lemma will give us the possibility of cutting of all infinite branches
of the search tree. To be precise:

Corollary 5.7.6 If we are on an infinite branch in the search procedure,
then this branch can be dismissed after finitely many steps.

Proof:

Suppose that we find an infinite branch in the tree. Since we only have
finitely many (atomic) subformulas in the original formula and each claim
that we meet in the search is such a subformula, we can be sure that the
infinite branch contains infinitely many attempts to prove the same claim,
1 say. Since all the supporting material that we find during the search
will consist of subformulas of the original formula, the set of supporting
material can only be one of finitely many sets. Therefore it is clear that
at two points in the infinite branch we will try to prove ¥ from the same
supporting material, {x1,...,Xa} say. At this point we can dismiss this
branch according to the previous lemma. O

So the condition of the lemma allows us to eliminate infinite search paths.
From this we may conclude:

Proposition 5.7.7 Jf(¢) is decidable. O

Note that this does indeed eliminate the counterexample that we consid-
ered above.

As a last illustration we show how the decision procedure works for
Peirce’s Law.

Example:

We apply the procedure to (((p — ¢) — p) — p), an instance of Peirce’s
Law. By step one of the procedure we try to find a justification for the
atomic claim p. Since this claim has no direct proof (step 2), we have to
apply generalised modus ponens to some supporting formula with claim
p or L. There is one such formula, ((p — ¢) — p). We have to justify all
the formulas that support p in this formula, i.e (p — ¢). So we now have

as a goal to justify: (((p — q) = p) = (p = q))-

Appendix 243

Now we apply step one again and try to find a justification for the atomic
claim ¢ in this formula. Since there is no direct proof for g (step 2), we
try to perform step 3 again. But now we see that the procedure ends,
since there is no supporting formula that has g or L as a claim. We may
conclude that Peirce’s Law is not a theorem of intuitionistic logic.

——

Conclusion

Here our explorations of the dynamic environment end. So let’s take some
time to look back at what we have discovered and think about further
steps that we could make in the future.

We have set out our view on dynamic semantics as a genuinely new ap-
proach to semantics. The attention for discourse phenomena naturally
leads to a new outlook on interpretation: we can no longer afford to think
of the expressions that we aim to interpret as small, complete units that
we can toss and turn at liberty before we actually start to interpret them.
In general we are dealing with large, incomplete natural language expres-
sions for which a different style of interpretation is preferred. In particular
this style of interpretation should show how we go through the process
of interpretation step by step, always only working on one small bit of
text at a time. Therefore we propose the small unit principle for dynamic
interpretation.

The treatment of variables in dynamic semantics is a perfect illustration
of this principle. Instead of treating 3z as an operator that has scope
over a large piece of text, dynamic theories have managed to localise the
contribution of the existential quantifier. Thus we can work with small
units and have binding effects over long distances at the same time.
Such a localised treatment of existential quantification requires a careful
representation of the different roles that variables play. First of all vari-
ables in dynamic semantics are information carriers: we use them to store
the truth-conditional information that we find in texts. But secondly they
also regulate the communication between the different parts of a texts: it
is through the variables that information gets passed on from one part of
text to another. In dynamic semantics we have to model both the accu-
mulation of information through interpretation and the communication
of information between different parts of a text. Therefore we propose

245

246 Conclusion

referent systems, in which we can represent both roles at the same time.
The small unit principle also has consequences for the treatment of text
structure. It is a well-known fact in semantics that the structure of an
expression carries information that is essential for its interpretation. Be-
cause of our commitment to the small unit principle we face the challenge
of representing the influence of the structural organisation of texts in
a localised way. We have illustrated this challenge using if. .. then con-
structions as an example. Our solution amounts to a sort of exchange
mechanism: we can do without structural information in the syntax by
introducing structure in the semantics.

This way of introducing more structure into the semantics and the use of
non-truth-conditional information for the dynamic treatment of Jz follow
a similar pattern: in both cases we face the challenge of coping with two
kinds of information in one system. In a discourse structure these two
kinds of information are the two roles that a variable has to play: first as
storage facility and secondly as information channel from one part of text
to another. In the partial trees we deal at the same time with the infor-
mation content of formulas and with information about their structure.
In both cases one kind of information controls the way in which the other
kind of information is processed: the structural information in chapter 4
tells us how to combine the information content of subformulas and the
way the variables in part I get linked determines how the information that
is stored in them is added up.

This is a crucial observation about the dynamic approach: in dynamic
semantics we have to develop good models to describe the interaction
between information of different kinds. Both the partial trees of chapter
4 and the discourse structures of chapter 3 are examples of such models.
Although these models indeed do what they were made for, more general
questions about the combination of kinds of information remain. In Visser
(1992a) and Visser (1992c) we find first investigations of this more general
question, but a lot of work in this direction remains to be done. Dynamic
semantics will have to develop a coherent theory about such heterogeneous
information structures.

Finally we have tried to make a start with the development of a dynamic
proof theory. Here the first job was to get a clear picture of what a
dynamic proof theory should look like. We have proposed the proofs as
texts perspective as an answer to this question. In chapter 5 we have
illustrated this perspective in a toy example. The development of the

Conclusion 247

dynamic proof theory of, for instance, DPL has not yet been completed.
This will be taken up in future research.

