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Abstract-A dec.:nninistic model for the growth of a size-structured prolifer.i.ting: cdl population is 
analyz.:d. The developmental r.1c.:s are allowed to vary with time. Fur periudically varying races stability 
of the cell-size distribution is shown under similar conditions for the growth rare of individual cells as 
found before in the time-homogeneous case. Strongly positive quasicompact linear operators on Banach 
lattices serve as powerful abstract tools. Finally. the autonomous case is revisited and the cunditions for 
stability found in [ l I are relaxed. 

INTRODCCTIO:-: 

The growth of a size-structured population of cells which reproduce by fission into two equal 
parts can be described by the partial differential equation 

a,n(t. x) + a,(g · n)(r, x) + (µ + b) - n(t. x) 4b - n(t, 2x). (Ja) 

Here a,,<g · 11)(1, x) denotes (i:Jli:J:c)(g(t, x)n(t, x)), (µ + b) - n(r. x) denotes (µ(t. x) + 
b(t, :c))n(t. x). The independent variables t and x denote. respectively. time and cell size (e.g. 
the length. volume, weight. protein content. etc. of a cell). At fixed time t. n(t, x) describes 
the size density of the population. The developmenc of an individual cell is governed by three 
processes: growth (i.e. increase in size), death (or dilution), and reproduction by splitting into 
two parts of equal size. g(t, x), µ(t, x) and b(t. x) indicate the respective rates in dependence 
on time t and cell size x. Equation (Ja) relates these individual changes to the change of the 
population density. For a further explanation and a derivation of ( 1 a) see [ l. Sec. 2 and 
Appendix.]. 

We assume that cells can only divide between a minimum size a > 0 and a maximum size 
which has been nonnalized to be I. i.e. 

b · n(t. x) = 0 if x i [a. I). (lb) 

with a < I. Consequently there are no cells with size less than at?.. so we require 

n(t, a/2) = 0. (Jc) 

Usually we consider ( l) as an initial-value problem. i.e. ( I a-c) are assumed to hold for t > t0 

with t0 E R. and 

n(t0 , :cl 

with a given initial cell density n0 • 
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In [ l j we impose conditions on the splitting rate h which guarantee that all cells die or 
divide before reaching the maximum size I. But this is an unnecessary restriction. We confine 
the size interval to [a/2. l I in (!al. however. and so assume that cells with a size exceeding 
the maximum splitting size l do not affect the fu11her <kvelopment of the population. This 
assumption. as well as the linear character of Eq. ( l). is justified if the environment of the 
population is unlimited (this can be artificially achieved in a laboratory) such that density
dependent feedback mechanisms can be ignored. 

In [I] we considered (I) for time-independent rates g. µ. b and found conditions under 
which a cell population (with an arbitrary cell-size distribution at the beginning> asymptotically 
(t--. x) exhibits exponential growth with a stationary cell-size distribution. i.e. 

n(t. x) - Ce'"ii(:n. t .- :c. (3) 

Here er and 11 do not depend on the initial state of the population. whereas the positive scalar 
C depends on the initial function in a linear and strictly positive way. The conditions mainly 
concerned the individual growth rate g: (3) holds. for example. if g(2x) < 2g(X) for x E 
[a/2, ~].whereas (3) does not hold if g(2x) = 2g(x) for x E [a12, n 

We generalize the results of [I] to the case of time-periodic rates g. µ. b (with the same 
period for b, g. µ) in presenting similar conditions under which 

11( r. x) - Ce"1iiU. :d. £ __,. :c. (-!-) 

