
MULTIGRID AND CONJUGATE GRADIENT METHODS AS CONVERGENCE ACCELERATION
TECHNIQUES

P. Sonneveld and P. Wesseling

(Delft university of Technology)

and

P.M. de Zeeuw

(Centre for Mathematics and Computer Science, Amsterdam)

ABSTRACT

Multigrid and conjugate gradient type techniques for the acceleration
of iterative methods are discussed. A detailed discussion is given of
incomplete factorizations. The theoretical background of the classical
conjugate gradient method and preconditioning is briefly reviewed. A
conjugate gradient type method for ngn-symmetric-positive-definite
systems is presented. Multigrid methods are discussed, and two portable,
autonomous computer codes are introduced. Multigrid treatment of
convection-diffusion entails special difficulties, and ways to overcome
these are outlined. Numerical experiments on a set of test problems
are reported. Efficiency and robustness of several conjugate gradient
and multigrid methods are compared and discussed.

l. INTRODUCTION

Finite difference and element discretizations of partial differential
equations give rise to large sparse systems of equations, which in this
paper will be assumed to have been linearized. In practice, the number
of unknowns can be quite large, and solution methods must exploit the
sparsity and the structure of the system. This can be done with direct
methods, using sparse matrix techniques, or by iterative methods, which
will be considered here.

Classical iterative methods, a review of which is given by Young
(1971), are relatively simple to implement, but converge slowly for large
problems. In recent years conjugate gradient (CG) and multigrid (MG)
methods have been drawing increased attention as powerful and rather
general techniques to accelerate the convergence of iterative methods.
our aim is to discuss recent progress that has been made with these
techniques. A new CG method for systems that are not symmetric positive
definite will be presented.

Both CG and MG have a wider use and significance than just being
acceleration techniques. But the present viewpoint makes it possible to
grasp the main principles in a simple manner, and furthermore, it brings
out the main similarities and differences of the t..io methods.

The authors beg forgiveness for focussing on developnents with which
they are especially familiar.

118 SONNEVELD I WES SELING and DE ZEEUW

2. ITERATIVE METHODS AND INCOMPLETE FACTORIZATIONS

The problem to be solved is a linear algebraic system denoted as

Ay = b. (2.1)

stationary iterative methods for the solution of (2.1) can usually be
written as

(2. 2)

For example, for the Gauss-Seidel method (GS) we have B = (D+L)-1 , and

for the successive overrelaxation method (SOR) we have B = w(D-+u!L)-l,
with L, D and U defined by

A = L + D + U,

where L and u are the lower and upper triangular parts of A, and
D = diag(A).

For the error en yn - y we find from (2.2)

(2.3)

(2.4)

For special cases the spectral radius p(I-BA) is known. For example,
if A is the familiar 5-point finite difference discretization of
Laplace's equation on the unit square with Dirichlet boundary conditions
and mesh-size h in both directions, we have

GS: p{I-BA)

SOR: p (I-BA) 1-sinTih 1 _ 2nh + O(h2).
l+sinnh =

(2.5)

(2.6)

Let us define the computational cost W of an algorithm to be the
number of operations from the set {+,-,*,/}. In practice computer time
will depend on W, but also on the programming language, the skill of the
programmer, the frequency of the occurrence of indirect addressing, type
of machine etc., but still, W defined above is a convenient yardstick for
measuring computational complexity.

Let N (=h - 2 in two dimensions) be the number of unknowns. Then the
cost of one GS or SOR iteration is W O(N). The required number of
iterations n for a desired residual or error reduction E follows from

(p (I-BA))n (2. 7)

MULTIGRID AND CONJUGATE GRADIENT METHODS 119

From (2.5) and (2.6) we find, if E is fixed (independent of h) that

n = O(N), O(N~), for GS and SOR respectively, resulting in the following
estimates for the total computational cost:

(2.8)

SOR: W = O(N3/ 2). (2.9)

These results are found to hold in practice not only for the Poisson
equation, but for elliptic equations in general, as long as A is an
M-matrix. In a general situation, the estimate for SOR may be
optimistic, because the optimal w is not known.

Obviously, the best one may hope to achieve is W = O(N). There exist
MG methods with this property, as has been shown rigorously for general
elliptic equations. For CG no theoretical results with the same degree
of generality as for MG are available. For the Poisson equation
Gustaffson (1978) has proved for a certain preconditioned CG method that

W = O(N514). Practical experience indicates that this holds for a wider
class of equations.

Before further discussing MG and CG we first introduce a number of
iterative methods that have special significance in the context of MG
and CG.

Red-black Gauss-Seidel (RBGS) relaxation is Gauss-Seidel relaxation
with a certain ordering of the grid-points. These are divided in red
and black points in a checkerboard fashion. First the points of one
colour are relaxed simultaneously, then the points of the other colour.

Horizontal zebra (HZ) relaxation is Gauss-Seidel relaxation by hori
zontal lines, taking first the odd and then the even lines, assuming
that the boundary lines are odd.

Alternating zebra (AZ) relaxation is Gauss-Seidel relaxation by
lines, taking successively the odd, even horizontal, odd, even vertical
lines.

Hackbusch (1980) and Foerster et al. (1981) have shown that RBGS and
AZ in combination with MG result in efficient iterative methods.

Incomplete LU (ILU) (or incomplete Crout, or incomplete Cholesky)
decompositions have been introduced as preconditionings for CG by
Meijerink and van der Vorst (1977), and as smoothing processes for MG
by Wesseling and Sonneveld (1980). ILU has been found useful in
transonic flow computations, cf. van der Wees et al. (1983), Nowak and
Wesseling (1983). More recently, incomplete line LU (ILLU) or
incomplete block factorizations have been proposed by Underwood (1976),
Concus, Golub and Meurant (1982), Axelsson (1983) and Meijerink, see
Kettler (1982), Meijerink (1983).

For completeness we will give a description of ILU and ILLU decomposi
tions. Let P be a set of 2-tuples representing a matrix sparsity
pattern. Then a class of ILU decompositions of the matrix A can be

120 SONNEVELD, WESSELING and DE ZEEUW

defined as follows. L and u are lower and upper triangular matrices
satisfying

.e.ij O, (i,j) ~ P; Uij O, (i,j) t P;

(LU) ij a,., (i,j) E P.
l.J

(2.lo)

Note that Land U now have a different meaning than in equation (2.3).
The ILU decomposition may be made unique by requiring, for example,

(2.11)

In many cases !LU-decompositions can be computed simply by means of
(incomplete) Crout formul.ae. For example, assume that the given problem
(2.l) is a discretization of a partial differential equation on an m*n
grid, and let the grid-points be enumerated as in Fig. 2.1.

l+(n-l)m nm

f g

c d e

l+2m a b

Hm 2m

l 2 3 m

Fig. 2.1 Enumeration of computational grid-points, and difference
molecul.e

Let A be a 7-point discretization of a second order elliptic partial
differential equation with the difference molecule abcdefg of Fig. 2.l
(the atoms b and f are needed if a mixed derivative is present) • Then
the sparsity pattern of A is:

{ (i,i-m), (i,i-m+l), (i,i-1), (i,i), (i, i+l) , (i, Hm-1), (i, i-tm) }.

For brevity the following notation is introduced:

(2.12)

MULTIGRID AND CONJUGATE GRADIENT METHODS 121

Let the sparsity pattern P of L and u be chosen identical to that of A,
and let the elements of Land Ube called a 1 , Si, yi, oi, Ei' ~i' ni.

The locations of these elements are identical to those of ai,bi 1 ••• ,gi,

respectively. The diagonal of L is specified to be unityi oi are the

elements of diag(U). Then Land U can be conveniently computed by means
of the following Crout formulae:

(2.13)

Quantities that are not defined because their subscript is outside
the range [l,run] are to be replaced by zero. This is but one example of
an ILU-decomposition of A. Other possibilities are described, for
example, by Meijerink and van der vorst (1981) •

Sometimes it pays to add certain neglected entries (compared to the
full LU-decomposition) to the diagonal element or to other non-neglected
entries in the same row. Then we no longer have

(LU)ij = aij' (i,j) € P. (2.14)

For details see Axelsson (1982). We will not go into this here.

An ILU decomposition can be used in an iterative method by choosing

B = (LU)-l in (2.2), obtaining

b + (LU-A)yn.

The cost of one iteration can be reduced by means of the following
silllple device. With L and u computed by means of (2.13) we have

LU= A + C.

The only non-zero elements of C are given by

ci,i-m+2

With (2.16), (2.14) becomes

which is cheaper than (2.15), because C is more sparse than A.

(2.15)

(2.16)

(2.17)

(2.18)

122 SONNEVELD' WESSELING and DE ZEEUW

It is easily verified that the construction of L and U according to
(2.13) takes 17 flops (floating point operations) per grid-point. L and
u are stored in place of A, and if C is generated, no extra storage
beyond that for A is needed.

The solution of LUy = q is obtained by back-substitution:

(2.19)

Hence, the solution for yn+l, the computation of b-K:yn (generating C)
and the execution of one iteration require 13, 6 and 19 flops per grid
point, respectively.

We will not discuss existence of ILU decompositions. Meijerink and
van der Vorst (1977) prove existence for M-matrices, but often ILU is
applied successfully to more general matrices.

ILLU decomposition can be described as follows. With the computa
tional grid and the finite difference molecule of Fig. 2.1 the matrix A
has the following structure:

Bl Ul

L2 B2 U2

A
L3 B3 U3

L B
n n

(2.20)

with Li, Bi and Ui m x m matrices; Bi are triangular matrices; Li and

Ui are lower and upper triangular, with sparsity patterns {(j,j-1) ,(j,j)}

and {(j,j),(j,j+l)} respectively. We try to find a matrix D such that

A (L+D)D-l(D+U), (2. 21)

where

D

MULTIGRID AND CONJUGATE GRADIENT METHODS

0

D
n

L 0
n

o un-1

0

123

We call (2.21) a line LU decomposition of A, because the blocks in L, D
and U correspond to (in our case horizontal) lines of the computational
grid. Given the decomposition (2.21), solving (2.1) is just as simple
as with a classical LU decomposition. Equation (2.21) can be rewritten
as

A
-1

L + D + U + LD U.

One finds that LD-~U is the following block-diagonal matrix:

-1
LD U

I o

L D-l U
n n-1 n-1

From (2.22) and (2.23) we deduce the following algorithm for the
computation of D:

2,3, .•• ,n.

(2 .22)

(2.23)

(2.24)

124 SONNEVELD, WESSELING and DE ZEEUW

The matrix D~l is full, which causes the cost of a line LU decomposition
3 l.

to be o (nm) , as for standard LU-decomposition. An incomplete line LU

decomposition is obtained if we replace L.D~11u. 1 by its tridiagonal
l. J.- i-

part. Thus, algorithm (2.24) is replaced by:

2,3, ... ,n. (2.25)

The ILLU decomposition of A is now defined to be

A (2. 26)

with E the error matrix, and D the block diagonal matrix with blocks Di.

