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This is a tutorial introduction to the literature on parallel computers and algorithms that is rele­
vant for combinatorial optimization. We briefly discuss theoretical as well as realistic machine 
models and the complexity theory for parallel computations. Some examples of polylog parallel 
algorithms and log space completeness results for .<1' are given, and the use of parallelism in 
enumerative methods is reviewed. 
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shortest paths, scheduling, log space completeness for =~. linear programming, dynamic program­
ming, knapsack, branch and bound, traveling salesman. 

Parallel computing is rece1vmg a rapidly increasing amount of attention. In 
theory, a collection of processors that operate in parallel can achieve substantial 
speedups. In practice, technological developments are leading to the actual con­
struction of such devices at low cost. Given the inherent limitations of traditional 
sequential computers, these prospects appear to be very stimulating for researchers 
interested in the design and analysis of combinatorial algorithms. 

In this paper, we attempt to give a tutorial introduction to the literature on 
parallel computers and algorithms that is relevant for the area of combinatorial op­
timization. For a more complete survey which is reasonably up to date until July 
1983, we refer to our annotated bibliography [Kindervater & Lenstra 1985). 

The organization of the paper is as follows. 
Section 1 is concerned with machine models designed for parallel computations. 

Theoretical as well as practical models are described. While in many theoretical 
models the processors communicate through a common memory without delay, in 
more realistic models the communication is achieved through a specific interconnec· 
tion network. Such networks are illustrated on the problems of matrix multiplica· 
tion, determining a transitive closure, and finding a minimum spanning tree. In late1 
sections, we will restrict ourselves to theoretical models, which can usually be 
simulated fairly efficiently by models with a specific interconnection network. 

Section 2 deals with the complexity theory for parallel computations. Given the 
basic distinction between membership of & and completeness for .Al:i1J in sequentia: 
computations, we consider the speedups possible due to the introduction o: 
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parallelism. Within the class fJ', this leads to a distinction between 'very easy' prob­
lems, which are solvable in polylogarithmic parallel time, and the 'not so easy' ones, 
which are log space complete for fJ!. 

Section 3 gives examples of polylog parallel algorithms for elementary problems 
like finding the maximum and sorting, for finding shortest paths, and for two prob­
lems from scheduling theory. 

Section 4 discusses the log space completeness for .if> of the linear programming 
problem and the maximum network flow problem. 

Section 5 reviews the use of parallelism in enumerative methods for A/£P-hard 
problems, such as dynamic programming for the knapsack problem and branch and 
bound for the traveling salesman problem. 

The reader will not fail to observe that the algorithms presented in this paper do 
not rely on the sophisticated refinements for sequential algorithms developed in the 
past two decades but go back to the simple and explicit basic principles of com­
binatorial computing. In that sense (and recent, more advanced achievements not­
withstanding), parallelism in combinatorial optimization is still in its infancy and 
holds many promises for a further development in the near future. 

1. Machine models 

Many architectures for parallel computations have been proposed in the 
literature. Some of these machines actually exist or are being built. Other models 
are useful for the theoretical design and analysis of parallel algorithms, while their 
realization is not feasible due to physical limitations. 

The most widely used classification of parallel computers is due to [Flynn 1966]. 
Flynn distinguishes four classes of machines (cf. Fig. 1). 

(I) SISD (single instruction stream, single data stream). One instruction is per­
formed at a time, on one set of data. This class contains the traditional sequential 
computers. 

(2) SIMD (single instruction stream, multiple data stream). One type of instruc­
tion is performed at a time, possibly on different data. An enable/disable mask 
selects the processing elements that are allowed to perform the operation on their 
data. The ICL/DAP (Distributed Array Processor) belongs to this class. 

(3) MISD (multiple instruction stream, single data stream). Different instructions 
on the same data can be performed at a time. This class has received very little atten­
tion so far. 

(4) MIMD (multiple instruction stream, multiple data stream). Different instruc­
tions on different data can be performed at a time. There are two types of MIMD 
computers: the processors of a synchronized MIMD machine perform each suc­
cessive set of instructions simultaneously; the processors of an asynchronous MIMD 
machine run independently and wait only if information from other processors is 
needed. The Denelcor/HEP (Heterogeneous Element Processor) is an example of 
an asynchronous MIMD machine. 
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Fig. I. The classification of Flynn. 
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If one considers the many types of algorithms that are suitable for execution on 
parallel computers, then both ends of the spectrum can be characterized in a way 
that resembles the above distinction between the two types of MIMD machines. 
Systolic algorithms lead to highly synchronized computations, where the processing 
elements act rhythmically on regular streams of data passing through the (SIMD or 
synchronized MIMD) machine. Typical examples are the matrix multiplication 
algorithm introduced later in this section and the dynamic programming recursions 
in Section 5. Distributed algorithms lead to asynchronous processes, in which the 
processors perform their own local computations and communicate by sending 
messages every now and then. Branch and bound (see Section 5) lends itself to this 
approach. 

Flynn's classification is not concerned with the way in which information is 
transmitted between the processors. This is dealt with by Schwartz [Schwartz 1980], 
who distinguishes between paracomputers and ultracomputers. 

In a paracomputer, the processors have simultaneous access to a shared memory, 
which allows for communication between any two processors in constant time. A 
further distinction is based on the way in which shared memory computers handle 
read and write conflicts, which occur when several processors try to read from or 
to write into the same memory location at the same time. Paracomputers are of 
great theoretical interest, but current technology prohibits their realization. 