with C. rr, 1i having the same characteristics as in the time-homogeneous case and ii(t. x) being 
periodic in t (having the same period as g, b. µ)(see Sec. 6). In Sec. 7 we revisit the time
homogeneous case and prove the conjecture at the end of Sec. 8 in [I]. namely that gf2rl r" 2gix) 
on an open subinterval of [a/2, ~I is sufficient for {3) to hold. In [I] we already showed that 
(3) does not hold for arbitrary initial values if g(2x) = 2gCrl on [a/2. ~].e.g. in the case of 
exponential individual cell growth. So a complete characterization of those growth rates g has 
been achieved which cause convergence to steady-state exponential growth from arbitrary initial 
states. This improvement of our former result is of particular impomrnce because the stronger 
assumptions in [I. Sec. 8] are not satisfied by data found for g by Anderson e£ al. (see [2. Fig. 
4.8]) whose work[2-5] (besides the work of Sinko and Streifer[6.7]. see also [8]) has b-::en 
the main motivation for our study. See [I] for some more references. We mention that splitring 
into two unequal parts of fixed ratio (as it is considered in Sinko and Streifer's work[7] on 
planarian worms) can be dealt with in essentially the same way. Heijmans[9] deals with a model 
in which the ratio of mother size and daughter size is described by a probability distribution. 

Recently. related models of proliferating cell populations have been studied by Lasota and 
Mackey[!O] and by Tyson and coworkers[l 1-16]. Hannsgen. Tyson and Watson[l6] examine 
the stationary size distribution for populations growing under steady-sw.ce conditions and they 
find. among other things. that such a distribution does not exist if growth is proportional co 
size and division is governed by the (purely age-dependent) transition probability model. In 
[ 13] Tyson and Hanns gen analyse the ··Tandem Model." which is obtained from the transition 
probability model by adding a critical size requirement. Lasota and ;\lackey[ IO j consider the 
size distribution at birth in successive generations (so they are not concerned with the evolution 
in time of the size distribution of extant cells). Their assumptions about the dynamics of 
individual cells resemble ours and they prove that the birth-size distribution converges to a 
unique globally stable distribution when the generation number tends to infinity. In [ 151 Tyson 
and Hannsgen derive a similar result for the case that the probability of di\·ision is governed 
by age (and not size) and individual cell growth is linear. i'.Vloreova. they ~how that such a 
result does not hold if one assumes that individual cell growth is exponential instead of linear. 
In [ 11. 12) finally. Tyson makes a comparison of the generation time dimibution and the division
size distribution predicted by various models and observed for a population of fission yeast 
cells. 

The organisation of our paper is as follows: In Sec. l we study the characteristic curves 
associated .,..-jch the first-order partial differential equation (la). These are important tools to 
transfonn ( !). 12) into an integral equation. the solution~ of which can be considered weak 



Stability of cdl-size distribution II -193 

solutions of ( 1). (2) (see Sec. 2). In Sec. 3 we prove uniqueness and existence of solutions to 
the integral equation and derive some properties. In Sec. 4 we study the solution operators 
corresponding to the integral equations. in particular their positivity and compactness properties. 
In Sec. 5 we investigate their spectral properties. if the rates g. µ.bare time-periodic. Here 
we make substantial use of the theory of strongly positive linear operators on Banach lattices 
(see. e.g. (17.18]). In Sees. 6 and 1 we formulate and prove our results. first for the periodic 
and. under less restrictive assumptions. for the time-homogeneous case. In the appendix we 
present some material from the theory of Banach lattices. 

Finally. we mention that the extensions and improvements of the results in [I]. which we 
achieved in this paper, kad to corresponding extensions and improvements of the results in 
[19] for a rather special nonlinear variant of the model. 

I. THE CHARACTERISTIC CURVES 

The growth of ai1 individual cell 

In dealing with PD Es of first order. integration along characteristic curves plays an important 
role (see. e.q .. (20.21 ]). In our case these characteristic curves describe the growth of an 
individual cell. 

Throughout this paper we impose the following conditions on the growth rate g. 

ASSC\.IPTION ! . I 
g is a continuous nonnegative function on R x (al:?., 11 with the following properties: 

(a) g is bounded and bounded away from zero, i.e. 

0 < gmin ~ g(t. x) ~ gmax < x fort ER. X E [a/2, l]. 

(b) The partial derivatives a,g(t, x). a~g(t, x). a,g(t, x) exist and are continuous and 
bounded on R x [a/2, I J. 

We recall that even if cells should grow beyond the maximum splitting size 1, only cells 
of size x E [a/2. I) affect the further development of the population [see (lb, c)]. So it is 
sufficient to know g on R x [a/2, \]. For convenience we extend g to R" by 

g(t,x) g(t,l) forx;;.I, (5) 
g(t, x) = g(t, a/2) for x :s;;; a/2. 

