
Discrete Applied Mathematics 14 (1986) 135-156
North-Holland

AN INTRODUCTION TO PARALLELISM IN
COMBINATORIAL OPTIMIZATION

G.A.P. KINDERVATER and J.K. LENSTRA
Centre for Mathematics and Computer Science, Amsterdam, The Netherlands

Received February 1985
Revised 17 July 1985

135

This is a tutorial introduction to the literature on parallel computers and algorithms that is rele­
vant for combinatorial optimization. We briefly discuss theoretical as well as realistic machine
models and the complexity theory for parallel computations. Some examples of polylog parallel
algorithms and log space completeness results for .<1' are given, and the use of parallelism in
enumerative methods is reviewed.

Keywords. Parallel computer, computational complexity, polylog parallel algorithm, sorting,
shortest paths, scheduling, log space completeness for =~. linear programming, dynamic program­
ming, knapsack, branch and bound, traveling salesman.

Parallel computing is rece1vmg a rapidly increasing amount of attention. In
theory, a collection of processors that operate in parallel can achieve substantial
speedups. In practice, technological developments are leading to the actual con­
struction of such devices at low cost. Given the inherent limitations of traditional
sequential computers, these prospects appear to be very stimulating for researchers
interested in the design and analysis of combinatorial algorithms.

In this paper, we attempt to give a tutorial introduction to the literature on
parallel computers and algorithms that is relevant for the area of combinatorial op­
timization. For a more complete survey which is reasonably up to date until July
1983, we refer to our annotated bibliography [Kindervater & Lenstra 1985).

The organization of the paper is as follows.
Section 1 is concerned with machine models designed for parallel computations.

Theoretical as well as practical models are described. While in many theoretical
models the processors communicate through a common memory without delay, in
more realistic models the communication is achieved through a specific interconnec·
tion network. Such networks are illustrated on the problems of matrix multiplica·
tion, determining a transitive closure, and finding a minimum spanning tree. In late1
sections, we will restrict ourselves to theoretical models, which can usually be
simulated fairly efficiently by models with a specific interconnection network.

Section 2 deals with the complexity theory for parallel computations. Given the
basic distinction between membership of & and completeness for .Al:i1J in sequentia:
computations, we consider the speedups possible due to the introduction o:

0166-218X/86/$3.50 © 1986, Elsevier Science Publishers 8.V. (North-Holland)

136 G.A.P. Kindervater, J.K. Lenstra

parallelism. Within the class fJ', this leads to a distinction between 'very easy' prob­
lems, which are solvable in polylogarithmic parallel time, and the 'not so easy' ones,
which are log space complete for fJ!.

Section 3 gives examples of polylog parallel algorithms for elementary problems
like finding the maximum and sorting, for finding shortest paths, and for two prob­
lems from scheduling theory.

Section 4 discusses the log space completeness for .if> of the linear programming
problem and the maximum network flow problem.

Section 5 reviews the use of parallelism in enumerative methods for A/£P-hard
problems, such as dynamic programming for the knapsack problem and branch and
bound for the traveling salesman problem.

The reader will not fail to observe that the algorithms presented in this paper do
not rely on the sophisticated refinements for sequential algorithms developed in the
past two decades but go back to the simple and explicit basic principles of com­
binatorial computing. In that sense (and recent, more advanced achievements not­
withstanding), parallelism in combinatorial optimization is still in its infancy and
holds many promises for a further development in the near future.

1. Machine models

Many architectures for parallel computations have been proposed in the
literature. Some of these machines actually exist or are being built. Other models
are useful for the theoretical design and analysis of parallel algorithms, while their
realization is not feasible due to physical limitations.

The most widely used classification of parallel computers is due to [Flynn 1966].
Flynn distinguishes four classes of machines (cf. Fig. 1).

(I) SISD (single instruction stream, single data stream). One instruction is per­
formed at a time, on one set of data. This class contains the traditional sequential
computers.

(2) SIMD (single instruction stream, multiple data stream). One type of instruc­
tion is performed at a time, possibly on different data. An enable/disable mask
selects the processing elements that are allowed to perform the operation on their
data. The ICL/DAP (Distributed Array Processor) belongs to this class.

(3) MISD (multiple instruction stream, single data stream). Different instructions
on the same data can be performed at a time. This class has received very little atten­
tion so far.

(4) MIMD (multiple instruction stream, multiple data stream). Different instruc­
tions on different data can be performed at a time. There are two types of MIMD
computers: the processors of a synchronized MIMD machine perform each suc­
cessive set of instructions simultaneously; the processors of an asynchronous MIMD
machine run independently and wait only if information from other processors is
needed. The Denelcor/HEP (Heterogeneous Element Processor) is an example of
an asynchronous MIMD machine.

An introduction to parallelism in combinatorial optimization

single instruction stream
single data stream

single instruction stream
multiple data stream

multiple instruction stream
single data stream

multiple instruction stream
multiple data stream

+a a,b__... SIMD a +b
c,d c +d

+ga+b
- MISD a-b

a,b

~alMD a+b
a,b c -d
c,d

Fig. I. The classification of Flynn.

137

If one considers the many types of algorithms that are suitable for execution on
parallel computers, then both ends of the spectrum can be characterized in a way
that resembles the above distinction between the two types of MIMD machines.
Systolic algorithms lead to highly synchronized computations, where the processing
elements act rhythmically on regular streams of data passing through the (SIMD or
synchronized MIMD) machine. Typical examples are the matrix multiplication
algorithm introduced later in this section and the dynamic programming recursions
in Section 5. Distributed algorithms lead to asynchronous processes, in which the
processors perform their own local computations and communicate by sending
messages every now and then. Branch and bound (see Section 5) lends itself to this
approach.

Flynn's classification is not concerned with the way in which information is
transmitted between the processors. This is dealt with by Schwartz [Schwartz 1980],
who distinguishes between paracomputers and ultracomputers.

In a paracomputer, the processors have simultaneous access to a shared memory,
which allows for communication between any two processors in constant time. A
further distinction is based on the way in which shared memory computers handle
read and write conflicts, which occur when several processors try to read from or
to write into the same memory location at the same time. Paracomputers are of
great theoretical interest, but current technology prohibits their realization.

