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TE RirLe, H. J. J.; ScurorvERs, Pu.

A Comparative Survey of Numerical Methods for the Linear Generalized Abel
Integral Equation

Zwischen einer Anzahl wichtiger Vertreter folgender Verfahrensklassen: (i) Kollokationsverfahren, (i) Produktinfegrations-
verfahren, (iii) globale Verfahren, wird ein Vergleich angegeben. Besondere Aufmerksamkeit gilt dabei der Herausbildung
dieser Verfahren fiir Probleme mit nicht-glatter Losung. Es zeigt sich, daf dann, wenn nur relativ geringe Genawiglkeit ge-
fordert wird, ein Kollokationsverfahren vom Branca-Typ von zweiter oder dritter Ordnung eine qute Wahl bedeutet. — Ein
neues Kollokationsverfahren, das migliche Nicht-Glattheit der Lésung in der Nahe des Ursprungs in Rechnung stellt,

erweist sich als vorteilhaft, falls hohe Genauigkeit gefordert wird, und zwar sowohl fir Probleme mit nichi-glatter, als auch
fiir solche mit glatier Lisung.

A numerical comparison is made between a number of smportant representatives of the following classes of methods: (i) collo-
cation, (ii) product integration and (iii) global methods. Special attention is paid to the performance of these methods for
problems with a non-smooth solution. It turned out that, when only relatively low accuracy is required, a good choice would
be a second or third order collocation method of Bramca. — A mew collocation method which accounts for possible non-
smoothness of the solution near the origin, turned out to be advantageous when high accuracy is required, both for problems
with a non-smooth solution, and for problems with a smooth solution.

Haercs yucileHHOe CpaBHeHMe Das3IMYHbIX BAMKHBEIX IIpeJCTaBuTesell CleIyioluX KiIaccoB MeToaoB: (1) Me-
TOABL KoJJoKauuw, (ii) MeTonsl MHTErpupoBaHUs 110 YACTAM, (iii) rio6anbubie MeTogbl. OcofeHHOe BHUMAHUE
ofpamaercAd Ha CBepLIEHHE YTUX MeTOXOB MJIA 3aJ1ad ¢ HerJIafKUM pellenueM. OKasajloch, YTO MeToja
KOJJIOKALMHK THIIa BpaHKa BTOPOTO WM TPeThero NOpALKa ABIAETCA XOpOoIUUM BBIGOPOM, eciu TpeGyercs
TOJIBKO OTHOCUTEJILHO HU3KAA TOYHOCTb. — HOBEI MeTol KOJIOKAIMY, KOTOPHI IPNHIMaeT BO BHYMaHue
BO3MOK{HYIO HErJIaJKOCTh PelleHUA GIM3KO K Hadyaldy, OKasbiBAETCA BBITOJHBIM, eclH TpeOyeTcsa BhICOKaA
TOYHOCTh M JJIA 3aJay ¢ HerJaJKuM U IJIA 3afa4 C IVIaJKUM DelleHneM.

1. Introduction

The linear generalized Abel integral equation we consider has the form:

" K(x, t) f(¢
j @ — 0" t)w) Ut =ygl), Ozw=X<oo, (L)
0
where g(z) and K(z, t) are known functions.
As the performance of the methods to be presented is influenced by the smoothness of the solution f(z) of
(1.1), it may be convenient to have a priori knowledge of the behaviour of f(x). The following special version of an
existence and smoothness theorem by ATkINSON [1] can then be used.

Theorem 1.1: Let g(x) have the form

gx) = ofGx)y, O<az=X, geO+0,X], (1.2)
for some integer n = 0 and f > —+. Assume K(x, t)is n + 2 times continuously differentiable for 0 <t =< 2 < X and

Kz, z) #0, 025X, (1.3)
Then there is a unique solution f(z) of (1.1) of the form:

fle) = 2P~12[a 4 zL(x)], >0, (1.4)

with L(x) € 0"0, X]. The constant a = 0 if and only if §(0) = 0. '

The most important numerical methods to solve (1.1) can be divided intothree groups: (i) collocatlop metho'ds,
(i) product integration methods and (iii) global methods. Characteristic for botl‘l collqcamon ‘and product integration
algorithms is that we introduce a grid {z; = h, 1 =0, ..., N, N := Xk}, with grid spacing (qr step) h. We.thgn
calculate approximations to f() on each interval [z, @i 1], ¢ =0, ..., N — 1, successively. Thglr difference lies in
the fact that, in the case of product integration, an approximation to K(=, t) - f(t) is made on each 1r}terval : thg resul?-
ing integrals can be computed analytically. In the case of collocation, however, an approximation to f(z) itself is
made on each interval and, in general, the resulting integrals have to be calculated n}lmemca.lly. A global ll}ejchod
approximates f(z) on the whole interval [0, X] by a certain linear combination of basis functions. The coefficients
of this approximation are calculated simultaneously.

