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ABSTRACT 

Multigrid and conjugate gradient type techniques for the acceleration 
of iterative methods are discussed. A detailed discussion is given of 
incomplete factorizations. The theoretical background of the classical 
conjugate gradient method and preconditioning is briefly reviewed. A 
conjugate gradient type method for ngn-symmetric-positive-definite 
systems is presented. Multigrid methods are discussed, and two portable, 
autonomous computer codes are introduced. Multigrid treatment of 
convection-diffusion entails special difficulties, and ways to overcome 
these are outlined. Numerical experiments on a set of test problems 
are reported. Efficiency and robustness of several conjugate gradient 
and multigrid methods are compared and discussed. 

l. INTRODUCTION 

Finite difference and element discretizations of partial differential 
equations give rise to large sparse systems of equations, which in this 
paper will be assumed to have been linearized. In practice, the number 
of unknowns can be quite large, and solution methods must exploit the 
sparsity and the structure of the system. This can be done with direct 
methods, using sparse matrix techniques, or by iterative methods, which 
will be considered here. 

Classical iterative methods, a review of which is given by Young 
(1971), are relatively simple to implement, but converge slowly for large 
problems. In recent years conjugate gradient (CG) and multigrid (MG) 
methods have been drawing increased attention as powerful and rather 
general techniques to accelerate the convergence of iterative methods. 
our aim is to discuss recent progress that has been made with these 
techniques. A new CG method for systems that are not symmetric positive 
definite will be presented. 

Both CG and MG have a wider use and significance than just being 
acceleration techniques. But the present viewpoint makes it possible to 
grasp the main principles in a simple manner, and furthermore, it brings 
out the main similarities and differences of the t..io methods. 

The authors beg forgiveness for focussing on developnents with which 
they are especially familiar. 



118 SONNEVELD I WES SELING and DE ZEEUW 

2. ITERATIVE METHODS AND INCOMPLETE FACTORIZATIONS 

The problem to be solved is a linear algebraic system denoted as 

Ay = b. (2.1) 

stationary iterative methods for the solution of (2.1) can usually be 
written as 

(2. 2) 

For example, for the Gauss-Seidel method (GS) we have B = (D+L)-1 , and 

for the successive overrelaxation method (SOR) we have B = w(D-+u!L)-l, 
with L, D and U defined by 

A = L + D + U, 

where L and u are the lower and upper triangular parts of A, and 
D = diag(A). 

For the error en yn - y we find from (2.2) 

(2.3) 

(2.4) 

For special cases the spectral radius p(I-BA) is known. For example, 
if A is the familiar 5-point finite difference discretization of 
Laplace's equation on the unit square with Dirichlet boundary conditions 
and mesh-size h in both directions, we have 

GS: p{I-BA) 

SOR: p (I-BA) 1-sinTih 1 _ 2nh + O(h2). 
l+sinnh = 

(2.5) 

(2.6) 

Let us define the computational cost W of an algorithm to be the 
number of operations from the set {+,-,*,/}. In practice computer time 
will depend on W, but also on the programming language, the skill of the 
programmer, the frequency of the occurrence of indirect addressing, type 
of machine etc., but still, W defined above is a convenient yardstick for 
measuring computational complexity. 

Let N (=h - 2 in two dimensions) be the number of unknowns. Then the 
cost of one GS or SOR iteration is W O(N). The required number of 
iterations n for a desired residual or error reduction E follows from 

(p (I-BA) )n (2. 7) 
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From (2.5) and (2.6) we find, if E is fixed (independent of h) that 

n = O(N), O(N~), for GS and SOR respectively, resulting in the following 
estimates for the total computational cost: 

(2.8) 

SOR: W = O(N3/ 2). (2.9) 

These results are found to hold in practice not only for the Poisson 
equation, but for elliptic equations in general, as long as A is an 
M-matrix. In a general situation, the estimate for SOR may be 
optimistic, because the optimal w is not known. 

Obviously, the best one may hope to achieve is W = O(N). There exist 
MG methods with this property, as has been shown rigorously for general 
elliptic equations. For CG no theoretical results with the same degree 
of generality as for MG are available. For the Poisson equation 
Gustaffson (1978) has proved for a certain preconditioned CG method that 

W = O(N514 ). Practical experience indicates that this holds for a wider 
class of equations. 

Before further discussing MG and CG we first introduce a number of 
iterative methods that have special significance in the context of MG 
and CG. 

Red-black Gauss-Seidel (RBGS) relaxation is Gauss-Seidel relaxation 
with a certain ordering of the grid-points. These are divided in red 
and black points in a checkerboard fashion. First the points of one 
colour are relaxed simultaneously, then the points of the other colour. 

Horizontal zebra (HZ) relaxation is Gauss-Seidel relaxation by hori­
zontal lines, taking first the odd and then the even lines, assuming 
that the boundary lines are odd. 

Alternating zebra (AZ) relaxation is Gauss-Seidel relaxation by 
lines, taking successively the odd, even horizontal, odd, even vertical 
lines. 

Hackbusch (1980) and Foerster et al. (1981) have shown that RBGS and 
AZ in combination with MG result in efficient iterative methods. 

Incomplete LU (ILU) (or incomplete Crout, or incomplete Cholesky) 
decompositions have been introduced as preconditionings for CG by 
Meijerink and van der Vorst (1977), and as smoothing processes for MG 
by Wesseling and Sonneveld (1980). ILU has been found useful in 
transonic flow computations, cf. van der Wees et al. (1983), Nowak and 
Wesseling (1983). More recently, incomplete line LU (ILLU) or 
incomplete block factorizations have been proposed by Underwood (1976), 
Concus, Golub and Meurant (1982), Axelsson (1983) and Meijerink, see 
Kettler (1982), Meijerink (1983). 

For completeness we will give a description of ILU and ILLU decomposi­
tions. Let P be a set of 2-tuples representing a matrix sparsity 
pattern. Then a class of ILU decompositions of the matrix A can be 
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defined as follows. L and u are lower and upper triangular matrices 
satisfying 

.e.ij O, (i,j) ~ P; Uij O, (i,j) t P; 

(LU) ij a,., (i,j) E P. 
l.J 

(2.lo) 

Note that Land U now have a different meaning than in equation (2.3). 
The ILU decomposition may be made unique by requiring, for example, 

(2.11) 

In many cases !LU-decompositions can be computed simply by means of 
(incomplete) Crout formul.ae. For example, assume that the given problem 
(2.l) is a discretization of a partial differential equation on an m*n 
grid, and let the grid-points be enumerated as in Fig. 2.1. 

l+(n-l)m nm 

f g 

c d e 

l+2m a b 

Hm 2m 

l 2 3 m 

Fig. 2.1 Enumeration of computational grid-points, and difference 
molecul.e 

Let A be a 7-point discretization of a second order elliptic partial 
differential equation with the difference molecule abcdefg of Fig. 2.l 
(the atoms b and f are needed if a mixed derivative is present) • Then 
the sparsity pattern of A is: 

{ (i,i-m), (i,i-m+l), (i,i-1), (i,i), (i, i+l) , (i, Hm-1), (i, i-tm) }. 

For brevity the following notation is introduced: 

(2.12) 



MULTIGRID AND CONJUGATE GRADIENT METHODS 121 

Let the sparsity pattern P of L and u be chosen identical to that of A, 
and let the elements of Land Ube called a 1 , Si, yi, oi, Ei' ~i' ni. 

The locations of these elements are identical to those of ai,bi 1 ••• ,gi, 

respectively. The diagonal of L is specified to be unityi oi are the 

elements of diag(U). Then Land U can be conveniently computed by means 
of the following Crout formulae: 

(2.13) 

Quantities that are not defined because their subscript is outside 
the range [l,run] are to be replaced by zero. This is but one example of 
an ILU-decomposition of A. Other possibilities are described, for 
example, by Meijerink and van der vorst (1981) • 

Sometimes it pays to add certain neglected entries (compared to the 
full LU-decomposition) to the diagonal element or to other non-neglected 
entries in the same row. Then we no longer have 

(LU)ij = aij' (i,j) € P. (2.14) 

For details see Axelsson (1982). We will not go into this here. 

An ILU decomposition can be used in an iterative method by choosing 

B = (LU)-l in (2.2), obtaining 

b + (LU-A)yn. 

The cost of one iteration can be reduced by means of the following 
silllple device. With L and u computed by means of (2.13) we have 

LU= A + C. 

The only non-zero elements of C are given by 

ci,i-m+2 

With (2.16), (2.14) becomes 

which is cheaper than (2.15), because C is more sparse than A. 

(2.15) 

(2.16) 

(2.17) 

(2.18) 
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It is easily verified that the construction of L and U according to 
(2.13) takes 17 flops (floating point operations) per grid-point. L and 
u are stored in place of A, and if C is generated, no extra storage 
beyond that for A is needed. 

The solution of LUy = q is obtained by back-substitution: 

(2.19) 

Hence, the solution for yn+l, the computation of b-K:yn (generating C) 
and the execution of one iteration require 13, 6 and 19 flops per grid­
point, respectively. 

We will not discuss existence of ILU decompositions. Meijerink and 
van der Vorst (1977) prove existence for M-matrices, but often ILU is 
applied successfully to more general matrices. 

