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Zwi.schen ei~'.~r Anzahl wicMiger Ver_trete~ folqende~· Verfahrensklassen; (i) Kollolcationsverfahren, (ii) Produktintegrations
veijahren, (m) globale Verfahren, wird ein J; ergleich angegeben. Besondere A.ufmerksamkeit gilt dabei der Ilerausbifd.ung 
dieser V erfahren jur Problerne rnit nicht-glatter Losung. Es zeigt sich, daf3 dann, wenn nur relat·iv geringe Genauigkeit ge
fordert wird, ein Kollokationsverfahren vom Branca-Typ van zweiter oder dritter Ordnung eine gute Wahl bedeutet. - Ein 
neues Kollokationsverfahren, das rnogliche Nicht-Glattheit der Losung in der Nahe des Ursprungs in Rechnung stellt, 
erweist sich als vorteilhaf t, falls ho he Genauigkeit gefordert wird, uncl zwar sowohl fur Probleme mit nicht-glatter, als auch 
fur solche rnit glatter Losung. 

A numerical comparison is made between a number of important representatives of the following classes of methods: (i) collo
cation, (ii) product integration and (iii) global methods. Special attention is paid to the performance of these methods for 
problems with a non-smooth solution. It turned out that, when only relatively low accuracy is required, a good choice would 
be a second or third order collocation method of Branca. - A new collocation method which accounts for possible non
smoothness of the solution near the origin, turned out to be advantageous when high accuracy is required, both for problems 
with a non-smooth solut-ion, and for problems with a smooth solution. 

)J.aCTCH llf!CJICHHOC cpaBHCHHC pa3JIH'IHblX BamHhIX upeUCTUBHTCJieii CJICJlYIOillllX HJ!aCCOB MeTOJlOB: (i) Me
TO;r\bl HOJIJIOI-laUIH!, (ii) MCTO;r\hl HHTerpuposamrn no 'IaCTffM, (iii) rJJo6aJibHb!C MCTO)lbl. Oco6eHHOC BHHMaHHC 
o6pall\aCTCH Ha CBepweHHe 3TllX MeTOJlOB JlJIH 3aJla'l c HerJJaJllnIM peUieH!JeM. 0Ha3aJIOCb, 'ITO MCTona 
IWJIJIOHaUHH TH!la Epa1rna BTOporo HJIH TpCThero nopH)lHa HBJIHCTCH xopOlliHM BbI6opoM, CCJIH Tpe6yeTCH 
TOJihHO OTHOCHTCJihHO Hll3HaH roqHQCTb. - HOBblii MeTO,[( HOJIJIOHaumI, HOTOpbiii rrpHHHMaeT BO BHyMaHHe 
B03MOmHYIO HerJJa,[(HOCTb peIIICHHfl OJIH3HO H naqaJIY' OHa3bIBaeTCH BblfO;r\HhlM, ecJIH Tpe6yeTCH BbICOHaH 
roqHocrb :u AJJH sa;a;aq c aerJJaJlHllM :rr JJ;JIH sa;a;alJ c rJJaAHHM peIUe1rneM. 

1. Introduction 

The linear generalized Abel 'integral equation we consider has the form: 

"' 
J~ K(x, t) /(t) l _ (· ·) 

( 1/2 ( t - g x , x - t) 
(1.1) 

0 

where g(x) and K(x, t) are known functions. 
As the performance of the methods to be presented is influenced by the smoothness of the solution /(x) of 

(1.1), it may be convenient to have a priori knowledge of the behaviour of /(x). The following special version of an 
existence and smoothness theorem by ATKINSON [1] can then be used. 

Theorem 1.1: Let g(x) have the form 

g(x) = xPg(x) , 0 < x < X , g E C"+ 1[0, X] , (1.2) 

for sorne integer n ~ 0 and fJ > -~-. Assurne K(x, t) is n + 2 tirnes continuously differentiable for 0 < t < x < X and 

K(x, x) =f 0 , 0 < x < X. (1.3) 

'1.'hen there is a unique solution f(x) of (1.1) of the form: 

f(x) = x!l-1f2 [a + xL(x)], x > 0, (1.4) 

with L(x) E C"[O, X]. The conl:!tant a= 0 if and only if g(O) = 0. 
The most important numerical methods to solve ( 1.1) can be divided into three groups: (i) eoJlocation methods, 

(ii) product integration methods and (iii) global methods. Characteristie for both eollocation and produut integration 
algorithms is that we introduce a grid {:cl = ih, i = 0, ... , N, N := X/h}, with grid spacing (or step) h. We then 
calculate approximations to f(x) on each interval [x,, X.;+ 1 ], i = 0, ... , N - I, successively, Their difference lies in 
the fact that, in the case of product integration, an approximation to K(x, t) · /(t) is made on each interval: the result
ing integrals can be computed analytically. In the case of collocation, however, an approximation to f(x) itself is 
made on each interval and, in general, the resulting integrals have to be calculated numerically. A global 1nethod 
approximates f(x) on the whole interval (0, X] by a certain linear combination of basis functions. The coefficients 
of this approximation are calculated simultaneously. 

In this paper we make a numerical comparison between 

(i) collocation methods developed by BRANCA [2] and a new method due to the authors, 
(ii) product integration methods due to ANDERSSEN, DE HooG and WEISS [3], 

(iii) a global method of CHAWLA and KUMAR [4]. 