Bibliography

R. Ahn and H-P Kolb, 1990. ‘Discourse Representation Meets Construc-
tive Mathematics’. In Papers from the Second Symposium on Logic
and Language, L. Kadlman and L. Pdlos (eds), pp. 105-124, Budapest.
Akadémiai Kiadod.

H. Andréka, I. Németi and 1. Sain, 1993. ‘Algebras of Relations and
Algebraic Logic: an introduction’. unpublished manuscript.

N. Asher, 1986. ‘A Treatment of Belief Sentences in Discourse Represen-
tation Theory’. Journal of Philosophical Logic, 15, pp. 127-189.

N. Asher, 1993. Reference to Abstract Objects in Discourse, Studies in
Linguistics and Philosophy, vol. 50. Kluwer, Dordrecht.

N. Asher and A. Lascarides, 1991. ‘Discourse Relations and Defeasible
Knowledge'. In Proceedings of the 29th Annual Meeting of the Associ-
ation for Computational Linguistics, pp. 55-63.

N. Asher, A. Lascarides and J. Oberlander, 1992, June. ‘Inferring Dis-
course Relations in Context’. In Proceedings of the 30th Annual Meeting
of the Association for Computational Linguistics, pp. 1-8.

J. Baeten and W. Weijland, 1990. Process Algebra. Cambridge Tracts in
Theoretical Computer Science 18. Cambridge University Press.

J. Barwise, 1987. ‘Noun Phrases, Genralized Quantifiers and Anaphora’.
In Generalized Quantifiers: Linguistic and Logical Approaches,
P. Gérdenfors (ed.), pp. 1-29. Reidel, Dordrecht.

J. Barwise, J. Gawron, G. Plotkin, and S. Tutiya (eds), 1992. Situation
Theory and Its Applications. CSLI Lecture Notes 26. CSLI, Stanford.

249

250 Bibliography

J. Barwise and L. Moss, Summer 1991. ‘Lectures on Situation Theory
and its Foundations’. Notes for the European Summerschool in Logic,
Language and Information, Saarbriicken.

D.I. Beaver, 1992. ‘The Kinematics of Presupposition’. In Proceedings of
the 8th Amsterdam Colloquium, P. Dekker and M. Stokhof (eds).

D.I. Beaver, 1994. What Comes First in Dynamic Semantics. PhD thesis,
University of Edinburgh.

D. Ben-Shalom, 1994, December. ‘Natural Language, Generalized Quan-
tifiers and Modal Logic’. In Proceedings of the 9th Amsterdam Collo-
quium, P. Dekker and M. Stokhof (eds).

J. van Benthem, 1989. ‘Modal Logic as a Theory of Information’. Tech-
nical Report LP-89-05, ILLC, University of Amsterdam.

J. van Benthem, 1991. ‘Logic and the Flow of Information’. Technical
Report LP-91-10, ILLC, University of Amsterdam.

J. van Benthem and J. van Eijck, 1982. “The Dynamics of Interpretation’.
Journal of Semantics, 11, pp. 3-20.

J. van Benthem, 1989a. ‘Modal Logic as a Theory of Information’. Tech-
nical Report LP-89-05, ITLI, University of Amsterdam.

J. van Benthem, 1989b. ‘Semantic Parallels in Natural Language and
Computation’. In Logic Colloquium, Granada 87, H-D Ebbinghaus et
al (ed.), pp. 331-375. North-Holland, Amsterdam.

J. van Benthem, 1991. ‘General Dynamics’. Theoretical Linguistics, 17,
pp. 159-201.

J. van Benthem, 1993. Language in Action. North-Holland, Amsterdam.

J. van Benthem, 1994. ‘A Note on Dynamic Arrow Logic’. In Logic and
Information Flow, J. van Eijkc and A. Visser (eds), pp. 15-29. MIT
press, Cambridge, Massachusetts.

J. van Benthem and J. Bergstra, 1993. ‘Logic of Transition Systems’. Pro-
gramming Research Group Report P9308, University of Amsterdam.

Bibliography 251

J. van Benthem, J. van Eijck and V. Stebletsova, 1993. ‘Modal Logic,
Transition Systems and Processes’. Computer Science/Department of
Software Technology Report CS-R9321, CWI (Research Institute for
Mathematics and Computer Science), P.O.Box 4079, 1009 AB, Ams-
terdam. To appear in the Journal of Logic and Computation.

M. van den Berg, H. Priist and R. Scha, to appear. ‘A Formal Dis-
course Grammar and Verb Phrase Anaphora’. Linguistics and Philoso-
phy. (also Technical Report, Department of Computational Linguistics,
University of Amsterdam).

P. Blackburn, C. Gardent and M. de Rijke, 1994. ‘Back and Forth through
Time and Events’. In Proceedings of the 9th Amsterdam Colloquium,
P. Dekker and M. Stokhof (eds).

P. Blackburn and Y. Venema, 1993, June. ‘Dynamic Squares’. Logic
Group Preprint Series 92, Department of Philosophy, Utrecht Univer-
sity, Heidelberglaan 8, 3584 CS Utrecht.