The derivatives a,g and a~g now exist and are continuous on R'. a,g still exists in a 
generalized sense and is bounded. 

So g is smooth enough such that the following ODE initial-value problems can be solved: 

fort. s. x. y E R. 

aJ(t, x, y) = l!g(T(t, x, _v), y), 

T(t, x, x) t, 

a,X(t. s. x) = g(t, X(t. s, x)), 

X(s, s. x) = x, 

(6) 

T and X can be interpreted biologically: A cell with size x at time s has size X(t. s. x) at 
time r: a cell with size x at time r has size y at time T(t, x. y). The following lemma lists a 
number of properties of the unique solutions T and X to (6) and (7). These will serve as 
paramount tools in our analysis of problem ( l ). A proof can be established by standard methods 
or can be found in textbooks dealing with differential equations (see. e.g. [22, Chap. VI]). 
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LEM:<.!.; 1.2 
There exist unique continuously differentiable solutions T of (6) and X of (7) on R1• They 

have the following properties: 

(a) T(c. x. y) and X(l. s. y) strictly increase as t and y increase and x and~ decrease. 
(b) T(T<t. x. y). y, :l = T(t, x, :). X(t. r . .\(r. s. x)) = X<r. s. x). 

(c) T(s, :c. X(t. s x)) ::: r. T(t, X(t, s. x) . .rJ = s. f(l. XU. s. X). y) = Tls. x. y). 

(d) X(s. T!s. x. y). yl = x. X(T(s. y. x>. s. yl = x. XU. T!s. x. y). yl = XU. s. x). 

( f, o1g( T(t. x . .: l. :l 'J 
{e) O,T(t, x .. y) == exp - ~ d: . 

t (g(T(t. x. :). :))· . 

(f) iJ,XU, s. x) = exp (f a~g(r. X(r. s. xl) dr). 
(g) iJ,T(t, x. y) + g(t. x)iJ,T<t. x. y) = 0. 
(h) a.XU. s. x) + gL~-. x)a,X(t. s. x) = 0. 

As an exercise the reader might verify (aHd) from the biological interpretation of T and 
X. Because of their pem1anent use these properties will not explicitly be quoted in the sequd. 

Since we extended g from R ~ X [a/ 2. I j to R ~ we should be aware of the domains in 
which T and X only depend on the values of g on 3. x [ai2. l): Eq. (6) tells us that this is 
the case for T(l. x. y) iff x. y E [a/2. l I. It follows from (7) that, if x E [a/2. lj. X(t. s. x) 
depends on the values of g on R x [a/2, 11 iff Xu. s. x) E [a/2. l j. i.e. iff t E [T(s. x. a/2l. 
ns. x. l)J or. equivalently. iff s E [f(t, ai2. XI. Tu. I. x)j. 

2. TRANSFORMATIO\ OF THE PROBLDl 

Weak solutions 
As we shall see in Sec. 3 one cannot find classical solutions of ( l) for r > t0 if the initial 

values n(t0 • ·) and the rates µ and b are not differentiable. Since we want to include initial 
values and rates which are continuous only. we look for a reformulation of (I) which is equivalent 
to the original one for differentiable data and solutions. but makes sense for continuous non
differentiable data and solutions as well. 

Throughout this paper we make the following assumptions on the splitting and mortality 
rates b and µ. 

ASSUMPTION 2.1 
(a) µ is a continuous nonnegative function on R x \a:' 2. I I. 
(b) b is a nonnegative function on R" with the following properties: 

(i) b is continuous on R x [a. I). 
(ii) b(t. x) > 0 if x E (a, I), b(t. :cl = 0 if x i [a. I). 
(iii) There exists a continuous function b0 on (a. I) and some c > 0 such that 

b0(:c) ::::= b(t. xJ ::::= cb0(.t). 

By assumption (b) cells can divide at any size in (a. !). but at no size outside [a. I). If 
n bo(X) d:c = X, then every cell dies or divides before reaching the maximum size l. 

In a first step we transform (I) to a simpler equation. We define 

m==g·nE (8) 

with 

E<r.x) =exp (f~ [a~f -µ; b] (T(r.x.:l.:)d:). (9) 
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If(µ + b)(s, :) is differentiable ins. by Lemma l.2(g). 