The test problems will be divided into three groups: 

(i) smooth problems (i.e, problems ~or which the solution is sufficiently often differentiable), .. 
(ii) non-smooth problems (i.e., solut10ns of the form f(x) = "P(x) + x1f~x(x), x(x) and "jJ(X) sufficiently smooth), 

(iii) problems with strongly oscillating or rapidly decreasing solutions. 

n• 
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In the next paragraphs we will discuss each method in more detail. We will frequently make use of the following 
manipulations on (l.l): 

(i) introduce the grid 

{:t't : = ih, i = 0, ... , N , h = X/N} 

for some NE N; 

(ii) write (1.1) in the form 
~+l x 

k-"1 J K(x, t) f(t) l f K(x, t) f(t) dt = (x) 
{~'o (x - t)l/2 c t + (x - t)If2 g ' 

:Xj 

x E (xk, Xk+l] for some k with 0 < k < N - 1. 

2. Branca's methods 

(1.5) 

(1.6) 

BRANCA [2] developed a second and third order method to whieh we will refer as BR2 and BR3, respectively. For 
both methods we introduce the grid (1.5). 

a. BR2 

/(x) is approximated by a continuous function which is a first-degree polynomial on each interval [x;, X;+1] =: ai, 
i.e.: 

1 
/(x)lxw; c.::::: P1(x) : = h [(a'H I - x) f; + (x - Xi) k+ i] , i = 1, ... , N; (2.1) 

ft denotes an approximation to f(x 1). 

We write (1.1) in the form (1.6), substitute (2.1) and restrict the continuous variable x to the discrete set 
{ih, i = 1, ... , N}. After an obvious change of variable we get the scheme: 

l 

( ) = hlf:l k-"--1 f K(xk, (j + •1 h) [(l - <) /1 + •kid d 
'J X1c .:..., (k . . )1/2 T ' j~O - J -T 

k = 1, ... ,N. (2.2) 

0 

The integrals in (2.2) are calculated using I-point weighted Gauss quadrature with weight fundions (l - r)-112 : 

1 f (l :(~l/:l dr = w1G(a1) + Ri[G(r)], l = I, ... , N. 

0 

The weights w1 and abscissae a1 are determined by requiring: 

R1[G(r)] = 0 for G(r) =Ti, i = 0, 1. 

By using (2.3) and solving (2.2) for fk, we get the sdieme (writ-ing g1c for g(xk)): 

fk = [w1a1K(x1c, (k - 1 + a1) h)]- 1 X 
k-2 

x [h- 112g1; - .I; Wk-JK(x1c, (j + ak-J) h) [(l -- ak-j) ft+ ak-iHiJ -
j=O 

- w1(1 - a1 ) fk-1K(x1c, (k - 1 - a1) h)] , 

The required starting value /0 can be calculated from 

. g(x) 
lo = ~1~~ 2;;112K(o;-o) (see e.g. [2], p. 310) . 

b. BR3 

k = 1, ... ,N. 

(2.3) 

(2.4) 

(2.5) 

(2.6) 

A third order method might be derived by approximating f(x) by a second-degree polynomial on the intervals 
[x;, Xi+2], i = 0, 2, 4, ... , N/2, taking N even. This would require the solution of a (2 x 2)-system in each step. To 
avoid this, BRANCA calculates such an approximation to /(x) only on the interval [Xo, x2], thus finding /1 and /2 (/0 is 
given, e.g. by (2.6)) and then calculates /3 by approximating /(x) on [x2, x3] by a second-degree polynomial through 
the points (xv /1), (x2, / 2), (x3, / 3). In general, he calculates/.,. by putting a second degree polynomial through (xn_ 2, 
fn-2), (Xn-1, fn-1), (xn, fn)· Thus: 

1 
f(x)lxea1-1::::::: P1(x) := 2h2 [(x - Xj-1) (x -x1) h-2 - 2(x - Xj-2) (x - X1) fj-l + (x - Xj_ 2) (x - Xj-l) /1], 

i = 2, ... , N , (2. 7) 
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and 
/(x)lxea, = P2(X) . 

Snhstitution in (1.6) and restricting x to {ih, i = l, ... , N} gives (after a change of variable): 
1 

(x) = h112 k~l J K(xk, (j + i-) h) PJ((j. + i-) h) 1 
ff le .L..; (k . )1/•> C T ' j=O • - J - T ~ 

le= 1, ... , N, 

0 

j = I, 2, ... , N -- l , 
j = 0. 

The integrals are now c:alculated using 2-point weighted Gauss quadrature; 
1 

J _!!J!j__ dr = w<1>G(aO>) + o/2JG(a(2l) .L R1[G(r)] ( l _ T) 1/2 , . l l · l l 1 · , 
l = l, ... , N. 

0 

wf1>, wf2>, af1>, af2l are determined by requiring: 

af2> = 1 and R1[G(i-)] = 0 for G(r) = ri, i = 0, I, 2. 

This gives a scheme, similar to, but a bit more complicated than (2.5). 

3. CO and COS 
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(2.8) 

(2.9) 

(2.10) 

These collocation methods have not been published in the literature before, but are analogues of methods for sec:ond 
kind equations, developed by TE RrnLE [5]. COS is a spec:ial version of CO, designed to deal with non-smooth solu
tions of the form: 

/(x) = 1JJ(x) + x 112x(x) , 1p and x smooth . (3.1) 

We describe COS; CO follows immediately from it. Let rn be some fixed positive integer. We again introduce the 
grid (1.5) and put: 

"' /(x) = u(x), u(x)lx<ck = J; a1c1<pkz(x) , k = 0, ... , N - 1, 
z~o 

where 
a1c : = (xrc, Xk+1] , k = I, ... , N - l , a0 : = [x0 , x1 ]; 

<prcz(x) : = [ (x - x1c)/h ]1 , k = 1, ... , N - l , <pot(x) : = (x/h )112 • 

Now the coefficients a1cz have to be det,ermined. Therefore we introduce the so-called collocation parameters: 

0 < rJo < ... < 1')m = l . 