M. Boéttner, 1992. ‘Variable Free Semantics for Anaphora’. Journal of
Philosophical Logic, 21, pp. 129-169.

G. Chierchia, 1991. ‘Anaphora and Dynamic Binding’. Linguistics and
Philosophy, 15, pp. 111-183.

R. Cooper, K. Mukai and J Perry (eds), 1990. Situation Theory and its
Applications, CSLI Lecture Notes, vol. 1. CSLI, Stanford.

K. van Deemter, 1991, March. On the Composition of Mean.z'ng. PhD
thesis, University of Amsterdam.

P. Dekker, 1993, May. Transsentential Meditations, Ups and Downs in
Dynamic Semantics. ILLC-dissertation series 1993-1, University of Am-
sterdam, Plantage Muidergracht 24, 1018 TV Amsterdam.

J. van der Does, 1994, December. ‘The Dynamics of Sophisticated Lazi-
ness’. In Proceedings of the 9th Amsterdam Colloguium, P. Dekker and
M. Stokhof (eds).

J. van Eijck, 1993. ‘The Dynamics of Description’. Journal of Semantics,
10, pp. 239-267.

252 Bibliography

J. van Eijck (ed.), 1991a. Logics in AI - Jelia 90, Lecture Notes in
Artificial Intelligence, vol. 478. Springer, Berlin.

J. van Eijck, 1991b. ‘Presupposition Failure — A Comedy of Errors’.
unpublished manuscript.

J. van Eijck, 1991c. ‘The Dynamics of Description’. Technical Report
Report CS-R9143, CWI, Amsterdam.

J. van Eijck and G. Cepparello, 1993, December. ‘Dynamic Modal Pred-
icate Logic’. Technical Report OTS-WP-CL-93-005, OTS (Research
Institute for Language and Speech), Utrecht University, Trans 10, 3512
JK Utrecht. To appear in M. Kanazawa and C.J. Pifion (eds.), Dy-
namics, Polarity, and Quantification, CSLI, Stanford.

J. van Eijck and H. Kamp, to appear. ‘The Representation of Discourse
in Context’. In Handbook of Logic and Linguistics, J. van Benthem and
A. ter Meulen (eds). North-Holland.

J. van Eijck and A. Visser (eds), 1994. Logic and Information Flow. MIT
press, Cambridge, Massachusetts.

J. van Eijck and F.J. de Vries, 1992a. ‘A Sound and Complete Calculus
for Update Logic’. In Proceedings of the Eighth Amsterdam Colloquium,
pp. 133-152. ILLC, Amsterdam.

J. van Eijck and F.J. de Vries, 1992b. ‘Dynamic Interpretation and Hoare
Deduction’. Journal of Logic, Language, and Information, 1, pp. 1-44.

G. Evans, 1980. ‘Pronouns’. Linguistic Inquiry, 11, pp. 337-362.

T. Fernando, 1991a. ‘Transition Systems and Dynamic Semantics’. Tech-
nical Report CS-R9217, CWI, Amsterdam.

T. Fernando, 1991b. ‘Transition Systems Over First Order Models'.
Manuscript, CWI, Amsterdam.

T. Fernando, 1993a, March. ‘Bisimulations and predicate logic’. Technical
Report CS-R9333, CWI, Amsterdam. To appear in the Journal of
Symbolic Logic.

Bibliography 253

T. Fernando, 1993b, April. ‘The Donkey Strikes Back’. In Proceedings
of the 6th Conference of the European Chapter of the Association of
Computational Linguistics, S. Krauwer, M. Moortgat and L. des Tombe
(eds), pp. 130-138.

T. Fernando, 1994, December. ‘Generalized Quantifiers as Second Order
Programs - "Dynamically” Speaking, Naturally’. In Proceedings of the
9th Amsterdam Colloquium, P. Dekker and M. Stokhof (eds).

K. Fine, 1985. Reasoning with Arbitrary Objects, Aristotelian Society
Series, vol. 3. Blackwell, Oxford.

G. Frege, 1979. ‘Logische Méangel in der Mathematik’. In Posthumous
Writings, H. Hermes et al (ed.). University of Chicago Press, Chicago.

D. Gabbay, 1990, December. ‘Labelled Deductive Systems: a Position
Paper - part I'. Technical Report CIS 90-22, Centr. Info. & Sprach.,
Universitat Miinchen.

GAMUT, 1991. Logic, Language and Meaning, vol. I & II. University
of Chicago Press. (Dutch version: Logica, Taal en Betekenis, 1982,
published by Het Spectrum, De Meern, the Netherlands).

C. Gardent, 1991. ‘Dynamic Semantics and VP Ellipsis’. In Logics in Al
- Jelia 90, J. van Eijck (ed.), Lecture Notes in Artificial Intelligence,
vol. 478, pp. 251-266. Springer, Berlin.

C. Gardent, 1993. ‘A Unification-Based Approach to Multiple VP Ellip-
sis Resolution’. In Proceedings of the 6th Conference of the European
Chapter of the Association of Computational Linguistics, S. Krauwer,
M. Moortgat and L des Tombe (eds).