[ al 'I' J (a, + gU. x)a,>E = -;- - (µ. ...... bl E: 

hence Eq. (I) is equivalent to the following equations form: 

.+95 

(o,mlg)(t, x) + iJ,m(I. x) = DU. x)mU. 2x). x E (a/2. I): (10a) 

D(I. x)m(t. 2x) = 0. x i. [a/2. ~): I 10b) 

m(t. a/2) = O; (10c) 

with 

D( _ b(r. 2x)E(r. 2.r) 
1, x) - 4 . 

g<1. 2x)E(t. x> 
(11) 

The initial function takes the form 

m(t0 , x) ::::; ( g · nl £)(t11 • x) == : <l>(x). (12) 

The following properties of D follow from Assumptions 1.1 and 2. I. 

LEMMA 2.2 
(a) D is continuous on R x [a/2. ~). 
(b) D(t, x) > 0 if x E (a/2, ~). D(t, x) = 0 if x tj. [a/2. t). 
(c) There exists a continuous function D0 on [al2. ~] such that D(t, x) ~ D0(.r:). 

n ~Du(x) dx < -:ic. 

Note that Lemma 2.2 even holds if n b0(x) dx = :c. This "reduction in the singularity" 
will be very useful in the next section and is an extra motivation for the transformation (8). 

The transfonnation from (I) to (10) does not yet settle the problems we mentioned at the 
beginning of this section. So, in a next step. we integrate ( 10a) along the characteristic curves 
T. To this end we define 

u(s. :, :c) = m(T(s. :. x). x). (13) 

By ( lOa) and (6). 

a_,u(s. :. x) = D(T<s. :, x). x).m(T(s. :, :c), 2.r). 

Hence, since T(s, ::, :) = s. 

u(s, ::, x) = f D(T(s, :, y). y).m(T(s, z. _v). 2y) dy + m(s, :). (14) 

In order to return to an equation for m, we use that m(t, x) = u(s, z, x) with s = 
TU, x, :) by (13). But, dealing with an initial-value problem, we have to avoid that s < t0• 

So, if x < X(t, t0 , a/2) we choose z = a/2 and s :;; T(t, :c. a/2) > t0• 

If x ~ X(t, 10• a/2), we choose = = X(t0 • t, x) ~ al2 and s = T(t. x. :) = 10• In this 
way we arrive at the following integral equation for m on which we will focus in the sequel: 

{I 2 
m(t. x) = J •. ~ K(l. x, y)m(T(t. x. y). 2yl dy + m0(t. x) ( 15a) 
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fort Sil! t,1 • . i: E [a' 2. 11. loliHh 

K\I, x. _-.:):a D1T1r .. t. :;l. vl. if Xilu. I •. ll ~ ·' llf.t .\.and 
Kit. x. yl .. 0 otherv.1se 

m0 contains the information about the m1tial function $: 

m,M. x) = $(Xtt0 • t, .tlt if Xlt. r,,. a ::?1 =>: x < I. m,_1lt. x) "' 0 oth.:rwis.:. ( l6l 

with $ being: the initial values of m at t = r,,. 
Let us summarize what \\,e have done so far. We have shown that. if(µ - bHs. xl is 

differentiable ins. solution~ n of (I J correspond to solution~ m of ( 101 via the transfom1ation 
181 and conversely. Funhermorc. any solution of 1 IOl with initial function mtt," ·) = <t> at 
t == t0 solves OSl. ( 16). Conversely. 1f m is a solution of I 15). 116) and mlr. xl. 011. x) are 
differentiable in t and $(.rl is differentiable in x. then 111 is a solution of l 101 bv Lemma 1.2 
(g, h). But Eq. I 15) also makes sense, if m and mt1 are continuous twithout th~ special form 
of mo in ( 16)) and D has the properties listed in Lemma ::? . ::? So t I 51. 1 16 l can Ix considered 
a weak version of ( IO), () :!l or !I). ( ::!) respectively. and "'e define the following. 