We then substitute u(x) for /(x) in (l.6) and restrict x to the set of collocation points 

{x1c1 : = X1c + ri1h; j = 0, ... , m; k = 0, ... , N - 1} . 

After a change of variable we get from (l.U): 

~ 1 

~ J K(x1c1, x1c + h-c) 1 1 _ ( ) 1 _ 112 "~1 ~ J K(x1c1, xi + h-r) 1 1 L a1c1 ( l/"> T ( T - g X1c1 (/, - L kJ au k . 1/2 T ( T -
l=O 1')1 -- T) - i=l l=O ( - 2 + 'Y/1 - T) 

0 0 
I 

(3.2) 

(3.3) 

"' J K(x1c1, hi-) 119 • - J; aoz (k + _ )112 T ~ dr , J = 0, ... , m, k = 1, ... , N - I 
l=O 1')1 T 

0 
'Y/j 

£ ao1 J K(xoj, hi-~, rl/2 di- = g(xoj) h-112 ' 
l=O ('Y/1 - T)l/-

0 

In matrix notation: 
k-1 

M1ca1c = h-112g" - J; Nk-ia·i - N1ca.a, 
i=l 

j = 0, ... , m. 

k =I, ... , N - I, 

(3.4) 

(3.5) 

(3.6) 

After substituting s : = i-/ri1 in the integrals in M" we calculate these integrals by using m + I-point Gauss 
quadrature with weight function (I - s)- 112, where the last abscissa is prescribed to be equal to one. We thus get 

1 J G(s) m 
(I 112 ds = J; wiG(tJi) + R1c[G(s)], 

-8) i=O 
(3. 7) 

0 
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and require: 

Rk[G(s)] = 0 for G(s) = {8'.1.; 
s' " ' 

k = 1, ... , N - l, 

k = 0, 
i = 0 ,. .. , 2rn. 

We then choose our collocation parameters 'Y); in (3.3) to be equal to the resulting Gauss abscissae Oi (with Om = l). 
Note that the collocation parameters are the same on each interval, with the exception of the first interval. 

The integrals in the matrices, Nk-i, are calculated in a similar manner using r-point weighted quadrature 
with weight functions (k - 'i + 'Y/i -r)·- 112 , k - i = l, ... , N - 1, j = 0, ... , rn. Here, we do not prescribe any 
abscissae and again require exactness for G(s) = si/2 on a0 and for G(s) =ion a> 0 , for i = 0, ... , 2r - l, respec
tively. To obtain sufficient precision, r must satisfy: 2r ~ rn + l (see [6]). 

The method CO is similar to COS with the exception that the integral on the first interval a0 is treated in the 
sarne way as the integrals. on other intervals. 

Remarks: 

(i) no starting value is required; 
(ii) existence of a solution of (:~.6) is easy to prove, under the assumption K(x, t) of:. 0 for t E [u - h, x], see the 

appendix; 
(iii) in order to calculate the weights, we need values of the integrals: 

1 1 J i J y,i/2 

(Z :. r)112 cir and ('f=_~172 dr 
0 0 

for which we refer to the appendix; 
(iv) in order to calculate the integrals in the Nk-i in (:l6), we must caleulate (and store) r x (rn -f- 1) x (N - 1) 

weights and abscissae; 
(v) CO and COS require the same number of arithmetic operations. 

4. Product integration methods 

These methods were studied by ANDERSSEN et al. [3]. See also [7]. Choose two sets of 11arameters: 

collocation parameters Q : = {0 S 'Y/o < ... :=:; 'Y)m < l} , 

evaluation parameters 
and define 

( collol'ation poi:nts) , 

xZj : = xk -+· µ1h (evaluation point8) . 

We now approximate the function K(xk1, t) f(t) on each interval ai = (xi, x·i+i] by 

with 

m (t - X·) K(xk1• t) f(t)la,~ 1£ K(xM, xt) faLi _h _ _.. 

m Z - µ 
Lz(z) := II v, 

p=oµz -µv 
p~l 

( 4.1) 

(4.2) 

(4.3) 

(4.4) 

(4.5) 

and fu is a numerical approximation to /(x~). Substitution in (l.6) and some manipulatiorni then yields the scheme: 
n• 1 

~r.r( *)ff L1(8) l h,-1/2() k;lmK * J Lz(8) 
,::_,.Ii.Xkj,Xkl kl 1/2C8= (/Xkj - .::..., J; (Xkj,X;t)fu -·-"-·--;-.. ··-·--1-2ds, 
z".o (ri1 - 8) '"·o z-~o (le 1. I· 'Y/i - 8) I 

0 () . {l,. . ., m, 
1-- 0, ... , rn, 

Remarks: 

if 1Jo = 0, 
if 1Jo > 0, 

le = 0, ... , N - I . 