J. Gawron, J. Nerbonne and S. Peters, 1992. ‘The Absorption Principle
and E-type Anaphora’. In Situation Theory and Its Applications, vol
II, J. Barwise et al (ed.), CSLI Lecture Notes 26, Stanford.

J. Gawron and S. Peters, 1990a. Anaphora and Quantification in Situation
Semantics, CSLI Lecture Notes, vol. 19. CSLI, Stanford.

J. Gawron and S. Peters, 1990b. ‘Some Puzzles about Pronouns’. In
Situation Theory and Its Applications, vol I, R. Cooper et al (ed.),
CSLI Lecture Notes 22.

254 Bibliography

P. Geach, 1962. Reference and Generality. Cornell University Press,
Ithaca, New York.

R. Goldblatt, 1987. Logics of Time and Computation, CSLI Lecture Notes,
vol. 7. CSLI, Stanford.

J. Groenendijk and M. Stokhof, 1990. ‘Dynamic Montague Grammar’. In
Papers from the Second Symposium on Logic and Language, L. Kdlmdn
and L. Pélos (eds), pp. 3-48, Budapest. Akadémiai Kiadé.

J. Groenendijk and M. Stokhof, 1991a. ‘Dynamic Predicate Logic’. Lin-
guistics and Philosophy, 14, pp. 39-100.

J. Groenendijk and M. Stokhof, 1991b. ‘Two Theories of Dynamic Se-
mantics’. In Logics in Al — FEuropean Workshop JELIA 90, J. van
Eijck (ed.), Springer Lecture Notes in Artificial Intelligence, pp. 55-64,
Berlin. Springer.

W. Groeneveld, 1991, July. ‘Dynamic Semantics and Circular Proposi-
tions’. ITLI-prepublication series LP-91-03, Department of Philosophy,
University of Amsterdam, Nieuwe Doelenstraat 15, 1012 CP Amster-
dam.

D. Harel, 1984. ‘Dynamic Logic’. In Handbook of Philosophical Logic,
D. Gabbay and F. Giinthner (eds), vol. II, pp. 497-604. Reidel, Dor-
drecht.

I. Heim, 1983. ‘File Change Semantics and the Familiarity Theory of Defi-
niteness'. In Meaning, Use and Interpretation of Language, R. Biuerle,
C. Schwarze and A. von Stechow (eds), pp. 164-189. De Gruyter, Berlin.

I. Heim, 1990. ‘E-type Pronouns and Donkey Anaphora’. Linguistics and
Philosophy, 13, pp. 137-178.

I. Heim, 1992. ‘Presupposition Projection and the Semantics of Attitude
Verbs'. Journal of Semantics, 9, pp. 183-221.

H. Hendriks, 1993, December. Studied Flexibility. ILLC-dissertation series
1993-5, University of Amsterdam, Plantage Muidergracht 24, 1018 TV
Amsterdam.

Bibliography 255

H. Hoekstra, 1992. ‘Subsectional Anaphora in DRT’. In OTS Yearbook
1992, M. Everaert, B. Schouten and W. Zonneveld (eds), pp. 53-62.
LEd & OTS, Trans 10, 3512 JK Utrecht.

N. Kadmon, 1990. ‘Uniqueness’. Linguistics and Philosophy, 13, pp.
273-324.

H. Kamp, 1981. ‘A Theory of Truth and Semantic Representation’. In
Formal Methods in the Study of Language, J. Groenendijk et al. (eds),
Amsterdam. Mathematisch Centrum.

H. Kamp and U. Reyle, 1991. ‘A Calculus for First Order Discourse Repre-
sentation Theory’. Technical report, sonderforschungsbereich 340, Wis-
senschaftliches Zentrum der IBM Deutschland GmbH, Schlossstrasse
70, 7000 Stuttgart 1.

H. Kamp and U. Reyle, 1993. From Discourse to Logic, vol. I, I1. Kluwer,
Dordrecht.

H. Kamp and C. Rohrer, 1983. ‘Tense in Texts'. In Meaning, Use and In-
terpretation of Language, R. Bauerle, C. Schwarze and A. von Stechow
(eds), pp. 250-269. De Gruyter.

M. Kanazawa, 1993. ‘Dynamic Generalized Quantifiers and Monotonic-
ity’. ILLC-prepublication series LP-93-02, University of Amsterdam,
Plantage Muidergracht 24, 1018 TV Amsterdam.

M. Kanazawa, 1994, December. ‘Completeness and Decidability of the
Mixed Style of Inference with Composition’. In Proceedings of the 9th
Amsterdam Colloguium, P. Dekker and M. Stokhof (eds).

D. Kaplan, 1979. ‘On the logic of demonstratives’. In Contemporary Per-
spectives in the Philosophy of Language, French, Uehling and Wettstein
(eds), pp. 401-412. University of Minnesota Press.

L. Karttunen, 1976. ‘Discourse Referents’. In Syntar and Semantics,
J. McCawley (ed.), vol. 7, pp. 363-385. Academic Press, New York.

M. Kracht, 1989a. ‘On the Logic of Category Definitions’. Computational
Linguistics, 152, pp. 111-113.

256 Bibliography

M.A. Kracht, 1989b, February. ‘When can you say ‘it’?’. Bericht der
Gruppe Logik, Wissenstheorie und Information 3/89, II. Department
of Mathematics, Freie Universitat Berlin, Arnimallee 2-6, 1000 Berlin
33, Deutschland.