In an ultracomputer, the processors communicate through a fixed interconnection
network. Such a network can be viewed as a graph with vertices corresponding to
processors and (undirected) edges or (directed) arcs to interconnections. Two
parameters of the graph are important in this context: the maximum vertex degree
d 1, which should be bounded by a constant on grounds of practical feasibility, and
the maximum path length d2 (the 'diameter'), which should grow at most loga­
rithmically in the number p of processors to ensure fast communication.

138

(i) Mesh connected
network, q "' 4.

(iv) Perfect shuffle
nelwork, d = 3.

G.A.P. Kindervoter, J.K. Lenstra

(ii) Cube connected
network, d = 3.

(iii) Cube connected cycles
network, d = 3.

(v) Binary trees
network. d = 3.

Fig. 2. Five interconnection networks.

Of the many interconnection networks that have been proposed, five are briefly
described below. They are illustrated in Fig. 2.

(i) Two-dimensional mesh connected network [Unger 1958]. Each processor is
identified with an ordered pair (i,j) (i,j= 1, ... ,q), and processor (i,j) is connected
to processors (i ± 1, j) and (i, j ± 1), provided they exist. Note that d1=4 and
di= 2(q- l) = EJ(Vp).

(ii) Cube connected network [Squire & Palais 1963]. This can be seen as a d­
dimensional hypercube with 2d processors at the vertices and interconnections
along the edges. Note that d1 =di= d= logp. (All logarithms in this paper have
base 2.)

(iii) Cube connected cycles network [Preparata & Vuillemin 1981). This is a cube
connected network with each of the 2d processors replaced by a cyclicly connected
set of d processors; each of them has two cycle connections and one edge connec­
tion. This yields d1=3 and di= E>(logp).

(iv) Perfect shuffle network {Stone 1971]. There are p = 2d processors with inter­
connections (i, 2i- l), (i+p/2, 2i), (2i- l, 2i) for i= 1, ... ,p/2. The first two types
of interconnections imitate a perfect shuffle of a deck of cards. Here, d1=3 and
d2 =2d- I =EJ(logp).

(v) Binary trees network [Bentley & Kung 1979]. There are p=3 · zd-2 pro­
cessors, interconnected by two binary trees with common leaves. The 2d processors
corresponding to these leaves perform the actual computations. The other 2d - 1
processors in the first tree (an out-tree) send the data down to their descendants,
and those in the second tree (an in-tree) combine the results from their ancestors.

An introduction to parallelism in combinatorial optimization 139

An additional 'master processor' controls the network by providing the input for
one root and receiving the output from the other. Note that d 1 = 3 and
di=E>Oogp).

All these networks can simulate each other quite efficiently; see [Siegel 1977,
1979] for details. Still, it appears that the cube connected cycles and perfect shuffle
networks are reasonably versatile, while the mesh connected and binary trees net­
works have been designed for more restricted types of computations. Their suitabili­
ty for their limited purpose will be demonstrated on some examples below.

The quality of the parallelization of an algorithm will be judged on the resulting
speedup, which is the running time of the best sequential implementation of the
algorithm divided by the running time of the parallel implementation using p pro­
cessors, and the processor utilization, which is the speedup divided by p. The best
one can hope to achieve is a speedup of p and a processor utilization of 1. Note that
these concepts are defined here relative to a given algorithm, irrespective of the
possible existence of more efficient sequential algorithms for the problem at hand.

B: h44

b43 b34

b42 b33 b24

b32 b23 b14

b22 b13

b12

A:

-
Fig. 3. Matrix multiplication on a mesh connected network.

Example 1. Matrix multiplication. Two n x n matrices A= (ail) and B=(bu) can be
multiplied in O(n) time on an n x n mesh connected network. The basic idea is the
use of the skewed input scheme illustrated in Fig. 3. At each step of the computa­
tion, matrix A makes one step to the right, matrix B goes one step down, and each
processing element (i,j) multiplies its current values aik and bkj and adds the result
into its accumulator (which starts at 0). It is easily verified that after 2n - 1 stages
processor (i, j) contains the required value l:k a;k bkj and that the procedure is best
possible in terms of speedup and processor utilization. This is a typical example of
a systolic algorithm performed on an SIMD machine and suitable for VLSI
implementation.

140 G.A.P. Kindervater, J.K. Lenstra

Example 2. Transitive closure [Guibas, Kung & Thompson 1979]. The transitive
closure of a directed graph G has an arc (i,j) if and only if G has a path from i
to j. If G has n vertices, the algorithm from Example 1 can be applied to find the
transitive closure in O(n) time using n2 mesh connected processors. Starting with A
given by the adjacency matrix of G (i.e., au= l if G has an arc (i,j) and aii=O
otherwise) and B::::A, one executes the matrix multiplication algorithm three times,
with the modifications that addition is replaced by maximization and that any ele­
ment au or bij that passes through processor (i,j) is updated with the value of the
accumulator. A correctness proof of this procedure can be found in the above
reference.

Example 3. Membership testing. Given a set S of n elements and an element e, one
can test whether eeS in O(logn) time on a binary trees network with d= flogn l
Denote the processors corresponding to the common leaves by P; (i = 1, ... , 2d) and
suppose that ~stores the ith element e; of S (i::::;n). It takes d steps for the pro­
cessors in the top tree to send e down, one step for the P; 's to check whether e; = e,
and d steps for the processors in the bottom tree to compute the disjunction of the
results.

As an extension, one can test the membership of S form elements e<ll, ••. , e<m> in
O(m +log n) time by pipelining the flow of information through the network. As
soon as e<IJ leaves the first processor, e<2> is sent to it; and, in general, at each step
all data are going down one level.

By asking the processors in the bottom tree to do a bit more than computing
logical disjunctions, one can use the same model to find the minimum of n elements
and to compute the rank of a given element in O(logn) time. We leave details to
the reader.

Example 4. Minimum spanning tree [Bentley 1980]. Given a complete undirected
graph G with vertex set {l, ... ,n} and a length cu for each edge {i,j}, a spanning
tree of G of minimum total length can be found in O(n2) time by an algorithm
from [Prim 1957; Dijkstra 1959]. The algorithm is based on the following principle.
Let T(V) be the collexion of edges in a minimum spanning tree of the subgraph of
G induced by the subset V of vertices. If i*i; V and j*e V are such that
c;•r== min;i; v,je v{c;i}, then T(VU {i*}) = T(V) U {{i*,j*} }.