ILLU decomposition can be described as follows. With the computa­
tional grid and the finite difference molecule of Fig. 2.1 the matrix A 
has the following structure: 

Bl Ul 

L2 B2 U2 

A 
L3 B3 U3 

L B 
n n 

(2.20) 

with Li, Bi and Ui m x m matrices; Bi are triangular matrices; Li and 

Ui are lower and upper triangular, with sparsity patterns {(j,j-1) ,(j,j)} 

and {(j,j),(j,j+l)} respectively. We try to find a matrix D such that 

A (L+D)D-l(D+U), ( 2. 21) 



where 

D 
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0 

D 
n 

L 0 
n 

o un-1 

0 

123 

We call (2.21) a line LU decomposition of A, because the blocks in L, D 
and U correspond to (in our case horizontal) lines of the computational 
grid. Given the decomposition (2.21), solving (2.1) is just as simple 
as with a classical LU decomposition. Equation (2.21) can be rewritten 
as 

A 
-1 

L + D + U + LD U. 

One finds that LD-~U is the following block-diagonal matrix: 

-1 
LD U 

I o 

L D-l U 
n n-1 n-1 

From (2.22) and (2.23) we deduce the following algorithm for the 
computation of D: 

2,3, .•• ,n. 

(2 .22) 

(2.23) 

(2.24) 
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The matrix D~l is full, which causes the cost of a line LU decomposition 
3 l. 

to be o (nm ) , as for standard LU-decomposition. An incomplete line LU 

decomposition is obtained if we replace L.D~11u. 1 by its tridiagonal 
l. J.- i-

part. Thus, algorithm (2.24) is replaced by: 

2,3, ... ,n. (2.25) 

The ILLU decomposition of A is now defined to be 

A (2. 26) 

with E the error matrix, and D the block diagonal matrix with blocks Di. 

We will 
--1 

now show how D and 5-l may be computed. Consider tridiag 

dropping the subscript, tridiag (LD-1u) . (LiDi-lui_1 J, or, temporarily 

Let the elements of D-l bes .. ; we shall see shortly how to compute 
l.J --1 

them. The elements tij of tridiag(LD U) can be computed as follows: 

(2. 27) 

The inverse of a tridiagonal matrix can be determined as follows. Let 

T = 

bm-1 am-1 cm-1 

b a 
m m 

Let the triangular factorization of T be 

-1 
T = (L+I)D (I+U), (2.28) 
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where L, D and U are not to be confused with the matrices occurring in 
(2.20). The only non-zero elements of L, D and U are !L , d .. and 

i,i-1 l.l. 

u .. 1 , respectively. Call these elements !L., d., u. for brevity. 
J.,J.+ l. l. l. 

They can be computed by means of the following recursion formulae: 

c .d .• 
l. l. 

(2.29) 

The elements of T-l can be calculated as follows. From (2.28) we have 

T-l = {I-U)-l D{L+I)-l. (2.30) 

Let Aij be the elements of (L+I)-1 • By requiring (L+I)-1 {L+I) =I and 

proceeding row by row, we find the following recursion formulae: 

< i. 

Similarly, by requiring {U+I) {U+I)-l =I and proceeding column by 

column, we find for the elements µij of (I+Ul-1 : 

-1 
Using (2.30) we find for the elements sij of T : 

s d , 
mm mm 

m m 

skk i:: µkid ii \k ~+ l: ukµk+l,idii!Lk+lAi,k+l 
i=k i=k+l 

~ + ~!l,k+16k+1,k+l' 

m m 

6k,k-j l: µkidii \,k-j i:: µkidii!Lk-j+lAi,k-j+l 
i=k i=k 

- tk-j+16k,k-j+l' 

(2.31) 

(2.32) 

(2.33) 

(2.34) 

(2.35) 
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m 

sk-j,k = E µk-j,idiiAik 
i=k 

This completes our description of the computation of tridiag 
(Li i'\-1 Ui-1). 

(2 .36) 

The complete algorithm for the computation of the ILLU decomposition 
(2.26) can be summarized as follows. We compute D and its triangular 
decomposition. 

(i) 

(ii) 

(iii) 

(iv) 

for i = 2,3, ..• ,n do (i) - (iv): 

Compute the triangular decomposition of Di-l according to (2.29); 

--1 
Compute the five main diagonals of Di-l according to 
(2.33) - (2 .36); 

--1 . 
Compute tridiag (LiDi-lui-l) according to (2.27); 

Compute Di with (2.25); 

Finally, compute the triangular decomposition of Dn according 
to (2.29). 

The number of flops required is given by: 

Step (i): Sm; step (ii): 7m; step (iii): 2lm; step (iv): 3m. 

Hence, the total cost of computing D and its triangular decomposition 
is 36mn. Storage to the extent of 3mn reals is needed for the triangular 
decomposition of D. 

When using ILLU, the iterative method (2.2) becomes: 

r, 

n+l y n+l n 
y + y . 

Equation (2.38) is solved as follows: 

(L+D) yn+ 1 = r, 

- n+l r : = Dy , 

- n+l (D+L)y = r. 

(2. 37) 

(2.38) 

(2.39) 

(2.40) 

(2 .41) 

(2 .42) 
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With the block partitioning used before, and with y~+l and ri denoting 

m-dimensional vectors corresponding to the i-th block, equation (2.40) is 
solved as follows: 

i > l. (2.43) 

Equation (2.42) is solved in similar fashion. The solution of an m x m 
tridiagonal system, with triangular decomposition available, takes Sm 
flops. The cost of the right side of (2.43) is 4m (for the 7-point 
difference molecule assumed here). The total cost of (2.40), and of 
(2.42) as well, is therefore 9mn, so that the cost of (2.38) is 23mn. 
The cost of (2.37) is l4mn. The total cost of one ILLU iteration is 
therefore 37mn. 

For other ILLU variants, see Concus et al. (1982) and Meijerink (1983) , 
who prove existence of ILLU decompositions for M-matrices. For remarks 
on vectorization, see Meijerink (1983), Meurant (1983), and Hemker, 
Wesseling and de Zeeuw (1983). 

For future reference we note that the cost of RBGS is l2mn flops, 
assuming a 7-point difference molecule. In HZ, tridiagonal system 
solving takes Smn flops, assuming that the necessary triangular decom­
positions have been computed beforehand, at a cost of Smn flops, 
respectively. Residue evaluation takes Bmn flops, so that the total 
cost of one iteration with HZ is l3mn flops. For AZ, these figures 
should be doubled. 

For RBGS, AZ, ILU and ILLU rate of convergence estimates are not 
available in the literature, but the number of iterations required 
certainly increases as the grid is refined. Therefore the computational 

cost of these methods is O(Na) with a > l. In the following sections we 
will discuss how the convergence of iterative methods such as those just 
discussed can be accelerated with CG or MG methods. 

3. CONJUGATE GRADIENT METHODS 

For an introduction to CG (and Chebyshev) acceleration of iterative 
methods, see Hageman and Young (1981). Within the confines of this paper 
we can only give a brief discussion. 

When A in (2.l) is large and sparse it is attractive, because of 
efficiency and simplicity, to use A only as a multiplier. This means 
that we can build polynomials in A. At the start of the iterations the 

only special vectors available are band the residue r 0 = b-Ay0 , with 

yo the starting i terand. A rather general form of possible algorithms 
would be 

n 
p 

n+l 
y (3.l) 

(3.2) 
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Here e and e are polynomials, whose degree is increased by one at each n n _ 
iteration. At present, only the case where one chooses en = o seems to 

have been investigated. It may not be worthwhile to allow en "F o. For 
example, it seems reasonable to require that the sequence 

{yn+l_yn} = {a pn} is identical for the following two cases: 
n 

case l Ay = b, starting iterand yo 

case 2 Ay = b, starting iterand ~ 

with b b + A(~-yo). With overbars referring to case 2, we have 

-0 o - -n n 
Since r = r we can have anp = anp for all b only if en - o, en _ o. 

Assuming henceforth 8 n : o, we have 

rn - Aa 8 (AJr0 = (induction) 
n n 

0 
<jln+l (A)r , 

(3 .4) 

where <Pn+l is a polynomial of degree n+l with the following property: 

<jl (0) = l. 
n (3 .5) 

Because of (3.4) we would like to choose <jln such that I !<Pn(A)r0 ! ! is 

minimized, under the constraint (3.5). For SPD (symmetric positive 
definite) A this aim is achieved by CG methods. Let us define 

(3.6) 

Then we want to construct <jln E II~ such that 

(3. 7) 
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If we choose the following norm: 

I lr 11 2 -
T -1 

r A r, (3 .8) 

then the following CG method solves (3.7): 

-1 o, 0 
= b - Ayo, p r 

n n n-1 T 
13 pn/pn-1' 

n n p r + Snp , Pn r r , n 

n+l n T 
y y + a pn , Cl. pn/0 n• a pn Apn, 

n n n 

(3 .9) 

n+l n n 
r =r -aAp. 

n 

For a proof see for example Hageman and Young (1981). The name of the 
method derives from the fact that the search vectors are conjugate: 

kT n 
p Ap· = O, k = 0,1,2, •. .,n-1. (3 .10) 

By making different choices for the norm I I· I I in (3.7), different CG 
methods are obtained. 

For many practical applications the restriction of CG to SPD systems 
is a severe drawback. Several ways to generalize CG have been proposed, 
but at the moment it is not yet clear what are the best CG variants for 
non symmetric or indefinite systems. We present a promising new method. 