Definition 2.3. A continuous solution m of ( l5t. t 161 is called a .. ,,eak solution oft IOl 
with initial function $ at t = tu'·. If m( 10 • • l "' <t> is given by ( \ 2 I. 11 = m · E g is called a 
weak solution of ( !) with initial function n(t". · l at t = t0 

Remarks 
(a) Since 

I 17) 

by (15b) and Lemma 2.::!(c), it will be appropriate to handle (15) with m. m,, being continuous 
on (t0 , TJ x {a/2, l). T > t0 . This involves that. in order to obtain weak solutions n of n l 
for initial functions n(t0 • ").we must assume (g · 11iE)(r0 • ·)to be continuous on la12. IJ. As 
a kind of tradeoff we obtain that g · nl E. is continuous in [t0 • tl x [a12. 1 J. t > t0 • 

(bl There arc two other ways of defining and/or handling weak solutions of (!Ol. The 
first one approximates the initial function and the other data of the equation by sufficiently 
smooth ones, and finds "strong" solutions of the approximating equations which have a limit: 
the weak solution. This can be done. for ex.ample. by studying Eq. (15). Thnecond way studies 
(10) as a temporally inhomogeneous evolution equation <see. e.g. 123. XIV ... q or [:!-i..251> of 
the form 

m'(r) = A(l)m(l). m(t .. ) = 4' 

and joins an ··evolutionary system" U(t, s) with the operators A(t). Since l./(t, tu><ll provides 
"strong" solutions of 00) for sufficiently smooth data and initial values et>. Ult. t0)<t> can be 
considered a weak solution of (10). Whereas the first alternative only provides an additional 
characterization of weak solutions, the second also suggests a different mathematical approach. 

In this paper we concentrate on ((5). In a second step we show that the solution operators 
associated with ( 15), (16) form an evolutionary system. In the tempor..illy homogeneous case 
{I) we subsequently refer to the underlying evolution equation and consider the infinitesimal 
generator A and its spectrum in order to derive conclusions about the asymptotk behaviour of 
the scmigroup. Here the co!TCsponding approach would consist in considering the generating 
operators A(t) and deriving information about the qualitative behaviour of{,'( t. t,i) from spectral 
properties of A{l). Since the theory of abstract C\'Olutionary systems has not yet been developed 
so far as the theory of semigroups. we will not do so. Instead we draw the required information 
about the spectrum of Ult. t0 ) more or less directly from !15 I. ( 16) by means of positivity and 
compactness arguments. 
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3. EX!STE'."CE AND CNIQCE~ESS OF WEAK SOLCTIONS 

In the preceding section we revealed a one-to-one correspondence between weak solutions 
of (l). (2) and solutions of (15), (16). ln this section we look for solutions m of (15) in the 
space Y = C([rl). til x [ai2. l]) of real-valued continuous functions with m0 E Y being given. 
By Lemma 2.2 and (17) the integral in the right-hand side of (15a) provides a bounded linear 
operator F on Y. We show that the spectral radius of F is zero by finding equivalent norms 
ll·lli... A. > O. on Y such that. for the associated operator nonns l!Fil, - 0 for A. - x. We take 

Then, by (15) and (17). 

We have to show that the integrals I, (t •. \")on the right-hand side of this equation converge to 
zero for A. - x unifonnly in t. Since T(1, x. y) < t for y < x and D0 is integrable. pointwise 
decreasing convergence follows from Lebesgue's theorem of dominated convergence. As 
l,(t, x) continuously depends on t and x. uniform convergence follows from Dini's lemma. 
Thus ( 15) takes the abstract form 

m = Fm + m0 

with the bounded linear operator F having zero spectral radius. Hence(! - F)- 1 exists (with 
I being the identity operator on Y) and can be represented by the Neumann series 2.F' with 
convergence in the operator topology. Note that the operator F preserves continuity and non
negativity and so does (I - F)- 1• So we obtain the following. 

THEOREM 3. 1 
Let m0 be a continuous function from [t0 , :c) x [a/2. I] to R. Then there exists a unique 

continuous solution m of(IS) on [t0• x) x [a/2. l]. m can be represented as 

m(t, x) = 2: m;(t, x) ( 18) 
1=0 

with 

Jl ~ 

m/t, x) = K(t, x, y)m1_ 1(T(t, x. y). 2y) dy 
~ '~ 

( 19) 

for j = I. 2, .... The convergence of the series in (18) is uniform on [t0 , t1] x [a/2. I] for 
any t 1 > t0 • If mu is nonnegative, so is m. 