We will
--1

now show how D and 5-l may be computed. Consider tridiag

dropping the subscript, tridiag (LD-1u) . (LiDi-lui_1 J, or, temporarily

Let the elements of D-l bes .. ; we shall see shortly how to compute
l.J --1

them. The elements tij of tridiag(LD U) can be computed as follows:

(2. 27)

The inverse of a tridiagonal matrix can be determined as follows. Let

T =

bm-1 am-1 cm-1

b a
m m

Let the triangular factorization of T be

-1
T = (L+I)D (I+U), (2.28)

MULTIGRID AND CONJUGATE GRADIENT METHODS 125

where L, D and U are not to be confused with the matrices occurring in
(2.20). The only non-zero elements of L, D and U are !L , d .. and

i,i-1 l.l.

u .. 1 , respectively. Call these elements !L., d., u. for brevity.
J.,J.+ l. l. l.

They can be computed by means of the following recursion formulae:

c .d .•
l. l.

(2.29)

The elements of T-l can be calculated as follows. From (2.28) we have

T-l = {I-U)-l D{L+I)-l. (2.30)

Let Aij be the elements of (L+I)-1 • By requiring (L+I)-1 {L+I) =I and

proceeding row by row, we find the following recursion formulae:

< i.

Similarly, by requiring {U+I) {U+I)-l =I and proceeding column by

column, we find for the elements µij of (I+Ul-1 :

-1
Using (2.30) we find for the elements sij of T :

s d ,
mm mm

m m

skk i:: µkid ii \k ~+ l: ukµk+l,idii!Lk+lAi,k+l
i=k i=k+l

~ + ~!l,k+16k+1,k+l'

m m

6k,k-j l: µkidii \,k-j i:: µkidii!Lk-j+lAi,k-j+l
i=k i=k

- tk-j+16k,k-j+l'

(2.31)

(2.32)

(2.33)

(2.34)

(2.35)

126 SONNEVELD, WESSELING and DE ZEEUW

m

sk-j,k = E µk-j,idiiAik
i=k

This completes our description of the computation of tridiag
(Li i'\-1 Ui-1).

(2 .36)

The complete algorithm for the computation of the ILLU decomposition
(2.26) can be summarized as follows. We compute D and its triangular
decomposition.

(i)

(ii)

(iii)

(iv)

for i = 2,3, ..• ,n do (i) - (iv):

Compute the triangular decomposition of Di-l according to (2.29);

--1
Compute the five main diagonals of Di-l according to
(2.33) - (2 .36);

--1 .
Compute tridiag (LiDi-lui-l) according to (2.27);

Compute Di with (2.25);

Finally, compute the triangular decomposition of Dn according
to (2.29).

The number of flops required is given by:

Step (i): Sm; step (ii): 7m; step (iii): 2lm; step (iv): 3m.

Hence, the total cost of computing D and its triangular decomposition
is 36mn. Storage to the extent of 3mn reals is needed for the triangular
decomposition of D.

When using ILLU, the iterative method (2.2) becomes:

r,

n+l y n+l n
y + y .

Equation (2.38) is solved as follows:

(L+D) yn+ 1 = r,

- n+l r : = Dy ,

- n+l (D+L)y = r.

(2. 37)

(2.38)

(2.39)

(2.40)

(2 .41)

(2 .42)

MULTIGRID AND CONJUGATE GRADIENT METHODS 1Z7

With the block partitioning used before, and with y~+l and ri denoting

m-dimensional vectors corresponding to the i-th block, equation (2.40) is
solved as follows:

i > l. (2.43)

Equation (2.42) is solved in similar fashion. The solution of an m x m
tridiagonal system, with triangular decomposition available, takes Sm
flops. The cost of the right side of (2.43) is 4m (for the 7-point
difference molecule assumed here). The total cost of (2.40), and of
(2.42) as well, is therefore 9mn, so that the cost of (2.38) is 23mn.
The cost of (2.37) is l4mn. The total cost of one ILLU iteration is
therefore 37mn.

For other ILLU variants, see Concus et al. (1982) and Meijerink (1983) ,
who prove existence of ILLU decompositions for M-matrices. For remarks
on vectorization, see Meijerink (1983), Meurant (1983), and Hemker,
Wesseling and de Zeeuw (1983).

For future reference we note that the cost of RBGS is l2mn flops,
assuming a 7-point difference molecule. In HZ, tridiagonal system
solving takes Smn flops, assuming that the necessary triangular decom
positions have been computed beforehand, at a cost of Smn flops,
respectively. Residue evaluation takes Bmn flops, so that the total
cost of one iteration with HZ is l3mn flops. For AZ, these figures
should be doubled.

For RBGS, AZ, ILU and ILLU rate of convergence estimates are not
available in the literature, but the number of iterations required
certainly increases as the grid is refined. Therefore the computational

cost of these methods is O(Na) with a > l. In the following sections we
will discuss how the convergence of iterative methods such as those just
discussed can be accelerated with CG or MG methods.

3. CONJUGATE GRADIENT METHODS

For an introduction to CG (and Chebyshev) acceleration of iterative
methods, see Hageman and Young (1981). Within the confines of this paper
we can only give a brief discussion.

When A in (2.l) is large and sparse it is attractive, because of
efficiency and simplicity, to use A only as a multiplier. This means
that we can build polynomials in A. At the start of the iterations the

only special vectors available are band the residue r 0 = b-Ay0 , with

yo the starting i terand. A rather general form of possible algorithms
would be

n
p

n+l
y (3.l)

(3.2)

128 SONNEVELD, WESSELING and DE ZEEUW

Here e and e are polynomials, whose degree is increased by one at each n n _
iteration. At present, only the case where one chooses en = o seems to

have been investigated. It may not be worthwhile to allow en "F o. For
example, it seems reasonable to require that the sequence

{yn+l_yn} = {a pn} is identical for the following two cases:
n

case l Ay = b, starting iterand yo

case 2 Ay = b, starting iterand ~

with b b + A(~-yo). With overbars referring to case 2, we have

-0 o - -n n
Since r = r we can have anp = anp for all b only if en - o, en _ o.

Assuming henceforth 8 n : o, we have

rn - Aa 8 (AJr0 = (induction)
n n

0
<jln+l (A)r ,

(3 .4)

where <Pn+l is a polynomial of degree n+l with the following property:

<jl (0) = l.
n (3 .5)

Because of (3.4) we would like to choose <jln such that I !<Pn(A)r0 ! ! is

minimized, under the constraint (3.5). For SPD (symmetric positive
definite) A this aim is achieved by CG methods. Let us define

(3.6)

Then we want to construct <jln E II~ such that

(3. 7)

MULTIGRID AND CONJUGATE GRADIENT METHODS 129

If we choose the following norm:

I lr 11 2 -
T -1

r A r, (3 .8)

then the following CG method solves (3.7):

-1 o, 0
= b - Ayo, p r

n n n-1 T
13 pn/pn-1'

n n p r + Snp , Pn r r , n

n+l n T
y y + a pn , Cl. pn/0 n• a pn Apn,

n n n

(3 .9)

n+l n n
r =r -aAp.

n

For a proof see for example Hageman and Young (1981). The name of the
method derives from the fact that the search vectors are conjugate:

kT n
p Ap· = O, k = 0,1,2, •. .,n-1. (3 .10)

By making different choices for the norm I I· I I in (3.7), different CG
methods are obtained.

For many practical applications the restriction of CG to SPD systems
is a severe drawback. Several ways to generalize CG have been proposed,
but at the moment it is not yet clear what are the best CG variants for
non symmetric or indefinite systems. We present a promising new method.

First, we rewrite the CG method (3.9) in terms of the polynomials
~n and en introduced before. One easily obtains:

e -1

e
n

~n+l

with tJ! the polynomial tJ!(1) 1,

- 0, ~o - l,

~ + s n6n-l' n

~ - Cl tJ!8 ' n n n

Cl
n P /a ' n n

(3.lla)

(3 .llb)

(3.llc)

(3 .12)

130 SONNEVELD, WESSELING and DE ZEEUW

where the bilinear form(.,.) is defined by

OT T 0
(<P, e) = r <P (A) e (A) r . (3 .13)

we will now abandon the assumption that A is SPD, so that the algorithm
no longer minimizes the residual in the sense of (3. 7) ; II ·II no longer
has the properties of a norm. We replace (3.13) by

-OT 0
(<jl,8) = r <jl(A)8(A)r , (3 .14)

with r 0 a vector to be chosen. In general, this is not an inner product.

Then for arbitrary A, (• , •) has the fallowing properties:

{<ji, 8) : (8 I <Pl' (3 .15)

(<jl, (8) = (1;<ji ,8)' (3 .16)

for every triple of polynomials <jl, 8, (. The following theorem suggests
that the algorithm (3.ll) might still be of use for solving Ay = b:

Theorem 3.1 The algorithm defined by (3.11), (3.12) and (3.14) has the
following property:

o, k < n. (3 .17)

Hence, if A happens to be such that(.,.) is an inner product, then the
residual lies in a subspace the dimension of which is reduced by one
at each iteration, just as for the classical CG method.

Proof of theorem 3.1 Obviously

(3 .18)

With (3 .llc), (3 .12), (3 .16), (3 .18):

0. (3 .19)

Using (3.llb,c):

(3.20)

o.

MULTIGRID AND CONJUGATE GRADIENT METHODS

Similarly,

Th~s establishes the validity of (3.17) for n 1. Proceeding by
induction, for k < n,

From (3.11.b) it follows that there exist constants ckj such that

e = k

k

i: ckJ' cpJ,.
j=l

Hence, with (3 .22) and the induction hypothesis,

Furthermore

It follows that

O, k < n.

- et. a
n n

establishing the first part of the induction hypothesis.

131

(3 .21)

(3.22)

(3 .23)

(3 .24)

(3.25)

(3.26)

132 SONNEVELD, WESSELING and DE ZEEUW

For k ~ n we have

with onk the Kronecker delta. This completes the proof.

The algorithm (3.11) - (3.13) can be put in a form suitable for
computation as follows. Define

-n
r

8 (Alr0 ,
n

(3 .27)

with r 0 the starting residue and r0 some vector to be specified by the
user of the algorithm. Then we have according to (3.12) and (3.13)

T
-n n r r , a

n

and we obtain the following algorithm:

0
r

n
p

-n
p

n+l r

-n+l
r

n+l y

Cl.
n

n r

-n r

+ Snp
n-1

'

+ s -n-1
np '

n
Cl. Apn, r

n

-n T-n
r Cl.nA p '

T
-n n
p Ap '

--1
p

(3 .28)

O,

(3 .2 9)

MULTIGRID AND CONJUGATE GRADIENT METHODS 133

The vectors rn, rn, pn, Pn satisfy (3.27). According to theorem 3.1 we
have

-nT k
0, k < r r n, (3 .30a)

-nT k
p Ap 0, k < n. (3 .30b)

-k k
According to (3.30b) the sets {p } and {p } are conjugate with respect
to A, which is why the algorithm is called the bi-CG method. It has
first been proposed by Fletcher (1976) .