First, we rewrite the CG method (3.9) in terms of the polynomials 
~n and en introduced before. One easily obtains: 

e -1 

e 
n 

~n+l 

with tJ! the polynomial tJ!(1) 1, 

- 0, ~o - l, 

~ + s n6n-l' n 

~ - Cl tJ!8 ' n n n 

Cl 
n P /a ' n n 

(3.lla) 

(3 .llb) 

(3.llc) 

(3 .12) 
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where the bilinear form(.,.) is defined by 

OT T 0 
( <P, e) = r <P (A ) e (A) r . (3 .13) 

we will now abandon the assumption that A is SPD, so that the algorithm 
no longer minimizes the residual in the sense of (3. 7) ; II ·II no longer 
has the properties of a norm. We replace (3.13) by 

-OT 0 
(<jl,8) = r <jl(A)8(A)r , (3 .14) 

with r 0 a vector to be chosen. In general, this is not an inner product. 

Then for arbitrary A, ( • , • ) has the fallowing properties: 

{<ji, 8) : (8 I <Pl' (3 .15) 

(<jl, (8) = ( 1;<ji ,8)' (3 .16) 

for every triple of polynomials <jl, 8, (. The following theorem suggests 
that the algorithm (3.ll) might still be of use for solving Ay = b: 

Theorem 3.1 The algorithm defined by (3.11), (3.12) and (3.14) has the 
following property: 

o, k < n. (3 .17) 

Hence, if A happens to be such that(.,.) is an inner product, then the 
residual lies in a subspace the dimension of which is reduced by one 
at each iteration, just as for the classical CG method. 

Proof of theorem 3.1 Obviously 

(3 .18) 

With (3 .llc), (3 .12), (3 .16), (3 .18): 

0. (3 .19) 

Using (3.llb,c): 

(3.20) 

o. 
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Similarly, 

Th~s establishes the validity of (3.17) for n 1. Proceeding by 
induction, for k < n, 

From (3.11.b) it follows that there exist constants ckj such that 

e = k 

k 

i: ckJ' cpJ,. 
j=l 

Hence, with (3 .22) and the induction hypothesis, 

Furthermore 

It follows that 

O, k < n. 

- et. a 
n n 

establishing the first part of the induction hypothesis. 

131 

(3 .21) 

(3.22) 

(3 .23) 

(3 .24) 

(3.25) 

(3.26) 
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For k ~ n we have 

with onk the Kronecker delta. This completes the proof. 

The algorithm (3.11) - (3.13) can be put in a form suitable for 
computation as follows. Define 

-n 
r 

8 (Alr0 , 
n 

(3 .27) 

with r 0 the starting residue and r0 some vector to be specified by the 
user of the algorithm. Then we have according to (3.12) and (3.13) 

T 
-n n r r , a 

n 

and we obtain the following algorithm: 

0 
r 

n 
p 

-n 
p 

n+l r 

-n+l 
r 

n+l y 

Cl. 
n 

n r 

-n r 

+ Snp 
n-1 

' 

+ s -n-1 
np ' 

n 
Cl. Apn, r 

n 

-n T-n 
r Cl.nA p ' 

T 
-n n 
p Ap ' 

--1 
p 

(3 .28) 

O, 

(3 .2 9) 
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The vectors rn, rn, pn, Pn satisfy (3.27). According to theorem 3.1 we 
have 

-nT k 
0, k < r r n, (3 .30a) 

-nT k 
p Ap 0, k < n. (3 .30b) 

-k k 
According to (3.30b) the sets {p } and {p } are conjugate with respect 
to A, which is why the algorithm is called the bi-CG method. It has 
first been proposed by Fletcher (1976) . 

The bi-CG method can be accelerated appreciably (roughly by a factor 
2) , by the following stratagem. The idea is to construct an algorithm 

for which the residue is~ (A) 2r 0 instead of~ (A)r0 , which turns out 
n n 

to be possible at hardly any extra cost, and eliminates the need to work 

with AT. If bi-CG converges,~ (A) will be a contraction, and~ (A) 2 
n n 

will be smaller than ~n (A). A suitable algorithm is obtained by 

squaring (3.11). We call the resulting method the CGS (conjugate 
gradients squared) method. From (3.11) we obtain 

Using (3.llb), 

2 
~n+l 

8 ~ 
n n 

~ e - a tJ;8 2 
n n n n' 

~ 2 - a tj;(~ e +~+le ) ' n n n n n n 

(3. 31) 

(3. 32) 

with an' Sn given by (3.12), where pn and on can now be evaluated as 

follows: 
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This is transformed into a workable algorithm with the aid of the 
following vectors: 

2 0 n 
<fi (A) r , g 

n 

2 0 e (A) r , 
n 

Equations (3.32) are equivalent to (u corresponds to enq,n): 

CGS method: 

0 0 -1 0 
f =b Ay 

' 
g h 

u = r + S hn, 

n g 

n+l 
y 

n 

u + Sn (Sngn-l+hnl' 

u - et Agn, 
n 

n + et (u+hn+l)' Y n 

o, 

(3. 33) 

(3.34) 

where we have used that yn-l_yn follows directly from the difference in 
the residues r+l_fn. In (3.34) we have 

et P /a ' So o, s PiPn-1' n n n n 

(3.35) 

-OT n _QT n 
Pn r f a r Ag 

n 

We usually choose 

-0 0 
r = b - Ay (3.36) 

The cost of CGS is about the same as the cost of bi-CG. The correspon­
dence between bi-CG and CGS is that the residues after n iterations are 

0 2 0 
<P n (A) r and ~n (A) r , respectively. 

Another type of method that seems promising for the indefinite case 
is Chebyshev iteration, for example the version proposed by Manteuffel 
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(1977, 1978). This method works well if certain parameters related to 
the spectrum of A can be estimated accurately. An important advantage 
of CGS is that no parameters need be estimated. A thorough comparison 
between CGS and Chebyshev iteration has not yet been made. 

Bi-CG and CGS are but two examples of extensions of CG to non-SPD 
systems. We will not review other extensions that have been proposed, 
but restrict ourselves to mentioning the publications of Concus and 
Golub (1976), Vinsome (1976), Widlund (1978) and Axelsson (1980). 

4. CONJUGATE GRADIENT ACCELERATION OF ITERATIVE METHODS: PRECONDITIONING 

Until further notice A is assumed to be SPD. For a stationary 
iterative method (2.2) it follows from (2.4), that 

n 
e 1jJ (BA)e0 , 1jJ (x) 

n n 

Assuming that B is SPD we can write 

T 
B E E. 

For arbitrary powers of ETEA we have 

so that (4.1) can be rewritten as 

If we apply CG not to (2.1) but to the following preconditioned 
version: 

T -T 
(EAE ) (E y) = Eb 

(4 .1) 

(4. 2) 

(4 .3) 

(4. 4) 

(4. 5) 

then in (4.4) ij!n is replaced by ~n satisfying the optimality condition 

(3.7), so that we may say that CG accelerates (2.2). Of course it is 
equally true that CG is accelerated by preconditioning. 

we will now study the rate of convergence that can be obtained 
with preconditioned CG. In the SPD case the rate of convergence of CG 
methods can be estimated in an elegant way cf. Axelsson (1977). From 
(3.4), (3.7) and (3.8) it follows that 

min 
OT 2 -1 0 

r ljJ(A) A r , (4.6) 

2 T -1 "'° choosing II zll = z A Z. 
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Let the set of eigenvalues of A'be 

Sp(A) 

T with corresponding eigenvectors x 1 ,x2 , ..• ,xN satisfying xixj 
Let 

then 

I lrn 11 2 

~ 

min 

iµErrn 
1 

min 

iµErrn 
1 

0 
r 

N 2 2 z ~iiJ; C\l I\ 
i=l 

ljJ (I-) 2 
N 

~711-. max z 
I-Esp (A) i=l J. l. 

max 
AESp (A) 

(4.7) 

8 . .• 
l.J 

(4.8) 

(4.9) 

Rate of convergence estimates are obtained by making a choice for 1/J(I-}. 
For example, 

1/i (I-) T (z)/T 
n n [ ~+{, } 

>.-!-

(4.10) 

with Tn the Chebyshev polynomial of degree n, and\, A the largest and 
smallest eigenvalue of A. Because 

max 1, 
lzl~l 

we obtain 

[ ~+~ ) 2 • 
).-). 

(4.11) 
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A well-known property of Chebyshev polynomials is 

l/T 
n (4 .12) 

For lzl < 1 the following holds: 

[ 1-z )n exp{-2n(z 
3 5 

... ) } ~ + ~ + z -2nz 
l+z 3 5+ e (4.13) 

Using (4.13) in (4.12) and noting that 5:;~ cond2 (A) we obtain 

Requiring a residue reduction € the required number of iterations n is 

1 I c I ~ n ~ 2 ln 2 cond 2 (A) • (4.14) 

For discretizations of second order elliptic equations we usually have 

so that 

2 
cond2 (A) = 0(1/h ) , (4.15) 

(4.16) 

as for SOR. In practice CG tends to be somewhat more expensive than 
SOR, but it is parameter free, and if for SOR the optimal overrelaxation 
factor is not accurately known, CG is faster. 