In this paper we make a numerical comparison between

(i) collocation methods developed by BrANcA [2] and a new method due to the authors,
(i) product integration methods due to ANDERSSEN, DE HooG and Weiss [3],
(iii) a global method of CuawLa and KuMAr [4].

The test problems will be divided into three groups:

(i) smooth problems (i.e. problems for which the solution is sufficiently often differentia,ble),. )
(ii) non-smooth problems (i.e., solutions of the form f(z) = y(z) + a2y (x), y(z) and p(z) sufficiently smooth),
(iii) problems with strongly oscillating or rapidly decreasing solutions.

11~
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In the next paragraphs we will discuss each method in more detail. We will frequently make use of the following
manipulationson (1.1):
(i) introduce the grid
{;:=1th,i =0,...,N,h =X|N} : ) , (1.5)
for some N e V;

(ii) write (1.1) in the form

x

L [ TR [ G- v, (1

= e @ — 91"
& Tk

% € (@g, xp4+1] for some kwith 0 k< N — L.

2. Braneca’s methods

Braxoa [2] developed a second and third order method to which we will refer as BR2 and BR3, respectively. For
both methods we introduce the grid (1.5).

a. BR2

f(x) is approximated by a continuous function which is a first-degree polynomial on each interval [z;, z;,.1] =: 0y,
le.:

1

H) zeoi = Pi(x) 1=7[(%‘+1 — ) fi + (@ — 2) fiza], v=1,...,N; (2.1)

f: denotes an approximation to f(z;).
We write (1.1) in the form (1.6), substitute (2.1) and restrict the continuous variable x to the discrete set
{th,7 =1, ..., N}. After an obvious change of variable we get the scheme:

1
o) — B R f Ko, (j+0) W) (L =) f + ohya]
j=0
0

=] o , k=1,..,N. (2.2)

The integrals in (2.2) are calculated using 1-point weighted Gauss quadrature with weight functions (I — 7)~1/2:
1 ‘

G ,
f(—l—_}"gl)md‘[ = (U;G(CI«[) + Rz[G(T)] s l = 1, ey N . (23)
The weights w, and abscissae ¢; are determined by requiring:

R[G(1)] =0 for G(z) =7°, 1=0,1. (2.4)
By using (2.3) and solving (2.2) for fi, we get the scheme (writing g for g(zk)):

fr = [wa, K(xr, (K — 1 + a;) B)]1 x ’

k-2
X [h=12g, — .Z;wlc—jK(xk, (G + ax—5) h) [(1 — ax—;) f; + ap—sfj1] —
2

— (1 — ay) fo—1K(z, (& — 1 — ay) R)], k=1,.,N. . (2.5)
The required starting value f, can be calculated from '

. x .
j = ili%ﬁg}d%;ﬂo-) (see e.g. [2], p. 310). (2.6)

b. BR3

A third order method might be derived by approximating f(z) by a second-degree polynomial on the intervals
[z, 2i42], £ =0, 2, 4, ..., NJ2, taking N even. This would require the solution of a (2 X 2)-system in each step. To
avoid this, BRANCA calculates such an approximation to f(2) only on the interval [z,, «,], thus finding £, and f, (f, is
given, e.g. by (2.6)) and then calculates f; by approximating f(x) on [x,, ] by a second-degree polynomial through
the points (2y, f1), (%, fo), (25, f5). In general, he calculates f, by putting a second degree polynomial through (2,2,
fn—2): (xﬂ-—l: fn—l): (xﬂy fﬂ)' Thus:

1
H@)zeosy = Py(x) 1= o & =) (@ —2) fi—2 —2(x — 2 9) (x —2y) fj—1 + (& — 25_2) (& —j_1) Fi],

j=2,..,N, 2.7
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and

f(x)lxeao = -Pz(x) .
Substitution in (1.6) and restricting = to {ih, s = 1, ..., N} gives (after a change of variable):

) .
B[ K(xe, (G + 7) k) PG+ 1) R)
= B2 d ! d k=1,..,N, :
g(xk) ]él; (k _ 7 _ 1)1/2 T, 3 s . (2 8)
0

) _[Pis(G+2) %), i=1,2 .,N—1,
Pf(‘”“’”‘)“{Pi(<f+r>h), j=0.