The bi-CG method can be accelerated appreciably (roughly by a factor
2) , by the following stratagem. The idea is to construct an algorithm

for which the residue is~ (A) 2r 0 instead of~ (A)r0 , which turns out
n n

to be possible at hardly any extra cost, and eliminates the need to work

with AT. If bi-CG converges,~ (A) will be a contraction, and~ (A) 2
n n

will be smaller than ~n (A). A suitable algorithm is obtained by

squaring (3.11). We call the resulting method the CGS (conjugate
gradients squared) method. From (3.11) we obtain

Using (3.llb),

2
~n+l

8 ~
n n

~ e - a tJ;8 2
n n n n'

~ 2 - a tj;(~ e +~+le) ' n n n n n n

(3. 31)

(3. 32)

with an' Sn given by (3.12), where pn and on can now be evaluated as

follows:

134 SONNEVELD, WESSELING and DE ZEEUW

This is transformed into a workable algorithm with the aid of the
following vectors:

2 0 n
<fi (A) r , g

n

2 0 e (A) r ,
n

Equations (3.32) are equivalent to (u corresponds to enq,n):

CGS method:

0 0 -1 0
f =b Ay

'
g h

u = r + S hn,

n g

n+l
y

n

u + Sn (Sngn-l+hnl'

u - et Agn,
n

n + et (u+hn+l)' Y n

o,

(3. 33)

(3.34)

where we have used that yn-l_yn follows directly from the difference in
the residues r+l_fn. In (3.34) we have

et P /a ' So o, s PiPn-1' n n n n

(3.35)

-OT n _QT n
Pn r f a r Ag

n

We usually choose

-0 0
r = b - Ay (3.36)

The cost of CGS is about the same as the cost of bi-CG. The correspon
dence between bi-CG and CGS is that the residues after n iterations are

0 2 0
<P n (A) r and ~n (A) r , respectively.

Another type of method that seems promising for the indefinite case
is Chebyshev iteration, for example the version proposed by Manteuffel

MULTIGRID AND CONJUGATE GRADIENT METHODS 135

(1977, 1978). This method works well if certain parameters related to
the spectrum of A can be estimated accurately. An important advantage
of CGS is that no parameters need be estimated. A thorough comparison
between CGS and Chebyshev iteration has not yet been made.

Bi-CG and CGS are but two examples of extensions of CG to non-SPD
systems. We will not review other extensions that have been proposed,
but restrict ourselves to mentioning the publications of Concus and
Golub (1976), Vinsome (1976), Widlund (1978) and Axelsson (1980).

4. CONJUGATE GRADIENT ACCELERATION OF ITERATIVE METHODS: PRECONDITIONING

Until further notice A is assumed to be SPD. For a stationary
iterative method (2.2) it follows from (2.4), that

n
e 1jJ (BA)e0 , 1jJ (x)

n n

Assuming that B is SPD we can write

T
B E E.

For arbitrary powers of ETEA we have

so that (4.1) can be rewritten as

If we apply CG not to (2.1) but to the following preconditioned
version:

T -T
(EAE) (E y) = Eb

(4 .1)

(4. 2)

(4 .3)

(4. 4)

(4. 5)

then in (4.4) ij!n is replaced by ~n satisfying the optimality condition

(3.7), so that we may say that CG accelerates (2.2). Of course it is
equally true that CG is accelerated by preconditioning.

we will now study the rate of convergence that can be obtained
with preconditioned CG. In the SPD case the rate of convergence of CG
methods can be estimated in an elegant way cf. Axelsson (1977). From
(3.4), (3.7) and (3.8) it follows that

min
OT 2 -1 0

r ljJ(A) A r , (4.6)

2 T -1 "'° choosing II zll = z A Z.

136 SONNEVELD, WESSELING and DE ZEEUW

Let the set of eigenvalues of A'be

Sp(A)

T with corresponding eigenvectors x 1 ,x2 , ..• ,xN satisfying xixj
Let

then

I lrn 11 2

~

min

iµErrn
1

min

iµErrn
1

0
r

N 2 2 z ~iiJ; C\l I\
i=l

ljJ (I-) 2
N

~711-. max z
I-Esp (A) i=l J. l.

max
AESp (A)

(4.7)

8 . .•
l.J

(4.8)

(4.9)

Rate of convergence estimates are obtained by making a choice for 1/J(I-}.
For example,

1/i (I-) T (z)/T
n n [~+{, }

>.-!-

(4.10)

with Tn the Chebyshev polynomial of degree n, and\, A the largest and
smallest eigenvalue of A. Because

max 1,
lzl~l

we obtain

[~+~) 2 •
).-).

(4.11)

MULTIGRID AND CONJUGATE GRADIENT METHODS 137

A well-known property of Chebyshev polynomials is

l/T
n (4 .12)

For lzl < 1 the following holds:

[1-z)n exp{-2n(z
3 5

...) } ~ + ~ + z -2nz
l+z 3 5+ e (4.13)

Using (4.13) in (4.12) and noting that 5:;~ cond2 (A) we obtain

Requiring a residue reduction € the required number of iterations n is

1 I c I ~ n ~ 2 ln 2 cond 2 (A) • (4.14)

For discretizations of second order elliptic equations we usually have

so that

2
cond2 (A) = 0(1/h) , (4.15)

(4.16)

as for SOR. In practice CG tends to be somewhat more expensive than
SOR, but it is parameter free, and if for SOR the optimal overrelaxation
factor is not accurately known, CG is faster.

The efficiency of CG by itself is not very impressive, but the
interest of CG derives from the possibility of convergence acceleration
by preconditioning. Rewriting the CG algorithm (3.9) for (4.5) one
obtains

-1 0 Eb -
0

p O, r EAy ,

T
n n n-1 s pn/pn-1'

n n
p r + Snp , pn r r

n

E-Tyn+l -T n n
Pn10n'

nT T
E y anp a () p EAE pn' n n

(4.17)

n+l n T n
r r - anEAE p .

138 SONNEVELD, WESSELING and DE ZEEUW

Replacing ETp by p and redefining r = b - Ay this can be rewritten as
follows:

Preconditioned CG algorithm:

-1
p

n
p

n+l
y

n+l
r

n
r

T
n n

p Ap '
(4.18)

It has been found by Meijerink and van der Vorst (1977), that an
effective preconditioning is obtained with incomplete Cholesky decom
position, given by

LLT = A+ C, (4 .19)

the symmetric (Cholesky) variant of ILU decomposition discussed in

section 2. We choose E = L-l in (4.18). The eigenvalue distributions

of L-lAL-T and A are compared for a few examples by Meijerink and
van der Vorst (1977) and Kershaw (1978); it is found that

-1 -T cond2 (L AL) << cond2 (A). For a full explanation of the acceleration

effect of preconditioning not only the condition number but the eigen
value distribution should be taken into account, but there is no
general theory available concerning the influence of preconditioning
on the eigenvalue distribution or even the condition number. For a
special case, the 5-point discretization of the Poisson equation,
Gustafsson (1978) shows that preconditioning with a certain type of

("modified") incomplete LL T decomposition results in

-1 -T
cond2 (L AL) Q(l/h) t (4. 20)

so that according to (4.14) the required number of iterations is O(h-~),
resulting in a computational cost of O(NS/4). This result seems to hold
approximately quite generally for CG with preconditioning by approximate
decomposition. One finds that the number of iterations required
increases slowly as the grid is refined. The modified incomplete LLT
decomposition seems in general to provide a somewhat better precondi
tioning than the version described here.

In the preconditioned CG algorithm (4.18) the matrix is needed only

for multiplication with rn. If one does not want to form E or E-l

MULTIGRID AND CONJUGATE GRADIENT METHODS

explicitly, but wants to define E implicitly by means of the iterative

method (2.2), one can obtain Brn from

139

(4.21)

with y* the result of one iteration (2.2), starting with yn.

A preconditioned version of CGS can be obtained as follows. Applica
tion of CGS to the followh1g preconditioned version of (2.1)

BAy = Bb (4.22)

results in an algorithm given by (3.34), (3.35) with A and b replaced

by BA and Bb. By replacing B-lf by f we obtain:

Preconditioned CGS

with

algorithms:

fo b - Ayo, -1 ho 0, g

u = Bfn + S hn
n '

n u + g S (13 n-l+hn)
n ng '

hn+l u - o.nBAg
n

'

n+l n (u+hn+l), y y + ().
n

fn+l fn - AO. (u+hn+l)'
n

(). =pn10n' so o, iln pn/pn-1' n

T

er
n

T -o n
r Bf , on

-o n
r BAg .

(4.23)

If B is not explicitly available, as for instance when the iterative

method to be accelerated is a MG method, then Bfn and BAgn can be
obtained as follows. Carry out an iteration with the method to be

n
accelerated (2.2), with starting iterand y :

y* (4. 24)

140 SONNEVELD, WESSELING and DE ZEEUW

Next, carry out an iteration with starting iterand gn and right-hand
side b = 0:

g*
n n g - BAg . (4.25)

It follows that

y*
n n

y , BAg (4.26)

In this way one may try to use CG or CGS to accelerate the convergence
of any iterative method, with the restriction that for CG the matrix B
must be symmetric. Kettler (1982) has used CG to accelerate MG, To

make B symmetric, he used incomplete LLT decomposition for smoothing,
and the v-cycle multigrid schedule (see the next section) • One might

say that CG accelerates MG which accelerates incomplete LLT. Behie and
Forsyth (1983) have used Orthomin, a non-symmetric CG variant (Vinsome
1976) to accelerate MG using the sawtooth cycle.

For CGS applied to a general system there is no guarantee that
convergence will be rapid, but a rule bf thumb is that a good rate of
convergence may be expected with ILU and ILLU preconditioning if A
satisfies

i. (4.27)

(This makes A an M-matrix) .

In order to obtain a rough idea of the computational cost of CGS we
count flops (per grid-point) in (4.23). Preconditioning takes place
with ILU or ILLU. Assume that multiplication with B or BA takes place
using (4.24)-(4.26). Using in this case the explicitly available matrix
B one can obtain slightly lower operation counts than those obtained
below, but we will neglect this possibility here. Note that in (4.24)

the residue b - Ayn = fn is already available, so that (b+Cyn) or
(2.37) need not be carried out for ILU or ILLU, respectively. Using
the ILU and ILLU operation counts of section 2, we find that the cost
of y* is 13 flops (ILU) or 23 flops (ILLU). Similarly, the cost of g*
is found to be 18 flops (ILU) or 36 flops (ILLU). We assume that A has
7 non-zero elements per row. Hence, multiplication with A takes 18
flops. In addition to matrix multiplications, CGS needs 18 flops, as
is easily seen from (4.23), including of course the cost of an, Sn.

Therefore the total cost of one preconditioned CGS iteration is 60 flops
(ILU) or 88 flops (ILLU).

5. MULTIGRID ACCELERATION OF ITERATIVE METHODS

The basic ideas of MG methods are quite general and have a wide range
of application. They can be used not only to accelerate iterative
methods, but also, for example, to formulate novel ways to solve non
linear problems, or to devise algorithms that construct adaptive

MULTIGRID AND CONJUGATE GRADIENT METHODS 141

discretizations. The volume edited by Hackbusch and Trottenberg (1982)
represents a useful survey.