The efficiency of CG by itself is not very impressive, but the 
interest of CG derives from the possibility of convergence acceleration 
by preconditioning. Rewriting the CG algorithm (3.9) for (4.5) one 
obtains 

-1 0 Eb -
0 

p O, r EAy , 

T 
n n n-1 s pn/pn-1' 

n n 
p r + Snp , pn r r 

n 

E-Tyn+l -T n n 
Pn10n' 

nT T 
E y anp a () p EAE pn' n n 

(4.17) 

n+l n T n 
r r - anEAE p . 
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Replacing ETp by p and redefining r = b - Ay this can be rewritten as 
follows: 

Preconditioned CG algorithm: 

-1 
p 

n 
p 

n+l 
y 

n+l 
r 

n 
r 

T 
n n 

p Ap ' 
(4.18) 

It has been found by Meijerink and van der Vorst (1977), that an 
effective preconditioning is obtained with incomplete Cholesky decom­
position, given by 

LLT = A+ C, (4 .19) 

the symmetric (Cholesky) variant of ILU decomposition discussed in 

section 2. We choose E = L-l in (4.18). The eigenvalue distributions 

of L-lAL-T and A are compared for a few examples by Meijerink and 
van der Vorst (1977) and Kershaw (1978); it is found that 

-1 -T cond2 (L AL ) << cond2 (A). For a full explanation of the acceleration 

effect of preconditioning not only the condition number but the eigen­
value distribution should be taken into account, but there is no 
general theory available concerning the influence of preconditioning 
on the eigenvalue distribution or even the condition number. For a 
special case, the 5-point discretization of the Poisson equation, 
Gustafsson (1978) shows that preconditioning with a certain type of 

("modified") incomplete LL T decomposition results in 

-1 -T 
cond2 (L AL ) Q(l/h) t (4. 20) 

so that according to (4.14) the required number of iterations is O(h-~), 
resulting in a computational cost of O(NS/4). This result seems to hold 
approximately quite generally for CG with preconditioning by approximate 
decomposition. One finds that the number of iterations required 
increases slowly as the grid is refined. The modified incomplete LLT 
decomposition seems in general to provide a somewhat better precondi­
tioning than the version described here. 

In the preconditioned CG algorithm (4.18) the matrix is needed only 

for multiplication with rn. If one does not want to form E or E-l 
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explicitly, but wants to define E implicitly by means of the iterative 

method (2.2), one can obtain Brn from 
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(4.21) 

with y* the result of one iteration (2.2), starting with yn. 

A preconditioned version of CGS can be obtained as follows. Applica­
tion of CGS to the followh1g preconditioned version of (2.1) 

BAy = Bb (4.22) 

results in an algorithm given by (3.34), (3.35) with A and b replaced 

by BA and Bb. By replacing B-lf by f we obtain: 

Preconditioned CGS 

with 

algorithms: 

fo b - Ayo, -1 ho 0, g 

u = Bfn + S hn 
n ' 

n u + g S (13 n-l+hn) 
n ng ' 

hn+l u - o.nBAg 
n 

' 

n+l n (u+hn+l), y y + (). 
n 

fn+l fn - AO. (u+hn+l)' 
n 

(). =pn10n' so o, iln pn/pn-1' n 

T 

er 
n 

T -o n 
r Bf , on 

-o n 
r BAg . 

(4.23) 

If B is not explicitly available, as for instance when the iterative 

method to be accelerated is a MG method, then Bfn and BAgn can be 
obtained as follows. Carry out an iteration with the method to be 

n 
accelerated (2.2), with starting iterand y : 

y* (4. 24) 
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Next, carry out an iteration with starting iterand gn and right-hand­
side b = 0: 

g* 
n n g - BAg . (4.25) 

It follows that 

y* 
n n 

y , BAg (4.26) 

In this way one may try to use CG or CGS to accelerate the convergence 
of any iterative method, with the restriction that for CG the matrix B 
must be symmetric. Kettler (1982) has used CG to accelerate MG, To 

make B symmetric, he used incomplete LLT decomposition for smoothing, 
and the v-cycle multigrid schedule (see the next section) • One might 

say that CG accelerates MG which accelerates incomplete LLT. Behie and 
Forsyth (1983) have used Orthomin, a non-symmetric CG variant (Vinsome 
1976) to accelerate MG using the sawtooth cycle. 

For CGS applied to a general system there is no guarantee that 
convergence will be rapid, but a rule bf thumb is that a good rate of 
convergence may be expected with ILU and ILLU preconditioning if A 
satisfies 

i. (4.27) 

(This makes A an M-matrix) . 

In order to obtain a rough idea of the computational cost of CGS we 
count flops (per grid-point) in (4.23). Preconditioning takes place 
with ILU or ILLU. Assume that multiplication with B or BA takes place 
using (4.24)-(4.26). Using in this case the explicitly available matrix 
B one can obtain slightly lower operation counts than those obtained 
below, but we will neglect this possibility here. Note that in (4.24) 

the residue b - Ayn = fn is already available, so that (b+Cyn) or 
(2.37) need not be carried out for ILU or ILLU, respectively. Using 
the ILU and ILLU operation counts of section 2, we find that the cost 
of y* is 13 flops (ILU) or 23 flops (ILLU). Similarly, the cost of g* 
is found to be 18 flops (ILU) or 36 flops (ILLU). We assume that A has 
7 non-zero elements per row. Hence, multiplication with A takes 18 
flops. In addition to matrix multiplications, CGS needs 18 flops, as 
is easily seen from (4.23), including of course the cost of an, Sn. 

Therefore the total cost of one preconditioned CGS iteration is 60 flops 
(ILU) or 88 flops (ILLU). 

5. MULTIGRID ACCELERATION OF ITERATIVE METHODS 

The basic ideas of MG methods are quite general and have a wide range 
of application. They can be used not only to accelerate iterative 
methods, but also, for example, to formulate novel ways to solve non­
linear problems, or to devise algorithms that construct adaptive 
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discretizations. The volume edited by Hackbusch and Trottenberg (1982) 
represents a useful survey. 

We restrict ourselves here to the one aspect of MG mentioned in the 
title of this chapter. This makes it possible to simplify MG, and to 
distinguish situations where its effectiveness is guaranteed. The 
significance of MG as accelerating technique derives from the fact that, 
in principle, a computational complexity of O(N) can be achieved, with 
N the number of unknowns. This has been proved rigorously by Fedorenko 
(1964) for a finite difference approximation of the Poisson equation 
and by Bakhvalov (1966), Hackbusch (1980), Wesseling (1980) for finite 
difference approximations to general second order elliptic partial 
differential equations. For a survey of MG rate of convergence theory, 
including finite element discretizations, see Hackbusch (1982). These 
general theories result in O(N) but pessimistic, and fortunately 
unrealistic, computational complexity estimates. The papers by Brandt 
(1977) and Hackbusch (1978) showed the great potential of MG for 
practical applications. The theoretical work just mentioned assumes 
a W-cycle. More recently, work on rate of convergence theory for the 
V-cycle has appeared, such as Musy (1982), Maitre and Musy (1983), 
McCormick (1983), Braess and Hackbusch (1983). The terms v- and W-cycle 
are explained for example by Stilben and Trottenberg (1982). These terms 
refer to the MG schedule, i.e. the switching strategy between the grids. 
For special equations, notably Poisson's equation, work on realistic 
rate of convergence predictions is underway, see for example Braess 
(1981, 1982), Stuben and Trottenberg (1982). We will not discuss these 
theoretical aspects here. 

Equation (2.1) is assumed to represent a discretization of a partial 
differential equation. If the basic iterative method (2.2) converges, 
it usually (but not always) has the property, exploited by MG, that the 
non-smooth part of error and residue is annihilated rapidly, whereas it 
takes many iterations to get rid of the smooth part. A precise 
definition of smoothness will be given shortly. The fundamental MG idea 
is to approximate the problem with smooth error and residue on coarser 
grids. In the MG context (2.2) is called a smoothing process. 

One way of discriminating between smooth and non-smooth parts of grid 
functions is by means of Fourier analysis, as proposed by Brandt (1977). 
Let the computational grid G associated with the discretization (2.1) be 
defined by (we restrict ourselves for simplicity to two-dimensional 
problems) : 

G 

Any grid-function e 
follows: 

e mn 

x. 
l. 

(5.1) 

G ~ R can be represented by a Fourier series as 

m/2 
E cstexp(im8s+in~t). 

t;-m2/2 
(5.2) 
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with 

e 
s 
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(5.3) 

where we have assumed that mi is even. By emn we mean the value of the 

grid-function e in the grid-point with coordinates (mh1 ,nh2). Let G be 

a coarse grid with step-size doubled, i.e. 

{(x ,x2> Ix.= 0,2h.,4h., ..• ,!im.2h.}. 1 1. 1. 1. 1. 1. 
(5.4) 

Then we call those Fourier components that cannot be represented without 
aliasing on G non-smooth. That is, the set of non-smooth Fourier 
components is given by 

{exp(im8+in<fi) I (6,<fi) E F} , 

F : = { ( e, q,) I - rr ~ e, q, ~ rr, I e I ;: 1T /2 and/or I <P I ;: rr /2}, 

where for convenience we do not restrict (8,<fi) to the discrete set 
occurring in (5.3). 