M.A. Kracht, 1990, December. ‘Traditional Linguistics Can Solve Logical
Puzzles’. Bericht der Gruppe Logik, Wissenstheorie und Information
12/90, I1. Department of Mathematics, Arnimallee 2-6, 1000 Berlin 33,
Deutschland.

M.A. Kracht, 1992, February. ‘The Theorie of Syntactic Domains’. Logic
Group Preprint, Series 75, Department of Philosophy, Utrecht Univer-
sity, Heidelberglaan 8, 3584 CS Utrecht, the Netherlands.

M.A. Kracht, 1993a, April. ‘Mathematical Aspects of Command Rela-
tions’. In Proceedings of the 6th Conference of the European Chapter of
the Association for Computational Linguistics, S Krauwer, M. Moort-
gat and L. des Tombe (eds), pp. 240-249.

M.A. Kracht, 1993b. ‘Nearness and Syntactic Influence Spheres’. Techni-
cal report, II. Department of Mathematics, Arnimallee 2-6, 1000 Berlin
33, Deutschland.

M.A. Kracht, 1994a. ‘Logic and Control: How They Determine the Be-
habiour of Presuppositions’. In Logic and Information Flow, J. van
Eijck and A. Visser (eds), pp. 89-111, Cambridge, Massachusetts. MIT
Press.

M.A. Kracht, 1994b. ‘Syntactic Coding’. In Proceedings of the 9th Ams-
terdam Colloquium, M. Stokhof, P. Dekker and H. Hendriks (eds).

E. Krahmer, 1993, May. ‘Donkeys Galore, Approaches to Discourse Se-
mantics’. ITK Research Memo 17, ITK (Institute for Language Tech-
nology and Artidicial Intelligence), PO Box 90152, 5000 LE Tilburg.

E. Krahmer, 1994, March. ‘Partial Dynamic Predicate Logic’. ITK Re-
search Report 48, ITK (Institute for Language Technology and Artifi-
cial Intelligence), PO Box 90152, 5000 LE Tilburg.

N. Kurtonina, 1994 (to appear). ‘The Lambek Calculus, Relational Se-
mantics and the Method of of Labeling’. Studia Log:ca.

Bibliography 257

I. Lewin, 1994. ‘Indexical Dynamics’. In Applied Logic: How, What and
Why?, M. Masuch and L. Pé6lés (eds), Dordrecht. Kluwer. Proceedings
of the Applied Logic Conference Logic@Work, 1992.

R. Maddux, 1983. ‘A sequent calculus for relation algebra’. Annals of
Pure and Applied Logic, 25, pp. 73-101.

A. ter Meulen and J. Seligman, 1994. ‘Dynamic Aspect Trees’. In Ap-
plied Logic: How, What and Why?, M. Masuch and L. Pélés (eds),
Dordrecht. Kluwer. Proceedings of the Applied Logic Conference,
Logic@Work, 1992.

W. Meyer Viol, 1994. ‘Instantial Logic’. manuscript, to appear as PhD.
thesis.

R. Montague, 1970. ‘Universal Grammar’. Theoria, 36.

L. Moss and J. Seligman, 1994. ‘Classification Domains and Information
Links: A Brief Survey’. In Logic and Information Flow, J. van Eijck and
A. Visser (eds), pp. 112-124, Cambridge, Massachusetts. MIT Press.

R. Muskens, 1991. ‘Anaphora and the Logic of Change’. In Logics in Al
- JELIA 90, J. van Eijck (ed.), Lecture Notes in Artificial Intelligence,
vol. 478, pp. 414-430, Berlin. Springer.

R. Muskens, 1994. ‘A Compositional Discourse Representation Theory’.
In Proceedings 9th Amsterdam Colloquium, P. Dekker and M. Stokhof
(eds), pp. 467-486. ILLC, Amsterdam.

R. Muskens, to appear. ‘Tense and the Logic of Change’. In Interface
Aspects of Syntaz, Semantics and the Lezicon, U. Egli et al (ed.). Ben-
jamins, Philadelphia.

P. Pagin and D. Westerstahl, 1993. ‘Predicate Logic with Flexibly Binding
Operators’. Journal of Logic, Language and Information, 2, pp. 89-128.

L. Polanyi and R. Scha, 1988. ‘An Augmented Context Free Grammar’.
In Proceedings of the 24th Annual Meeting of the Association for Com-
putational Linguistics, pp. 573-577.

258 Bibliography

V. Pratt, 1991. ‘Action Logic and Pure Induction’. In Logics in Al —
European Workshop JELIA ’90, J. van Eijck (ed.), pp. 97-120. JELIA,
Springer, Berlin.

W.C. Purdy, 1992a. ‘A Variable-Free Logic for Anaphora’. Manuscript,
Syracuse University.

W.C. Purdy, 1992b. ‘Surface reasoning’. Notre Dame Journal of Formal
Logic, 33, pp. 13-36.