(4.6) 

(i) The choice µ 0 = 'Y/o = 0 and µm = 'Y)rn = 1 decreases the dimension of the system (4.6) by one. 
(ii) In [:3], the authors only consider the case Q = X. BRUNNER [7] proves that, for a certain choice of X, supercon

vergence is obtained in the collocation points Xkf· 

(iii) Note that in the left-hand part of (4.6) the kernel is evaluated outside its region of definition if x'tz > x1c1• 

5. The global method of Chawla and Kumar 

For ease of notation we alter the integration bounds in ( 1.1): 

"' J K(x, t) f(t) 
~=- t)1/2 dt = g(x) ' xE [-1, +l]. 

-l 

(5.1) 
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\Ve now assume that f(x) can be approximated by a series of Chebyshev polynomials: 
N M 

f(x) = J;' a1T 1(x) and, moreover , K(x, t) = J;" bi(x) 1\(t) 
j=O i=O 

('and", resp., in the sum means that the first, and the first and the last term, resp., are to be halved). 
Using the "classical" abscissae: 

and 
Xk =cos ((2k + 1) :rr/(2N + 2)) ' k =0, ... , N, 

x~* =cos (rn/M), r = 0, ... , JY!, 

we can discretize (5.1) as follows: 
N M 

J;' a1 J;" b1(xk) Pt1(x1c) = g(xk) , k = 0, ... , N, 
j=O i=O 

with 
Xk . 

Pii(x) := J T.;(t) T 1(t)/(x11; - t)112 clt, ·i = 0, ... , lrl , k, j = 0, ... , N , 
-1 

2 M 
b;(xk) = lrl ,?:~' K(x11;, x~*) T;(x~*) , ·i = 0, ... ' 111 . 

(5.2), (5.3) 

(5.4) 

(5.5) 

(5.6) 

(5.6.l) 

(5.6.2) 

For the details of the calculation of (5.6) and the derivation of (5.6.2) we refer to [4]. The coefficients a1 are calcu
lated from the linear system (5.6). 

Re rn ark: In order to use this method, it is necessary to define the kernel K(x, t) on the entire square -1 < x, 
t < l. 

6. Numerical experiments 

6.1. Test problems 

We will present numerical results obtained with the previously discussed methods on the following test problems. 
These are illustrative examples from our original (much larger) test set. The conclusions in Section 6.3 are based on 
the results of the original test set. In the following, M~(z) := M(v, a, z), the Kummer function (cf. [13], p. 504). 

I. Smooth problems 

IA f(x) = sin {x, x E [O, 2] , K(x, t) = l , 

( _ (nx)1/2I'(l) [Ml/2(' -M1/2 _· ] f [ ] g x) - iI'( 3/2) 1 ix) . 1 ( ix) , re . : 11 . 

IB f(x) = 2 V~nx [ ( ! - l) exp ( - 2~ ( 1 + x)2) + ( ! + 1) exp ( - 2~ ( 1 - x) 2 - 2)], x E [O, 2] , 

K(x, t) = V~:rr exp ( - ~- (x - t)) , g(x) = V2~x exp ( - 2~ ( l + x)2), ref.: [2] . 

II. Non-smooth problems 

IIA f(x) = x112 , x E [O, 2] , K(x, t) = 1 + sin 2x cos 2t , 

nx (nx)112 I'(l) 
· g(x) = 2 + sin (2x) · I'(3/2) -[M~;2(ix) + 1'JII~12 (-ix)]. 

IIB f(x) = x312 , x E (0, 2], K(x, t) = I , g(x) = 3:rrx2/8 . 

III. Rapidly oscillating pro blern s 

IIIA f(x) =sin 16x , xE[O,l], K(x, t) = l, 

( - (nx)I/2 I'(l) [Mm(· M16( . 
g x) - 2iI'(3/2) 1 ix) - l -tx)]. 

6.2. Some preliminary remarks 

(i) We use the following "coding": 

CO-i, COS-i =CO, COS with m + 1 = i, i = 2, 3, 4; 
HW-i =product-integration with m = 0, i = 2, 3, 4, and µ 0 > O; 
HW-i0 =as HW-i but µ 0 =170 = O; 
CK =the method of CHAWLA and KUMAR. 
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(ii) Convergence. - With p 1"-order convergence of an approximation f(x) (found by using a certain method) to 
f(x), we mean: 

sup 1/(x) - f(x)I < OhP, h small enough , (().2.1) 
[O,X] . 

for some constant 0. When speaking about a p1"-order method, we mean that for f(x) E 0 00(0, X] (6.2.1) holds. For 
non-smooth f(x), the actual order of convergence of a p 1"-order method may be less than p. With the exception of 
BR2 and BR3 [2], for none of the discussed methods a general convergence proof is known. EGGERMON'.I' [9] and 
WEISS [10] gave proofs of second order convergence for HW-20 and in [7]BRUNNER claims to have proven conver
gence of order p for HW-p in the special case: 

~ = 2_ {1 + l'OS [(2 (P - j) + I) ;re]} 1 0 p (fi.2.2) 
•1i 2 2p + 3 ' I = ' ... ' > 

but the paper he refers to has not yet appeared. 
Experimentally, we found for CO-i, COS-i, HW-i and HW-i0 convergence of order i (for /(x) smooth enough). 

For /(x) of the form (:U ), CO-i, HW-i reduce to Hecond order methods, while COS-i appears to be of order 

min {i, i/2 + :3/2} 
(cf. Section 6.3.2). In [7] BRUNNER proves for HW-i, that for the r'hoice of Q (d. Section 4) according to ((L2.2) and 

X :={zeros of Pf(x)}, Pt the i-th J,egendre polynomial, (fi.2.:3) 

. we get a local order of i +~in the points (4.4) while the global order remains i. 