(5. 5) 

For periodic boundary conditions and constant coefficients in the 
differential equation, many iterative processes (but not for example 
RBGS and AZ) have the property that, if the error e before iteration 
is given by (5.2), then the error e after iteration is given by 

with 

e 
mn L c texp(im6 +inq, ) , s s t 

t=-m/2 
(5. 6) 

(5. 7) 

The annihilation of the non-smooth part of the error can be measured 
by the quantity defined below (Brandt (1977)): 

Definition 5.1 The Fourier smoothing factor is 

sup IP (8,q,) 1-
(8,q,)EF 

Note that PF does not depend on the mesh-size hi' in contrast to 

the rate of convergence of (2.2). A large catalogue of Fourier smoothing 
factors for various equations and smoothing processes has been compiled 
by Kettler (1982). It turns out that simple point-wise smoothing 
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processes, such as damped Jacobi or Gauss-Seidel relaxation, have a good 
smoothing factor (i.e. pF well below l) for Poisson's equation, but 

not for equations with strong coupling in a certain direction, such as 
the convection-diffusion equation at high Peclet number, or anisotropic 
diffusion problems. In such cases more robust smoothing processes are 
called for, such as block Gauss-Seidel relaxation, AZ, ILU or ILLU 
(AZ does not work for convection-diffusion problems with upwind 
differences) • 

As noted before, Fourier smoothing analysis as just described assumes 
periodic boundary conditions and constant coefficients in the 
differential equation. The Fourier smoothing factor may be expected to 
be a good indicator of the quality of a smoothing process in more general 
circumstances, provided the coefficients vary smoothly, and provided 
the influence of perturbations of the boundary conditions attenuates as 
one moves into the interior of the region. However, MG is applied 
successfully to problems with discontinuous coefficients and problems 
where perturbations of the boundary conditions are felt in the interior, 
such as convection-diffusion and anisotropic diffusion problems. Apart 
from these limitations, Fourier smoothing analysis has the disadvantage, 
that the performance of the coarse grid corrections in the no-man's 
land between the smooth and non-smooth parts of the error is not taken 
into account. A different type of smoothing analysis that does not 
suffer these disadvantages is as follows. 

Let the sets of grid-functions G +Rand G +R be defined by Y and Y 
respectively. Let the coarse grid approximation of (2.1) be given by 

Ay b. 

Furthermore, let there be given a prolongation operator P and a 
restriction operator R: 

p Y+Y,R:Y+Y. 

(5.8) 

(5. 9) 

A two-grid method for the acceleration of the iterative method (2.2) can 
·+~ 

be formulated as follows. Let yj be the current iterand, and let YJ 

be the result of applying a coarse grid correction to yj: 

(5.10) 

where we assume for the time being that the coarse grid problem is solved 

exactly. For the residue rj: Ayj-b we find: 

--1 j 
(I-APA R) r . (5.11) 
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We now make the following choice for A, called 

Galerkin approximation: 

RAP. (5.12) 

Then it follows from (5.11) that 

rj~ E Ker(R), (5.13) 

as noted by Hemker (1982) and McCormick (1982). In other words, 

rj+I, 1. Kerl.CR), which justifies the appellation "Galerkin approximation" 
for (5.12). Following Hemker (1982A) we will relate the concept of 
snoothness to the kernel and range of R and P. 

Definition 5. 2 The set of R-smooth grid-functions is Kerl.(R). 

Whether the grid-functions just defined are also what one would call 
physically smooth or smooth in the sense of the Fourier analysis 
presented above, depends on the choice made for R. 

It remains to annihilate the non-smooth part of r, and this is done 
in the second part of the two-grid iteration, called smoothing. This is 
done with an iterative method of type (2.2): 

(5.14) 

and we find: 

(5.15) 

The projection operator on Ker(R) is given by I-RT(RRT)-1R, and we 
may conclude from (5.13) and (5.15) that 

(5.16) 

This leads us to the following definition: 

Definition 5.3 The R-smoothing factor of the smoothing process (2.2) is 

Whether PR will be approximately equal to pF depends on whether 

Ker~(R) approximately equals the space spanned by the Fourier components­
( 5. 5), and on the applicability of Fourier smoothing analysis. An 
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advantage of Fourier smoothing analysis is that pF is usually easier to 
compute than PR. 

We now take the dual viewpoint of considering the error instead of 
the residue, and define: 

Definition 5. 4 The set of P-smooth grid-functions is Range(P). 

Let the error ej be defined by ej : = yj-y. 
that 

Then it follows from (5.10) 

(5.17) 

A streamlined reasoning is obtained if we now assume that smoothing 
precedes coarse grid correction, so that (5.14) is replaced by 

(5.18) 

Let ej = ei + e~ with ei E Range(P), e~ E Range~(P). Again choosing 

A according to (5.12) we see that 

(write ej 
1 

0, 

Pe for some e), so that 

--1 j 
(I-PA RA) e 2 . 

(5.19) 

(5.20) 

·+~ . 
In general eJ will be small only if eJ is small, which motivates the 
following definition: 2 

Definition 5.5 The P-smoothing factor of the smoothing process (2.2) is 

~ T -1 T 
(Note that the projection operator on Range (P) is given by I-P(P P) P .) 

In the special case that R = PT we have that 

P-smooth grid-functions are identical, since 
PR and pp will in general not be identical. 

and studied by McCormick (1982) 

the sets of R-smooth and of 

Ker~(R) =Range (RT), but 
The quantity pp is defined 

The two-grid method defined by (5.10) and (5.14) or (5.18) can be 
regarded as an acceleration technique for the iterative method (2.2). 
The striking efficiency of MG methods is due to the fact that there 
exist simple iteration methods of type (2.2) for which PF' PR and Pp 
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are well below 1 for a large class of problems, independent of the 
mesh-size. 

Prolongation and restriction operators can be chosen in_various ways. 
Examples of prolongations are (denoting grid-functions in Y by an 
overbar): 9-point prolongation: 

(fy)2p,2q 

(Py) 2p,2q+l 

(fy) 2p+l, 2q+l 

7-point prolongation: as 9-point prolongation, except 

(fy) 
2p+l,2q+l 

Examples of restrictions are: 

Injection: 

9-point restriction or full weighting: 

(Ry)pq y + ~ (y +y +y +y ) + 
2p,2q 2p+l,2q 2p,2q+l 2p-l,2q 2p,2q-l 

1 
+ 4<Y2p+l,2q+l+y2p-l,2q+l+y2p+l,2q-l+y2p-l,2q-l)' 

7-point restriction: 

(Ry) = y +~(y +y +y 
pq 2p,2q 2p+l,2q 2p,2q+l 2p-l,2q 

(5.21) 

(5.22) 

(5 .23) 

(5.24) 

(5. 25) 

We call (5.24), (5.25) 9-point or 7-point restriction because a weighted 
average is taken of 9 or 7 grid-function values, and we call (5.21), 
(5.22) 9-point or 7-point prolongation, because they are closely related 
to (5.24) and (5.25) respectively: with P, R according to (5.21), 
(5.24) or according to (5.22), (5.25) we have 
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(5 .26) 

i.e. as matrices, P and R are adjoint. 

In Fig. 5.1 we define a 5-point, 7-point and 9-point difference 
molecule. With a 5-point or a 7-point molecule, 7-point prolongation 
and restriction can be used. With a 9-point molecule, 9-point prolon­
gation and restriction is more accurate. With a 7-point molecule one 
can construct finite difference approximations to any second order 
partial differential equation in two dimensions, including mixed 
derivatives. A 7-point molecule is also obtained with finite elements, 
using Courant triangulation (cf. Fig. 5.1). If one desires exactly 
symmetric numerical solutions to symmetric problems a 9-point molecule 
should be used, an example being symmetric flow around a symmetric 
air foil. 

x x x x x x 

~ x x x x x x x x x 

x x x x x x 

Fig. 5.1 Difference molecules: 5-point, 7-point, 9-point. 
Courant triangle. 

In a loose sense, P is accurate if, given that y is a good discrete 
approximation to the exact solution of the differential equation, Py is 
also a good approximation. For prolongations based on linear inter­
polation, such as (5.21) and (5.22), this is certainly the case when 
the exact solution is smooth. An important case when the exact solution 
is not smooth occurs when the coefficients of the differential equation 
are discontinuous. In that case matrix-dependent prolongation should 
be used. In order to define this type of prolongation we use the grid­
point enumeration of Fig. 2.1. A grid-point with coordinates (ph1 ,qh2l 

has the number l+p+qm. Indicating elements of the matrix A by aij in 

the usual way corresponding with this enumeration, we define: 

Matrix-dependent prolongation: 

(fy) 2p,2q ypq, (5.27a) 

(5.27b) 

(Py-) (A y +A y ) /(A. . +A. . ) , 
2p,2q+l j,j-m pq j.j+m p,q+l J,J-m J,J+m 

(5.27cl 

(fy)2p+l,2q+l - i:: '\: .y ./'\;k' 
j,ik J J 

(5 .27d) 
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where i = 2+2p+2qm, j = 1+2p+(2q+l)m, k = 2+2p+(2q+l)m. In (5.27d) 
y-values obtained with (5.27a-c) are used. It is possible to use the 
right-hand-side in (5.27d); sometimes this enhances the rate of conver­
gence. A matrix dependent restriction is obtained with (5.26). Matrix­
dependent prolongations of this and related type have been proposed by 
Alcouffe, Brandt, Dendy and Painter (1981), Kettler (1980, 1982), 
Kettler and Meijerink (1981) . 

The coarse grid problem (5.10) is not solved exactly of course, but 
approximately. In the MGD-family of MG codes we do this with one two­
grid iteration employing an additional coarser grid with doubled mesh­
size, and so on recursively, until the coarsest grid (usually a 3 x 3 
grid) is reached, where a few iterations (usually one) are performed 
according to (2.2). Smoothing is the costliest part of the algorithm. 
Therefore we choose to let coarse grid correction precede smoothing 
(i.e. we have (5.10), (5.14)), so that the first time that smoothing 
takes place on the finest grid we already have a first approximation 
available. The resulting MG method is said to be of sawtooth type, 
because its schedule is represented in a natural way by the schematic 
of Fig. 5.2, which is a sawtooth curve. 

grid 

fine 5 • • 
4 • • 
3 • • 
2 • • • 

coarse • • • 

Fig. 5.2 Sawtooth multigrid schedule. A dot represents a smoothing step. 