The integrals are now calculated using 2-point weighted Gauss quadrature;
1

f (z‘%%u‘zdf = o'H(a) + oPG(a®) + RG], 1=1,..,N. (2.9)
0

o), o, alV), af® are determined by requiring:
a® =1 and RG(x)]=0 for G(r) =7, 1=0,1,2. (2.10)
This gives a scheme, similar to, but a bit more complicated than (2.5).

3. CO and COS

These collocation methods have not been published in the literature before, but are analogues of methods for second

kind equations, developed by TE RigLE [5]. COS is a special version of CO, designed to deal with non-smooth solu-
tions of the form:

flx) = (=) + «V24(x), w and y smooth . ) o (3.1)

We describe COS; CO follows immediately from it. Let m be some fixed positive integer. We again introduce the
grid (1.5) and put:

m .

f(x) = u(x) ) u(x)lxedk = lé‘oaqu)kl(x) ) k = 0; ey N —1 3 (32)
where

ox 1= (%, Tp41] , k=1 ..,N—1, 0 i = [2g, 21];

pu(z) 1= [(z — @p)/R]*, k=1, ..,N—-1, por(@) 1= (x/h}? .
Now the coefficients ax have to be determined. Therefore we introduce the so-called collocation parameters:

O<n <. <Mm=1. (3.3)
We then substitute () for f(z) in (1.6) and restrict = to the set of collocation points

{.’L‘MZIQEIG —]—n,h,y:O,,m,k:O,,N—l}

After a change of variable we get from (1.6):

i
m k—=1 m
Z aklf MTI dr = g(xki) 12— 2 Z au f ( K(x{ch z; + hT) d'z’l dr—

=0 (g — )2 i=11=0 k—i+n—1)?
0 0
jd K(xk:f’ h’l,’) 2
—'ZaOl >Tl‘dT:?—‘Oo s M, k::l; aN_]-
1=0 (k + 7 —T)ll
0 (3.4)
m Y K (25, hT)
009 ) 2l2 Ay = g(agg) b2 i =0,..,m. 3.5
lé:() o1 (777 — 1)1/27 T g(xoj) ’ 97 3 , M ( )
0
In matrix notation:
E—1
Mray = h—1/2gk — 2 Ny _ap — Nkao s k= 1,.., N —1 , Moao = h—ll?go . (36)
i=1

After substituting s := t/1; in the integrals in M} we calculate these integrals by using m 4 1-point Gauss
quadrature with weight function (1 — s)~/2, where the last abscissa is prescribed to be equal to one. We thus get

1
f T ds = E w6160 + Rlae], (3.7

0
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and require: )
s k=1, .,N—1,
RG] =0 for G(s) = {si/; ’ b=0,
We then choose our collocation parameters 1; in (3.3) to be equal to the resulting Gauss abscissae §; (with 6, = 1).
Note that the collocation parameters are the same on each interval, with the exception of the first interval.

The integrals in the matrices, N;_;, are calculated in a similar manner using r-point weighted quadrature
with weight functions (k —¢ 4+7; —7)"'2, k —1=1,..., N — 1, j =0, ..., m. Here, we do not prescribe any
abscissae and again require exactness for G(s) = s'/2 on g, and for ((s) = ' on ¢, for i =0, ..., 2r — 1, respec-
tively. To obtain sufficient precision, r must satisfy: 2r = m 4 1 (see [6]).

The method CO is similar to COS with the exception that the integral on the first interval o, is treated in the
same way as the integrals on other intervals.

1=0,.,2m.

Remarks:

(i) no starting value is required; ¢

(ii) existence of a solution of (3.6) is easy to prove, under the assumption K(z, t) % 0 for ¢ € [* — &, x], see the
appendix;
(iil) in order to calculate the weights, we need values of the integrals:

1 1
T’l T'EIZ
/\m dT and f(‘ﬁm dT
0

0
for which we refer to the appendix;
(iv) in order to calculate the integrals in the Ni_; in (3.6), we must calculate (and store) r x (m + 1) X (N — 1)
weights and abscissae;
(v) CO and COS require the same number of arithmetic operations.