We restrict ourselves here to the one aspect of MG mentioned in the
title of this chapter. This makes it possible to simplify MG, and to
distinguish situations where its effectiveness is guaranteed. The
significance of MG as accelerating technique derives from the fact that,
in principle, a computational complexity of O(N) can be achieved, with
N the number of unknowns. This has been proved rigorously by Fedorenko
(1964) for a finite difference approximation of the Poisson equation
and by Bakhvalov (1966), Hackbusch (1980), Wesseling (1980) for finite
difference approximations to general second order elliptic partial
differential equations. For a survey of MG rate of convergence theory,
including finite element discretizations, see Hackbusch (1982). These
general theories result in O(N) but pessimistic, and fortunately
unrealistic, computational complexity estimates. The papers by Brandt
(1977) and Hackbusch (1978) showed the great potential of MG for
practical applications. The theoretical work just mentioned assumes
a W-cycle. More recently, work on rate of convergence theory for the
V-cycle has appeared, such as Musy (1982), Maitre and Musy (1983),
McCormick (1983), Braess and Hackbusch (1983). The terms v- and W-cycle
are explained for example by Stilben and Trottenberg (1982). These terms
refer to the MG schedule, i.e. the switching strategy between the grids.
For special equations, notably Poisson's equation, work on realistic
rate of convergence predictions is underway, see for example Braess
(1981, 1982), Stuben and Trottenberg (1982). We will not discuss these
theoretical aspects here.

Equation (2.1) is assumed to represent a discretization of a partial
differential equation. If the basic iterative method (2.2) converges,
it usually (but not always) has the property, exploited by MG, that the
non-smooth part of error and residue is annihilated rapidly, whereas it
takes many iterations to get rid of the smooth part. A precise
definition of smoothness will be given shortly. The fundamental MG idea
is to approximate the problem with smooth error and residue on coarser
grids. In the MG context (2.2) is called a smoothing process.

One way of discriminating between smooth and non-smooth parts of grid
functions is by means of Fourier analysis, as proposed by Brandt (1977).
Let the computational grid G associated with the discretization (2.1) be
defined by (we restrict ourselves for simplicity to two-dimensional
problems) :

G

Any grid-function e
follows:

e mn

x.
l.

(5.1)

G ~ R can be represented by a Fourier series as

m/2
E cstexp(im8s+in~t).

t;-m2/2
(5.2)

142

with

e
s

SONNEVELD, WESSELING and DE ZEEUW

(5.3)

where we have assumed that mi is even. By emn we mean the value of the

grid-function e in the grid-point with coordinates (mh1 ,nh2). Let G be

a coarse grid with step-size doubled, i.e.

{(x ,x2> Ix.= 0,2h.,4h., ..• ,!im.2h.}. 1 1. 1. 1. 1. 1.
(5.4)

Then we call those Fourier components that cannot be represented without
aliasing on G non-smooth. That is, the set of non-smooth Fourier
components is given by

{exp(im8+in<fi) I (6,<fi) E F} ,

F : = { (e, q,) I - rr ~ e, q, ~ rr, I e I ;: 1T /2 and/or I <P I ;: rr /2},

where for convenience we do not restrict (8,<fi) to the discrete set
occurring in (5.3).

(5. 5)

For periodic boundary conditions and constant coefficients in the
differential equation, many iterative processes (but not for example
RBGS and AZ) have the property that, if the error e before iteration
is given by (5.2), then the error e after iteration is given by

with

e
mn L c texp(im6 +inq,) , s s t

t=-m/2
(5. 6)

(5. 7)

The annihilation of the non-smooth part of the error can be measured
by the quantity defined below (Brandt (1977)):

Definition 5.1 The Fourier smoothing factor is

sup IP (8,q,) 1-
(8,q,)EF

Note that PF does not depend on the mesh-size hi' in contrast to

the rate of convergence of (2.2). A large catalogue of Fourier smoothing
factors for various equations and smoothing processes has been compiled
by Kettler (1982). It turns out that simple point-wise smoothing

MULTIGRID AND CONJUGATE GRADIENT METHODS 143

processes, such as damped Jacobi or Gauss-Seidel relaxation, have a good
smoothing factor (i.e. pF well below l) for Poisson's equation, but

not for equations with strong coupling in a certain direction, such as
the convection-diffusion equation at high Peclet number, or anisotropic
diffusion problems. In such cases more robust smoothing processes are
called for, such as block Gauss-Seidel relaxation, AZ, ILU or ILLU
(AZ does not work for convection-diffusion problems with upwind
differences) •

As noted before, Fourier smoothing analysis as just described assumes
periodic boundary conditions and constant coefficients in the
differential equation. The Fourier smoothing factor may be expected to
be a good indicator of the quality of a smoothing process in more general
circumstances, provided the coefficients vary smoothly, and provided
the influence of perturbations of the boundary conditions attenuates as
one moves into the interior of the region. However, MG is applied
successfully to problems with discontinuous coefficients and problems
where perturbations of the boundary conditions are felt in the interior,
such as convection-diffusion and anisotropic diffusion problems. Apart
from these limitations, Fourier smoothing analysis has the disadvantage,
that the performance of the coarse grid corrections in the no-man's
land between the smooth and non-smooth parts of the error is not taken
into account. A different type of smoothing analysis that does not
suffer these disadvantages is as follows.

Let the sets of grid-functions G +Rand G +R be defined by Y and Y
respectively. Let the coarse grid approximation of (2.1) be given by

Ay b.

Furthermore, let there be given a prolongation operator P and a
restriction operator R:

p Y+Y,R:Y+Y.

(5.8)

(5. 9)

A two-grid method for the acceleration of the iterative method (2.2) can
·+~

be formulated as follows. Let yj be the current iterand, and let YJ

be the result of applying a coarse grid correction to yj:

(5.10)

where we assume for the time being that the coarse grid problem is solved

exactly. For the residue rj: Ayj-b we find:

--1 j
(I-APA R) r . (5.11)

144 SONNEVELD, WESSELING and DE ZEEUW

We now make the following choice for A, called

Galerkin approximation:

RAP. (5.12)

Then it follows from (5.11) that

rj~ E Ker(R), (5.13)

as noted by Hemker (1982) and McCormick (1982). In other words,

rj+I, 1. Kerl.CR), which justifies the appellation "Galerkin approximation"
for (5.12). Following Hemker (1982A) we will relate the concept of
snoothness to the kernel and range of R and P.

Definition 5. 2 The set of R-smooth grid-functions is Kerl.(R).

Whether the grid-functions just defined are also what one would call
physically smooth or smooth in the sense of the Fourier analysis
presented above, depends on the choice made for R.

It remains to annihilate the non-smooth part of r, and this is done
in the second part of the two-grid iteration, called smoothing. This is
done with an iterative method of type (2.2):

(5.14)

and we find:

(5.15)

The projection operator on Ker(R) is given by I-RT(RRT)-1R, and we
may conclude from (5.13) and (5.15) that

(5.16)

This leads us to the following definition:

Definition 5.3 The R-smoothing factor of the smoothing process (2.2) is

Whether PR will be approximately equal to pF depends on whether

Ker~(R) approximately equals the space spanned by the Fourier components
(5. 5), and on the applicability of Fourier smoothing analysis. An

MULTIGRID AND CONJUGATE GRADIENT METHODS 145

advantage of Fourier smoothing analysis is that pF is usually easier to
compute than PR.

We now take the dual viewpoint of considering the error instead of
the residue, and define:

Definition 5. 4 The set of P-smooth grid-functions is Range(P).

Let the error ej be defined by ej : = yj-y.
that

Then it follows from (5.10)

(5.17)

A streamlined reasoning is obtained if we now assume that smoothing
precedes coarse grid correction, so that (5.14) is replaced by

(5.18)

Let ej = ei + e~ with ei E Range(P), e~ E Range~(P). Again choosing

A according to (5.12) we see that

(write ej
1

0,

Pe for some e), so that

--1 j
(I-PA RA) e 2 .

(5.19)

(5.20)

·+~ .
In general eJ will be small only if eJ is small, which motivates the
following definition: 2

Definition 5.5 The P-smoothing factor of the smoothing process (2.2) is

~ T -1 T
(Note that the projection operator on Range (P) is given by I-P(P P) P .)

In the special case that R = PT we have that

P-smooth grid-functions are identical, since
PR and pp will in general not be identical.

and studied by McCormick (1982)

the sets of R-smooth and of

Ker~(R) =Range (RT), but
The quantity pp is defined

The two-grid method defined by (5.10) and (5.14) or (5.18) can be
regarded as an acceleration technique for the iterative method (2.2).
The striking efficiency of MG methods is due to the fact that there
exist simple iteration methods of type (2.2) for which PF' PR and Pp

146 SONNEVELD, WESSELING and DE ZEEUW

are well below 1 for a large class of problems, independent of the
mesh-size.

Prolongation and restriction operators can be chosen in_various ways.
Examples of prolongations are (denoting grid-functions in Y by an
overbar): 9-point prolongation:

(fy)2p,2q

(Py) 2p,2q+l

(fy) 2p+l, 2q+l

7-point prolongation: as 9-point prolongation, except

(fy)
2p+l,2q+l

Examples of restrictions are:

Injection:

9-point restriction or full weighting:

(Ry)pq y + ~ (y +y +y +y) +
2p,2q 2p+l,2q 2p,2q+l 2p-l,2q 2p,2q-l

1
+ 4<Y2p+l,2q+l+y2p-l,2q+l+y2p+l,2q-l+y2p-l,2q-l)'

7-point restriction:

(Ry) = y +~(y +y +y
pq 2p,2q 2p+l,2q 2p,2q+l 2p-l,2q

(5.21)

(5.22)

(5 .23)

(5.24)

(5. 25)

We call (5.24), (5.25) 9-point or 7-point restriction because a weighted
average is taken of 9 or 7 grid-function values, and we call (5.21),
(5.22) 9-point or 7-point prolongation, because they are closely related
to (5.24) and (5.25) respectively: with P, R according to (5.21),
(5.24) or according to (5.22), (5.25) we have

MULTIGRID AND CONJUGATE GRADIENT METHODS 147

(5 .26)

i.e. as matrices, P and R are adjoint.

In Fig. 5.1 we define a 5-point, 7-point and 9-point difference
molecule. With a 5-point or a 7-point molecule, 7-point prolongation
and restriction can be used. With a 9-point molecule, 9-point prolon
gation and restriction is more accurate. With a 7-point molecule one
can construct finite difference approximations to any second order
partial differential equation in two dimensions, including mixed
derivatives. A 7-point molecule is also obtained with finite elements,
using Courant triangulation (cf. Fig. 5.1). If one desires exactly
symmetric numerical solutions to symmetric problems a 9-point molecule
should be used, an example being symmetric flow around a symmetric
air foil.

x x x x x x

~ x x x x x x x x x

x x x x x x

Fig. 5.1 Difference molecules: 5-point, 7-point, 9-point.
Courant triangle.