Various more general MG schedules have been described, see for example 
Brandt (1977), Stuben and Trottenberg (1982). Some comparative experi­
ments are described in Wesseling (1982A). The sawtooth schedule is 
the simplest possible MG schedule. One may wonder whether such a simple 
fixed schedule can handle a sufficiently large variety of cases. 
Experience indicates that the answer is affirmative, see e.g. the experi­
ments carried out by Wesseling and Sonneveld (1980), Kettler (1982) , 
Wesseling (1982A,B), Hemker, Kettler, Wesseling and de Zeeuw (1983), 
McCarthy (1983). In transonic potential flow computation an MGD-type 
method has proved reliable, see Nowak and Wesseling (1983) . We think 
that with an effective smoother and accurate coarse grid approximation, 
a simple MG schedule suffices for linear problems. 

The sawtooth schedule can be programmed in a simple way without using 
recursion. Let the computational grids employed be denoted by 

1 2 ,\'. . 1 9, G ,G , ... ,G, with G the coarsest and G the finest grid. Let a super-

script k indicate grid-functions and operators on Gk Let one appli­
cation of the smoothing process (5.14) be executed by a subroutine 
SMOOTHING (y,b,k). Then a quasi-FORTRAN outline of MG algorithms using 
the sawtooth schedule is given by: 
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C MULTIGRID PROGRAM, SAWTOOTH SCHEDULE 

C INITIAL GUESS IS y2 = 0 

r 2 = b 2 

DO 10 k = R.-1(-1)1 

CALL RESTRICTION (r,k) 

10 CONTINUE 

k 
r 

C START OF maxit MULTIGRID ITERATIONS 

DO SO n = 1(1) maxit 

IF (n.EQ.l) GO TO 30 

CALL RESIDUE (r ,b,y, R.) 

DO 20 k = R.-1(-1)1 

CALL RESTRICTION (r,k) 

20 CONTINUE 

30 l 0 

CALL SMOOTHING (u,r,l) 

DO 40 k = 2(1)2-1 

CALL PROLONGATION (y,y,k) 

CALL SMOOTHING (y,r,k) 

40 CONTINUE 

CALL PROLCNGATION (v,y,R.) 
R. R. R. 

y = y +v 

CALL SMOOTHING (y,b,R.) 

SO CONTINUE 

R. r 

k r 

l y 

k y 
k y 

R. v 

R. y 

bR.-AR./ 

Rk+lrk+l 

/+Bl(rl-Ayl) 

k k-1 
p y 

/+Bk(rk-Ak/J 

R. R.-1 
p y 

R. R. R.R. = y +B (b-A y ) 
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Based on this algorithm, the MGD family of codes is being developed. 
Two portable FORTRAN codes have been implemented, called MGDl and MGDS. 
They can be obtained by sending a magnetic tape to the second author. 
In these codes, prolongation and restriction are of 7-point type. For 
smoothing MGDl and MGDS use ILU and ILLU, respectively. Versions MGDlV 
and MGDSV have been designed for auto-vectorization on vector computers, 
such as the CYBER-20S and the CRAY-1, without sacrificing much on 
sequential machines. They are easily changed to versions MGDlS and 
MGDSS, which are slightly faster on sequential machines. More details, 
and CPU-time measurements on CYBER-170, CYBER-205 and CRAY-l can be 
found in Hemker et al. (1983, 1983), Hemker and de Zeeuw (1984). Exten­
sive tests of MGDl have been carried out by McCarthy (1983). Other 
MG-software that is generally available is the collection of multigrid 
solution modules MGOO, see Foerster and Witsch (1982). 

In order to facilitate comparison with other methods, especially 
CGS, for which we only have a research code in another programming 
language, we will estimate the cost in flops per finest grid-point. 
The cost of one MGDl iteration is 30 flops per finest grid-point, see 
Wesseling (l982B) . In MGDl the cost of a smoothing step on one grid is 
19 flops, for MGDS it is 37 flops per grid-point, as shown in section 2. 
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The number of grid-points on all grids taken together is about 4/3 times 
the number of grid-points of the finest grid. Hence the total smoothing 
work for one MG iteration for MGDl or MGD5 is about 25 or 49 flops per 
finest grid-point, respectively. Since the only difference between the 
two codes is the smoothing process, we estimate that the cost of one 
MGD5 iteration is 30-25+49=54 flops per finest grid-point. The measured 
CPU-time ratio on a CYBER-170 is 1.6. 

Some design considerations concerning the MGD codes can be found in 
Wesseling (1982B). These codes have been constructed such that they are 
perceived by the user just like any other code for solving linear systems 
of algebraic equations. The user has only to give the matrix and the 
right-hand-side in a prescribed data structure. The matrix should have 
a sparsity pattern corresponding to a 7-point finite difference discreti­
zation. The user remains unaware of the underlying multigrid algorithm, 
and cannot make any choices or decisions, since the code is completely 
autonomous (black box MG, cf. Dendy (1982)). 

The use of coarse grid Galerkin approximation (CGGA) (5.12) greatly 
facilitates the realization of the design goals just mentioned, since by 
using (5.12) the algorithm can set up the coarse grid operators 
independently from the user, using as input only the fine grid matrix. 
This would be less easy to achieve with the popular alternative of coarse 
grid finite difference approximation, (CGFDA), in which the coarse grid 
matrices are finite difference approximations of the given differential 
equation, usually of the same type as the fine grid matrix. CGFDA has 
another disadvantage, namely, that the approximations obtained on the 
coarsest grids make little sense if the coefficients of the differential 
equation are sampled pointwise. This may lead to divergence; Wesseling 
(1982B) gives an example. Of course the user can avoid this by using 
suitably averaged values of the coefficients of the differential equation 
on the coarsest grids. Using CGGA leads automatically to an accurate 
type of averaging. A disadvantage of CGGA can be the cost, which in 
practice equals the cost of about two MG iterations with our codes. If 
the coefficients of the differential equation are not expensive it is 
cheaper to set up finite difference approximations. For a few experi­
ments comparing CGFDA and CGGA and a few remarks on efficient programming 
of (5.12), see Wesseling (l982A,B). The total work for computing 

k A , k = l-1(-1) is found to be about 64 flops per finest grid point, 
for a 7-point finite difference approximation on the finest grid. 

Additional preliminary work is required for setting up the incomplete 
decompositions before iteration starts. The total cost of preliminary 
work is equivalent to about 3 iterations for MGDl and 2 iterations for 
MGD5, cf. Hemker and de Zeeuw (1984). This preliminary work is con­
siderable in view of the fact that convergence is usually so rapid that 
only a few iterations are needed. This price buys robustness. For 
self-adjoint problems with smoothly varying coefficients of the same 
order of magnitude, one obtains good rates of convergence with point­
wise relaxation processes for smoothing and CGFDA, which require little 
preliminary work. But with these MG-ingredients convergence will 
deteriorate if the problem is strongly anisotropic, or strongly non­
self-adjoint (convection-diffusion at high Peclet number). Under these 
circumstances the MGD codes continue to converge fast, with some 
exceptions for MGDl. 
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Under what conditions may MG methods be expected to converge rapidly? 
A priori theoretical results are not available except for the Poisson 
equation, but a rule of thumb is that good smoothing processes can be 
found and rapid convergence may be expected if A satisfies (4.27). If 
(4.27) is strongly violated, deterioration of the rate of convergence 
may occur. 

However, for convection-diffusion problems at high Peclet numbers MG 
methods have not performed well. This situation has improved only 
recently. In order to satisfy (4.27) upwind differencing must be used, 
or a sufficient amount of artifical viscosity must be added. Neverthe­
less, when (5.12) is used with 7-point or 9-point prolongation and 
restriction, the coarse grid matrices do not satisfy (4.27). This is 
illustrated by the transformation that an upwind difference undergoes 
by repeated application of (5.12) with 7-point prolongation and 
restriction: · 

0 0 -1 1 -5 5 -21 21 

-1 1 0 -5 4 l -15 8 7 -51 16 35 

0 0 -1 1 -5 5 -21 21 

-85 85 -341 341 

-187 32 155 -751 64 651 

-85 85 -341 341 

Scaling factors have been omitted. As the number of grids increases, 
the diagonal becomes weaker. Because the coarse grid matrices do not 
satisfy (4.27) the smoothing process does not perform well, and further­
more, the coarse grid solution may show wiggles. The situation becomes 
worse as the number of grids increases. Hence, convergence is not 
rapid or divergence occurs, unless the smoothing process is almost an 
exact solver on the finest grid. In that case, the bad coarse grid 
approximations are corrected on the finest grid and convergence is 
rapid; in fact the coarse grids are superfluous. ILLU has this property: 
ILLU-decomposition is almost exact for the convection-diffusion equation 
at high Peclet number with upwind differences. Therefore MGD5 
works for convection-diffusion equations. For MGDl cases of divergence 
have been found. If one does not want to use ILLU smoothing, an easy 
way out would seem to be not to use CGGA but CGFDA with upwind 
differences or artificial viscosity on all grids. But then convergence 
is found to become disappointingly slow. A very good way to handle the 
convection-diffusion equation turns out to be the use of matrix­
dependent prolongation and restriction, with CGGA or CGFDA. With this 
prolongation and restriction CGGA leaves upwind differences invariant, 
so that the coarse grid matrices satisfy (4.27), and do not differ muc:;Jl 
from the coarse grid matrices obtained with upwind differencing and 
CGFDA. Good rates of convergence are obtained with smoothing processes 
less formidable than ILLU. For a more extensive treatment of the ideas 
just discussed and numerical experiments, see van Asselt (1982), 
de zeeuw and van Asselt (1985), Hemker, Kettler, Wesseling and 
de zeeuw (1983) . 
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A rather different MG approach to the convection-diffusion equation, 
proposed by Brandt, is not to use upwind differencing, which has 
inherent anisotropic numerical viscosity, but to use isotropic 
artificial viscosity. This makes pcint-wise relaxation processes 
applicable for smoothing. The accuracy and probably also the rate of 
convergence is improved by what is called double discretization, which 
amounts to applying defect correction on every grid. For this approach 
see Brandt (1982) section 10.2. A disadvantage is that the method is 
especially designed for convection-diffusion problems, so that for 
other problems one would perhaps prefer other MG ingredients. No 
definitive results with this approach have been published as yet for 
the convection-diffusion equation. 