4. Product integration methods

These methods were studied by ANDERSSEN et al. [3]. See also [7]. Choose two sets of parameters:

collocation parameters Q=0 S 1}, (4.1)

evaluation parameters X =02y =..Sunsl) (4.2)
and define

Ty i= 2p + Nh (collocation points) , (4.3)

afii=ay + wh  (evaluation points) . (4.4)
We now approximate the function K(zyy, t) f(£) on each interval o; = (x, 2;41] by

m. t—x
Ris ) Ol 5, Ko o) fula (5 («3)

with

m pu—

Ll(z) = H z [uP,
p=0M1 — tUp
p#l

and f;; is a numerical approximation to f(«%). Substitution in (1.6) and some manipulations then yields the scheme:

i
S'f' K, 1) fu Jﬁﬂ"ds = h~12g () _k‘g g K (2, 28 |,
=0 ’ (77:[ ‘—8)1/2 ) ] Py ki Xil) [t

0

LZ(S) N

(/c——i+m—s)’/2d£’ (4.6)
0

. L ..,m, i om, =0,

P=%0, . m, if n,>0,

Remarks:

(i) The choice uy = 1, = 0 and pm = Nn = 1 decreases the dimension of the system (4.6) by one.
(i) In [3], the authors only consider the case @ = X. BRUNNER [7] proves that, for a certain choice of X, supercon-
vergence is obtained in the collocation points ;.
(iii) Note that in the left-hand part of (4.6) the kernel is evaluated outside its region of definition if 2% > ;.

5. The global method of Chawla and Kumar

For ease of notation we alter the integration hounds in (1.1):
x

Kz, t) f(t '
f@ﬁ%dt=g(x), xe[—1, +1]. (5.1)
~1
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We now agsume that f(«) can be approximated by a series of Chebyshev polynomials:
N M
f(x) = 3 a;T4(x) and, moreover, Kz, t) = 3" bi{z) Ti(1) (6.2), (5.3)
i=0 i=0 )
(’and”, resp., in the sum means that the first, and the first and the last term, resp., are to be halved).
Using the “classical” abscissae:

xp = cos ((2k + 1) /(2N + 2)), k=0,..,N, (5.4)
and
¥ = cos (rm/ M), r=0,..,M, (5.5)
we can discretize (5.1) as follows:
N M
.Z;)I “LZ{)N bi(xe) Puy(xe) = glaw), k=0,..,N, (5.8)
<o = .
with
Tr .
Pylx) := [ Tut) Tyt)j(xx — )2 dt, i=0,...,M, kj=0,..,N, (5.6.1)
-1
2 ¥ Aok Hk ;
bi(ae) =— 37" K(xg, 2,F) To(2r™), t=0,..,M. (5.6.2)
M r=0

For the details of the calculation of (5.6) and the derivation of (5.6.2) we refer to [4]. The ccefficients a, are calcu-
lated from the linear system (5.6).

Remark: In order to use this method, it is necessary to define the kernel K(z, t) on the entire square —1 < z,
i< 1.

6. Numerical experiments

6.1. Test problems

We will present numerical results obtained with the previously discussed methods on the following test problems.
These are illustrative examples from our original (much larger) test set. The conclusions in Section 6.3 are based on
the results of the original test set. In the following, M3(z) := M(», a, 2), the Kummer function (cf. [13], p. 504).

I. Smooth problems
1A f(x) = sin 2, z € [0, 2], Kz, t) =1,
(m2)! 2 T'(1)

g(x) = W [M12(iz) — MIP(—ix)], ref.: [11].

1 1 1 1 1
1
K(z, t) =V—§exp(——%(x — t)>, g(x) = V% exp<—2—i—(1 + x)z), ref.: [2].

II. Non-smooth problems
ITA f(z) = 212, z € [0, 21, K(z,t) = 1 + sin 2z cos 2t ,
()2 T

1 ) -
._1;.@2)(_)[]”%/2(@%) -+ M§/2(—‘2x)] .

IIB f(z) = 2?72, z € [0, 2], Kz, 1) =1, g(x) = 32?8 .

Tg(x) :%az + sin (22) -

III. Rapidly oscillating problems
ITTA f(z) = sin 16z, ze[0,1], Kz, t) =1,

12 (1 . .