In a loose sense, P is accurate if, given that y is a good discrete
approximation to the exact solution of the differential equation, Py is
also a good approximation. For prolongations based on linear inter
polation, such as (5.21) and (5.22), this is certainly the case when
the exact solution is smooth. An important case when the exact solution
is not smooth occurs when the coefficients of the differential equation
are discontinuous. In that case matrix-dependent prolongation should
be used. In order to define this type of prolongation we use the grid
point enumeration of Fig. 2.1. A grid-point with coordinates (ph1 ,qh2l

has the number l+p+qm. Indicating elements of the matrix A by aij in

the usual way corresponding with this enumeration, we define:

Matrix-dependent prolongation:

(fy) 2p,2q ypq, (5.27a)

(5.27b)

(Py-) (A y +A y) /(A. . +A. .) ,
2p,2q+l j,j-m pq j.j+m p,q+l J,J-m J,J+m

(5.27cl

(fy)2p+l,2q+l - i:: '\: .y ./'\;k'
j,ik J J

(5 .27d)

148 SONNEVELD, WESSELING and DE ZEEUW

where i = 2+2p+2qm, j = 1+2p+(2q+l)m, k = 2+2p+(2q+l)m. In (5.27d)
y-values obtained with (5.27a-c) are used. It is possible to use the
right-hand-side in (5.27d); sometimes this enhances the rate of conver
gence. A matrix dependent restriction is obtained with (5.26). Matrix
dependent prolongations of this and related type have been proposed by
Alcouffe, Brandt, Dendy and Painter (1981), Kettler (1980, 1982),
Kettler and Meijerink (1981) .

The coarse grid problem (5.10) is not solved exactly of course, but
approximately. In the MGD-family of MG codes we do this with one two
grid iteration employing an additional coarser grid with doubled mesh
size, and so on recursively, until the coarsest grid (usually a 3 x 3
grid) is reached, where a few iterations (usually one) are performed
according to (2.2). Smoothing is the costliest part of the algorithm.
Therefore we choose to let coarse grid correction precede smoothing
(i.e. we have (5.10), (5.14)), so that the first time that smoothing
takes place on the finest grid we already have a first approximation
available. The resulting MG method is said to be of sawtooth type,
because its schedule is represented in a natural way by the schematic
of Fig. 5.2, which is a sawtooth curve.

grid

fine 5 • •
4 • •
3 • •
2 • • •

coarse • • •

Fig. 5.2 Sawtooth multigrid schedule. A dot represents a smoothing step.

Various more general MG schedules have been described, see for example
Brandt (1977), Stuben and Trottenberg (1982). Some comparative experi
ments are described in Wesseling (1982A). The sawtooth schedule is
the simplest possible MG schedule. One may wonder whether such a simple
fixed schedule can handle a sufficiently large variety of cases.
Experience indicates that the answer is affirmative, see e.g. the experi
ments carried out by Wesseling and Sonneveld (1980), Kettler (1982) ,
Wesseling (1982A,B), Hemker, Kettler, Wesseling and de Zeeuw (1983),
McCarthy (1983). In transonic potential flow computation an MGD-type
method has proved reliable, see Nowak and Wesseling (1983) . We think
that with an effective smoother and accurate coarse grid approximation,
a simple MG schedule suffices for linear problems.

The sawtooth schedule can be programmed in a simple way without using
recursion. Let the computational grids employed be denoted by

1 2 ,\'. . 1 9, G ,G , ... ,G, with G the coarsest and G the finest grid. Let a super-

script k indicate grid-functions and operators on Gk Let one appli
cation of the smoothing process (5.14) be executed by a subroutine
SMOOTHING (y,b,k). Then a quasi-FORTRAN outline of MG algorithms using
the sawtooth schedule is given by:

MULTIGRID AND CONJUGATE GRADIENT METHODS

C MULTIGRID PROGRAM, SAWTOOTH SCHEDULE

C INITIAL GUESS IS y2 = 0

r 2 = b 2

DO 10 k = R.-1(-1)1

CALL RESTRICTION (r,k)

10 CONTINUE

k
r

C START OF maxit MULTIGRID ITERATIONS

DO SO n = 1(1) maxit

IF (n.EQ.l) GO TO 30

CALL RESIDUE (r ,b,y, R.)

DO 20 k = R.-1(-1)1

CALL RESTRICTION (r,k)

20 CONTINUE

30 l 0

CALL SMOOTHING (u,r,l)

DO 40 k = 2(1)2-1

CALL PROLONGATION (y,y,k)

CALL SMOOTHING (y,r,k)

40 CONTINUE

CALL PROLCNGATION (v,y,R.)
R. R. R.

y = y +v

CALL SMOOTHING (y,b,R.)

SO CONTINUE

R. r

k r

l y

k y
k y

R. v

R. y

bR.-AR./

Rk+lrk+l

/+Bl(rl-Ayl)

k k-1
p y

/+Bk(rk-Ak/J

R. R.-1
p y

R. R. R.R. = y +B (b-A y)

149

Based on this algorithm, the MGD family of codes is being developed.
Two portable FORTRAN codes have been implemented, called MGDl and MGDS.
They can be obtained by sending a magnetic tape to the second author.
In these codes, prolongation and restriction are of 7-point type. For
smoothing MGDl and MGDS use ILU and ILLU, respectively. Versions MGDlV
and MGDSV have been designed for auto-vectorization on vector computers,
such as the CYBER-20S and the CRAY-1, without sacrificing much on
sequential machines. They are easily changed to versions MGDlS and
MGDSS, which are slightly faster on sequential machines. More details,
and CPU-time measurements on CYBER-170, CYBER-205 and CRAY-l can be
found in Hemker et al. (1983, 1983), Hemker and de Zeeuw (1984). Exten
sive tests of MGDl have been carried out by McCarthy (1983). Other
MG-software that is generally available is the collection of multigrid
solution modules MGOO, see Foerster and Witsch (1982).

In order to facilitate comparison with other methods, especially
CGS, for which we only have a research code in another programming
language, we will estimate the cost in flops per finest grid-point.
The cost of one MGDl iteration is 30 flops per finest grid-point, see
Wesseling (l982B) . In MGDl the cost of a smoothing step on one grid is
19 flops, for MGDS it is 37 flops per grid-point, as shown in section 2.

150 SONNEVELD, WESSELING and DE ZEEUW

The number of grid-points on all grids taken together is about 4/3 times
the number of grid-points of the finest grid. Hence the total smoothing
work for one MG iteration for MGDl or MGD5 is about 25 or 49 flops per
finest grid-point, respectively. Since the only difference between the
two codes is the smoothing process, we estimate that the cost of one
MGD5 iteration is 30-25+49=54 flops per finest grid-point. The measured
CPU-time ratio on a CYBER-170 is 1.6.

Some design considerations concerning the MGD codes can be found in
Wesseling (1982B). These codes have been constructed such that they are
perceived by the user just like any other code for solving linear systems
of algebraic equations. The user has only to give the matrix and the
right-hand-side in a prescribed data structure. The matrix should have
a sparsity pattern corresponding to a 7-point finite difference discreti
zation. The user remains unaware of the underlying multigrid algorithm,
and cannot make any choices or decisions, since the code is completely
autonomous (black box MG, cf. Dendy (1982)).

The use of coarse grid Galerkin approximation (CGGA) (5.12) greatly
facilitates the realization of the design goals just mentioned, since by
using (5.12) the algorithm can set up the coarse grid operators
independently from the user, using as input only the fine grid matrix.
This would be less easy to achieve with the popular alternative of coarse
grid finite difference approximation, (CGFDA), in which the coarse grid
matrices are finite difference approximations of the given differential
equation, usually of the same type as the fine grid matrix. CGFDA has
another disadvantage, namely, that the approximations obtained on the
coarsest grids make little sense if the coefficients of the differential
equation are sampled pointwise. This may lead to divergence; Wesseling
(1982B) gives an example. Of course the user can avoid this by using
suitably averaged values of the coefficients of the differential equation
on the coarsest grids. Using CGGA leads automatically to an accurate
type of averaging. A disadvantage of CGGA can be the cost, which in
practice equals the cost of about two MG iterations with our codes. If
the coefficients of the differential equation are not expensive it is
cheaper to set up finite difference approximations. For a few experi
ments comparing CGFDA and CGGA and a few remarks on efficient programming
of (5.12), see Wesseling (l982A,B). The total work for computing

k A , k = l-1(-1) is found to be about 64 flops per finest grid point,
for a 7-point finite difference approximation on the finest grid.

Additional preliminary work is required for setting up the incomplete
decompositions before iteration starts. The total cost of preliminary
work is equivalent to about 3 iterations for MGDl and 2 iterations for
MGD5, cf. Hemker and de Zeeuw (1984). This preliminary work is con
siderable in view of the fact that convergence is usually so rapid that
only a few iterations are needed. This price buys robustness. For
self-adjoint problems with smoothly varying coefficients of the same
order of magnitude, one obtains good rates of convergence with point
wise relaxation processes for smoothing and CGFDA, which require little
preliminary work. But with these MG-ingredients convergence will
deteriorate if the problem is strongly anisotropic, or strongly non
self-adjoint (convection-diffusion at high Peclet number). Under these
circumstances the MGD codes continue to converge fast, with some
exceptions for MGDl.

MULTIGRID AND CONJUGATE GRADIENT METHODS 151

Under what conditions may MG methods be expected to converge rapidly?
A priori theoretical results are not available except for the Poisson
equation, but a rule of thumb is that good smoothing processes can be
found and rapid convergence may be expected if A satisfies (4.27). If
(4.27) is strongly violated, deterioration of the rate of convergence
may occur.

However, for convection-diffusion problems at high Peclet numbers MG
methods have not performed well. This situation has improved only
recently. In order to satisfy (4.27) upwind differencing must be used,
or a sufficient amount of artifical viscosity must be added. Neverthe
less, when (5.12) is used with 7-point or 9-point prolongation and
restriction, the coarse grid matrices do not satisfy (4.27). This is
illustrated by the transformation that an upwind difference undergoes
by repeated application of (5.12) with 7-point prolongation and
restriction: ·

0 0 -1 1 -5 5 -21 21

-1 1 0 -5 4 l -15 8 7 -51 16 35

0 0 -1 1 -5 5 -21 21

-85 85 -341 341

-187 32 155 -751 64 651

-85 85 -341 341

Scaling factors have been omitted. As the number of grids increases,
the diagonal becomes weaker. Because the coarse grid matrices do not
satisfy (4.27) the smoothing process does not perform well, and further
more, the coarse grid solution may show wiggles. The situation becomes
worse as the number of grids increases. Hence, convergence is not
rapid or divergence occurs, unless the smoothing process is almost an
exact solver on the finest grid. In that case, the bad coarse grid
approximations are corrected on the finest grid and convergence is
rapid; in fact the coarse grids are superfluous. ILLU has this property:
ILLU-decomposition is almost exact for the convection-diffusion equation
at high Peclet number with upwind differences. Therefore MGD5
works for convection-diffusion equations. For MGDl cases of divergence
have been found. If one does not want to use ILLU smoothing, an easy
way out would seem to be not to use CGGA but CGFDA with upwind
differences or artificial viscosity on all grids. But then convergence
is found to become disappointingly slow. A very good way to handle the
convection-diffusion equation turns out to be the use of matrix
dependent prolongation and restriction, with CGGA or CGFDA. With this
prolongation and restriction CGGA leaves upwind differences invariant,
so that the coarse grid matrices satisfy (4.27), and do not differ muc:;Jl
from the coarse grid matrices obtained with upwind differencing and
CGFDA. Good rates of convergence are obtained with smoothing processes
less formidable than ILLU. For a more extensive treatment of the ideas
just discussed and numerical experiments, see van Asselt (1982),
de zeeuw and van Asselt (1985), Hemker, Kettler, Wesseling and
de zeeuw (1983) .