Table 1 

m + l 'r/o 

2 0 
l 
'2 

3 0 
l 
:r 

4 0 
l 

T 

Table 2.1 

Problem nr: IA 
ed in x = 2 

--------"-----~ 

'lJ1 'r/2 'r/3 
·--~----

1 
1 
l 1 ~-

2 
:r 
l 2 

3 :r 
1 3 

2 T 

h 2nd order methods 

C0-2 COS-2 HW-2 HW-20 BR2 
··-···----··-·~--

1/10 4.00 4.01 4.17 3.78 3.78 
.14 .14 .19 .02 .03 

1/20 4.()0 4.61 4.77 4.37 4.37 
.44 .44 .6:3 .On .08 

1/40 5.20 5.20 5.:l8 4.97 4.97 
l.46 1.47 2.:rn .19 .29 

················ ............ "···· 
1/80 5.80 5.80 5.98 5.57 5.57 

5.40 5.41 9.64 .()8 l.09 

J/160 6.17 
4.17 

h 4th order methods 
·--·---------·-··-··---·--·------------

C0-4 COS-4 HW-4 HW-40 
--·- --~---· "------·-·-·- -----··~ --

1/10 9.02 9.00 8.87 8.47 
.65 .64 .64 .43 

·---------·--··-··--------·····-····---------······----------------·-· 
l /20 10.22 10.20 10.07 9.67 

2.01 2.01 1.97 1.87 

1/40 11.39 11.38 ll.27 10.86 
7.08 6.91 6.99 4.72 

l /80 13.00 12.44 12.31 11.93 
25.80 25.72 26.54 19.:37 

j(x) =sin -}x 
K(x, t) = 1 

3rd order methods 

C0-3 COS-3 

6.67 6.67 
.41 .41 

7.57 1.m 
i.:rn I.:l3 

8.48 8.48 
4.G9 4.63 

9.'.39 n.:m 
17 .:37 11.:m 

CK m 

n () 

2 3.00 
.01 

3 5.17 
.01 

4 5.99 
.02 

() 8.84 
.03 

8 12.74 
.04 

HW-3 HW-:30 

G.54 5.86 
.:is .24 

7.4fi fi.77 
1.21 .77 

8.3() 7.<l7 
4.:l:l 2.92 

ll.2fi 8.7H 
17.04 11. !l8 

BB,:l 

5.5:l 
.04 

................... 
H.44 

. I :l 

7.:l5 
.47 

8.26 
l.81 

9.16 
ll.IJ7 



TE RIELE, H.J. J.; ScHRoEUJRS, PH.: Numerical Methods for Abel's Integral Equation 

Table 2.2 

Problem nr: IB 

cd in x = 2 

f(x) = ___ I_==[(~ - i) exp (- ~ (1 + x) 2) + (_!- +- i) exp (- !_ (l -: x)2 - 2)]. 
2 V2nx :i. 2x x 2x 

K(x, t) = 1 exp (- ! (x - t)) 
V2n ~ 

----· -------·------------------- -------·---
h 2nd order methods 3rd order methods 

C0-2 COS-2 HW-2 HW-20 BR2 C0-3 COS-3 HW-3 HW-30 BR3 
.. ---~--"---·--- -----

1/10 

1/20 

1/40 

1/80 

1/160 

h 

4.86 
.17 

5.49 
.50 

6.09 
1.72 

6.70 
6.40 

4.82 
.71 

5.49 
.49 

6.09 
1.75 

6.69 
fi.49 

4th order methods 

5.42 
.21 

6.12 
.71 

fi.72 
2.66 

7.33 
11.11 

4.26 
.01 

4.81 
.02 

5.40 
.08 

6.00 
.29 

C0-4 COS-4 HW-4 HW-40 

1/10 

1/20 

1/40 

1/80 

7.56 
.73 

9.43 
2.29 

11.17 
7.89 

12.42 
29.61 

Table 2.3 
Problem nr: IIA 
cd in x = 2 

6.82 
.73 

9.08 
2.30 

11.lG 
8.04 

12.43 
28.17 

h 2nd order methods 

7.11 
.G9 

8.72-
2.35 

10.54 
8.44 

11.68 
32.16 

7.71 
.54 

9.16 
1.77 

10.69 
6.44 

11.79 
26.01 

4.64 
.03 

5.22 
.11 

5.82 
.38 

6.42 
1.48 

7.02 
5.72 

C0-2 COS-2 HW-2 HW-20 BR2 

1/10 

1/20 

1/40 

1/80 

1/160 

h 

1/10 

1/20 

1/40 

1/80 

3.50 
.19 

3.95 
.56 

4.48 
J.91 

5.04 
6.9() 

3.47 
.19 

3.94 
.56 

4.47 
1.90 

5.03 
6.98 

4 th order methods 

3.38 
.23 

3.97 
.7() 