A. Ranta, 1991. ‘Intuitionistic Categorial Grammar’. Linguistics and
Philosophy, 14, pp. 203-239.

T. Reinhart, 1983. Anaphora and Semantic Interpretation. Croom Helm
Linguistics Series. Croom Helm Ltd., London.

U. Reyle, 1993. ‘Vagueness and Ambiguity in DRT’. Journal of Semantics.

M. de Rijke, 1992. ‘A system of dynamic modal logic’. ILLC-
prepublication 1p-92-08, University of Amsterdam.

M. de Rijke, 1993, December. Eztending Modal Logic. ILLC-dissertation
series, University of Amsterdam, Plantage Muidergracht 24, 1018 TV
Amsterdam.

C. Roberts, 1989. ‘Modal Subordination and Pronominal Anaphora in
Discourse’. Linguistics and Philosophy, 12, pp. 683-721.

V. Sanchez Valencia, 1990. Studies on Natural Logic and Categorial
Grammar. PhD thesis, University of Amsterdam, Amsterdam.

R. van der Sandt, 1989. ‘Presupposition and Discourse Structure’. In
Semantics and Contestual Ezpressions, R. Bartsch, J. van Benthem
and P. van Emde Boas (eds). Foris, Dordrecht.

R. van der Sandt, 1992. ‘Presupposition Projection as Anaphora Resolu-
tion’. Journal of Semantics, 9, pp. 333-377.

W. Saurer, 1993. ‘A Natural Deduction System for Discourse Represen-
tation Theory’. Journal of Philosophical Logic, 22.

Bibliography 259

D. Schmidt, 1988. Denotational Semantics: a methodology for language
development. Brown, Dubuque, Iowa.

P. Seuren, 1985. Discourse Semantics. Blackwell, Oxford.

C. Sidner, 1983. ‘Focusing in the Comprehension of Definite Anaphora’.
In Computational Models of Discourse, M. Brady and R. Berwick (eds),
pp. 267-330. MIT Press, Cambridge, Massachusetts.

R. Stalnaker, 1972. ‘Pragmatics’. In Semantics of Natural Language,
D. Davidson and G. Harman (eds), pp. 380-397. Reidel.

R. Stalnaker, 1978. ‘Assertion’. In Syntar and Semantics 9: Pragmatics,
P. Cole (ed.), vol. 9. Academic Press.

G. Sundholm, 1984. ‘Proof Theory and Meaning'. In Handbook of Philo-
sophical Logic, D. Gabbay and F. Giinthner (eds), vol. I1I, pp. 471-506.
Reidel, Dordrecht.

A. Tarski, 1941. ‘On the Calculus of Relations’. Journal of Symbolic
Logie, 6, pp. 73-89.

R. Thomason (ed.), 1974. Formal Philosophy, selected papers of Richard
Montague. Yale University Press, New Haven.

A. Troelstra, 1992. Lectures on Linear Logic. CSLI Lecture Notes 29.
CSLI, Stanford.

A. Troelstra and D. van Dalen, 1988. Constructivism in Mathematics,
Studies in Logic and the Foundations of Mathematics, vol. I and II.
North-Holland, Amsterdam.

F. Veltman, 1991. ‘Defaults in Update Semantics’. In Conditionals, De-
faults and Belief Revision, H. Kamp (ed.). Dyana Deliverable R2.5A,
Edinburgh.

F. Veltman, J. Groenendijk and M. Stokhof, 1993. ‘Coreference and
Modality’. Philosophy Department, University of Amsterdam.

Y. Venema, 1992. Many-Dimensional Modal Logic. PhD thesis, University
of Amsterdam.

260 Bibliography

Y. Venema, 1993, February. ‘A Crash Course in Arrow Logic’. Technical
report, Department of Philosophy, Utrecht University, Heidelberglaan
8, 3584 CS Utrecht.

H.J. Verkuyl, 1993. A theory of Aspectuality; The Interaction between
Temporal and Atemporal Structure. Cambridge Studies in Linguis-
tics 64. Cambridge University Press.

H.J. Verkuyl and C.F.M. Vermeulen, 1993, December. ‘Shifting Perspec-
tives in Discourse’. unpublished manuscript.

C.F.M. Vermeulen, 1989, September. A Dynamic Analysis of Reasoning.
Master’s thesis, Department of Philosophy, Utrecht University.

C.F.M. Vermeulen, 1991, December. ‘Merging without Mystery, Vari-
ables in Dynamic Semantics’. OTS-working paper OTS-WP-CL-91-
003, O.T.S. (Research Institute for Language and Speech), Utrecht
University, Trans 10, 3512 JK Utrecht, the Netherlands. Also appeared
as: idem, Logic Group Preprint Series, 70, Department of Philosophy,
Utrecht University.

C.F.M. Vermeulen, 1993a, January. ‘Incremental Semantics for Proposi-
tional Texts'. OTS-working paper OTS-WP-CL-93-001, OTS (Research
Institute for Language and Speech), Utrecht University, Trans 10, 3512
JK Utrecht, the Netherlands. Also as Logic Group Preprint Series 85,
Department of Philosophy, Utrecht University; will appear in Notre
Dame Journal of Formal Logic.