In an ultracomputer, the processors communicate through a fixed interconnection 
network. Such a network can be viewed as a graph with vertices corresponding to 
processors and (undirected) edges or (directed) arcs to interconnections. Two 
parameters of the graph are important in this context: the maximum vertex degree 
d 1, which should be bounded by a constant on grounds of practical feasibility, and 
the maximum path length d2 (the 'diameter'), which should grow at most loga­
rithmically in the number p of processors to ensure fast communication. 
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(i) Mesh connected 
network, q "' 4. 

(iv) Perfect shuffle 
nelwork, d = 3. 
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(ii ) Cube connected 
network, d = 3. 

(iii) Cube connected cycles 
network, d = 3. 

( v ) Binary trees 
network. d = 3. 

Fig. 2. Five interconnection networks. 

Of the many interconnection networks that have been proposed, five are briefly 
described below. They are illustrated in Fig. 2. 

(i) Two-dimensional mesh connected network [Unger 1958]. Each processor is 
identified with an ordered pair (i,j) (i,j= 1, ... ,q), and processor (i,j) is connected 
to processors (i ± 1, j) and (i, j ± 1), provided they exist. Note that d1=4 and 
di= 2(q- l) = EJ(Vp). 

(ii) Cube connected network [Squire & Palais 1963]. This can be seen as a d­
dimensional hypercube with 2d processors at the vertices and interconnections 
along the edges. Note that d1 =di= d= logp. (All logarithms in this paper have 
base 2.) 

(iii) Cube connected cycles network [Preparata & Vuillemin 1981). This is a cube 
connected network with each of the 2d processors replaced by a cyclicly connected 
set of d processors; each of them has two cycle connections and one edge connec­
tion. This yields d1=3 and di= E>(logp). 

(iv) Perfect shuffle network {Stone 1971]. There are p = 2d processors with inter­
connections (i, 2i- l), (i+p/2, 2i), (2i- l, 2i) for i= 1, ... ,p/2. The first two types 
of interconnections imitate a perfect shuffle of a deck of cards. Here, d1=3 and 
d2 =2d- I =EJ(logp). 

(v) Binary trees network [Bentley & Kung 1979]. There are p=3 · zd-2 pro­
cessors, interconnected by two binary trees with common leaves. The 2d processors 
corresponding to these leaves perform the actual computations. The other 2d - 1 
processors in the first tree (an out-tree) send the data down to their descendants, 
and those in the second tree (an in-tree) combine the results from their ancestors. 
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An additional 'master processor' controls the network by providing the input for 
one root and receiving the output from the other. Note that d 1 = 3 and 
di=E>Oogp). 

All these networks can simulate each other quite efficiently; see [Siegel 1977, 
1979] for details. Still, it appears that the cube connected cycles and perfect shuffle 
networks are reasonably versatile, while the mesh connected and binary trees net­
works have been designed for more restricted types of computations. Their suitabili­
ty for their limited purpose will be demonstrated on some examples below. 

The quality of the parallelization of an algorithm will be judged on the resulting 
speedup, which is the running time of the best sequential implementation of the 
algorithm divided by the running time of the parallel implementation using p pro­
cessors, and the processor utilization, which is the speedup divided by p. The best 
one can hope to achieve is a speedup of p and a processor utilization of 1. Note that 
these concepts are defined here relative to a given algorithm, irrespective of the 
possible existence of more efficient sequential algorithms for the problem at hand. 

B: h44 

b43 b34 

b42 b33 b24 

b32 b23 b14 

b22 b13 

b12 

A: 

-
Fig. 3. Matrix multiplication on a mesh connected network. 

Example 1. Matrix multiplication. Two n x n matrices A= (ail) and B=(bu) can be 
multiplied in O(n) time on an n x n mesh connected network. The basic idea is the 
use of the skewed input scheme illustrated in Fig. 3. At each step of the computa­
tion, matrix A makes one step to the right, matrix B goes one step down, and each 
processing element (i,j) multiplies its current values aik and bkj and adds the result 
into its accumulator (which starts at 0). It is easily verified that after 2n - 1 stages 
processor (i, j) contains the required value l:k a;k bkj and that the procedure is best 
possible in terms of speedup and processor utilization. This is a typical example of 
a systolic algorithm performed on an SIMD machine and suitable for VLSI 
implementation. 



140 G.A.P. Kindervater, J.K. Lenstra 

Example 2. Transitive closure [Guibas, Kung & Thompson 1979]. The transitive 
closure of a directed graph G has an arc (i,j) if and only if G has a path from i 
to j. If G has n vertices, the algorithm from Example 1 can be applied to find the 
transitive closure in O(n) time using n2 mesh connected processors. Starting with A 
given by the adjacency matrix of G (i.e., au= l if G has an arc (i,j) and aii=O 
otherwise) and B::::A, one executes the matrix multiplication algorithm three times, 
with the modifications that addition is replaced by maximization and that any ele­
ment au or bij that passes through processor (i,j) is updated with the value of the 
accumulator. A correctness proof of this procedure can be found in the above 
reference. 

Example 3. Membership testing. Given a set S of n elements and an element e, one 
can test whether eeS in O(logn) time on a binary trees network with d= flogn l 
Denote the processors corresponding to the common leaves by P; (i = 1, ... , 2d) and 
suppose that ~stores the ith element e; of S (i::::;n). It takes d steps for the pro­
cessors in the top tree to send e down, one step for the P; 's to check whether e; = e, 
and d steps for the processors in the bottom tree to compute the disjunction of the 
results. 