The algorithm starts with T({ 1}) = 0. At each iteration, a minimum spanning tree
on a certain vertex set V with edge set T(V) has been constructed and, for each i E V,
a 'closest tree vertex' j; e V and a corresponding distance I; are known, i.e.,
l;=cu;=minje v{cu}· One selects an i*~ V for which I;•= rnin;• v{I; }, adds i* to Ji
and {i*,j;•} to T(V), and updates the values j; and I; for the remaining vertices
i E V. There are n - 1 iterations, each requiring O(n) time.

It is not hard to implement the algorithm on a binary trees network with
d = flog n 1- The master processor stores the set T of spanning tree edges. Processor
P; keeps track of j; and./; and is able to compute any C;. in constant time. Each

An introduction to parallelism in combinatorial optimization 141

command that is sent down the tree is executed only by those P; 's that are turned
on.

We initialize by setting T = 0 and, for i = 2, ... , n, turning on P; and setting j; = 1
and /i = c;1 • In each of the n - 1 iterations, we first apply the minimum-finding pro­
cedure to determine i* and add { i"', j;•} to T; we next send i* down in order to turn
off P;• forever (since now i"'e V) and to turn off each P; with l;~C;;• temporarily
for the rest of this iteration (since no update is necessary); and we finally instruct
all remaining P;'s to set j; = i* and I;= cii•.

Since each iteration takes O(log n) time, this parallel version of the algorithm has
a running time of O(n logn) using O(n) processors and hence a processor utilization
of only 0(1/logn). We cannot improve on this by pipelining the loop, since each
iteration needs information from the previous one. However, we can use a smaller
network with d= flog(n/logn)l, in which each P; takes care of r1ogn l vertices
and performs all computations for them sequentially. This modified algorithm still
runs in O(nlogn) time, but now using O(n/logn) processors with a processor
utilization of 0(1).

In the remaining sections, we will restrict ourselves to the paracomputer model,
which lends itself better to complexity considerations and to the explanation of
parallel algorithms. The implementation of such algorithms on a specific ultracom­
puter model is usually straightforward.

2. Complexity theory

The purpose of this section is to present an informal introduction to those con­
cepts from the complexity theory for parallel computing that may have some impact
on the theory of combinatorial optimization. The interested reader is referred to
[Cook 1981] for a more thorough exposition and to [Johnson 1983, Section 2] for
a very readable review (on which this section is largely based).

Central to this area is a hypothesis known as the parallel computation thesis
[Chandra, Kozen & Stockmeyer 1981; Goldschlager 1982]: time bounded parallel
machines are polynomially related to space bounded sequential machines. That is,
for any function T of the problem size n, the class of problems solvable by a
machine with unbounded parallelism in time T(n)0 0l (i.e., polynomial in T(n)) is
equal to the class of problems solvable by a sequential machine in space T(n}0 0l.

This thesis is a theorem for several 'reasonable' parallel machine models and several
'well-behaved' time bounds; see [Van Emde Boas 1985] for a survey.

The parallel computation thesis holds, for example, in the case that the machine
model is a PRAM (Parallel Random Access Machine) and T(n)=n°<1> (i.e., a
polynomial function of problem size). The PRAM is a synchronized machine with
an unbounded number of processors and a shared memory, which allows
simultaneous reads from the same memory location but disallows simultaneous

142 G.A.P. Kindervater, J.K. Lenstra

writes into the same memory location. The computation starts with one processor
activated; at any step, an active processor can do a standard operation or activate
another processor; and the computation stops when the initial processor halts.

According to the parallel computation thesis, the class of problems solvable by
a PRAM in polynomial time is equal to :?'SPACE, the class of problems solvable by
a sequential machine in polynomial space. In view of the apparent difficulty of
many problems in .'1'SPACE (such as the :3'>SPACE-complete and .At:?-complete ones),
the PRAM is an extremely powerful model. It is of interest to see how it affects the
complexity of the problems in i/J, which are solvable by a sequential machine in
polynomial time.

It turns out that many problems in .':P can be solved in polylog parallel time
(log n)00 >, i.e., in time that is polynomially bounded in the logarithm of the pro­
blem size n. Some examples are given in Section 3; other, more complicated, ex­
amples are finding a maximum flow in a planar graph [Johnson & Venkatesan 1982]
and linear programming with a fixed number of variables [Megiddo 1982). By the
parallel computation thesis, these problems would form the class POLYLOGSPACE of
problems solvable in polylog sequential space. They can be considered to be among
the easiest problems in £!', in the sense that the influence of problem size on solution
time has been limited to a minimum. No single processor needs to have detailed
knowledge of the entire problem instance. (It should be noted here that a further
reduction to sublogarithmic solution time is generally impossible. One reason for
this is that a PRAM needs O(log n) time to activate n processors; a similar reason
is that in any realistic model of parallelism a constant upper bound on the maximum
'fan out' d1 implies a logarithmic lower bound on the minimum 'communication
time' d2 .)

On the other hand, rf' contains problems that are unlikely to admit solution in
polylog parallel time. These are the problems that have been shown to be log space
complete for ff', i.e., that belong to.~ and to which any other problem in r:I is reduci­
ble by a transformation using logarithmic work space. Examples will be discussed
in Section 4; they include general linear programming and finding a maximum flow
in an arbitrary graph. If any such problem would belong to POLYLOGSPACE, then it
would follow that Y'~POLYLOGSPACE, which is not believed to be true. Hence, their
solution in polylog sequential space or, equivalently, polylog parallel time is not ex­
pected either. Any solution method for these hardest problems in .o/' is likely to re­
quire superlogarithmic time and is, loosely speaking, probably 'inherently sequen­
tial' in nature.

We have thus arrived at a distinction within ? between the 'very easy' problems,
which can be solved in polylog parallel time, and the 'not so easy' ones, for which
a dramatic speedup due to parallelism is unlikely.