C.F.M. Vermeulen, 1993b, November. ‘Proofs as Texts, Dynamic
Proof Theory for Intuitionistic Propositional Logic’. OTS-working pa-
per OTS-WP-CL-93-007, OTS (Research Institute for Language and
Speech), Utrecht University, Trans 10, 3512 JK Utrecht, the Nether-
lands. Also appeared as Logic Group Preprint Series 102, Department
of Philosophy, Utrecht University.

C.F.M. Vermeulen, 1993c. ‘Sequence Semantics for Dynamic Predicate
Logic’. Journal of Logic, Language and Information, 2, pp. 217-254.
after: idem, Logic Group Preprint Series, 60, Department of Philoso-
phy, Utrecht University, January 1991.

Bibliography 261

C.F.M. Vermeulen, 1994a, March. ‘Three Theories of Dynamic Seman-
tics’. handout for AiO-course of OZSL.

C.F.M. Vermeulen, 1994b. ‘Update Semantics for Propositional Texts’.
In Applied Logic: How, What and Why?, M. Masuch and L. Pélés
(eds), Dordrecht. Kluwer. Proceedings of the Applied Logic Conference,
Logic@Work, 1992.

A. Visser, 1989. ‘De ezel van Geach’. Lecture notes, Philosophy Depart-
ment, Utrecht University, last update: Spring Semester 1994.

A. Visser, 1992a. ‘Actions under Presuppositions’. In Logic and Infor-
mation Flow, J. van Eijck and A. Visser (eds). MIT Press, Cambridge,
Mass.

A. Visser, 1992b, November. ‘Lazy and Quarrelsome Brackets'. Logic
Group Preprint Series 82, Department of Philosophy, Utrecht Univer-
sity, Heidelberglaan 8, 3584 CS Utrecht, the Netherlands.

A. Visser, 1992¢. ‘Meanings in Time’. unpublished manuscript.

R. de Vrijer, 1990. ‘Natural Deduction for DPL’. unpublished manuscript,
Philosophy Department, University of Amsterdam.

H. Zeevat, 1987a. ‘A Treatment of Belief Sentences in DRT’. In Studies in
Discourse Representation Theory and the Theory of Generalized Quan-
tifiers, D. de Jongh, J. Groenendijk and M. Stokhof (eds), pp. 189-215.
Foris, Dordrecht.

H. Zeevat, 1987b. ‘Combining Categorial Grammar and Unification’.
In Natural Language Parsing and Linguistic Theory, U. Reyle and
C. Rohrer (eds), pp. 202-229. Kluwer, Dordrecht.

H. Zeevat, 1991a. ‘A Compositional Approach to DRT’. Linguistics and
Philosophy, 12, pp. 95-131.

H. Zeevat, 1991b, May. Aspects of Discourse Semantics and Unification
Grammar. PhD thesis, University of Amsterdam.

H. Zeevat, 1992a. ‘Presupposition and Accommodation in Update Se-
mantics’. Journal of Semantics, 94, pp. 379-412. Special Issue: Pre-
supposition, Part 2.

262 Bibliography

H. Zeevat, 1992b. ‘Presuppositions in Update Semantics’. Journal of
Semantics, 9.

H. Zeevat, E. Klein and J. Calder, 1987. Unification Categorial Gram-
mar, pp. 195-233, in Categorial Grammar, Unification Grammar and
Parsing. Edinburgh Working Papers in Cognitive Science. E. Klein and
N. Haddock and G. Morrill.

L. Zeinstra, 1990. Reasoning as Discourse. Master’s thesis, Philosophy
Department Utrecht University.

Samenvatting

Verkenningen van Dynamische Contexten

Onderwerp van het proefschrift is de dynamische semantiek. In het proef-
schrift wordt de dynamische semantiek beschouwd als een wezenlijk nieuwe
benadering van de interpretatie van natuurlijke taal: dynamische se-
mantiek biedt een ander perspectief op het interpretatieproces en in-
troduceert daarbij nieuwe technicken en methoden. Het proefschrift is
gedeeltelijk een poging om tot de kern van het nieuwe van deze benader-
ing, formeel en informeel, door te dringen en gedeeltelijk een poging om
binnen de nieuwe benadering een bijdrage te leveren aan de ontwikkeling
van de benodigde formele methoden en technieken.

In hoofdstuk 1 schetsen we de dynamische benadering van semantiek.
Eerst wordt aan de hand van enkele voorbeelden een beeld gegeven van de
verschillende formalismen—DRT en DPL—die de dynamische semantiek
haar gezicht hebben gegeven. Daarna wordt in informele termen bespro-
ken waarin het cruciale verschil ligt tussen deze dynamische benaderingen
en de gebruikelijke benadering in de traditie van Montague: de dynamis-
che semantiek beperkt zich niet tot de (compositionele) analyse van de
waarheidscondities van de expressies, maar wil ook het stap voor stap
karakter van de interpretatie van natuurlijke taal correct modelleren.
We kunnen deze extra nevenvoorwaarde begrijpen als we zien dat de dy-
namische semantiek zich richt op de interpretatie van teksten, terwijl de
Montague traditie vooral gericht was op de interpretatie van zinnen. Het
is verleidelijk om aan zinnen te denken als relatief kleine, afgeronde een-
heden, waar we rustig onze gedachten over kunnen laten gaan alvorens we
ze interpreteren. Maar in het geval van teksten is dat beeld niet langer
houdbaar: teksten zijn bij uitstek grote, onaffe expressies, waarvan we
ons de interpretatie alleen kunnen voorstellen als een stapsgewijs pro-

263

264 Samenvatting

ces, waarin steeds alleen een klein stukje van de tekst tegelijk bekeken
wordt. Daarom stellen we het small unit principle (principe van de
kleine eenheden) voor als karakteristiek voor dynamische semantiek: in
een dynamische semantiek wordt interpretatie gemodelleerd als een pro-
cess waarbij steeds slechts op één klein stukje van de expressie tegelijk
geopereerd wordt.