As an extension, one can test the membership of S form elements e<ll, ••. , e<m> in 
O(m +log n) time by pipelining the flow of information through the network. As 
soon as e<IJ leaves the first processor, e<2> is sent to it; and, in general, at each step 
all data are going down one level. 

By asking the processors in the bottom tree to do a bit more than computing 
logical disjunctions, one can use the same model to find the minimum of n elements 
and to compute the rank of a given element in O(logn) time. We leave details to 
the reader. 

Example 4. Minimum spanning tree [Bentley 1980]. Given a complete undirected 
graph G with vertex set {l, ... ,n} and a length cu for each edge {i,j}, a spanning 
tree of G of minimum total length can be found in O(n2) time by an algorithm 
from [Prim 1957; Dijkstra 1959]. The algorithm is based on the following principle. 
Let T( V) be the collexion of edges in a minimum spanning tree of the subgraph of 
G induced by the subset V of vertices. If i*i; V and j*e V are such that 
c;•r== min;i; v,je v{c;i}, then T( VU {i*}) = T( V) U {{i*,j*} }. 

The algorithm starts with T( { 1}) = 0. At each iteration, a minimum spanning tree 
on a certain vertex set V with edge set T( V) has been constructed and, for each i E V, 
a 'closest tree vertex' j; e V and a corresponding distance I; are known, i.e., 
l;=cu;=minje v{cu}· One selects an i*~ V for which I;•= rnin;• v{I; }, adds i* to Ji 
and {i*,j;•} to T(V), and updates the values j; and I; for the remaining vertices 
i E V. There are n - 1 iterations, each requiring O(n) time. 

It is not hard to implement the algorithm on a binary trees network with 
d = flog n 1- The master processor stores the set T of spanning tree edges. Processor 
P; keeps track of j; and./; and is able to compute any C;. in constant time. Each 
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command that is sent down the tree is executed only by those P; 's that are turned 
on. 

We initialize by setting T = 0 and, for i = 2, ... , n, turning on P; and setting j; = 1 
and /i = c;1 • In each of the n - 1 iterations, we first apply the minimum-finding pro­
cedure to determine i* and add { i"', j;•} to T; we next send i* down in order to turn 
off P;• forever (since now i"'e V) and to turn off each P; with l;~C;;• temporarily 
for the rest of this iteration (since no update is necessary); and we finally instruct 
all remaining P;'s to set j; = i* and I;= cii•. 

Since each iteration takes O(log n) time, this parallel version of the algorithm has 
a running time of O(n logn) using O(n) processors and hence a processor utilization 
of only 0(1/logn). We cannot improve on this by pipelining the loop, since each 
iteration needs information from the previous one. However, we can use a smaller 
network with d= flog(n/logn)l, in which each P; takes care of r1ogn l vertices 
and performs all computations for them sequentially. This modified algorithm still 
runs in O(nlogn) time, but now using O(n/logn) processors with a processor 
utilization of 0(1). 

In the remaining sections, we will restrict ourselves to the paracomputer model, 
which lends itself better to complexity considerations and to the explanation of 
parallel algorithms. The implementation of such algorithms on a specific ultracom­
puter model is usually straightforward. 

2. Complexity theory 

The purpose of this section is to present an informal introduction to those con­
cepts from the complexity theory for parallel computing that may have some impact 
on the theory of combinatorial optimization. The interested reader is referred to 
[Cook 1981] for a more thorough exposition and to [Johnson 1983, Section 2] for 
a very readable review (on which this section is largely based). 

Central to this area is a hypothesis known as the parallel computation thesis 
[Chandra, Kozen & Stockmeyer 1981; Goldschlager 1982]: time bounded parallel 
machines are polynomially related to space bounded sequential machines. That is, 
for any function T of the problem size n, the class of problems solvable by a 
machine with unbounded parallelism in time T(n)0 0l (i.e., polynomial in T(n)) is 
equal to the class of problems solvable by a sequential machine in space T(n}0 0l. 

This thesis is a theorem for several 'reasonable' parallel machine models and several 
'well-behaved' time bounds; see [Van Emde Boas 1985] for a survey. 

The parallel computation thesis holds, for example, in the case that the machine 
model is a PRAM (Parallel Random Access Machine) and T(n)=n°<1> (i.e., a 
polynomial function of problem size). The PRAM is a synchronized machine with 
an unbounded number of processors and a shared memory, which allows 
simultaneous reads from the same memory location but disallows simultaneous 
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writes into the same memory location. The computation starts with one processor 
activated; at any step, an active processor can do a standard operation or activate 
another processor; and the computation stops when the initial processor halts. 

According to the parallel computation thesis, the class of problems solvable by 
a PRAM in polynomial time is equal to :?'SPACE, the class of problems solvable by 
a sequential machine in polynomial space. In view of the apparent difficulty of 
many problems in .'1'SPACE (such as the :3'>SPACE-complete and .At:?-complete ones), 
the PRAM is an extremely powerful model. It is of interest to see how it affects the 
complexity of the problems in i/J, which are solvable by a sequential machine in 
polynomial time. 