The accuracy of upwind or artificial viscosity discretizations can 
also be improved by applying defect-correction on the finest grid only. 
see Hemker (1982) for an application of this idea to the convection­
diffusion equation. 

For ease of programming of MG methods it is very convenient if 
coarser grids can be obtained by mesh doubling. Therefore, the number 
of grid points of the finest grid in the xi-direction should be given 

by 1+21 (m.-l), with m. a small integer. Sometimes it is awkward to 
i i 

achieve this, for example when a system of partial differential equations 
is solved on a staggered grid. One can then change the number of grid 
points by either eliminating Dirichlet boundaries or not, or by 
increasing the number of discretized equations by adding artificial 
equations, for example the identity. This is called padding. Padding 
can also be used to make the shape of the computational region rectan­
gular. Of course, the computational complexity is influenced unfavour­
ably by padding. 

6. NUMERICAL EXPERIMENTS 

Realistic estimates of the performance in practice of CG and MG by 
purely theoretical means are possible only for very simple problems. 
Therefore, numerical experiments are necessary to obtain insight and 
confidence in the efficiency and robustness of a particular method. 
Numerical experiments can be used only to rule out methods that fail, 
not to guarantee good performance of a method for problems that have 
not yet been attempted. Nevertheless, one strives to build up confidence 
by carefully choosing test problems, trying to make them representative 
for large classes of problems, taking into account the nature of the 
mathematical models that occur in the field of application that one has 
in mind. For the development of CG and MG, in particular the subject 
areas of computational fluid dynamics, petroleum reservoir engineering 
and neutron diffusion are pace-setting. We will list here the roost 
significant test problems, and discuss a few numerical results. 

Only the case of a single second order elliptic equation in two 
dimensions is discussed, although the applicability of CG and MG is not 
restricted to this case. The general form of our problem then is, in 
cartesian tensor notation, 

-la ..•. ) . + (b,u) + cu 
1J ,J ,i ~ ,i f. (6.1) 
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Important constant coefficient test problems are the following special 
cases of (6.1): 

2 2 2 2 
-(Ec +s l<i>, 11 - 2(E-l)sc<1> 112 - (Es +c )<j> 122 f (6. 2) 

and 

f, (6. 3) 

with c = cosa, s sina. Equation (6.2) is obtained by a coordinate 
rotation over an angle a for the anisotropic diffusion equation: 

-E<j>,11 - <i>,22 f. (6 .4) 

Equation (6.3) is the convection diffusion equation. Equation (6.2) is 
self-adjoint, and can be handled such that the matrix arising from 
discretization is SPD. 

Problems with constant coefficients are thought to be representative 
of problems with smoothly varying coefficients, Of course, in the code 
to be tested the fact that the coefficients are constant should not be 
exploited. As pointed out by CUrtiss (1981), one should keep in mind 
that for constant coefficient problems the spectrum of the matrix 
resulting from discretization can have very special properties, that are 
not present when the coefficients are variable. Therefore one should 
also carry out tests with variable coefficients, especially with CG, for 
which the properties of the spectrum are very important. For MG, 
constant coefficient test problems are often more demanding than variable 
coefficient problems, because it may happen that the smoothing process is 
not effective for certain combinations of E and a. This fact goes easily 
unnoticed with variable coefficients, where the unfavourable values of 
E and a perhaps occur only in a small part of the domain. 

In petroleum reservoir engineering and neutron diffusion problems 
quite often equations with strongly discontinuous coefficients appear. 
For these equations (6.2) and (6.3) are not representative. Suitable 
test problems with strongly discontinuous coefficients have been proposed 
by Stone (1968) and Kershaw (1978); a definition of these test problems 
may also be found in Kettler (1982). In Kershaw's problem the domain 
is non-rectangular, but is a rectangular polygon. The matrix for both 
problems is SPD. For the parameter p in Stone's problem we choose p=S 
(cf. Kettler (1982)). 

The four test problems just mentioned, i.e. (6.2), (6.3), and the 
problems of Stone and Kershaw, are gaining acceptance among CG and MG 
practitioners as standard test problems. Given these test problems, the 
dilemma of robustness versus efficiency presents itself. Should one 
try to devise a single code to handle all problems (robustness) , or 
develop codes that handle only a subset, but do so more efficiently 
than a robust code? This dilemma is not novel, and just as in other 
parts of numerical mathematics, we expect that both approaches will be 
fruitful, and no single "best" code will emerge. 
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For CG methods a natural subdivision of the problems presents itself, 
namely in self-adjoint and non-self-adjoint problems. The former lead 
to SPD matrices, to which the applicability of classical CG is restricted. 
In non-self-adjoint cases, a non-symmetric CG variant should be used, 
for example CGS. Of course, CGS can be used also for SPD matrices, at 
little extra cost compared with classical CG. 

The robustness and efficiency of CG and MG are determined to a large 
extent by the preconditioning and the smoothing process respectively. 
Pointwise relaxation methods, such as RBGS, are easy to implement and 
require no preliminary work before iterations start, and are efficient 
for (6.2), (6.3) for c • 1. But these methods fail for c differing 
widely from 1, and for the problems of Stone and Kershaw. In these 
cases suitable block relaxation methods are called for. We have not 
yet found a case where ILLU fails. ILU is found to fail in certain 
cases where property (4.27) is violated. AZ may fail also when (4.27) 
holds, for convection-diffusion problems. These findings will be 
amplified in the sequel. 

Property (4.27) is violated in the case (6.2) for certain combinations 
of c and a, for which the coefficients of the mixed derivative are 
relatively large. However, in practical applications the mixed deriva­
tive coefficient is often small. When the mixed derivative is intro­
duced by a non-orthogonal coordinate transformation its coefficient 
is usually small, because for accuracy reasons one prefers coordinate 
transformations that do not deviate much from orthogonality. In 
anisotropic diffusion problems there is usually a preferred direction, 
along which one aligns one of the coordinate axes, so that sc = O, and 
no mixed derivative is present. 

Property (4.27) is also violated for (6.3) when c < h/2 and central 
differences are used. With upwind differences it can still be violated 
on the coarse grids, as discussed in the preceding section. 

Apart from a robust smoothing process, an MG method for the problems 
of Stone and Kershaw needs matrix-dependent prolongation and restriction, 
because of the occurrence of discontinuous coefficients. 

Numerical experiments with MG concerning special cases of (6.2) 
(notably Poisson's equation) have been reported by Brandt (1977), 
Hackbusch (1978), Nicolaides (1979), Foerster et al. (1981), Foerster 
and Witsch (1982), Kettler (1982), Wesseling (1982A,B), Hemker et al. 
(1983, 1983). We will not list here experiments with CG, of which there 
are many more. Hackbusch (1978) and Foerster and Witsch (1982) include 
examples of Poisson's equation in non-rectangular regions. In the last 
mentioned publication also an.MG method specially designed for Poisson's 
equation is presented. Computing times are reported similar to those 
obtained with fast Poisson solvers using the fast Fourier transform and 
cyclic reduction, and about 15 times as fast as a certain CG method 
(ICCG, Meijerink and van der Vorst (1977)) on a 257 x 257 mesh. It is 
to be noted that ICCG is much more generally applicable than the MG 
method concerned, which uses RBGS smoothing. This method would fail for 
example for the problems of Stone and Kershaw, for which ICCG performs 
Well. 

For test problem (6.3) MG results have been reported by Wesseling 
and Sonneveld (1980), Hemker (1982), wesseling (1982A,B), Hemker, 
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Kettler, Wesseling and de Zeeuw (1983), de Zeeuw and van Asselt (1985). 
Because the discretization matrix is not SPD, classical CG cannot be 
applied. Chebyshev iteration has been used for this type of problem 
by Manteuffel (1977, 1978) and van der Vorst (1981). This method is 
not parameter free, unlike CGS. 

We will present results for the general case of (6.2) and (6.3), 

letting a vary with intervals of 15°, and choosing E << 1, E inter­
mediate, and E = 1. The following methods will be tested: 

- MGDl and MGD5, described in section 5; 

CGSl and CGS5, the CGS method described in section 4 with ILU and 
ILLU preconditioning, respectively; 

- MGHZ and MGAZ, which are MGDl with ILU smoothing replaced by HZ 
and AZ smoothing, respectively. 

For easy reference, in the following table we give the operation 
counts for the various methods, as determined before. For MGHZ and 
MGAZ the operation count is determined by noting that the work for MGDl 
excluding smoothing is 5 flops per finest grid-point. The smoothing 
work with HZ and AZ is 4/3 times the work of a single grid iteration. 
Here we neglect certain savings that are possible because the residue 
is zero in half the number of grid-points after application of HZ and 
AZ. From the results reported by Hemker, Wesseling and de Zeeuw (1983) 
we deduce that both for PW and IW the measured CP-time ratio on a 
CYBER-170 is MGDl : MGHZ = 1.24. From Hemker and de Zeeuw (1984) we 
deduce that on the same machine MGDS : MGDl = 1.10 for PW and 
MGDS : MGDl = 1.62 for IW. These figures are roughly consistent with 
table 6.1. 