B2 SONNEVELD, WESSELING and DE ZEEUW

A rather different MG approach to the convection-diffusion equation,
proposed by Brandt, is not to use upwind differencing, which has
inherent anisotropic numerical viscosity, but to use isotropic
artificial viscosity. This makes pcint-wise relaxation processes
applicable for smoothing. The accuracy and probably also the rate of
convergence is improved by what is called double discretization, which
amounts to applying defect correction on every grid. For this approach
see Brandt (1982) section 10.2. A disadvantage is that the method is
especially designed for convection-diffusion problems, so that for
other problems one would perhaps prefer other MG ingredients. No
definitive results with this approach have been published as yet for
the convection-diffusion equation.

The accuracy of upwind or artificial viscosity discretizations can
also be improved by applying defect-correction on the finest grid only.
see Hemker (1982) for an application of this idea to the convection
diffusion equation.

For ease of programming of MG methods it is very convenient if
coarser grids can be obtained by mesh doubling. Therefore, the number
of grid points of the finest grid in the xi-direction should be given

by 1+21 (m.-l), with m. a small integer. Sometimes it is awkward to
i i

achieve this, for example when a system of partial differential equations
is solved on a staggered grid. One can then change the number of grid
points by either eliminating Dirichlet boundaries or not, or by
increasing the number of discretized equations by adding artificial
equations, for example the identity. This is called padding. Padding
can also be used to make the shape of the computational region rectan
gular. Of course, the computational complexity is influenced unfavour
ably by padding.

6. NUMERICAL EXPERIMENTS

Realistic estimates of the performance in practice of CG and MG by
purely theoretical means are possible only for very simple problems.
Therefore, numerical experiments are necessary to obtain insight and
confidence in the efficiency and robustness of a particular method.
Numerical experiments can be used only to rule out methods that fail,
not to guarantee good performance of a method for problems that have
not yet been attempted. Nevertheless, one strives to build up confidence
by carefully choosing test problems, trying to make them representative
for large classes of problems, taking into account the nature of the
mathematical models that occur in the field of application that one has
in mind. For the development of CG and MG, in particular the subject
areas of computational fluid dynamics, petroleum reservoir engineering
and neutron diffusion are pace-setting. We will list here the roost
significant test problems, and discuss a few numerical results.

Only the case of a single second order elliptic equation in two
dimensions is discussed, although the applicability of CG and MG is not
restricted to this case. The general form of our problem then is, in
cartesian tensor notation,

-la ..•.) . + (b,u) + cu
1J ,J ,i ~ ,i f. (6.1)

MULTIGRID AND CONJUGATE GRADIENT METHODS 153

Important constant coefficient test problems are the following special
cases of (6.1):

2 2 2 2
-(Ec +s l<i>, 11 - 2(E-l)sc<1> 112 - (Es +c)<j> 122 f (6. 2)

and

f, (6. 3)

with c = cosa, s sina. Equation (6.2) is obtained by a coordinate
rotation over an angle a for the anisotropic diffusion equation:

-E<j>,11 - <i>,22 f. (6 .4)

Equation (6.3) is the convection diffusion equation. Equation (6.2) is
self-adjoint, and can be handled such that the matrix arising from
discretization is SPD.

Problems with constant coefficients are thought to be representative
of problems with smoothly varying coefficients, Of course, in the code
to be tested the fact that the coefficients are constant should not be
exploited. As pointed out by CUrtiss (1981), one should keep in mind
that for constant coefficient problems the spectrum of the matrix
resulting from discretization can have very special properties, that are
not present when the coefficients are variable. Therefore one should
also carry out tests with variable coefficients, especially with CG, for
which the properties of the spectrum are very important. For MG,
constant coefficient test problems are often more demanding than variable
coefficient problems, because it may happen that the smoothing process is
not effective for certain combinations of E and a. This fact goes easily
unnoticed with variable coefficients, where the unfavourable values of
E and a perhaps occur only in a small part of the domain.

In petroleum reservoir engineering and neutron diffusion problems
quite often equations with strongly discontinuous coefficients appear.
For these equations (6.2) and (6.3) are not representative. Suitable
test problems with strongly discontinuous coefficients have been proposed
by Stone (1968) and Kershaw (1978); a definition of these test problems
may also be found in Kettler (1982). In Kershaw's problem the domain
is non-rectangular, but is a rectangular polygon. The matrix for both
problems is SPD. For the parameter p in Stone's problem we choose p=S
(cf. Kettler (1982)).

The four test problems just mentioned, i.e. (6.2), (6.3), and the
problems of Stone and Kershaw, are gaining acceptance among CG and MG
practitioners as standard test problems. Given these test problems, the
dilemma of robustness versus efficiency presents itself. Should one
try to devise a single code to handle all problems (robustness) , or
develop codes that handle only a subset, but do so more efficiently
than a robust code? This dilemma is not novel, and just as in other
parts of numerical mathematics, we expect that both approaches will be
fruitful, and no single "best" code will emerge.

154 SONNEVELD, WESSELING AND DE ZEEUW

For CG methods a natural subdivision of the problems presents itself,
namely in self-adjoint and non-self-adjoint problems. The former lead
to SPD matrices, to which the applicability of classical CG is restricted.
In non-self-adjoint cases, a non-symmetric CG variant should be used,
for example CGS. Of course, CGS can be used also for SPD matrices, at
little extra cost compared with classical CG.

The robustness and efficiency of CG and MG are determined to a large
extent by the preconditioning and the smoothing process respectively.
Pointwise relaxation methods, such as RBGS, are easy to implement and
require no preliminary work before iterations start, and are efficient
for (6.2), (6.3) for c • 1. But these methods fail for c differing
widely from 1, and for the problems of Stone and Kershaw. In these
cases suitable block relaxation methods are called for. We have not
yet found a case where ILLU fails. ILU is found to fail in certain
cases where property (4.27) is violated. AZ may fail also when (4.27)
holds, for convection-diffusion problems. These findings will be
amplified in the sequel.

Property (4.27) is violated in the case (6.2) for certain combinations
of c and a, for which the coefficients of the mixed derivative are
relatively large. However, in practical applications the mixed deriva
tive coefficient is often small. When the mixed derivative is intro
duced by a non-orthogonal coordinate transformation its coefficient
is usually small, because for accuracy reasons one prefers coordinate
transformations that do not deviate much from orthogonality. In
anisotropic diffusion problems there is usually a preferred direction,
along which one aligns one of the coordinate axes, so that sc = O, and
no mixed derivative is present.

Property (4.27) is also violated for (6.3) when c < h/2 and central
differences are used. With upwind differences it can still be violated
on the coarse grids, as discussed in the preceding section.

Apart from a robust smoothing process, an MG method for the problems
of Stone and Kershaw needs matrix-dependent prolongation and restriction,
because of the occurrence of discontinuous coefficients.

Numerical experiments with MG concerning special cases of (6.2)
(notably Poisson's equation) have been reported by Brandt (1977),
Hackbusch (1978), Nicolaides (1979), Foerster et al. (1981), Foerster
and Witsch (1982), Kettler (1982), Wesseling (1982A,B), Hemker et al.
(1983, 1983). We will not list here experiments with CG, of which there
are many more. Hackbusch (1978) and Foerster and Witsch (1982) include
examples of Poisson's equation in non-rectangular regions. In the last
mentioned publication also an.MG method specially designed for Poisson's
equation is presented. Computing times are reported similar to those
obtained with fast Poisson solvers using the fast Fourier transform and
cyclic reduction, and about 15 times as fast as a certain CG method
(ICCG, Meijerink and van der Vorst (1977)) on a 257 x 257 mesh. It is
to be noted that ICCG is much more generally applicable than the MG
method concerned, which uses RBGS smoothing. This method would fail for
example for the problems of Stone and Kershaw, for which ICCG performs
Well.

For test problem (6.3) MG results have been reported by Wesseling
and Sonneveld (1980), Hemker (1982), wesseling (1982A,B), Hemker,

MULTIGRID AND CONJUGATE GRADIENT METHODS 155

Kettler, Wesseling and de Zeeuw (1983), de Zeeuw and van Asselt (1985).
Because the discretization matrix is not SPD, classical CG cannot be
applied. Chebyshev iteration has been used for this type of problem
by Manteuffel (1977, 1978) and van der Vorst (1981). This method is
not parameter free, unlike CGS.

We will present results for the general case of (6.2) and (6.3),

letting a vary with intervals of 15°, and choosing E << 1, E inter
mediate, and E = 1. The following methods will be tested:

- MGDl and MGD5, described in section 5;

CGSl and CGS5, the CGS method described in section 4 with ILU and
ILLU preconditioning, respectively;

- MGHZ and MGAZ, which are MGDl with ILU smoothing replaced by HZ
and AZ smoothing, respectively.

For easy reference, in the following table we give the operation
counts for the various methods, as determined before. For MGHZ and
MGAZ the operation count is determined by noting that the work for MGDl
excluding smoothing is 5 flops per finest grid-point. The smoothing
work with HZ and AZ is 4/3 times the work of a single grid iteration.
Here we neglect certain savings that are possible because the residue
is zero in half the number of grid-points after application of HZ and
AZ. From the results reported by Hemker, Wesseling and de Zeeuw (1983)
we deduce that both for PW and IW the measured CP-time ratio on a
CYBER-170 is MGDl : MGHZ = 1.24. From Hemker and de Zeeuw (1984) we
deduce that on the same machine MGDS : MGDl = 1.10 for PW and
MGDS : MGDl = 1.62 for IW. These figures are roughly consistent with
table 6.1.

Table 6.1

Flops per (finest) grid-point for one iteration (IW) and preliminary
work (PW)

MGDl MGD5 MGHZ MGAZ CGSl CGS5

PW 87 114 69 74 17 29

IW 30 54 22 40 60 88

We have run test problems (6.2) and (6.3) on a uniform 65
computational grid in the unit square. The initial guess is
-sinrrx1sinrrx 2+sin48rrx1 sin48rrx2 , and the boundary conditions,

eliminated, are given by

x 65
given by
which are

(6.5)

156 SONNEVELD, WESSELING and DE ZEEUW

For the MG methods, the termination criterion was that the 22-norm of

the residue should be less than lo-10, with a maximum of 10 iterations.
The CG iterations were terminated after a residue reduction factor of

10-S had been reached, with a maximum of 15 iterations.

For test problem (6.2), the discretization of the mixed derivative
is as given in Fig. 6.1.

Fig. 6.1

-~ 1 -~

2
Difference molecule for -h ~. 12

The following table specifies the problems that were treated. For
problems 5, 6, upwind difference were used, for the other problems,
central differences.

Problem
Equation

Table 6.2

Specification of test problems

l
(6.2)

-2
lo

2
(6.2)

10-8

3
(6.3)

10-l

4
(6.3)

h/2

5
(6.3)

10-3

6
(6.3)

10-B

In Figs. 6.2-6.5 we give a graphical representation of the number of
iterations needed to reduce the 22-norm of the residue by a factor 10,

or, roughly speaking, to gain a decimal figure in accuracy. This number
is given by

N = n/log10 { 11 initial residue 11I11 final residue 11} (6 .6)

where n is the number of iterations that were performed.

Computations were performed with a a multiple of 15°. If for a value
of a no symbol appears for one of the methods, this means that more than
lo iterations are necessary to gain one decimal, or that the method
diverges.