It turns out that many problems in .':P can be solved in polylog parallel time 
(log n)00 >, i.e., in time that is polynomially bounded in the logarithm of the pro­
blem size n. Some examples are given in Section 3; other, more complicated, ex­
amples are finding a maximum flow in a planar graph [Johnson & Venkatesan 1982] 
and linear programming with a fixed number of variables [Megiddo 1982). By the 
parallel computation thesis, these problems would form the class POLYLOGSPACE of 
problems solvable in polylog sequential space. They can be considered to be among 
the easiest problems in £!', in the sense that the influence of problem size on solution 
time has been limited to a minimum. No single processor needs to have detailed 
knowledge of the entire problem instance. (It should be noted here that a further 
reduction to sublogarithmic solution time is generally impossible. One reason for 
this is that a PRAM needs O(log n) time to activate n processors; a similar reason 
is that in any realistic model of parallelism a constant upper bound on the maximum 
'fan out' d1 implies a logarithmic lower bound on the minimum 'communication 
time' d2 .) 

On the other hand, rf' contains problems that are unlikely to admit solution in 
polylog parallel time. These are the problems that have been shown to be log space 
complete for ff', i.e., that belong to.~ and to which any other problem in r:I is reduci­
ble by a transformation using logarithmic work space. Examples will be discussed 
in Section 4; they include general linear programming and finding a maximum flow 
in an arbitrary graph. If any such problem would belong to POLYLOGSPACE, then it 
would follow that Y'~POLYLOGSPACE, which is not believed to be true. Hence, their 
solution in polylog sequential space or, equivalently, polylog parallel time is not ex­
pected either. Any solution method for these hardest problems in .o/' is likely to re­
quire superlogarithmic time and is, loosely speaking, probably 'inherently sequen­
tial' in nature. 

We have thus arrived at a distinction within ? between the 'very easy' problems, 
which can be solved in polylog parallel time, and the 'not so easy' ones, for which 
a dramatic speedup due to parallelism is unlikely. 

The picture of the PRAM model as sketched above is in need of some qualifica­
tion. The model is theoretically very useful, but its unbounded parallelism is hardly 
realistic. The reader will have no difficulty in verifying that a PRAM is able to ac­
tivate a superpolynomial number of processors in subpolynomial time. If a 
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polynomial time bound is considered then certainly a bound 
on the number of processors should be imposed. It is a trivial observation, however, 
that the class of problems solvable if both bounds are respected is simply equal to 
f. Within this more reasonable model, hard problems remain as hard as they were 

without parallelism. 
Discussions along these lines have led to I.he consideration of simultaneous 

resource bounds and to the definition of new complexity classes. For example, Nick 
(Pippenger)'s Class . t contains all problems solvable in polylog parallel time on 
a polynomial number of processors. and Steve (Cook) 's Class YV contains all prob­
lems solvable in polynomial sequential time and polylog space. Some sort of extend­
ed parallel computation thesis might suggest that . i =Ye. This is a major un­
resolved issue in complexity theory, and outside the scope of this introduction. We 
refer to !Johnson 1983, Section 21 for further details and more references. 

3. Polyiog parallel algorithms 

We will now describe polylog parallel algorithms for six problems. Examples 5, 
6 and 7 deal with basic operations on a set of numbers, Example 8 discusses the 
shortest paths problem, and Examples 9 and 10 are concerned with the scheduling 
of a set of jobs on identical parallel machines. Other problems that are solvable in 
polylog parallel time have been mentioned in Section 2 and will return in Section 4. 

The algorithms will be designed to run on an SIMD machine with a shared 
memory. Simultaneous reads are permitted and simultaneous writes are prohibited; 
the former assumption is not essential but simplifies the exposition. We note that 
the polylog parallel algorithms referred to in this paper require a polynomial 
number of processors, so that the problems in question belong to . ~ ·~·. 

ln the PIDGIN ALGOL procedures in this section, we write 

par (a:Si:Sz] s, 

to denote that the statements s, are to be executed in parallel for all values of the 
index i in the given range. 

Example 5. Maximum finding. Given n numbers, one wishes to find their max­
imum. We assume, for convenience, that n = 2m for some integer m and that the 
numbers are given by a", an+ i. ... , az,, _ 1 • Consider the following procedure: 

for I <- m - I downto 0 do 
par [i:S}:S i+ 1 - l] a.i ..... max{a4, a~+ i}. 

The computation is illustrated by means of a binary tree in Fig. 4. At step /, the 
values corresponding to the nodes at level I of the tree are calculated. At the end, 
a 1 is equal to the desired maximum. 
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I= 0 

I= I 

/=2 

I= 3 

Fig. 4. Maximum finding: an instance with n"' 8. 

The algorithm requires O(log n) time and n/2 processors. We can improve on this 
by applying a device similar to the one used in the last paragraph of Example 4: each 
processor has log n data assigned to it and computes their maximum sequentially, 
before the above procedure is executed. The resulting algorithm still runs in O(logn) 
time, but now using only r n/logn l processors with a processor utilization of 0(1). 

I= 0 a1 bi 

36 36 --
1=1 

I= 2 

I= 3 

Fig. 5. Partial sums: an instance with n = 8. 