6.2. Some preliminary remarks

(i) We use the following “‘coding”:
CO-7, COS8-4 = CO,COS with m -1 =1, i =2, 3,4;
HW-4 = product-integration with m = 0, 1=23,4, and p,>0;
HW-ig =as HW-¢ but yy=mn, =0;
CK = the method of CHAWLA and KuMAR ,
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(ii) Convergence. — With p*-order convergence of an approximation f(z) (found by using a certain method) to
f(z), we mean:
sup |f(@) — fl@)| < Ch?, % small enough , (6.2.1)
[0,X] ,

for some constant C. When speaking about a ptP-order method, we mean that for f(z) € C*[0, X] (6.2.1) holds. For
non-smooth f(z), the actual order of convergence of a p*P-order method may be less than p. With the exception of
BR2 and BR3 [2], for none of the discussed methods a general convergence proof is known. EGGERMONT [9] and
Werss [10] gave proofs of second order convergence for HW-26 and in [7] BRUNNER claims to have proven conver-
gence of order p for HW-p in the special case:

1 2p — ) +a .
=— : =0, .. 6.2.
‘ Ni 2{1+COS[ 2p+3 ) ] O: y P () 2)
but the paper he refers to has not yet appeared.

Experimentally, we found for CO-1, COS-i, HW-i and HW-iff convergence of order i (for f(z) smooth enough).
For f(x) of the form (3.1), CO-i, HW-¢ reduce to second order methods, while COS-i appears to be of order

min {1, ¢/2 4 3/2}
(cf. Section 6.3.2). In [7] BRUNNER proves for HW-i, that for the choice of @ (c¢f. Section 4) according to (6.2.2) and
X := {zeros of P¥x)}, P the i-th Legendre polynomial, (6.2.3)

-we get a local order of ¢ + + in the points (4.4) while the global order remains s.

Table 1
m 1 No M Na 73
2 o 1 - -
O _
3 0 + 1 —
i EX 1 -
H] ¢ P
4 0 b3 5 1
EN 1 3 1
R .
Table 2.1
Problem nr: TA S(x) = sin 1z
cdinz =2 Kz, t) =1
h 2nd order methods 3rd order methods
~CO2 €082 HW=2 HW-20 BR2 C0-3 €083 HW-3 HW36 BR3
110 400 401 417 378 378 6.67 6.67 6.54 5.86  5.53
14 14 19 02 03 41 41 38 94 04
1/20 460 461 477 437 437 s w51 745 677  6.44
44 44 63 05 08 1.32 1.33 1.21 77 13
1/40 520 520 538 497 497 848 848 836  7.67  1.35
1.46 147 2.36 19 29 4.69 4.63 433 2.92 47
180 580 580 598 551 557 939 939 926 876  8.26
540 54l 9.64 68 1.09 17.37 17.39 1754 1198 1.81
- e S
; 417 6.97
h 4th order methods CK m
C0-4  COS-4 HW-4 HW-40 w0
1/10 9.02  9.00 8.87 8.47 2 3.00
65 64 64 43 o1
120 1022 1020 1007 961 3 517
2.01 2.01 1.97 1.37 01
1/40  11.30  11.38 1127  10.86 4 599
7.08 6.91 699 472 02
1/80 13.00 1244 1231  11.93 6 884
2580 2572 26.564  19.37 03
G
04
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Table 2.2
1 1 1 ) 1 1 o
Problem nr: IB  f(x) = Vo [(—; — 1) exp (—- 5z (1 + x)-) + (—9—: + 1) exp (—— -2—;(1 —'x)? — 2)] .
. 1 1
cdinz = 2 K(x,t):—exp(-——‘)—(x-—t))
27 <
h 2nd order methods 3rd order methods
€02  C0S-2 HW-2 HW-20 BR2 C0-3 C0S-3 HW-3 HW-3¢ BR3
1/10 486 482 542 426  4.64 6.41 6.42 659 118 434
17 71 21 o1 03 45 46 41 28 05
1/20 549 549 612  4.81 5.22 8.05 8.26 783 155  6.57
50 49 71 02 11 1.45 1.50 1.36 95 18
140 6.09  6.09 672 540  5.82 8.74 874 907 858  1.63
172 175 2.66 08 38 5.40 5.36 515 3.53 67
180 670 6.69 733 6.00  6.42 9.65 965 9.97 949 856
640 649 1111 29 1.48 20.24 20.12 2096 1436  2.57
1/160 02 9.46
5.72 10.13
h 4th order methods CK
CO-4 (0S4 HW-4 HW-49 n  om
2 4 8
1/10 7.56 682 7.1l 7.71 2 1.29
73 73 69 54 o1
120 943 908 872 916 4 142 142 '
229 230 235 177 02 04
140 1117 1116 1054  10.69 8 175 175
789 8.04 844 644 07 16
1/80 1242 1243  11.68  11.79 16 2.49
29.61 2817  32.16  26.01 43
Table 2.3
Problem nr: ITTA flx) = 212
cdinaz =2 K(z,t) = 1 + sin 2z cos 2¢
h 2nd order methods 3rd order methods
€02 €082 HW-2 HW-20 BR2 €0-3 C0S-3  HW-3 HW-3¢ BR3
110 350 347 338 260 281 5.68 6.15 485 444 359
19 19 23 .03 04 51 51 45 31 06
120 395 394 397 319 342  6.38 7.60 561 516 475
56 56 76 .09 11 1.66 1.66 151 102 .21
140 448 447 458 378 403 7.03 8.24 628 589 596
1.91 1.90 2.87 35 43 5.82 5.80 550  3.87 75
1/80 504 5.0 518  4.38  4.63 7.66 8.64 692 657  6.56
6.96 698  11.82 126  1.66 21.92 21.89 2220 1520 292
1/160 5.24
6.36
h 4th order methods CK
CO4 COS4 HW-4 HW-40 n  m
2 4 8
1/10 7.07 592 562  4.94 2
77 77 1 58 02
1)20 741 697 619 559 4 0 1.8
246 244 253 1.89 .03 05
1/40 7.94 803 679 - 6.20 s 2.1 2.5
850 853 912  6.87 07 17
1/80 852 9.1l 750 672
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Table 2.4