4.58 
2.87 

5.18 
11.82 

2.60 
.03 

3.19 
.09 

3.78 
.35 

4.38 
1.26 

C0-4 COS-4 HW-4 HW-40 

7.07 
.77 

7.41 
2.46 

7.94 
8.50 

8.52 
32.02 

5.92 
.77 

6.97 
2.44 

8.03 
8.53 

9.11 
32.02 

5.62 
.77 

6.19 
2.53 

6.79 
9.12 

7.50 
35.93 

4.94 
.58 

5.59 
1.89 

6.20 
6.87 

6.72 
27.23 

2.81 
.04 

3.42 
.11 

4.03 
.4:~ 

4.63 
1.66 

5.24 
6.36 

CK 

n 

2 

4 

8 

CK 

n 

2 

4 

8 

6.41 
.45 

8.05 
1.45 

8.74 
5.40 

9.65 
20.24 

2 

1.29 
01 

1.42 
.02 

4 

6.42 
.46 

8.26 
1.50 

8.74 
5.36 

9.65 
20.12 

1.42 
.04 

J.75 
.07 

f(x) = xl/2 

6.59 
.41 

7.83 
1.36 

9.07 
5.15 

9.97 
20.96 

8 

1.75 
.16 

2.49 
.4:~ 

7.18 
.28 

7.55 
.95 

8.58 
3.53 

9.49 
14.36 

4.34 
.05 

6.57 
.18 

7.63 
.67 

8.56 
2.57 

9.46 
10.13 

K(x, t) = 1 + sin 2x cos 2t 

3rd order methods 

C0-3 

5.68 
.51 

H.38 
1.66 

7.03 
5.82 

7.66 
21.92 

m 

2 

0 
.02 

0 
.03 

COS-3 

6.15 
.51 

7.60 
1.66 

8.24 
5.80 

8.64 
21.89 

4 

1.8 
.05 

2.1 
.07 

HW-3 HW-30 BR3 

4.8.5 
.45 

5.61 
1.51 

6.28 
5.50 

6.92 
22.20 

8 

2.5 
.17 

4.44 
.:n 

.5.16 
1.02 

5.89 
3.87 

6 . .57 
1.5.20 

3.59 
.06 

4.75 
.21 

5.96 
.75 

6.56 
2.92 
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Table 2.4 
Problem nr: IIB 
cd in x = 2 

2nd order methods 

l/10 

C0-2 

3.59 
.16 

COS-2 HW-2 HW-20 BR2 

3.59 
.16 

3.77 
.17 

3.35 
.01 

3.35 
.02 

f(x) = xs12 

K(x, t) = 1 

3rd order methods 

C0-3 

6.44 
.42 

COS-3 

6.28 
.44 

HW-3 HW-30 BR3 

6.15 
.35 

5.76 
.25 

5.03 
.04 

1/20 
··············· ······· .... . ························--··········-···--------·········· ..................................................................................... . 
4.19 

.46 
4.19 

.47 
4.38 

.59 
3.96 

.04 
3.96 

.08 
7.36 
1.35 

7.18 
1.43 

7.05 
1.13 

6.68 
.80 

6.16 
.13 

l/40 
. ················· ....... . .. ........ ... ..... ... . .. ........... ······ ............. . 

4.80 
1.52 

4.80 
1.58 

4.98 
2.28 

4.56 
.17 

4.56 
.28 

8.26 
4.70 

8.09 7.95 7.59 7.07 
4.96 4.13 2.96 .46 

1/80 
··············-···-················ ···········-··-························ .................................................................................................... . 

1/160 

fi.40 
fi.63 

5.40 
5.83 

4th order methods 

5.59 
9.31 

5.16 
.62 

5.76 
2.44 

C0-4 COS-4 HW-4 HW-40 

1/10 

1/20 

1/40 

1/80 

8.30 
.66 

9.28 
2.07 

10.2fi 
7.26 

11.17 
2U.85 

'l'n ble 2.fi 
Problem nr: IIIA 
cd in x = 1 

8.69 
.68 

9.89 
2.14 

11.01 
7.37 

12.18 
27.74 

7.76 
.60 

8.63 
1.89 

9.46 
6.75 

10.51 
28.13 

7.43 
.45 

8.38 
1.47 

9.33 
5.19 

9.43 
20.45 

5.16 
1.03 

5.76 
4.12 

CK 
n 

2 

3 

4 

6 

8 

9.16 
18.12 

m 
0 

1.4 
.01 

2.22 
.01 

2.62 
.01 

3.20 
.03 

3.72 
.04 

n 

9.00 
18.83 

16 

24 

32 

48 

f(x) = sin 16x 
K(x, t) = 1 

m 
0 

8.86 
16.86 

5.31 
.16 

6.40 
.37 

6.34 
.71 

6.85 
1.81 

8.49 
11.84 

7.97 
1.75 

-·------···------··------------------------------

l/IO 

1/20 

1/40 

1/80 

l/HSO 

k 

1/10 

1/20 

1/40 

1/80 

2nd order methods 

C0-2 COS-2 HW -2 HW -20 BR2 
-- ~-. -··----·------------ ---
l.fi5 

.06 

2.90 
.16 

2.97 
.49 

3.41 
1.61 

4th order methods 

1.87 
.06 

2.78 
.17 

3.00 
.56 

3.50 
1.97 

1.46 
.01 

2.44 
.02 

2.70 
.06 

3.19 
.20 

3.73 
.70 

C0-4 COS-4 HW-4 HW -40 

3.45 
.24 

4.84 
.70 

3.33 
.22 

4.80 
.58 

2.87 
.18 

4.70 
.46 

" 34 .. ····· ....... ······ ... 4:79········· '4Jiii"'"'"'"" 
u •• 
2.10 1. 77 1.45 