Example 6. Partial sums [Dekel & Sahni 1983a]. Given n numbers 
am an+l•··.,a2n-I with n=2m, one wishes to find the partial sums an+··· +an+J 
for j = 0, ... , n - 1. Consider the following procedure: 

for I+- m - I downto 0 do 
par [21 sj::::;; 2' + 1 - I] ai +- a2; + a2j + 1 ; 

b1 +-ai; 
for I+- I to m do 

par [21sj::::;;2'+ 1 - I] bi+- if j odd then bu- 1)!2 else bJl2 - ai + 1 • 

The computation is illustrated in Fig. 5. In the first phase, represented by the solid 
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arrows, the sum of the a/s is calculated in the same way as their maximum was 
calculated in Example 5. Note that the a-value corresponding to a non-leaf node is 
set equal to the sum of all a-values corresponding to the leaves descending from that 
node. In the second phase, represented by the dotted arrows, each parent node sends 
a b-value (starting with b1 = ai) to its children: the right child receives the same 
value, the left one receives that value minus the a-value of his brother. The b-value 
of a certain node is therefore equal to the sum of all a-values of the nodes of the 
same generation, except those with a higher index. This implies, in particular, that 
at the end we have bn+J=an+ ··· +an+j for )=0, ... ,n-1. 

The algorithm requires O(logn) time and n processors. As before, this can be im­
proved to O(log n) time and O(n/log n) processors. 

Example 7. Sorting [Muller & Preparata 1975]. Given n numbers ai. .. .,an, one 
wishes to renumber them such that a 1 s ··· s an. We assume, for simplicity, that 
ai * aJ if i =F j. Consider the following procedure: 

par [l si,jsn] e;1+- if a;SaJ then 1 else O; 
par [I sj s n] n; +- sum{e;; I I :5 i sn }; 
par [1:5):5n] an1 +--a1 . 

The algorithm is based on enumeration sort: the position n1 in which ai should be 
placed is calculated by counting the a;' s that are no greater than a1 . There are three 
phases: 

(i) computation of the relative ranks l!u= n 2 processors, 0(1) time - or 
l n2 /log n l processors, O(log n) time; 

(ii) computation of the positions n1: n l n/logn 1 processors, O(log n) time (by 

application of the first phase of the algorithm of Example 6); 
(iii) permutation: n processors, 0(1) time. 
The algorithm requires O(log n) time and O(n 2 /log n) processors. Simultaneous 

reads occur in the first phase, but there is a way to avoid them within the same time 
and processor bounds. As sequential enumeration sort takes 0(n2) time, the pro­
cessor utilization is 0(1). 

Example 8. Shortest paths {Dekel, Nassimi & Sahni 1981]. Given a complete 
directed graph with vertex set { 1, ... , n} and a length cu for each arc (i, j), one 
wishes to find the shortest path lengths between all pairs of vertices. In {Lawler 
1976] an algorithm is given which requires O(n3 logn) time. It is based on matrix 
multiplication. Let dijl denote the length of a shortest path from vertex i to 
vertexj, containing no more than I arcs. Since a path from vertex i to vertexj con· 
sisting of at most 2/ arcs can be split into two paths of no more than I arcs each, 
we have that dh2'l =minke { 1, ...• n} {di~)+ dk?}. Taking into account that a shortest 
path contains at most n - I arcs, we obtain the following algorithm: 
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par fl si,JsnJ db1>-cu; 
for m +- 1 to flog n l do 

/+- 2m' 
par [Is i,Jsn] diy> +-min{dir2>+ dfj2> /I sksn}. 

Application of the routine of Example 5 with maximization replaced by minimiza­
tion yields an algorithm which requires O(log2 n) time and O(n3/logn) processors, 
with a processor utilization of 0(1). 

Example 9. Preemptive scheduling [Dekel & Sahni 1983b]. Given m machines M; 
(i =I, ... , m) and n jobs~. each with a processing time Pi (j =I, ... , n), one wishes 
to find a preemptive schedule of minimum length. A preemptive schedule assigns 
to each ~ a number of triples (M;, s, t ), where 1 ::Sis m and 0 ::S s ::St, indicating that 
~is to be processed by M; from times to time t. A preemptive schedule is feasible 
if the processing intervals on M; are nonoverlapping for all i, and the processing in­
tervals of~ are nonoverlapping and have total length Pi for all}. It is optimal if 
the maximum completion time of the jobs is minimum. 

j: 1 2 3 4 5 Mi '· J2 

P1= I 2 3 4 5 M2 '3 J4 
t• = 5 M1 Js 

0 2 3 4 s 

Fig. 6. Preemptive scheduling: an instance with m=3 and n=S. 

An optimal schedule can be found in O(n) time by the classical wrap around rule 
from [McNaughton 1959]. The algorithm first computes a value t* which is an ob­
vious lower bound on the minimum schedule length. It then constructs a schedule 
of length t* by considering the jobs in an arbitrary order and scheduling them in 
the m periods (0, t*), carrying over the part of a job that does not fit at the end of 
the period on M; to the beginning of the period on M; + 1 • More formally: 

t*+-max{max{pi/ I ~}:Sn}, sum{pi / l :Sj:Sn}/m }; 
s+-0; i +-1; 
for j +- 1 to n do 

if s+pist* 
then assign (M;,s,s+pi) to~. 

s+-s+pi 
else assign (M;, s, t*) and (M;+ 1, 0, Pi- (t*-s)) to ~, 

s+-Pi-(t*-s), i+- i +I. 

An example is given in Fig. 6. There are two global parameters that are updated se-
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quentially as the job index j increases: the starting times and the machine index i 
of J.i. We can calculate all starting times and machine indices simultaneously in 
logarithmic time, using the parallel procedures for finding the maximum and the 
partial sums from Examples 5 and 6 as subroutines: 

t* <- max{ max{p111 :5j:5 n}, sum{p1 It :5j :5n }Im}; 
par [ 1 ::sj ::5n1 q1 <- sum {Pk I l ::5 k :5j - 1}; 
par [l :5j:5n] 

s1 +--q1mod t*, i1<- Lq/t* J + 1, 
if s1+ P1:5 t* 
then assign (M;1 , s1, sJ + p1) to '1 
else assign (M;1,s1, t*) and (M;j+l• 0,p1-(t*-sj)) to 11 . 