The picture of the PRAM model as sketched above is in need of some qualifica­
tion. The model is theoretically very useful, but its unbounded parallelism is hardly
realistic. The reader will have no difficulty in verifying that a PRAM is able to ac­
tivate a superpolynomial number of processors in subpolynomial time. If a

An 143

polynomial time bound is considered then certainly a bound
on the number of processors should be imposed. It is a trivial observation, however,
that the class of problems solvable if both bounds are respected is simply equal to
f. Within this more reasonable model, hard problems remain as hard as they were

without parallelism.
Discussions along these lines have led to I.he consideration of simultaneous

resource bounds and to the definition of new complexity classes. For example, Nick
(Pippenger)'s Class . t contains all problems solvable in polylog parallel time on
a polynomial number of processors. and Steve (Cook) 's Class YV contains all prob­
lems solvable in polynomial sequential time and polylog space. Some sort of extend­
ed parallel computation thesis might suggest that . i =Ye. This is a major un­
resolved issue in complexity theory, and outside the scope of this introduction. We
refer to !Johnson 1983, Section 21 for further details and more references.

3. Polyiog parallel algorithms

We will now describe polylog parallel algorithms for six problems. Examples 5,
6 and 7 deal with basic operations on a set of numbers, Example 8 discusses the
shortest paths problem, and Examples 9 and 10 are concerned with the scheduling
of a set of jobs on identical parallel machines. Other problems that are solvable in
polylog parallel time have been mentioned in Section 2 and will return in Section 4.

The algorithms will be designed to run on an SIMD machine with a shared
memory. Simultaneous reads are permitted and simultaneous writes are prohibited;
the former assumption is not essential but simplifies the exposition. We note that
the polylog parallel algorithms referred to in this paper require a polynomial
number of processors, so that the problems in question belong to . ~ ·~·.

ln the PIDGIN ALGOL procedures in this section, we write

par (a:Si:Sz] s,

to denote that the statements s, are to be executed in parallel for all values of the
index i in the given range.

Example 5. Maximum finding. Given n numbers, one wishes to find their max­
imum. We assume, for convenience, that n = 2m for some integer m and that the
numbers are given by a", an+ i. ... , az,, _ 1 • Consider the following procedure:

for I <- m - I downto 0 do
par [i:S}:S i+ 1 - l] a.i max{a4, a~+ i}.

The computation is illustrated by means of a binary tree in Fig. 4. At step /, the
values corresponding to the nodes at level I of the tree are calculated. At the end,
a 1 is equal to the desired maximum.

144 G.A.P. Kindervater, J.K. Lenstra

I= 0

I= I

/=2

I= 3

Fig. 4. Maximum finding: an instance with n"' 8.

The algorithm requires O(log n) time and n/2 processors. We can improve on this
by applying a device similar to the one used in the last paragraph of Example 4: each
processor has log n data assigned to it and computes their maximum sequentially,
before the above procedure is executed. The resulting algorithm still runs in O(logn)
time, but now using only r n/logn l processors with a processor utilization of 0(1).

I= 0 a1 bi

36 36 --
1=1

I= 2

I= 3

Fig. 5. Partial sums: an instance with n = 8.

Example 6. Partial sums [Dekel & Sahni 1983a]. Given n numbers
am an+l•··.,a2n-I with n=2m, one wishes to find the partial sums an+··· +an+J
for j = 0, ... , n - 1. Consider the following procedure:

for I+- m - I downto 0 do
par [21 sj::::;; 2' + 1 - I] ai +- a2; + a2j + 1 ;

b1 +-ai;
for I+- I to m do

par [21sj::::;;2'+ 1 - I] bi+- if j odd then bu- 1)!2 else bJl2 - ai + 1 •

The computation is illustrated in Fig. 5. In the first phase, represented by the solid

An introduction to parallelism in combinatorial optimization 145

arrows, the sum of the a/s is calculated in the same way as their maximum was
calculated in Example 5. Note that the a-value corresponding to a non-leaf node is
set equal to the sum of all a-values corresponding to the leaves descending from that
node. In the second phase, represented by the dotted arrows, each parent node sends
a b-value (starting with b1 = ai) to its children: the right child receives the same
value, the left one receives that value minus the a-value of his brother. The b-value
of a certain node is therefore equal to the sum of all a-values of the nodes of the
same generation, except those with a higher index. This implies, in particular, that
at the end we have bn+J=an+ ··· +an+j for)=0, ... ,n-1.

The algorithm requires O(logn) time and n processors. As before, this can be im­
proved to O(log n) time and O(n/log n) processors.

Example 7. Sorting [Muller & Preparata 1975]. Given n numbers ai. .. .,an, one
wishes to renumber them such that a 1 s ··· s an. We assume, for simplicity, that
ai * aJ if i =F j. Consider the following procedure:

par [l si,jsn] e;1+- if a;SaJ then 1 else O;
par [I sj s n] n; +- sum{e;; I I :5 i sn };
par [1:5):5n] an1 +--a1 .

The algorithm is based on enumeration sort: the position n1 in which ai should be
placed is calculated by counting the a;' s that are no greater than a1 . There are three
phases:

(i) computation of the relative ranks l!u= n 2 processors, 0(1) time - or
l n2 /log n l processors, O(log n) time;

(ii) computation of the positions n1: n l n/logn 1 processors, O(log n) time (by

application of the first phase of the algorithm of Example 6);
(iii) permutation: n processors, 0(1) time.
The algorithm requires O(log n) time and O(n 2 /log n) processors. Simultaneous

reads occur in the first phase, but there is a way to avoid them within the same time
and processor bounds. As sequential enumeration sort takes 0(n2) time, the pro­
cessor utilization is 0(1).

Example 8. Shortest paths {Dekel, Nassimi & Sahni 1981]. Given a complete
directed graph with vertex set { 1, ... , n} and a length cu for each arc (i, j), one
wishes to find the shortest path lengths between all pairs of vertices. In {Lawler
1976] an algorithm is given which requires O(n3 logn) time. It is based on matrix
multiplication. Let dijl denote the length of a shortest path from vertex i to
vertexj, containing no more than I arcs. Since a path from vertex i to vertexj con·
sisting of at most 2/ arcs can be split into two paths of no more than I arcs each,
we have that dh2'l =minke { 1, ...• n} {di~)+ dk?}. Taking into account that a shortest
path contains at most n - I arcs, we obtain the following algorithm:

146 G.A.P. Kindervater, J.K. Lenstra

par fl si,JsnJ db1>-cu;
for m +- 1 to flog n l do

/+- 2m'
par [Is i,Jsn] diy> +-min{dir2>+ dfj2> /I sksn}.

Application of the routine of Example 5 with maximization replaced by minimiza­
tion yields an algorithm which requires O(log2 n) time and O(n3/logn) processors,
with a processor utilization of 0(1).