6.57 
1.:13 

4.97 
6.20 

4.81 
5.22 

1.46 
.03 

2.44 
.11 

2.70 
.31 

3.20 
1.13 

3.76 
4.29 

CK 
n 

2 

4 

6 

8 

3rd order methods 

C0-3 

1.90 
.17 

2.78 
.45 

3.72 
1.44 

5.01 
5.06 

m 
0 

0 

0 

1.00 
.03 

1.00 
.04 

COS-3 

n 

16 

24 

32 

48 

HW-3 HW-30 BR3 

1.85 
.13 

2.72 
.34 

3.64 
1.07 

4.80 
3.80 

m 
0 

2.93 
.16 

7.61 
.37 

8.04 
.66 

8.87 
1.77 

1.54 
.09 

2.27 
.25 

3.13 
.81 

4.09 
2.95 

0 

1.72 
.14 

2.61 
.51 

3.52 
1.83 

4.61 
7.22 
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For non-singular first kind \'olterra equations a sufficient and necessary condition for order m + I conver
gence is: n _!!!:___ < l (cf. [8]). (6.2.4) 

i=O l - 'f}i 

For the Abel equation no equivalent for (().2.4) is known yet. 
(iii) On the previous pages we give the results of our tests on the previously mentioned test examples. 

In each entry of Tables 2.1-2.5 the upper figure denotes the number of correct digits in the endpoint, defined 
by: 

cd : = -log10 (absolute error in endpoint) . (6.2.5) 

The lower figure denotes the run time in seconds of our ALGOL 68 program on a CDC CYBER 750 computer. This 
figure is, of course, machine and programming language dependent, so it has no absolute significance but it indi
cates the performance of the methods in comparison to one another and the growth in computing time with increas
ing number of steps. 

CK 
12 -

11 

10 

9 

8 

7 .,, 
'-' 

6 

5 . 

4 

3 -

2 

0 2 

Fig. 1.1. Problem I A 

HW-2 

4 6 8 10 
rt 

12 

CO(S)-4,HW-4 

14 

CO(S)-3 

HW-3 

16 

12 

11 

10 

8 

3 

1 -

0 2 4 

Fig. 1.2. Problem IIA 

COS-3 

6 

COS-4 

---------- C0-4 

C0-3 

HW-3 
HW-30 

8 10 12 14 16 
rt 

In Figures 1.1 and l.2 we give a graphical representation of the results obtained for problems IA and IIA, 
viz., the number of eorrect digits (cd) versus the run time in seeonds (rt). 
(iv) For HW-i and HW-i0 we chose the sets X and Q to be equal. Other choices did not result in a significant in
crease of the global precision. The choice indieated in the above remark (ii), however, gave, due to the superconver
gence, a local increase in precision in the evaluation points, but no global increase. The collocation parameters we 
have chosen are listed in table l. ' 
(v) It turned out that for smooth problems, CO and COS gave nearly the same results. Therefore we have not given 
the results for CO for each problem. 
(vi) If]{ == l BR2 and HW-20 are identical methods. 

6.3. Conclusions 

6.3.1. Smooth solutions 

Striking (of. problem IA) is the very good behavior of CHAWLA/KUMAR for most of these problems. The attainable 
results are, however, strongly influenced by the suitability of the kernel and/or solution of being approximated by 
a polynomial. Compare, e.g., the problems IA and IB. CHAWLA/KUMAR behaves dramatically worse for the latter. 

A second remarkable fact is the equal behavior of CO and COS for this class of problems. The accuracy of CO 
on the first interval is in general higher than that of COS, but this difference disappears. This is quite contrary to 
the behavior of the analogous second-kind equation solvers of TE RIELE [2): the counterpart of COS behaves worse 
for smooth solutions. 

Concerning computing time, it is clear that the fact that BR2 and BR3 (and HW-20) don't have to solve a 
system in each step, is a great advantage, but the decrease in accuracy is considerable. Still, BR3 seems to be the 
most efficient one among the third order methods. It is interesting to note that HW3 and HW4 are not significantly 
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less efficient than HW30 and HW40 for trivial kernels. The advantage that the dimension of the system to be solved 
is one smaller, is in general annihilated by the decrease in preeision. For more expensive kernels, however, the fad 
that also the number of kernel evaluations for HW-iO is much smaller, plays a dominant role ( cf. Table 3 in Section 7). 
This is also the reason why HW is less efficient than CO or COS for non-trivial kernels. The differenee in kernel 
evaluations between CO(S) and HW-i0 is only srnall, and from our test re;mlts it is clear that, at least for orders 3 
and 4, HW-i0 is only slightly more efficient than CO(S). Finally, it is clear that no lower order method is more 
efficient than any higher order one. 

6.3.2. Non-smooth solutions 

]'irstly, we note that the good behavior of CHAWLA/KUMAR does not extend to this class of solutions. This is not 
surprising, of course, as a non-smooth function is badly approximated by a Chebyshev polynomial. 

An important question is how the specially developed method COS behaves. It is remarkable that in the 
case of m = r = l COS-2 does not behave significantly better than C0-2, although the approximation on the first 
interval is much better, in the ease of problem IIA even exact. Note that COS-2 and C0-2 both have order 2 for 
these problems. For higher order methods the advantage of COS becomes clear. We see that for solutions of the 
form (:~. l) with x(O) # 0, all collocation and product integration methods but COS reduce to order 2 methods, while 

the order of COS-i seems to be min {i + l '. i ~ 1 + ~}. An heuristical explanation for this may be the following: 

On the first interval, a function like x1/2 cannot be approximated by a polynomial with m.ore than h1i2 accuracy. In 
the expression for the error equation, which has a form similar to 3.o (without g(x)), we multiply this approximation 
with a term that behaves like h 312, h-+ 0 (N--. oo). On the other intervals where x112 is smooth, the approximation 
is of the order i. So the global order of convergence will be rnin {1/2 + 3/2, i} whieh is always 2. For COS-i, however, 
the accuracy on the first interval is hi/2 (which follows from a Taylor expansion of 1J'(:r) + x112x(x) near 0). So the 
global order of convergence will be min {i/2 + ?1/2, i }, which is i: for i = 2, 3 and 3-~- for i = 4. This order of 3+ 
is detected in problem IIA. 