This algorithm can be implemented to require O(log n) time and O(n/log n) pro­
cessors with a processor utilization of 0(1). 

Example 10. Scheduling fixed jobs [Dekel & Sahni 1983b). Given n jobs J.i, each 
with a starting time s1 and a completion time t1 (j=1, ... , n), one wishes to find a 
schedule on a minimum number of machines. A schedule assigns to each ~ a 
machine M;. It is feasible if the processing intervals (s1 , t1 ) on M; are nonoverlapp­
ing for all i; it is optimal if the number of machines that process jobs is minimum. 
The problem is also known as the channel assignment problem: n wires are to be 
laid out between given points in a minimum number of parallel channels, each of 
which can carry at most one wire at any point. 

An optimal schedule can be found in O(n logn) time by the following simple rule. 
First, order the jobs according to nondecreasing starting times. Next, schedule each 
successive job on a machine, giving priority to a machine that has completed 
another job before. It is not hard to see that, at the end, the number of machines 
to which jobs have been assigned is equal to the maximum number of jobs that re­
quire simultaneous processing. This implies optimality of the resulting schedule. 

For a polylog parallel implementation, we need a more detailed sequential 
description of the algorithm [Gupta, Lee & Leung 1979]. We introduce an array u 
of length 2n containing all starting and completion times in nondecreasing order; 
the informal notation 'uk-s/ ('uk- !/) will serve to indicate that the kth element 
of u corresponds to the starting (completion) time of J.i. We also use a stack S of 
idle machines; on top of S is always the machine that has most recently completed 
a job, if such a machine exists. 

sort (s1, t 1, ••• ,sm tn) in nondecreasing order in (u1, ••• , u2n) whereby, 
if t1=sk for somej & k, t1 precedes sk; 

S <-stack of n machines; 
for k +--- 1 to 2n do 

if uk - sJ then take machine from top of S and assign it to J.i, 
if uk - t1 then put machine assigned to J.i on top of S. 
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Fig. 7 iJlustrates the algorithm as well as its parallelization, which is described 
below. There are four phases. 

(i) First, we calculate the number <Jj of machines that are busy directly after the 
start of Jj and the number rj of machines that are busy directly before the comple­
tion of }_j, for j= I, ... ,n: 

sort (s1, tl> •.. , Sn• In) in nondecreasing order in (u1, •• ., u2n) whereby, 
if tj=sk for some j & k, tj precedes sk; 

par [lsks2n] ak+-if uk-sj then l else-I; 
par [l:Sk:S2n] h+-sum{a1 J l::s;/sk}; 
par [I :S ks 2n] 

if uk-si then <Jj+-/Jk> 

if uk-tj then rj+-/Jk+ 1. 

Note that the number of machines we need is equal to max_; { <Jj}. 

(ii) For each }_j, we determine its immediate predecessor J"u> on the same 
machine (if it exists). The stacking mechanism implies that this must be, among the 
Jk satisfying rk = Uj, the one that is completed last before the start of~; if no such 
job exists, then it is convenient to take ~ as its own predecessor: 

j: I 2 3 4 5 k: 2 3 4 5 6 7 8 9 10 

sj: 0 I 3 4 7 ~ uk: 0 2 3 4 5 6 7 8 9 
'1= 2 8 5 6 9 t 

ak: I -1 1 1 -1 -1 I -I -1 
aJ: I 2232-{3k: 2 2 3 2 1 2 1 0 
TJ: 2 2 3 2 I 
~ 

'lf(j): I 2 I 4 4 - M 1 

Mi 

M3 

0 2 3 4 5 6 7 8 9 

Fig. 7. Scheduling fixed jobs: an instance with n==5. 

(ii) 

(iii), I = I 

Fig. 8. Scheduling fixed jobs: finding the first preceding job on the same machine. 
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par [l :Sj:Sn) 

find k such that rk = aj & tk= max{til t1:Ssj, r 1= aj }, 
n(j) +-- if k exists then k else j. 
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(iii) For each J.;, we now turn Jrr(j) into its first predecessor on the same machine. 
This is done by simultaneously collapsing the chains formed by the arcs (j, n(j)) in 
a logarithmic number of steps (cf. Fig. 8): 

for I,._ l to flog n l do par [1 :Sj :Sn] n(j) +-- n(n(j)). 

(iv) Finally, we use the n(j)'s to perform the actual machine assignments: 

par { 1 s;j :Sn] assign M0 «,l to J.; . 

Using the maximum, partial sums and sorting routines from Examples 5, 6 and 
7, we can implement this algorithm to require O(log n) time and O(n2 /log n) 
processors. 

4. Log space completeness for 9 

The first log space complete problem in 9 was identified by Cook [Cook 1974]. 
It involves the solvability of a path system and is proved log space complete by a 
'master reduction' in the same spirit as Cook's JV9'-completeness proof for the 
satisfiability problem. We will not define the path problem here and prefer to start 
from a different point. 

Fig. 9. A logical circuit. 