Table 6.1 

Flops per (finest) grid-point for one iteration (IW) and preliminary 
work (PW) 

MGDl MGD5 MGHZ MGAZ CGSl CGS5 

PW 87 114 69 74 17 29 

IW 30 54 22 40 60 88 

We have run test problems (6.2) and (6.3) on a uniform 65 
computational grid in the unit square. The initial guess is 
-sinrrx1sinrrx 2+sin48rrx1 sin48rrx2 , and the boundary conditions, 

eliminated, are given by 

x 65 
given by 
which are 

(6.5) 
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For the MG methods, the termination criterion was that the 22-norm of 

the residue should be less than lo-10, with a maximum of 10 iterations. 
The CG iterations were terminated after a residue reduction factor of 

10-S had been reached, with a maximum of 15 iterations. 

For test problem (6.2), the discretization of the mixed derivative 
is as given in Fig. 6.1. 

Fig. 6.1 

-~ 1 -~ 

2 
Difference molecule for -h ~. 12 

The following table specifies the problems that were treated. For 
problems 5, 6, upwind difference were used, for the other problems, 
central differences. 

Problem 
Equation 

Table 6.2 

Specification of test problems 

l 
(6.2) 

-2 
lo 

2 
(6.2) 

10-8 

3 
(6.3) 

10-l 

4 
(6.3) 

h/2 

5 
(6.3) 

10-3 

6 
(6.3) 

10-B 

In Figs. 6.2-6.5 we give a graphical representation of the number of 
iterations needed to reduce the 22-norm of the residue by a factor 10, 

or, roughly speaking, to gain a decimal figure in accuracy. This number 
is given by 

N = n/log10 { 11 initial residue 11I11 final residue 11} (6 .6) 

where n is the number of iterations that were performed. 

Computations were performed with a a multiple of 15°. If for a value 
of a no symbol appears for one of the methods, this means that more than 
lo iterations are necessary to gain one decimal, or that the method 
diverges. 

The results clearly show that the rate of convergence can strongly 
depend on a, and that performing experiments for just a few values of 
a can be misleading. 
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Fig. 6.2 Multigrid results for equation (6.2). (a): Problem 1. 
(b): Problem 2. \/: MGDl; 0: MGDS; +: MGHZ; 0: MGAZ. 
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Fig. 6.3 CGS results for equation (6 .2). (a): Problem l; (b): Problem 2; 
\>: CGSl; X: CGS5. 
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Fig. 6.4 Multigrid results for equation (6,3). (a)-(d): Problems 3-6, 
respectively. Symbols as in Piq. 6.2 
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Fig. 6.S· CGS results for equation (6,3). (a)-(d): Problems 3-6, 
respectively. Symbols as in Fig. 6,3 
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Fig. 6.2 shows that for the anisotropic diffusion problem (6.2) MGDl 

does not work well for a slightly different from 9o0 . This is predicted 
by smoothing analysis (Kettler (1982)), which does not explain, however, 

why it works for a precisely 9o0 . For this problem, MGDl out-performs 

the other MG methods for a around o0 or 180°, taking table 6.1 into 
account. For general a, MGD5 is the best MG method. Fig. 6.3 shows 
that CGSl and CGS5 behave much like MGDl and MGD5, respectively. This 
means that in that case, when ILU or ILLU is a good smoother, it is a 
good preconditioner, and vice-versa. CGS5 is the most efficient method 
for this problem. Of course, with classical CG one would even be better 
off, and it is guaranteed to work (hence, CGS also), since the matrix 
is SPD. 

Fig. 6.4 shows that MGHZ and MGAZ do not work well for equation 
(6.3). This is because HZ and AZ are ineffective smoothing processes 
for convection-diffusion problems. For small s, ILLU is almost an exact 
solution method, and MG or CG acceleration is in fact not needed. MGDl 
also works well. For a detailed discussion of the behaviour of the MGD 
codes for convection-diffusion problems we ref er to the preceding 
section. Comparison of Figs. 6.4 and 6.5 shows that for this problem 
CGS is less effective than MG in accelerating ILU and ILLU. MGD5 is 
the most efficient method for problem (6.3). Nevertheless, CGS is a 
good acceleration method for these non-symmetric problems. 

The rate of convergence of MG is found to be unaffected by mesh­
refinement, with exceptions in the convection-diffusion case discussed 
in the preceding section. Table 6.3 gives some results for N as 
defined in equation (6.6) for CGSl and CGS5, as the mesh-size is varied. 
The dependence on h is not clear-cut. As h decreases, the required 
number of iterations generally increases, but there are exceptions, 

Table 6.3 

Number of iterations per decimal figure for various mesh-sizes for GG 
methods 

l/h CGSl CGS5 CGSl CGS5 

33 Problem 2 1.151 ·857 Problem 5 .899 .369 

65 c.=12o0 1.322 1.186 a=l65° 1.967 .598 
129 3.340 1.842 div .233 

In the case of problem 5, c.=120°, like CGSl, MGDl is found to diverge 
see Hemker, Kettler, Wesseling and de Zeeuw (1983). The explanation 
and the remedy has been given in the preceding section. In the case 
of CGSl all we can say at present is, that apparently ILU is not a good 
preconditioning for this problem. 
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Next, we turn to the test-problems of Stone and Kershaw. Because 
the matrix is SPD, CGS will behave more or less like classical CG, 
which has been applied to these problems by several authors. Therefore 
CGS will not be used. The MGDl and MGD5 codes are not applicable, 
because matrix-dependent prolongation and restriction is necessary. 
We show some of the results obtained by Kettler (1982) • The MG methods 
used are similar to MGDl and MGD5, but matrix-dependent prolongation 
and restriction is used, as defined by (5.27) and (5.26), and the 
sawtooth-cycle is replaced by the V-cycle. Fig. 6.6 gives 
log10 I lresiduel 12 as a function of the estimated number of flops per 

finest grid-point. The ILU and ILLU iteration methods are accelerated 
by MG and classical CG. As explained in section 4, CG can be used to 
accelerate any iterative method (which corresponds to a symmetric pre­
conditioned matrix), and Kettler (1982) has used CG to accelerate MG 
(MGCG). Of course, one could also try to use MG for acceleration of 
CG. Then one would expect fast convergence if CG is a good smoother; 
therefore one would have to tailor CG such that it works primarily on 
the non-smooth components of the error. we have not pursued this avenue. 

The figures show no systematic trend. All methods converge very 
rapidly compared with older methods, see Kershaw (1978) . CG is not 
inferior to MG in these tests, but when the grid is refined, CG would 
probably start lagging behind. The dimension of the computational 
grid was 31X31 for Stone and 51X51 for Kershaw. By padding (see the 
preceding section) this was increased to 33x33 and 57x57, respectively, 
in order to make construction of 4 or 3 coarse grids possible by mesh 
doubling. Padding was also used to fill in the L-shaped region in 
Kershaw' s problem to a square, to facilitate MG programming. For more 
results, including the use of several other smoothing processes, see 
Kettler (1982) • 

Fig. 6.6 shows that CG acceleration of MG is effective when ILU 
smoothing is used, but with ILLU it does not help, although it does no 
harm either. CG and MG have also been applied to the test problems 
of Stone and Kershaw (and two other similar problems) by Behie and 
Forsyth (1983). They advocate acceleration of MG in its non-symmetric 
sawtooth variant by means of orthomin (Vinsome (1976)), a CG-variant 
for non-symmetric problems. 

7. CONCLUSIONS 

Multigrid and conjugate gradient type techniques for the accelera­
tion of iterative methods have been discussed. A detailed discussion 
has been given of incomplete factorizations (ILU and ILLU), which 
lend themselves especially well for MG or CG acceleration. 

A brief review has been given of the theoretical background of 
classical CG and preconditioning. Classical CG methods are restricted 
to SPD matrices, but generalization is possible. One such generalized 
algorithm, called the CGS method, has been presented. Preconditioning 
of CG type methods has been discussed. 
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Multigrid methods have been discussed within the framework of 
acceleration techniques. Various ways of looking at the smoothing 
factor have been discussed. Prolongation, restriction and coarse grid 
approximation methods have been reviewed. Two portable, autonomous 
multigrid codes, MGDl and MGD5, have been introduced. MG treatment of 
convection-diffusion problems entails special difficulties, and ways to 
overcome these have been outlined. 

For the general class of problems that we have treated no rate of 
convergence theory of practical utility is available. Therefore, 
numerical experiments are necessary for comparison and validation 
purposes. The choice of a suitable set of test problems has been 
discussed, and experiments described with several CG and MG methods, 
including a combination of MG and CG, both self-adjoint and non-self­
adjoint problems, and problems with strongly discontinuous coefficients. 
These problems are of medium size, and roughly speaking, CG is about 
as efficient as MG, but as the mesh is refined, we would expect CG to 
lag behind. It should be remembered that CG is easier to program than 
MG. 

Generally speaking, the use of incomplete factorizations leads to 
more robust and efficient methods than the use of line-relaxations 
with a zebra pattern, for the test problems considered. With incomplete 
line factorization (ILLU) one can handle all problems considered with a 
single code (MGD5 or CGS5), without requiring user-provided adaptations. 
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