If x(O) = 0 but x<Pl(O) =I= 0, for some p > 0, a similar reasoning could be held, but all this is not mathemati
cally founded, as no eonvergence proofs are known to us, not even for smoot,h problems. Nevertheless, it will be 
clear that the idea of fitting the method to the solution pays. 

6.3.3. Rapidly decreasing or oscillating solutions 

We can be quite short on these problems. Of course the accuracy of all methods is decreased hut the results remain 
acceptable. For oscillating problems, CHAWLA/KUMAR also behaves rather good (provided the degree is high enough) 
under the same restrictions as for ordinary smooth problemR. There is no change in the relative order of the methods. 

6.3.4. Conelucling remarks 

To solve equation ( 1.1 ), product integration and collocation methods are reliable. If enough about the solution is 
known, one might consider using CHAWLA/KUMAR (if the solution is smooth). The facts that (a) COS is not inferior 
to CO for smooth problems, (b) HW-i0 behaves only slightly better than CO (and COS) for smooth problems, (c) 
COS-3, 4 are superior to all other methods for non-smooth problems, may lead to the conclusion that, when high 
accuracy is requested, COS-4 is the most reliable choiee. It can handle both smooth and non-smooth solutions. If 
only a relatively low accuracy is required, a good choice would be BR2 or BRB, and these methods have the additio
nal advantage that the implementation is easier because no systems have to be solved. 

7. Computing time as a function of the number of correct digits 

For the product-integration and collocation methods, it is possible to eompare the results in a rather unified manner 
Therefore we define: 

Wq(N) :=time required by method q to take N steps without accounting for kernel evaluations. (6.3.1) 

Then Wq(N) is (almost) problem independent and it is obvious that Wq(N) will be quadratic in N. So: 

Wa(N) = c&q) + ciqlN + c~qlN2, (6.3.2) 

with 4q>, 4q> and ckq) method-dependent coefficients. Furthermore we define: 

P(N) = the number of cor.rect digits in X calculated in N steps (or: with stepsize h = X /N) (6.3.3) 

then P(N) = a + m log10 (N), where a is some problem and method-dependent constant, and m the order of the 
method (which depends on the smoothness of the solution). The total time needed is: 

Wt(N) = Wq(N) + d(q>(N) · T. (6.3.4) 

T is the time required for one kernel evaluation and d(ql(N) is the total number of kernel evaluations which is qua
dratic in N and problem-independent. We list d(ql(N) for the various methods in table 3. 

For (6.3.3) we can write: 

N = IO(P-a)/m • (6.3.5) 



TE RIELE, H.J. J.; ScHROEVE=~~-PH~~merical Methods for Abel's Integral Eql1_i1tion ______ _ 

Table 3 

BH 
CO(S) 
HW 
RW-iO 

order 2 

~-N2 + -}N 
N 2 -I- 2N 
2N2 + 2N 
-i],-N2 + -}N 

Inserting (6.3.5) in (6.:i.4) yields: 

order :l 

N 2 -JN 
:lN 2 + GN 
~"-N2 + o N 
2N2 + 2"N 

order 4 

4N 2 + 12N 
8N 2 +RN 
--£-N~ --!- -~ .LV 

Wi(P) = c&q) + ciq) lQ(P-a)/in + cg1) 1Q2(1'-a)/m + d(q) (lO<P-a)/m). 'I'. 
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(6.3.6) 

(6.3.6) gives an expression for the eom1rnting titlle as a funetion of the required number of correet digits P. 
The c~q), Clq) and c~q) can be estimated from our test, results if we take some problem with K = 1 (which means 

1' = 0). The parameter a, whith is problem dependent, can also be found from the test results. We give two examples: 

Table 4 

method C2 problem a m 
---·------~- -----

HW4 4. 10-2 8.5 x io-3 9.5 >~ 10-4 IA 3.G5 4 
IIA 2.31 2 

HW40 8 . 10- 2 4 x 10-3 7.5 >< io-4 IA 3.24 4 
IIA 2.40 2 

-----·------~·- .. -------------

The _problem is that it is often difficult to determine the value of m. (d. problem IB) 

Ap11endix 

A frequent use has been mude of values of the integrals 

l 

f (X ~ •l" di- for ex = ~- . 

0 

These can be calculated from the recurrence relations: 

1 
Jo,~(x) := -1---[xl " - (x - 1)1-"], 

-.a 

.From this it is easy to derive that: 

11} 

v (x - 1)1-" 
Jr,o.(X) = ----Jv-1,"-l(X) - ----------

1-cx 1-a 

J (~1~·.)i/2 dr = 1-:-a .2~.~ .\2~~+-n 11;H12. 

0 

(Al) 

(A2), (A3) 

(A4) 

Using relation (A4), the fact that K(:r, t) =F 0, t E [x - h, x], and the mean-value theorem for integration, it is easy to prove the 
independence of the columns of 111 kin (3.6), hence (3.6) has a \lnique solution. 
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