Problem nr: IIB

— 302
cdinae =2 Bas

Kz, 1) =1
B ind order methods 3rd order methods
‘  CO2  COS2 HW-2 HW29 BR2 €0-3 C0S-3  HW-3 HW-30 BR3
1/10 3.59 3.59 3.77 3.35  3.35 6.44 6.28 6.15 576  5.03
16 _________ .16 a7 .01 .02 42 44 .35 .25 .04
1/20 4.19 419 438 3.96 396 736 718 7.05  6.68  6.16
46 47 59 04 08 1.35 1.43 1.13 80 13
1/40 4.80 4.80 4.98 456 456 826 809 795 759  1.07
152 158 2.98 17 28 470 4.96 413 2.9 46
1/80 540 5.40 559 516 516 916 900 886 849  7.97
5.63 5.83 9.31 62 1.03 18.12 18.83 1686  11.84 1.75
1160 T ——
244 412
A 4th order methods CK
CO-4  COS-4 HW-4 HW-40 n m n m
S ——— 0 0
1/10 8.30 8.69 7.76 7.43 2 14 16 5.31
66 68 60 45 o1 16
1/20 9.28 9.89 8.63 8.38 3 292 24 6.40
2.07 2.14 1.89 1.47 01 37
1/40 1025  11.01 946 9.33 4 262 32 634
7.26 7.37 6.75 5.19 01 K3
1/80 1117 12.18  10.51 943 6 320 48 6.85
26.85 27714 2813 2045 03 1.81
) 8 372
04
Table 2.5
Problem nr: TTTA f(x) = sin 162
edinax =1 K(z,t) =1
h 2nd order methods 3rd order methods
(0-2 €082 HW-2 HW-20 BR2 C0-3 C0S-3  HW-3 HW-30 BR3
1/10 1.55 1.87 146 146 1.90 185 154 0
06 .06 01 03 17 13 09
20 290 278 244 244 2.78 272 227 172
16 17 02 11 45 34 25 14
40 297 3.00 270 270 3.72 364 313 261
49 56 06 31 1.44 1.07 81 51
g0 34 350 319 320 5.01 480 409 3.2
1.61 1.97 20 113 5.06 380  2.95 1.83
yieo 3.73 3.76 4.61
70 429 7.22
h 4th order methods CK
CO-4 C0S-4 HW-4 HW-49 n m n m
0 0
1/10 3.45 3.33 2.87 2 0 16 2.93
24 22 18 16
0 asa T a0 470 4 0 24 7.61
112 e 58 46 37
s 479 475 6 100 32 8.04
o 177 145 03 66
yso 657 497 481 8§ 100 48 8.87
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For non-singular first kind Volterra equations a sufficient and necessary condition for order m -+ 1 conver-

gence is:
m

T 1 (ot [8). : (6.2.4)
i=ol —m
For the Abel equation no equivalent for (6.2.4) is known yet.
(iii) On the previous pages we give the results of our tests on the previously mentioned test examples.