The results clearly show that the rate of convergence can strongly
depend on a, and that performing experiments for just a few values of
a can be misleading.

MULTIGRID AND CONJUGATE GRADIENT METHODS

10.0 (a) 10.0 (b)

9.0 9.0

8.0 8.0

7.0 7.0

6.0 + 6.0

5.0
0

N N 5.0
17 Ii

4.0 4.0
+ + 0 3.0 + + + + + 3.0 + +

+ + + 0 0
0 0

17 17
~ 0 0

17 0 2.0 0 17 ~ 2.0 0 ~ e 0 0 $ 17 0 $

17
1.0 17 D D 6 1.0 v 0 D 0 0 17

i;i D D D 0 lil " El 0 D D

0.00
45 90

0.0
135 0 45 90 135

a
a

Fig. 6.2 Multigrid results for equation (6.2). (a): Problem 1.
(b): Problem 2. \/: MGDl; 0: MGDS; +: MGHZ; 0: MGAZ.

10.0
(a) 10.0 (b)

9.0 9.0
0 0

8.0 8.0

7.0 7.0

6.0 6.0
0 N 0 N

5.0 5.0

4.0 4.0
0

3.0 3.0

2.0 2.0
0 0

1.0 0
x
XxxS()(~f!* ~ x

x x ~S(~S(..
)? x 1.0

0.00 0.0
45 90 135 45 90 135

a a

157

Fig. 6.3 CGS results for equation (6 .2). (a): Problem l; (b): Problem 2;
\>: CGSl; X: CGS5.

158 SONNEVELD, WESSELING and DE ZEEUW

10.0 (a) 10.0 (b)

9.0 9.0 + +

8.0 8.0 0

7.0 7.0

N
6.0

N 6.0

5.0 5.0

4.0 4.0

3.0 3.0 +

0

2.0 2.0 +

1.0
+++++++++++++++++++++++

1.0 ~~~~~~~~~~~~~~~9~~~9~~
0000000000000000000000

0.0
0 90 180 270 0 90 180 270

a a

10.0 (c) 10.0 (d)

9.0 9.0

8.0 8.0
+ +

7.0 7.0

6.0 6.0
N N

5.0 5.0
+ +

4.0 4.0
+ 0 + 0 " " 3.0 3.0

2.0 2.0
"' 000°0 "

1.0 1.0 " "' ""' ""'
90 180 270 90 180 270

a a

Fig. 6.4 Multigrid results for equation (6,3). (a)-(d): Problems 3-6,
respectively. Symbols as in Piq. 6.2

MULTIGRID AND CONJUGATE GRADIENT METHODS

10.0 (a) 10.0 (b)

9.0 0 9.0

8.0 8.0 0

7.0 7.0

6.0 6.0 0

N
0 N <>

5.0 <> 5.0 0
0

0
00 0 0 0

4.0 0 0 0 4.0
0 0 0 0

0 0 <S 0

3.0
0 3.0 0

x x Xx 0
0

2.0 xxxxxxxx
x XxXXxxxx 2.0

1.0 1.0

0.0 0.0
0 90 180 270 0 90 180

a a

10.0 (c) 10.0 (d)

9.0 9.0

8.0 8.0
0

7.0 7.0

6.0 6.0 0

N
5.0 5.0

0

4.0 4.0 0

3.0
0

3.0

2.0
0 0 2.0 0 0 0 0 0

1.0 1.0 0 0

0.0
0 90 180 270 0 90 180 270

a a

Fig. 6.S· CGS results for equation (6,3). (a)-(d): Problems 3-6,
respectively. Symbols as in Fig. 6,3

159

160 SONNEVELD, WESSELING and DE ZEEUW

Fig. 6.2 shows that for the anisotropic diffusion problem (6.2) MGDl

does not work well for a slightly different from 9o0 . This is predicted
by smoothing analysis (Kettler (1982)), which does not explain, however,

why it works for a precisely 9o0 . For this problem, MGDl out-performs

the other MG methods for a around o0 or 180°, taking table 6.1 into
account. For general a, MGD5 is the best MG method. Fig. 6.3 shows
that CGSl and CGS5 behave much like MGDl and MGD5, respectively. This
means that in that case, when ILU or ILLU is a good smoother, it is a
good preconditioner, and vice-versa. CGS5 is the most efficient method
for this problem. Of course, with classical CG one would even be better
off, and it is guaranteed to work (hence, CGS also), since the matrix
is SPD.

Fig. 6.4 shows that MGHZ and MGAZ do not work well for equation
(6.3). This is because HZ and AZ are ineffective smoothing processes
for convection-diffusion problems. For small s, ILLU is almost an exact
solution method, and MG or CG acceleration is in fact not needed. MGDl
also works well. For a detailed discussion of the behaviour of the MGD
codes for convection-diffusion problems we ref er to the preceding
section. Comparison of Figs. 6.4 and 6.5 shows that for this problem
CGS is less effective than MG in accelerating ILU and ILLU. MGD5 is
the most efficient method for problem (6.3). Nevertheless, CGS is a
good acceleration method for these non-symmetric problems.

The rate of convergence of MG is found to be unaffected by mesh
refinement, with exceptions in the convection-diffusion case discussed
in the preceding section. Table 6.3 gives some results for N as
defined in equation (6.6) for CGSl and CGS5, as the mesh-size is varied.
The dependence on h is not clear-cut. As h decreases, the required
number of iterations generally increases, but there are exceptions,

Table 6.3

Number of iterations per decimal figure for various mesh-sizes for GG
methods

l/h CGSl CGS5 CGSl CGS5

33 Problem 2 1.151 ·857 Problem 5 .899 .369

65 c.=12o0 1.322 1.186 a=l65° 1.967 .598
129 3.340 1.842 div .233

In the case of problem 5, c.=120°, like CGSl, MGDl is found to diverge
see Hemker, Kettler, Wesseling and de Zeeuw (1983). The explanation
and the remedy has been given in the preceding section. In the case
of CGSl all we can say at present is, that apparently ILU is not a good
preconditioning for this problem.

MULTIGRID AND CONJUGATE GRADIENT METHODS 161

Next, we turn to the test-problems of Stone and Kershaw. Because
the matrix is SPD, CGS will behave more or less like classical CG,
which has been applied to these problems by several authors. Therefore
CGS will not be used. The MGDl and MGD5 codes are not applicable,
because matrix-dependent prolongation and restriction is necessary.
We show some of the results obtained by Kettler (1982) • The MG methods
used are similar to MGDl and MGD5, but matrix-dependent prolongation
and restriction is used, as defined by (5.27) and (5.26), and the
sawtooth-cycle is replaced by the V-cycle. Fig. 6.6 gives
log10 I lresiduel 12 as a function of the estimated number of flops per

finest grid-point. The ILU and ILLU iteration methods are accelerated
by MG and classical CG. As explained in section 4, CG can be used to
accelerate any iterative method (which corresponds to a symmetric pre
conditioned matrix), and Kettler (1982) has used CG to accelerate MG
(MGCG). Of course, one could also try to use MG for acceleration of
CG. Then one would expect fast convergence if CG is a good smoother;
therefore one would have to tailor CG such that it works primarily on
the non-smooth components of the error. we have not pursued this avenue.

The figures show no systematic trend. All methods converge very
rapidly compared with older methods, see Kershaw (1978) . CG is not
inferior to MG in these tests, but when the grid is refined, CG would
probably start lagging behind. The dimension of the computational
grid was 31X31 for Stone and 51X51 for Kershaw. By padding (see the
preceding section) this was increased to 33x33 and 57x57, respectively,
in order to make construction of 4 or 3 coarse grids possible by mesh
doubling. Padding was also used to fill in the L-shaped region in
Kershaw' s problem to a square, to facilitate MG programming. For more
results, including the use of several other smoothing processes, see
Kettler (1982) •

Fig. 6.6 shows that CG acceleration of MG is effective when ILU
smoothing is used, but with ILLU it does not help, although it does no
harm either. CG and MG have also been applied to the test problems
of Stone and Kershaw (and two other similar problems) by Behie and
Forsyth (1983). They advocate acceleration of MG in its non-symmetric
sawtooth variant by means of orthomin (Vinsome (1976)), a CG-variant
for non-symmetric problems.

7. CONCLUSIONS

Multigrid and conjugate gradient type techniques for the accelera
tion of iterative methods have been discussed. A detailed discussion
has been given of incomplete factorizations (ILU and ILLU), which
lend themselves especially well for MG or CG acceleration.

A brief review has been given of the theoretical background of
classical CG and preconditioning. Classical CG methods are restricted
to SPD matrices, but generalization is possible. One such generalized
algorithm, called the CGS method, has been presented. Preconditioning
of CG type methods has been discussed.

162

0

10109r

-4

-6

-8

-10

SONNEVELD, WESSELING and DE ZEEUW

(a) 0

' ' -2 \
'\ , \

\ \
' \ \ -4 I

I \ I
I

' ' \ \
I

\ \ -6
' I \ \ \ ·· \ \ \ ' I -8 \

\ I ··.\

\ \ .,
\

\ \ ,
\'•, \I

\ ·•·•· \ ' -10 \\
400 800 1200 work 400 800 1200

Fig. 6.6 Results for test problems of Stone (above)
and Kershaw (below)
(a) ILLU; (b) ILU.
~- : M~CG; --- : CG; MG.

(b)

work

400 800 1200 work 400 800 1200 work

MULTIGRID AND CONJUGATE GRADIENT METHODS 163

Multigrid methods have been discussed within the framework of
acceleration techniques. Various ways of looking at the smoothing
factor have been discussed. Prolongation, restriction and coarse grid
approximation methods have been reviewed. Two portable, autonomous
multigrid codes, MGDl and MGD5, have been introduced. MG treatment of
convection-diffusion problems entails special difficulties, and ways to
overcome these have been outlined.

For the general class of problems that we have treated no rate of
convergence theory of practical utility is available. Therefore,
numerical experiments are necessary for comparison and validation
purposes. The choice of a suitable set of test problems has been
discussed, and experiments described with several CG and MG methods,
including a combination of MG and CG, both self-adjoint and non-self
adjoint problems, and problems with strongly discontinuous coefficients.
These problems are of medium size, and roughly speaking, CG is about
as efficient as MG, but as the mesh is refined, we would expect CG to
lag behind. It should be remembered that CG is easier to program than
MG.

Generally speaking, the use of incomplete factorizations leads to
more robust and efficient methods than the use of line-relaxations
with a zebra pattern, for the test problems considered. With incomplete
line factorization (ILLU) one can handle all problems considered with a
single code (MGD5 or CGS5), without requiring user-provided adaptations.

ACKNOWLEDGEMENT

The authors are indebted to Mr. W. Lioen for performing the calcu
lations with the MGHZ and MGAZ methods.

REFERENCES

Alcouffe, R.E., Brandt, A., Dendy, Jr., J.E. and Painter, J.W. (1981)
The multigrid method for the diffusion equation with strongly dis
continuous coefficents. SIAM J. Sci. Stat. Comp., 2, pp. 430-454.

Asselt, E.J. van (1982) The multigrid method and artificial viscosity.
In: Hackbusch and Trottenberg, pp. 313-326.