Example 11. Circuit value [Ladner 1975; Goldschlager 1977]. Given a logical circuit 
consisting of input gates, AND gates, OR gates, NOT gates, and a single output gate, 
and given a truth value for each input, is the output TRUE of FALSE'.? Cf. Fig. 9. 

The circuit value problem is trivially in 9. Ladner indicated how to simulate any 
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polynomial time deterministic Turing machine by a combinatorial circuit with only 
AND and NOT gates in logarithmic work space. It follows that the problem is log 
space complete for !?". 

Goldschlager extended this result to the cases of monotone circuits, which have 
only AND and OR gates, and planar circuits, which have a cross free planar embed­
ding, by giving log space transformations from the circuit value problem. 

Example 12. Linear programming [Dobkin, Lipton & Reiss 1979; Valiant 1982). 
Given a finite system of linear equations and inequalities in real variables, does it 
have a feasible solution? 

Linear programming is known to be in 9 [Khachian 1979). Dobkin, Lipton & 
Reiss established log space completeness for 9 of the problem by giving a log space 
transformation from the unit resolution problem, a variant of the satisfiability pro­
blem, that was already known to be log space complete for ? . Valiant gave a more 
straightforward transformation, starting from the circuit value problem. 

The idea is to associate a variable Xj with the jth gate, such that Xj:;:: I if the gate 
produces the value TRUE and Xj=O otherwise. More explicitly, 

if gate j is 
· an input gate with value TRVB, 

· an input gate with value PAI.SB, 

·an AND gate with inputs from gates h and i, 
·a NOT gate with input from gate i, 
·the output gate with input from gate i, 

then we introduce the equations and inequalities 
'Xj= 1, 
·x:;=O, 
·xrs.xh,xrs.x1 ,xi~o. X/C!:.xh +x,.-1, 
'Xj= 1-X;, 

'Xj=X;, Xj= J. 

OR gates may be excluded. We leave it to the reader to verify that each feasible solu­
tion is a 0-1 vector, that there exists a feasible solution if and only if the circuit value 
is TRUE, and that the transformation requires logarithmic work space. 

Simple refinements of this transformation show that linear programming remains 
log space complete for 9 if all coefficients are equal to - 1, 0 or 1, and each row 
and column of the constraint matrix contains at most three entries. 

Example 13. Maximum flow [Goldschlager, Shaw & Staples 1982]. Given a directed 
graph with specified source and sink vertices and with capacities on the arcs, and 
given a value v, does the graph have a flow from source to sink of value at least v? 

The maximum flow problem belongs to {JI [Edmonds & Karp 19721. It was shown 
to be log space complete for .fJJ by a transformation from the monotone circuit value 
problem. The transformation simulates the implications of boolean inputs through 
a circuit with n AND and OR gates by integer flows through a network with the gates 
and an additional source and sink as vertices and with arc capacities of 0(2n). 

We conclude this section by mentioning two related results of a more positive 
nature. 
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(i) The maximum flow problem is solvable in polylog parallel time in the case of 
planar graphs, due to the relation of this case to the shortest path problem [Johnson 
& Venkatesan 1982). 

(ii) The problem is solvable in random polylog parallel time in the case of unit 
capacities and in the more general case that the capacities are encoded in unary. This 
follows, through standard transformations [Lawler 1976), from the recent result 
that the maximum cardinality matching problem is in :Jl.lV't', the class of problems 
solvable by a randomized algorithm in polylog time on a polynomial number of pro­
cessors (Karp, Upfal & Wigderson 1985). The complexity of the maximum cardinali­
ty matching problem with respect to deterministic parallel computations is an open 
question, even for bipartite graphs. 

5. Enumerative methods 

The optimal solution to Jll9l-hard problems is usually found by some form of im­
plicit enumeration of the set of all feasible solutions. In this section we will consider 
the parallelization of the two main types of enumerative methods: dynamic pro­
gramming and branch and bound. We have already seen that, from a worst case 
point of view, intractability and superpolynomiality are unlikely to disappear in any 
reasonable machine model for parallel computations. In a more practical sense, 
parallelism has much to offer to extend the range in which enumerative techniques 
succeed in solving problem instances to optimality. Little work has been done in this 
direction, but we feel that the design and analysis of parallel enumerative methods 
is an important and promising research area. 

Dynamic programming algorithms for combinatorial problems typically perform 
a regular sequence of many highly similar and quite simple instructions. Hence, they 
seem to be suitable for implementation in a systolic fashion on synchronized MIMD 
or even SIMD machines. This has been observed in [Casti, Richardson & Larson 
1973; Guibas, Kung & Thompson 1979) and will be illustrated on the knapsack pro­
blem in Example 14. 

Branch and bound methods generate search trees in which each node has to deal 
with a subset of the solution set. Since the instructions performed at a node very 
much depend on the particular subset associated with that node, it is more ap­
propriate to implement these methods in a distributed fashion on asynchronous 
MIMD machines. An initial analysis of distributed branch and bound, in which the 
processors communicate only to broadcast new solution values or to redistribute the 
remaining work load, is given in [El-Dessouki & Huen 1980). In a sequential branch 
and bound algorithm, the subproblems to be examined are given a priority and from 
among the generated subproblems the one with the highest priority is selected next. 
In a parallel implementation, it depends on the number of processors which sub­
problems are available and thus how the tree is searched. One can construct ex­
amples in which p processors together are slower than a single processor, or more 
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than p times as fast. These anomalies are analyzed in [Burton, Huntbach, McKeown 
& Rayward~Smith 1983; Lai & Sahni 1984] and illustrated on the traveling salesman 
problem in Example 15. 