In each entry of Tables 2.1 —2.5 the upper figure denotes the number of correct digits in the endpoint, defined
by:

cd 1= —log,, (absolute error in endpoint) . (6.2.5)

The lower figure denotes the run time in seconds of our ALGOL 68 program on a CDC CYBER 750 computer. This
figure is, of course, machine and programming language dependent, so it has no absolute significance but it indi-
cates the performance of the methods in comparison to one another and the growth in computing time with increas-
ing number of steps.

ek CO(S)-4 HW-4
121 12+
HW-40
11+ 11+
10F 10f
Co(s)-3 C0S-4
Ir HW-3
L HW-30
8 0-4
- 7 €0-3
S BR2 _ HW-3

6 Co(S)-2 HW-2

5 b,

4

3 3k

-~ CK
2 r 2k
1 7 -
] - ! I 1 1 1 1 1 L ! I 1 Il L 1 1 1 L 1 1 1 1 1 1 1 1 1 1 ! 1 1 1 !
0 2 4 6 8 10 12 14 16 0 2 4 6 8 10 12 14 16
rt rt
Fig. 1.1. Problem IA Fig. 1.2. Problem IIA

In Figures 1.1 and 1.2 we give a graphical representation of the results obtained for problems IA and IIA,
viz., the number of correct digits (¢d) versus the run time in seconds (rt).
(iv) For HW-7 and HW-if we chose the sets X and @ to be equal. Other choices did not result in a significant in-
crease of the global precision. The choice indicated in the above remark (ii), however, gave, due to the superconver-
gence, a local increase in precision in the evaluation points, but no global increase. The collocation parameters we
have chosen are listed in table 1. ’
(v) It turned out that for smooth problems, CO and COS gave nearly the same results. Therefore we have not given
the results for CO for each problem.
(vi) If K = 1 BR2 and HW-26 are identical methods.

6.3. Conclusions

6.3.1. Smooth solutions

Striking (cf. problem IA) is the very good behavior of CEAWLA/KUMAR for most of these problems. The attainable
results are, however, strongly influenced by the suitability of the kernel and/or solution of being approximated by
a polynomial. Compare, e.g., the problems IA and IB. CHAWLA/KUMAR behaves dramatically worse for the latter.

A second remarkable fact is the equal behavior of CO and COS for this class of problems. The accuracy of CO
on the first interval is in general higher than that of COS, but this difference disappears. This is quite contrary to
the behavior of the analogous second-kind equation solvers of TE RIELE [2]: the counterpart of COS behaves worse
for smooth solutions.

Concerning computing time, it is clear that the fact that BR2 and BR3 (and HW-20) don’t have to solve a
system in each step, is a great advantage, but the decrease in accuracy is considerable. Still, BR3 seems to be the
most efficient one among the third order methods. It is interesting to note that HW3 and HW4 are not significantly
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less efficient than HW360 and HW44# for trivial kernels. The advantage that the dimension of the system to be solved
is one smaller, is in general annihilated by the decrease in precision. For more expensive kernels, however, the fact
that also the number of kernel evaluations for HW-10 is much smaller, plays a dominant role (cf. Table 3 in Section 7).
This is also the reason why HW is less efficient than CO or COS for non-trivial kernels. The difference in kernel
evaluations between CO(S) and HW-if is only small, and from our test results it is clear that, at least for orders 3

and 4, HW-10 is only slightly more efficient than CO(S). Finally, it is clear that no lower order method is more
efficient than any higher order one.

6.3.2. Non-smooth solutions

Firstly, we note that the good behavior of CHawLA/KUMAR does not extend to this class of solutions. This is not
surprising, of course, as a non-smooth function is badly approximated by a Chebyshev polynomial.

An important question is how the specially developed method COS behaves. It is remarkable that in the
case of m = r = 1 COS-2 does not behave significantly better than CO-2, although the approximation on the first
interval is much better, in the case of problem IIA even exact. Note that COS-2 and CO-2 both have order 2 for
these problems. For higher order methods the advantage of COS becomes clear. We see that for solutions of the
form (3.1) with ¢(0) # 0, all collocation and product integration methods but COS reduce to order 2 methods, while
the order of COS-¢ seems to be min {z +1, IL—-:;—I + —z—} . An heuristical explanation for this may be the following:
On the first interval, a function like 21/2 cannot be approximated by a polynomial with more than A1/2 accuracy. In
the expression for the error equation, which has a form similar to 3.6 (without g(x)), we multiply this approximation
with a term that behaves like 432, h — O (N — oo). On the other intervals where 21/2 is smooth, the approximation
is of the order i. So the global order of convergence will he min{1/2 -+ 3/2, ¢} which is always 2. For COS-i, however,
the accuracy on the first interval is A2 (which follows from a Taylor expansion of y(x) + #'/2¢(z) near 0). So the
global order of convergence will be min{i/2 + 3/2, i}, which is 7 for ¢ = 2, 3 and 34 for ¢ = 4. This order of 3}
is detected in problem IIA.