Example 9. Preemptive scheduling [Dekel & Sahni 1983b]. Given m machines M;
(i =I, ... , m) and n jobs~. each with a processing time Pi (j =I, ... , n), one wishes
to find a preemptive schedule of minimum length. A preemptive schedule assigns
to each ~ a number of triples (M;, s, t), where 1 ::Sis m and 0 ::S s ::St, indicating that
~is to be processed by M; from times to time t. A preemptive schedule is feasible
if the processing intervals on M; are nonoverlapping for all i, and the processing in­
tervals of~ are nonoverlapping and have total length Pi for all}. It is optimal if
the maximum completion time of the jobs is minimum.

j: 1 2 3 4 5 Mi '· J2

P1= I 2 3 4 5 M2 '3 J4
t• = 5 M1 Js

0 2 3 4 s

Fig. 6. Preemptive scheduling: an instance with m=3 and n=S.

An optimal schedule can be found in O(n) time by the classical wrap around rule
from [McNaughton 1959]. The algorithm first computes a value t* which is an ob­
vious lower bound on the minimum schedule length. It then constructs a schedule
of length t* by considering the jobs in an arbitrary order and scheduling them in
the m periods (0, t*), carrying over the part of a job that does not fit at the end of
the period on M; to the beginning of the period on M; + 1 • More formally:

t*+-max{max{pi/ I ~}:Sn}, sum{pi / l :Sj:Sn}/m };
s+-0; i +-1;
for j +- 1 to n do

if s+pist*
then assign (M;,s,s+pi) to~.

s+-s+pi
else assign (M;, s, t*) and (M;+ 1, 0, Pi- (t*-s)) to ~,

s+-Pi-(t*-s), i+- i +I.

An example is given in Fig. 6. There are two global parameters that are updated se-

An introduction to para!Jelism in combinatorial optimization 147

quentially as the job index j increases: the starting times and the machine index i
of J.i. We can calculate all starting times and machine indices simultaneously in
logarithmic time, using the parallel procedures for finding the maximum and the
partial sums from Examples 5 and 6 as subroutines:

t* <- max{ max{p111 :5j:5 n}, sum{p1 It :5j :5n }Im};
par [1 ::sj ::5n1 q1 <- sum {Pk I l ::5 k :5j - 1};
par [l :5j:5n]

s1 +--q1mod t*, i1<- Lq/t* J + 1,
if s1+ P1:5 t*
then assign (M;1 , s1, sJ + p1) to '1
else assign (M;1,s1, t*) and (M;j+l• 0,p1-(t*-sj)) to 11 .

This algorithm can be implemented to require O(log n) time and O(n/log n) pro­
cessors with a processor utilization of 0(1).

Example 10. Scheduling fixed jobs [Dekel & Sahni 1983b). Given n jobs J.i, each
with a starting time s1 and a completion time t1 (j=1, ... , n), one wishes to find a
schedule on a minimum number of machines. A schedule assigns to each ~ a
machine M;. It is feasible if the processing intervals (s1 , t1) on M; are nonoverlapp­
ing for all i; it is optimal if the number of machines that process jobs is minimum.
The problem is also known as the channel assignment problem: n wires are to be
laid out between given points in a minimum number of parallel channels, each of
which can carry at most one wire at any point.

An optimal schedule can be found in O(n logn) time by the following simple rule.
First, order the jobs according to nondecreasing starting times. Next, schedule each
successive job on a machine, giving priority to a machine that has completed
another job before. It is not hard to see that, at the end, the number of machines
to which jobs have been assigned is equal to the maximum number of jobs that re­
quire simultaneous processing. This implies optimality of the resulting schedule.

For a polylog parallel implementation, we need a more detailed sequential
description of the algorithm [Gupta, Lee & Leung 1979]. We introduce an array u
of length 2n containing all starting and completion times in nondecreasing order;
the informal notation 'uk-s/ ('uk- !/) will serve to indicate that the kth element
of u corresponds to the starting (completion) time of J.i. We also use a stack S of
idle machines; on top of S is always the machine that has most recently completed
a job, if such a machine exists.

sort (s1, t 1, ••• ,sm tn) in nondecreasing order in (u1, ••• , u2n) whereby,
if t1=sk for somej & k, t1 precedes sk;

S <-stack of n machines;
for k +--- 1 to 2n do

if uk - sJ then take machine from top of S and assign it to J.i,
if uk - t1 then put machine assigned to J.i on top of S.

148 G.A.P. Kindervater, J.K. Lenstra

Fig. 7 iJlustrates the algorithm as well as its parallelization, which is described
below. There are four phases.

(i) First, we calculate the number <Jj of machines that are busy directly after the
start of Jj and the number rj of machines that are busy directly before the comple­
tion of }_j, for j= I, ... ,n:

sort (s1, tl> •.. , Sn• In) in nondecreasing order in (u1, •• ., u2n) whereby,
if tj=sk for some j & k, tj precedes sk;

par [lsks2n] ak+-if uk-sj then l else-I;
par [l:Sk:S2n] h+-sum{a1 J l::s;/sk};
par [I :S ks 2n]

if uk-si then <Jj+-/Jk>

if uk-tj then rj+-/Jk+ 1.

Note that the number of machines we need is equal to max_; { <Jj}.

(ii) For each }_j, we determine its immediate predecessor J"u> on the same
machine (if it exists). The stacking mechanism implies that this must be, among the
Jk satisfying rk = Uj, the one that is completed last before the start of~; if no such
job exists, then it is convenient to take ~ as its own predecessor:

j: I 2 3 4 5 k: 2 3 4 5 6 7 8 9 10

sj: 0 I 3 4 7 ~ uk: 0 2 3 4 5 6 7 8 9
'1= 2 8 5 6 9 t

ak: I -1 1 1 -1 -1 I -I -1
aJ: I 2232-{3k: 2 2 3 2 1 2 1 0
TJ: 2 2 3 2 I
~

'lf(j): I 2 I 4 4 - M 1

Mi

M3

0 2 3 4 5 6 7 8 9

Fig. 7. Scheduling fixed jobs: an instance with n==5.

(ii)

(iii), I = I

Fig. 8. Scheduling fixed jobs: finding the first preceding job on the same machine.