We constateren dat de dynamische interpretatie van 3z, zoals we die
in hoofdstuk 1 gezien hebben, hiervan een uitstekend voorbeeld is. In
plaats van een traditionele analyse van de existentiéle kwantor als operator
waarvan het globale bereik vooraf gespecificeerd moet worden, komt een
semantiek waarin de bijdrage van 3z locaal beschreven kan worden.

In deel I wordt verder stil gestaan bij de gevolgen van deze locale represen-
tatie van existentiéle kwantificatie. In een dynamische semantiek wordt
het noodzakelijk de verschillende functies van variabelen zorgvuldig te
onderscheiden. In de eerste plaats zijn variabelen registers waarin we in-
formatie kunnen opslaan. Maar variabelen spelen ook een cruciale rol bij
de communicatie tussen verschillende delen van een tekst. Het transport
van informatie van het ene deel van de tekst naar het andere wordt door
de variabelen gereguleerd. In de dynamische semantiek moet zowel het
aspect van informatieopslag als het aspect van verplaatsing van informatie
worden weergegeven. We stellen referent systems voor, als formaat waarin
beide rollen van variabelen afdoende beschreven kunnen worden.

In deel II laten we zien dat het small unit principle ook consequenties
heeft voor de analyse van de structuur van teksten. Informatie over de
structuur van een expressie speelt een essentiéle rol bij de interpretatie
ervan. Maar het small unit principle zegt dat we slechts aan een klein deel
van die structuur tegelijk kunnen werken. Het is daarom onvermijdelijk
dat we een deel van de structurele informatie opslaan in onze semantische
representaties. We illustreren hoe dit werkt aan de hand van als... dan
constructies in teksten.

In feite is hier sprake van een soort uitwisselingsprogramma tussen syn-
taxis en semantiek: we hoeven steeds minder structurele informatie te
specificeren in de syntaxis als we bereid zijn structurele informatie een
plaats te geven in de semantiek.

Het is belangrijk op te merken dat de manier waarop in de dynamische
semantick de 3z kwantor locaal wordt gemaakt en de manier waarop we
de als. .. dan constructies analyseren, volgens een gemeenschappelijk pa-
troon verlopen: in beide gevallen moet er met twee soorten informatie

Verkenningen van Dynamische Contexten 265

tegelijk worden gemanipuleerd, waarbij de ene soort informatie de ma-
nipulatie van de andere soort informatie stuurt. In deel I gaat het daarbij
om de twee rollen die variabelen spelen: de communicatieve rol van de
variabele bepaald de accumulatie van informatie. In deel II gaat het om
structurele informatie enerzijds en waarheidsconditionele informatie an-
derzijds: de structuur van de expressie bepaalt hoe de waarheidscondities
van de subexpressies gecombineerd moeten worden tot de waarheidscon-
ditie van de expressie in zijn geheel.

Dit is een cruciale observatie over de dynamische benadering van se-
mantiek: in de dynamische semantiek is behoefte aan goede formele mod-
ellen om de systematische interactie van verschillende soorten informatie
te beschrijven. Het proefschrift geeft twee voorbeelden van zulke mod-
ellen, maar het valt te verwachten dat een meer algemene benadering van
dit probleem vruchten zal afwerpen. Dit lijkt de logische volgende stap in
de ontwikkeling van de dynamische semantiek te zijn: het ontwikkelen van
een abstract, formeel kader waarbinnen de interactie tussen verschillende
soorten van informatie flexibel gemodelleerd kan worden.

Tenslotte is in hoofdstuk 5 een begin gemaakt met de studie van dynamis-
che bewijssystemen. In dit hoofdstuk wordt besproken hoe de dynamis-
che benadering van semantiek ook zijn gevolgen zou kunnen hebben voor
de bewijstheorie. Met name wordt voorgesteld om bewijzen als teksten
te beschouwen. Hierbij worden bewijsregels dan instructies om bewi-
jsteksten stap voor stap op te bouwen. Het idee van bewijzen als tek-
sten wordt geillustreerd aan de hand van een eenvoudig voorbeeld: er
wordt een dynamisch bewijssysteem beschreven voor een fragment van
de intuitionistische propositie logica. Hierbij wordt vooral duidelijk dat
het traditionele onderscheid tussen de syntax van de formules (op het ene
niveau) en de syntax van de bewijzen van deze formules (op een hoger
niveau) in een dynamische benadering van bewijzen niet langer voor de
hand ligt.