If %(0) = 0 but x®(0) £ 0, for some p > 0, a similar reasoning could be held, but all this is not mathemati-
cally founded, as no convergence proofs are known to us, not even for smooth problems. Nevertheless, it will be
clear that the idea of fitting the method to the solution pays.

6.3.3. Rapidly decreasing or oscillating solutions

We can be quite short on these problems. Of course the accuracy of all methods is decreased but the results remain
acceptable. For oscillating problems, CawLA/KUMAR also behaves rather good (provided the degree is high enough)
under the same restrictions as for ordinary smooth problems. There is no change in the relative order of the methods.

6.3.4. Concluding remarks

To solve equation (1.1), product integration and collocation methods are reliable. If enough about the solution is
known, one might consider using CrawLa/KuMAR (if the solution is smooth). The facts that (a) COS is not inferior
to CO for smooth problems, (b) HW-i behaves only slightly better than CO (and COS) for smooth problems, (c)
CO0S-3, 4 are superior to all other methods for non-smooth problems, may lead to the conclusion that, when high
accuracy is requested, COS-4 is the most reliable choice. It can handle both smooth and non-smooth solutions. If
only a relatively low accuracy is required, a good choice would be BR2 or BR3, and these methods have the additio-
nal advantage that the implementation is easier because no systems have to be solved.

7. Computing time as a function of the number of correct digits

For the product-integration and collocation methods, it is possible to compare the resultsin a rather unified manner
Therefore we define:

Wo(N) := time required by method g to take NV steps without accounting for kernel evaluations. (6.3.1)
Then W,(N) is (almost) problem independent and it is obvious that W,(N) will be quadratic in N. So:

W(NYy = ¢ + QN + N2, (6.3.2)
with ¢{@, ¢{© and ¢{® method-dependent coetficients. Furthermore we define:

P(N) = the number of correct digits in. X calculated in IV steps (or: with stepsize b = X/N) (6.3.3)

then P(N) = a + m log;, (IV), where ¢ is some problem and method-dependent constant, and m the order of the
method (which depends on the smoothness of the solution). The total time needed is:

Wi (N) = Wy(N) +dD(N)- T . (6.3.4)
T is the time required for one kernel evaluation and d@ () is the total number of kernel evaluations which is qua-

dratic in NV and problem-independent. We list d@(X) for the various methods in table 3.
For (6.3.3) we can write:

N = 10F-am (6.3.5)
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Table 3

order 2 order 3 order 4
BR N 4 IN N*4 N —
CO(S) N2 2N 3N - 6N 4N - 12N
HW AN? - 2N —}N2+—::'N 8N2 -} 8N
HW-i0 N4+ LN 2N® + 2N 2N 4 N

Inserting (6.3.5) in (6.3.4) yields:
W3(P) = ¢ + ¢f@ 10 ~alm 4 () JQAL =@ 4 qlo) (1008 —almy . ' (6.3.6)

(6.3.6) gives an expression for the computing time as a function of the required number of correct digits P.
The ¢§?, ¢{2 and ¢ can be estimated from our test results if we take some problem with K = 1 (which means
T' = 0). The parameter a, which is problem dependent, can also be found from the test results. We give two examples:

Table 4

method Cy ¢ Cy problem a m

HWw4 41072 8.5 x 1078 9.5 x 10 IA 3.65 4
IIA 2.31 2

HW40 8-10°2 4 x 1073 7.5 x 107 IA 3.24 4
IIA 2.40 2

The problem is that it is often difficult to determine the value of m. (¢f. problem IB)

Appendix

A frequent use has been made of values of the integrals

¥ . 1
—;é‘?_i:;a dr for «= "2_ . (Al)

0

These can be calculated from the recurrence relations:
1 v (a; — 1)1—4:

JO,a(x) L= 1I— & [zlA"‘ - (1' — I —a], Jr,oc(x) = 1= OLJV—~1,0<—1(Q7,) - 1 _'(;-" (A2), (A3)

From this it is easy to derive that:
o Fid Ov1 !
v 1.yl .
= 12,
f mo—orYT =rs e s (Ad)
)

Using relation (A4), the fact that K(x,t) =% 0, t ¢ [x — h, 2], and the mean-value theorem for integration, it is easy to prove the
independence of the columns of My in (3.6), hence (3.6) has a unique solution.
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