Example 14. Knapsack. Given n items j, each with a profit c1 and a weight a1 
(j = 1, ... , n), and given a knapsack capacity b, one wishes to find a subset of the 
items of maximum total profit and of total weight at most b. The problem is .A<<?'­
hard [Garey & Johnson 1979}. 

It is convenient to introduce the notation 

C(m, n, b) = max \ I c1 I L ar5. b]. 
S1:;{m, ... ,n} CJeS jeS 

According to Bellman's principle of optimality, one attains the maximum profit 
C(l, n, b) by excluding item n and taking the profit C(l, n - I, b) or by including 
item n and adding Cn to the profit C(l, n - l, b - an). A recursive application of this 
idea gives the following dynamic programming algorithm [Bellman 1957]: 

for z-o to b do C(l, 0, z)-0; 
for j - l to n do 

for z-O to a1- I do C(I,j,z)-C(l,J-I,z), 
for z-a1 to b do C(l,J, z)-max{C(l,j-1, z), C(l,j-1, z-aj)+c1}. 

The algorithm runs in O(nb) time. (Note that this is exponential in the problem size. 
Since it is polynomial in the problem data, it is called 'pseudopolynomial' .) The ob­
vious parallelization is to handle the stages} (O-s;;j:s.n) sequentially and, at stagej, 
to handle the states (l,j, z)(O:::::z-s;; b) in parallel [Casti, Richardson & Larson 1973}: 

Algorithm KSI 
par [0::5z::::::b]C{l, 0, z)-0; 
for j +-- 1 to n do 

par [0::5 z< ai] C(l, j, z) +-- C(l, j- l, z ), 
[ai:::::z-s;;b] C(l, j, z)- max{ C(l, )- I, z), C(l, j-1, z-ai) + c1 }. 

This requires O(n) time and O(b) processors with a processor utilization of 0(1). 
We can achieve a running time that is sublinear in n by observing that 

C(l, n, b)== max {C(l, m, b-y)+ C(m+ 1, n, y)} 
O~y,,;,b 

for any m E { l, ... , n - I}. It is of interest to note that this more general recursion 
was proposed in [Bellman & Dreyfus 1962] in the context of parallel computations. 
If we choose m == n - l, the previous recursion results as a special case. If we choose 
m == n/2, then we get another dynamic programming algorithm for the knapsack 
problem (where it is assumed that n is a power of 2): 
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Algorithm KS2 
par [l ::sj ::s n} par [O::sz::s aj] C(j, j, z) +- 0, 

[ajszsb]C(j,j, z)+-cj; 
for /+-1 to logn do 

k+-21, 

par [O:Sj<n/k] par [O:Sz:Sb]C(jk+ 1,jk+k, z) 
+-maxosysz {C(jk+ l,jk+fk, z-y) + C(jk+ tk+ 1,jk+ k,y)}. 
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The algorithm requires O(nb2) time on a single processor and O(log n log b) time on 
O(nb2 /log b) processors. While the parallel running time is probably the best one 
can hope for (it might be called 'pseudopolylogarithmic'), the number of processors 
is huge. This number can be reduced by a factor of log n log b by application of the 
first algorithm to produce starting solutions for the second algorithm. The modified 
algorithm has three phases: 

(i) Separate the n items into g groups of nlg items each. 
(ii) Apply Algorithm KSl to each group, in parallel: O(n/g) time, O(gb) 

processors. 
(iii) Apply Algorithm KS2, starting with g groups rather than with n items: 

O(log g log b) time, O(gb2 /log b) processors. 
We now set g= f nl(logn logb}l to arrive at an algorithm that still requires 

O(log n log b) time but using 'only' O(nb2!(log n (log b)2)) processors. 

Example 15. Traveling salesman [Pruul 1975). Given a complete graph with n ver­
tices and a weight for each edge, one wishes to find a Hamiltonian cycle (i.e., a cycle 
passing through each vertex exactly once) of minimum total weight. 

{a) Sequential search; node t is selected at time t. 

(b) Parallel search by three p~rs; 
node 1 Ip is selected at time t by processor p . 

Fig. 10. Depth first tree search. 
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A traditional branch and bound method for the solution of this .A19ll-hard problem 
uses a bounding mechanism based on the linear assignment relaxation, a branching 
rule based on subtour elimination, and a strategy for selecting new nodes for ex­
amination based on depth first tree search. The details are of no concern here and 
can be found in [Lawler, Lenstra, Rinnooy Kan & Shmoys 1985]. Fig. IO(a) shows 
a search tree in which the nodes have been labeled in order of examination. 

Pruul designed a parallel version of this method for an asynchronous MIMD 
machine. Each processor performs its own depth first search; when it encounters a 
node that has already been selected by another processor, it selects in the subtree 
rooted by that node an unexamined node at the highest level. Fig. lO(b) illustrates 
the process. 

The lack of parallel hardware forced Pruul to simulate the algorithm on a sequen­
tial computer. An empirical analysis for ten 25-vertex problems yielded average 
speedups that were greater than the number of processors. This may be confusing 
at first sight, but the explanation is simple and lies outside the area of parallel com­
puting. The simulated parallel algorithm is nothing but a sequential algorithm that 
is based on a mixture of depth first and breadth first tree search. Such complex 
strategies have not yet been explored in any detail and might be quite powerful. 
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