An introduction to paralfelism in combinatorial optimization

par [l :Sj:Sn)

find k such that rk = aj & tk= max{til t1:Ssj, r 1= aj },
n(j) +-- if k exists then k else j.

149

(iii) For each J.;, we now turn Jrr(j) into its first predecessor on the same machine.
This is done by simultaneously collapsing the chains formed by the arcs (j, n(j)) in
a logarithmic number of steps (cf. Fig. 8):

for I,._ l to flog n l do par [1 :Sj :Sn] n(j) +-- n(n(j)).

(iv) Finally, we use the n(j)'s to perform the actual machine assignments:

par { 1 s;j :Sn] assign M0 «,l to J.; .

Using the maximum, partial sums and sorting routines from Examples 5, 6 and
7, we can implement this algorithm to require O(log n) time and O(n2 /log n)
processors.

4. Log space completeness for 9

The first log space complete problem in 9 was identified by Cook [Cook 1974].
It involves the solvability of a path system and is proved log space complete by a
'master reduction' in the same spirit as Cook's JV9'-completeness proof for the
satisfiability problem. We will not define the path problem here and prefer to start
from a different point.

Fig. 9. A logical circuit.

Example 11. Circuit value [Ladner 1975; Goldschlager 1977]. Given a logical circuit
consisting of input gates, AND gates, OR gates, NOT gates, and a single output gate,
and given a truth value for each input, is the output TRUE of FALSE'.? Cf. Fig. 9.

The circuit value problem is trivially in 9. Ladner indicated how to simulate any

150 G.A.P. Kindervater, J.K. Lenstra

polynomial time deterministic Turing machine by a combinatorial circuit with only
AND and NOT gates in logarithmic work space. It follows that the problem is log
space complete for !?".

Goldschlager extended this result to the cases of monotone circuits, which have
only AND and OR gates, and planar circuits, which have a cross free planar embed­
ding, by giving log space transformations from the circuit value problem.

Example 12. Linear programming [Dobkin, Lipton & Reiss 1979; Valiant 1982).
Given a finite system of linear equations and inequalities in real variables, does it
have a feasible solution?

Linear programming is known to be in 9 [Khachian 1979). Dobkin, Lipton &
Reiss established log space completeness for 9 of the problem by giving a log space
transformation from the unit resolution problem, a variant of the satisfiability pro­
blem, that was already known to be log space complete for ? . Valiant gave a more
straightforward transformation, starting from the circuit value problem.

The idea is to associate a variable Xj with the jth gate, such that Xj:;:: I if the gate
produces the value TRUE and Xj=O otherwise. More explicitly,

if gate j is
· an input gate with value TRVB,

· an input gate with value PAI.SB,

·an AND gate with inputs from gates h and i,
·a NOT gate with input from gate i,
·the output gate with input from gate i,

then we introduce the equations and inequalities
'Xj= 1,
·x:;=O,
·xrs.xh,xrs.x1 ,xi~o. X/C!:.xh +x,.-1,
'Xj= 1-X;,

'Xj=X;, Xj= J.

OR gates may be excluded. We leave it to the reader to verify that each feasible solu­
tion is a 0-1 vector, that there exists a feasible solution if and only if the circuit value
is TRUE, and that the transformation requires logarithmic work space.

Simple refinements of this transformation show that linear programming remains
log space complete for 9 if all coefficients are equal to - 1, 0 or 1, and each row
and column of the constraint matrix contains at most three entries.

Example 13. Maximum flow [Goldschlager, Shaw & Staples 1982]. Given a directed
graph with specified source and sink vertices and with capacities on the arcs, and
given a value v, does the graph have a flow from source to sink of value at least v?

The maximum flow problem belongs to {JI [Edmonds & Karp 19721. It was shown
to be log space complete for .fJJ by a transformation from the monotone circuit value
problem. The transformation simulates the implications of boolean inputs through
a circuit with n AND and OR gates by integer flows through a network with the gates
and an additional source and sink as vertices and with arc capacities of 0(2n).

We conclude this section by mentioning two related results of a more positive
nature.

An introduction to parallelism in combinatorial optimization 151

(i) The maximum flow problem is solvable in polylog parallel time in the case of
planar graphs, due to the relation of this case to the shortest path problem [Johnson
& Venkatesan 1982).

(ii) The problem is solvable in random polylog parallel time in the case of unit
capacities and in the more general case that the capacities are encoded in unary. This
follows, through standard transformations [Lawler 1976), from the recent result
that the maximum cardinality matching problem is in :Jl.lV't', the class of problems
solvable by a randomized algorithm in polylog time on a polynomial number of pro­
cessors (Karp, Upfal & Wigderson 1985). The complexity of the maximum cardinali­
ty matching problem with respect to deterministic parallel computations is an open
question, even for bipartite graphs.

5. Enumerative methods

The optimal solution to Jll9l-hard problems is usually found by some form of im­
plicit enumeration of the set of all feasible solutions. In this section we will consider
the parallelization of the two main types of enumerative methods: dynamic pro­
gramming and branch and bound. We have already seen that, from a worst case
point of view, intractability and superpolynomiality are unlikely to disappear in any
reasonable machine model for parallel computations. In a more practical sense,
parallelism has much to offer to extend the range in which enumerative techniques
succeed in solving problem instances to optimality. Little work has been done in this
direction, but we feel that the design and analysis of parallel enumerative methods
is an important and promising research area.

Dynamic programming algorithms for combinatorial problems typically perform
a regular sequence of many highly similar and quite simple instructions. Hence, they
seem to be suitable for implementation in a systolic fashion on synchronized MIMD
or even SIMD machines. This has been observed in [Casti, Richardson & Larson
1973; Guibas, Kung & Thompson 1979) and will be illustrated on the knapsack pro­
blem in Example 14.

Branch and bound methods generate search trees in which each node has to deal
with a subset of the solution set. Since the instructions performed at a node very
much depend on the particular subset associated with that node, it is more ap­
propriate to implement these methods in a distributed fashion on asynchronous
MIMD machines. An initial analysis of distributed branch and bound, in which the
processors communicate only to broadcast new solution values or to redistribute the
remaining work load, is given in [El-Dessouki & Huen 1980). In a sequential branch
and bound algorithm, the subproblems to be examined are given a priority and from
among the generated subproblems the one with the highest priority is selected next.
In a parallel implementation, it depends on the number of processors which sub­
problems are available and thus how the tree is searched. One can construct ex­
amples in which p processors together are slower than a single processor, or more

152 G.A.P. Kindervater, J.K. Lenstra

than p times as fast. These anomalies are analyzed in [Burton, Huntbach, McKeown
& Rayward~Smith 1983; Lai & Sahni 1984] and illustrated on the traveling salesman
problem in Example 15.