Axelsson, O. (1977) Solution of linear systems of equations: iterative
methods. In: "Sparse Matrix Techniques", V.A. Barker (ed.), Lecture
Notes in Math. 572, Springer-Verlag, Berlin, pp. 1-51.

Axelsson, o. (1980) Conjugate gradient type methods for unsymmetric
and inconsistent systems of linear equations. Lin. Algebra and its
Applications, 29, pp.1-16.

Axelsson, o. (1982) Numerical Integration of Differential Equations
and Large Linear Systems. In: J. Hinze (ed.), Proceedings, Bielefeld
1980. Lecture Notes in Mathematics 968, Springer-Verlag, Berlin,
pp. 310-322.

Axelsson, o. (1983) A General Incomplete Block-Matrix Factorization
Method. Report 8337, catholic University, Nijmegen, The Netherlands.

164 SONNEVELD, WESSELING and DE ZEEUW

Bakhvalov, N.S. (1966) On the convergence of a relaxation method with
natural constraints on the elliptic operator. USSR Comp. Math. Math.
Phys., 6, No. 5, pp. 101-135.

Behie, A. and Forsyth, Jr., P.
Methods for Symmetric Systems.

(1983) Comparison of Fast Iterative
IMA J. of Numer. Anal., 3, pp. 41-63.

Braess, D. (1981) The contraction number of a multigrid method for
solving the Poisson equation. Numer. Math., 37, pp. 387-404.

Braess, D. (1982) The convergence rate of a multigrid method with
Gauss-Seidel relaxation for the Poisson equation. In: Hackbusch
and Trottenberg, pp. 368-386.

Braess, D. and Hackbusch, W. (1983) A new convergence proof for the
multigrid method including the V-cycle. SIAM J. Num. Anal., 20,
pp. 967-975.

Brandt, A. (1977) A Multi-level adaptive solutions to boundary-value
problems. Math. Comp., 31, 333-390.

Brandt, A. (1982) Guide to Multigrid Development. In: Hackbusch and
Trottenberg, pp. 220-312.

Concus, P. and Golub, G.H. {1976) A generalized conjugate gradient
method for nonsymmetric systems of linear equations. In: R. Glowinski
and J.L. Lions (eds.), Proc. of the Second Int. Symposium on Computer
Methods in Applied Sciences and Engineering, Paris, 1975. Lecture
Notes in Economics and Mathematical Systems, 134, Springer-Verlag,
Berlin.

Concus, P., Golub, G.H. and Meurant, G. (1982) Block Preconditioning
for the Conjugate Gradient Method. Report LBL-14856, Lawrence
Berkeley Laboratory, Un. of California.

Curtiss, A.R. (1981) On a property of some test equations for finite
difference or finite element methods. IMA J. Numer. Anal., 1,
pp. 369-375.

Dendy, Jr. J.E. (1982) Black Box Multigrid. J. Comp. Phys., 48,
pp. 366-386.

Fedorenko, R.P. (1964) The speed of convergence of one iterative
process. USSR Comp. Math. Math. Phys., 4, no. 3, pp. 227-235.

Fletcher, R. (1976) Conjugate gradient methods for indefinite systems.
In: G.A. Watson (ed.): Numerical analysis. Proceedings, Dundee 1975,
Leet. Notes in Math., 506, Springer-Verlag, Berlin, pp. 73-89.

Foerster, H., Stliben, K. and Trottenberg, U. (1981) Non-standard
multigrid techniques using checkered relaxation and intermediate
grids. In: M. Schultz (ed.): Elliptic Problem Solvers, Academic
Press, New York, pp. 285-300.

Foerster, H. and Witsch, K. (1982) Multigrid software for the solution
of elliptic problems on rectangular domains: MGOO (Release 1). In:
Hackbusch and Trottenberg, pp. 427-461.

MULTIGRID AND CONJUGATE GRADIENT METHODS

Gustafsson, I. (1978) A class of first order factorization methods.
BIT, 18, pp. 142-156.

Hackbusch, w.
equations.

(1978) On the multigrid method applied to difference
Computing, 20, pp. 291-306.

Hackbusch, W. (1980) Convergence of multigrid iterations applied to
difference equations. Math. Comp., 34, pp. 425-440.

Hackbusch, w. and Trottenberg, u., eds. (1982) Multigrid Methods.
Proceedings, K1:5ln-Porz, 1981. Lecture Notes in Mathematics 960.
Springer-Verlag, Berlin.

Hageman, L.A. and Young, D.M. (1981) Applied Iterative Methods.
Academic Press, New York.

Hemker, P.W. (1982A) A note on defect correction processes with an
approximate inverse of deficient rank. J. Comp. Appl. Math., 8,
pp. 137-139.

165

Hemker, P.W. (1982) Mixed Defect Correction Iteration for the Accurate
Solution of the Convection Diffusion Equation. In: Hackbusch and
Trottenberg, pp. 485-501.

Hemker, P.W., Kettler, R., Wesseling, P. and de Zeeuw, P.M. (1983)
Multigrid methods: develo:i;:ment of fast solvers. Appl. Math. and
Comp., 13, pp. 311-326.

Hemker, P.W., Wesseling, P. and de Zeeuw, P.M. (1983) A portable
vector-code for autonomous multigrid modules. Report NW 154/83,
Mathematical Centre, Kruislaan 413, 1098 SJ Amsterdam, The
Netherlands.

Hemker, P.W. and de Zeeuw, P.M.
grid linear systems solvers.

(1984) Some implementations of multi
In this volume.

Kershaw, D.S. (1978) The incomplete Choleski-conjugate gradient method
for the iterative solution of systems of linear equations. J. comp.
Phys., 26, pp. 43-65.

Kettler, R. (1980) A study of the applicability of the multiple grid
method in reservoir simulation. Part II. Master's thesis, Delft
University of Technology, Nov. 1980.

Kettler, R. (1982) Analysis and Comparison of Relaxation Schemes in
Robust Multigrid and Preconditioned Conjugate Gradient Methods. In:
Hackbusch and Trottenberg, pp. 502-534.

Kettler, R. and Meijerink, J.A. (1981) A multigrid method and a combined
multigrid-conjugate gradient method for elliptic problems with
strongly discontinuous coefficients in general domains. PUblication
604, Shell Research B.V., Kon. Shell Expl. and Prod. Lab., Rijswijk,
The Netherlands.

Maitre, J.-F. and Musy, F. (1983) Methodes multigrilles: operateur
associe et estimations du facteur de convergence; le cas du V-Cycle.
C.R. Acad. Sc. Paris, 296, Serie I, pp. 521-524.

166 SONNEVELD, WESSELING and DE ZEEUW

Manteuffel, T.A. (1977) The Tchebychev Iteration for Nonsymmetric Linear
Systems. Numer. Math., 28, pp. 307-327.

Manteuffel, T.A. (1978) Adaptive Procedure for Estimating Parameters
for the Nonsymmetric Tchebychev. Numer. Math., 31, pp. 183-208.

McCarthy, G.J. (1983) Investigations into the Multigrid Code MGDl.
Report AERE R 10889, Harwell, U.K.

McCormick, S.F. (1982) An algebraic interpretation of multigrid methods.
SIAM J. Numer. Anal., 19, pp. 548-560.

McCormick, S.F. (1983) Multigrid Methods for Variational Problems: the
V-cycle. Math. and Comp. in Sim., 25, pp. 63-65.

Meurant, G.
Method.

(1983) Vector Preconditionings for the Conjugate Gradient
To be submitted to BIT. Private Communication.

Meijerink, J.A. and van der Vorst, H.A. (1977) An iterative solution
method for linear systems of which the coefficient matrix is a
symmetric M-matrix. Math. Comp., 31, pp. 148-162.

Meijerink, J.A. (1983) Iterative Methods for the Solution of Linear
Equations based on Incomplete Factorization of the Matrix. Publi
cation 643, Shell Research B.V., Kon. Shell Expl. and Prod. Lab.,
Rijswijk, The Netherlands, July 1983.

Meijerink, J.A. and van der Vorst, H.A. (1981) Guidelines for the usage
of incomplete decompositions in solving sets of linear equations as
they occur in practical problems. J. Comp. Phys., 44, pp. 134-155.

Musy, F. (1982) Sur les methodes multigrilles: formalisation algebrique
et demonstration de convergence. C.R. Acad. Sc. Paris 295, Serie I,
pp. 471-474.

Nicolaides, R.A. (1979)
multigrid methods.

On some theoretical and practical aspects of
Math. Comp., 33, pp. 933-952.

Nowak, Z. and Wesseling, P. (1983) Multigrid acceleration of an itera
tive method with application to transonic potential flow. In: INRIA,
Proceedings Sixth International Conference on Computing Methods in
Applied Sciences and Engineering, Versailles, France, Dec. 1983.

Stone, H.L. (1968) Iterative solution of implicit approximations of
multidimensional partial differential equations, SIAM J. Numer.
Anal., 5, pp. 530-558.

Stuben, K. and Trottenberg, U. (1982) Multigrid Methods: Fundamental
Algorithms, Model Problem Analysis and Applications. In: Hackbusch
and Trottenberg, pp. 1-176.

Underwood, R.R. (1976) An approximate factorization procedure based on
the block Cholesky decomposition and its use with the conjugate
gradient method. Report NED0-11386, General Electric Co., Nuclear
Energy Div., San Jose, CA.

MULTIGRID AND CONJUGATE GRADIENT METHODS 167

Vinsome, P.K.W. (1976)
sets of simultaneous
paper SPE 5729.

ORTHOMIN, an iterative method for solving sparse
linear equations. Society of Petroleum Engineers,

Van der Vorst, H.A. (1981) Iterative Solution Methods for Certain Sparse
Linear Systems with a Non-Symmetric Matrix Arising from PDE-Problems.
J. Comp. Phys., 44, pp. 1-19.

Van der Wees, A.J., van de Vooren, J. and Meelker, J.B. (1983) Robust
calculation of 3D transonic potential flow based on the nonlinear
FAS multigrid method and incomplete LU-decomposition. AIAA paper
83-1950.

Wesseling, P. (1980) The rate of convergence
In: G.A. Watson (Ed.), Numerical Analysis.
Leet. Notes in Math. 773, Springer-Verlag,

of a multiple grid method.
Proceedings, Dundee 1979.

Berlin, pp. 164-184.

Wesseling, P. (1982A) Theoretical and practical aspects of a multigrid
method. SIAM J. Sci. Stat. Comput., 4, pp. 387-407.

Wesseling, P. (1982B) A robust and efficient multigrid method. In:
Hackbusch and Trottenberg, pp. 614-630.

Wesseling, P. and Sonneveld, P. (1980) Numerical experiments with a
multiple grid and a preconditioned Lanczos type method. In:
R. Rautmann (ed.), Approximation methods for Navier-Stokes problems.
Proceedings, Paderborn 1979. Lecture Notes in Math. 771, Springer
Verlag, pp. 543-562.

Widlund, O. (1978) A Lanczos method for a class of nonsymmetric systems
of linear equations. SIAM J. Numer. Anal., 15, pp. 801-812.

Young, D.M. (1971) Iterative solution of large linear systems. Academic
Press, New York.

Zeeuw, P.M. de and van Asselt, E.J. (1985) The convergence rate of
multi-level algorithms applied to the convection-diffusion equation.
To appear, SIAM J. Sci. Stat. Comp.