Example 14. Knapsack. Given n items j, each with a profit c1 and a weight a1
(j = 1, ... , n), and given a knapsack capacity b, one wishes to find a subset of the
items of maximum total profit and of total weight at most b. The problem is .A<<?'­
hard [Garey & Johnson 1979}.

It is convenient to introduce the notation

C(m, n, b) = max \ I c1 I L ar5. b].
S1:;{m, ... ,n} CJeS jeS

According to Bellman's principle of optimality, one attains the maximum profit
C(l, n, b) by excluding item n and taking the profit C(l, n - I, b) or by including
item n and adding Cn to the profit C(l, n - l, b - an). A recursive application of this
idea gives the following dynamic programming algorithm [Bellman 1957]:

for z-o to b do C(l, 0, z)-0;
for j - l to n do

for z-O to a1- I do C(I,j,z)-C(l,J-I,z),
for z-a1 to b do C(l,J, z)-max{C(l,j-1, z), C(l,j-1, z-aj)+c1}.

The algorithm runs in O(nb) time. (Note that this is exponential in the problem size.
Since it is polynomial in the problem data, it is called 'pseudopolynomial' .) The ob­
vious parallelization is to handle the stages} (O-s;;j:s.n) sequentially and, at stagej,
to handle the states (l,j, z)(O:::::z-s;; b) in parallel [Casti, Richardson & Larson 1973}:

Algorithm KSI
par [0::5z::::::b]C{l, 0, z)-0;
for j +-- 1 to n do

par [0::5 z< ai] C(l, j, z) +-- C(l, j- l, z),
[ai:::::z-s;;b] C(l, j, z)- max{ C(l,)- I, z), C(l, j-1, z-ai) + c1 }.

This requires O(n) time and O(b) processors with a processor utilization of 0(1).
We can achieve a running time that is sublinear in n by observing that

C(l, n, b)== max {C(l, m, b-y)+ C(m+ 1, n, y)}
O~y,,;,b

for any m E { l, ... , n - I}. It is of interest to note that this more general recursion
was proposed in [Bellman & Dreyfus 1962] in the context of parallel computations.
If we choose m == n - l, the previous recursion results as a special case. If we choose
m == n/2, then we get another dynamic programming algorithm for the knapsack
problem (where it is assumed that n is a power of 2):

An inrroduction to parallelism in combinatorial optimization

Algorithm KS2
par [l ::sj ::s n} par [O::sz::s aj] C(j, j, z) +- 0,

[ajszsb]C(j,j, z)+-cj;
for /+-1 to logn do

k+-21,

par [O:Sj<n/k] par [O:Sz:Sb]C(jk+ 1,jk+k, z)
+-maxosysz {C(jk+ l,jk+fk, z-y) + C(jk+ tk+ 1,jk+ k,y)}.

153

The algorithm requires O(nb2) time on a single processor and O(log n log b) time on
O(nb2 /log b) processors. While the parallel running time is probably the best one
can hope for (it might be called 'pseudopolylogarithmic'), the number of processors
is huge. This number can be reduced by a factor of log n log b by application of the
first algorithm to produce starting solutions for the second algorithm. The modified
algorithm has three phases:

(i) Separate the n items into g groups of nlg items each.
(ii) Apply Algorithm KSl to each group, in parallel: O(n/g) time, O(gb)

processors.
(iii) Apply Algorithm KS2, starting with g groups rather than with n items:

O(log g log b) time, O(gb2 /log b) processors.
We now set g= f nl(logn logb}l to arrive at an algorithm that still requires

O(log n log b) time but using 'only' O(nb2!(log n (log b)2)) processors.

Example 15. Traveling salesman [Pruul 1975). Given a complete graph with n ver­
tices and a weight for each edge, one wishes to find a Hamiltonian cycle (i.e., a cycle
passing through each vertex exactly once) of minimum total weight.

{a) Sequential search; node t is selected at time t.

(b) Parallel search by three p~rs;
node 1 Ip is selected at time t by processor p .

Fig. 10. Depth first tree search.

154 G.A.P. Kindervater, J.K. Lenstra

A traditional branch and bound method for the solution of this .A19ll-hard problem
uses a bounding mechanism based on the linear assignment relaxation, a branching
rule based on subtour elimination, and a strategy for selecting new nodes for ex­
amination based on depth first tree search. The details are of no concern here and
can be found in [Lawler, Lenstra, Rinnooy Kan & Shmoys 1985]. Fig. IO(a) shows
a search tree in which the nodes have been labeled in order of examination.

Pruul designed a parallel version of this method for an asynchronous MIMD
machine. Each processor performs its own depth first search; when it encounters a
node that has already been selected by another processor, it selects in the subtree
rooted by that node an unexamined node at the highest level. Fig. lO(b) illustrates
the process.

The lack of parallel hardware forced Pruul to simulate the algorithm on a sequen­
tial computer. An empirical analysis for ten 25-vertex problems yielded average
speedups that were greater than the number of processors. This may be confusing
at first sight, but the explanation is simple and lies outside the area of parallel com­
puting. The simulated parallel algorithm is nothing but a sequential algorithm that
is based on a mixture of depth first and breadth first tree search. Such complex
strategies have not yet been explored in any detail and might be quite powerful.

References

R.E. Bellman (1957), Dynamic Programming {Princeton University Press, Princeton, NJ).
R.E. Bellman and S.E. Dreyfus (1962), Applied Dynamic Programming (Princeton University Press,

Princeton, NJ).
J.L. Bentley (1980). A parallel algorithm for constructing minimum spanning trees, J. Algorithms I,

51-59.
J.L. Bentley and H.T. Kung (1979), A tree machine for searching problems, Proc. 1979 Internat. Conf.

Parallel Processing, 257-266.
F.W. Burton, M.M. Huntbach, G.P. McKeown and V.J. Rayward-Smith (1983), Parallelism in branch­

and-bound algorithms, Report CSA/3/1983, University of East Anglia, Norwich.
J. Casti, M. Richardson and R. Larson (1973), Dynamic programming and parallel computers, J. Optim.

Theory .Appl. 12, 423-438.
A.K. Chandra, D.C. Kozen and L.J. Stockmeyer (1981), Alternation, J. Assoc. Comput. Match. 28,

114-133.
S.A. Cook (1974). An observation on time-storage trade off, J. Comput. System Sci. 9, 308-316.
S.A. Cook (1981), Towards a complexity theory of synchronous parallel computation, Enseign. Math.

(2) 27, 99-124.
E. Dekel, D. Nassimi and S. Sahni (1981), Parallel matrix and graph algorithms, SIAM J. Comput. 10,

657-675.
E. Dekel and S. Sahni (1983a), Binary trees and parallel scheduling algorithms, IEEE Trans. Comput.

32, 307-315.
E. Dekel and s. Sahni (1983b), Parallel scheduling algorithms, Oper. Res. 31, 24-49.
E.W. Dijkstra (1959), A note on two problems in connexion with graphs, Numer. Math. l, 269-271.
D. Dobkin, R.J. Lipton and S. Reiss {1979), Linear programming is log-space hard for P, Inform. Pro-

cess. Lett. 8, 96-97.
J. Edmonds and R.M. Karp (1972), Theoretical improvements in algorithmic efficiency for network flow

problems, J. Assoc. Comput. Mach. 19, 248-264.

An introduction to parallelism in combinatorial optimization 155

0.1. El-Dessouki and W.H. Huen (1980), Distributed enumeration on between computers, IEEE Trans.
Comput. 29, 818-825. Note: in the title, read 'network' for 'between'.

M.J. Flynn (1966), Very high-speed computing systems, Proc. IEEE 54, 1901-1909.
M.R. Garey and D.S. Johnson (1979), Computers and Intractability: A Guide to the Theory of NP­

Completeness (Freeman, San Francisco).
L.M. Goldschlager (1977), The monotone and planar circuit value problems are Jog space complete for

P, SIGACT News 9.2, 25-29.
L.M. Goldschlager (1982), A universal connection pattern for parallel computers, J. Assoc. Comput.

Mach. 29, 1073-1086.
LM. Goldschlager, R.A. Shaw and J. Staples (1982), The maximum flow problem is log space complete

for P, Theoret. Comput. Sci. 21, 105-111.
L.J. Guibas, H.T. Kung and C.D. Thompson (1979), Direct VLSI implementation of combinatorial

algorithms, Caltech Conf. VLSI, 509-525.
U.1. Gupta, D.T. Lee and J.Y.-T. Leung (1979), An optimal solution for the channel-assignment prob­

lem, IEEE Trans. Comput. 28, 807-810.
D.B. Johnson and S.M. Venkatesan (1982), Parallel algorithms for minimum cuts and maximum flows

in planar networks (preliminary version), Proc. 23rd Annual IEEE Symp. Foundations of Computer
Science, 244-254.

D.S. Johnson (1983), The NP-completeness column: an ongoing guide; seventh edition, J. Algorithms
4, 189-203.

R.M. Karp, E. Upfal and A. Wigderson (1985), Constructing a perfect matching is in Random NC, Proc.
l7th ACM Symp. Theory of Computing, 22-32.

LG. Khachian (1979), A polynomial algorithm in linear programming, Soviet Math. Dok!. 20, 191-194.
G.A.P. Kindervater and J.K. Lenstra (1985), Parallel algorithms, in: M. O'hEigeartaigh, J.K. Lenstra

and A.H.G. Rinnooy Kan, eds., Combinatorial Optimization: Annotated Bibliographies (Wiley,
Chichester), Ch. 8.

R.E. Ladner (1975), The circuit value problem is log space complete for P, SlGACT News 7 .1, 18-20.
T.-H. Lai and S. Sahni (1984), Anomalies in parallel branch-and-bound algorithms, Comm. ACM 27,

594-602.
E.L. Lawler (1976), Combinatorial Optimization: Networks and Matroids (Holt, Rinehart and Winston,

New York).
E.L. Lawler, J.K. Lenstra, A.H.G. Rinnooy Kan and D.B. Shmoys (eds.) (1985), The Traveling

Salesman Problem: A Guided Tour of Combinatorial Optimization (Wiley, Chichester).
R. McNaughton (1959), Scheduling with deadlines and loss functions, Management Sci. 6, 1-12.
N. Megiddo (1982), Poly-log parallel algorithms for LP with an application to exploding flying objects.

Unpublished manuscript.
D.E. Muller and F.P. Preparata (1975), Bounds to complexities of networks for sorting and for swit­

ching, J. Assoc. Comput. Mach. 22, 195-201.
F.P. Preparataand J. Vuillemin (1981), The cube-connected cycles: a versatile network for parallel com­

putation, Comm. ACM 24, 300-309.
R.C. Prim (1957), Shortest connection networks and some generalizations, Bell System Tech. J. 36

1389-1401.
E.A. Pruul (1975), Parallel processing and a branch-and-bound algorithm, M.Sc. thesis, Cornell Univer­

sity, Ithaca, NY.
J. T. Schwartz (1980), Ultracomputers, ACM Trans. Programming Languages and Systems 2, 484-521.
H.J. Siegel (1977), Analysis techniques for SIMD machine interconnection networks and the effects of

processor address masks, IEEE Trans. Comput. 26, 153-161.
H.J. Siegel (1979), A model of SIMD machines and a comparison of various interconnection networks,

IEEE Trans. Comput. 28, 907-917.
J.S. Squire and S.M. Palais (1%3), Programming and design considerations of a highly parallel com­

puter, Proc. AFlPS Spring Joint Computer Conf. 23, 395-400.
H.S. Stone (1971), Parallel processing with the perfect shuffle, IEEE Trans. Comput. 20, 153-161.

156 G.A.P. Kindervater, J.K. Lenstra

S.H. Unger (1958), A computer oriented toward spatial problems, Proc. IRE 46, 1744-1750.
L.G. Valiant (1982), Reducibility by algebraic projections, Enseign. Math. (2) 28, 253-268.
P. van Emde Boas (1985), The second machine class: models of parallelism, in: J. van Leeuwen and J .K.

Lenstra, eds., Parallel Computers and Computations, CWI Syllabus 9, Centre for Mathematics and
Computer Science, Amsterdam. 133-161.