We have not yet stated that m depends continuously on m0• To make this precise let 
11 llo.r be the sup-norm on [t0• t] x [a/2. I] fort < x. 

PROPOSITION 3.2 
Ler m0 and m be as in Theorem 3.1. Then 

llmllo.r ~ c(t)llmollo.r fort ~ !u 

with constants c(t) depending continuously on t. but not depending on mu. 

This boundedness result can be sharpened. To this end we define 

v0(t, x) = f' D(T(t. x, y), y) dy, a/2 :,;;; x ;s:; I, 
" 1 

(20) 



+98 0. DleK\I\"" t!t ul. 

with D from ( 11 ). DU. y> = 0 for y > ~. It follows from assumption 2.11b11i1i1 rhar 

v,,(t. xl :::;; J" D.,ly) Jy 
I ~ 

for r ER. x E [al:!. I), with Du from Lemma 2.2(c). Hence ""e obtain the folk)\ving estimate 
from proposition 3.2 and ( 15a). 

COROLLARY 3.3 
Let m., and m be as in Theorem 3. I . Then 

lmu. X)i ::s;; c(t)!jm11IJ0, · r,.U • .r) + !m111t. xl! 

with constant cl t) depending continuously on r. but not on m11 • 

ln order to let the reader appreciate this estimate we recall that m0 !t. ·) = 0. if m0 is given 
by ( 16) and t ~ T(t0 • a/2. 1 ). 

Remark 3.4 
(a) As in [ l J. Sec. 4, m, in (18) can be considered the j'h generation of cells and for any 

11 > t0 it can be shown that there exiscsj,> E ;'i with m,lr. x> = 0 for j;;;. j11 • 1 E: [r". 11j. x E 
[a/2. I]. So at any time only finitely many generations ar.;: present. 

(b) The last observation helps to find conditions under which a solution m of ( 15). ( 16). 
i.e. a weak solution of ( 10) with initial function <t>. actually is a strong solution of ( lOl and so 
provides a strong solution of (I). As we mentioned in Sec. 2 the crucial step con:.>ists in proving 
the differentiability of m(t. x) in t. If m0 is given by ( 16). it is differentiable if <t> is differentiabk 
and <t>(a/2) = <P'(a/2) = 0. The operator F defined by {!9) preserves differ.::ntiability exi:ept 
at x = 4. if Dis differentiable in t. i.e. if bandµ are differentiable with respe-::t 10 time. Thus 
all m1 are differentiable and so ism because the series ( 18> is locally finite . 

.+. PROPERTIES OF THE SOLL'TIO:-.: OPERATORS 

In studying the asymptotic behaviour of weak solutions /1 to (I). (2). or. equivalently. of 
solutions m to <I 51. (16) in the case of time-periodic developmental rates. we want to apply 
the spectral theory of strongly positive. quasicompact operators on Banach laui..:.::s !see. e.g. 
[ 18]). To this end it is convenient to consider the solution operators belonging tv Ee.is. l 15 l. 
(16). 

Let Z be the Banach space of continuous real-valued functions u on [Cl 2. l] with 
u(a/2) = 0. The nonn 11·1! on Z is provided by the suprernum-norrn. Note that the continuity 
of u at x == l. in view of Eq. (!),involves for the initial values of 11 that 1~ · 11/E){t,.. XJ 

converges for x T I. 
For <t> E Z there exists a unique solution m of ( 15). ( 16) by Theorem 3.1. The solution 

operators U(t. l0). l ;;;.: t1> are now defined by 

U(t. t0 )<1> = m(t. ·). 

It turns out that the operators U( t. t0). l ~ l0• fonn an evolutionary system. 

PROPOSITION 4.1 

(a) U(t. l,il is a bounded linear operator on Z. 
(b) U(t. s)U(s, t0 ) = UU. 10 ). t0 :,,;; s ~ t. U!t. t)u == u. 11 E Z. 
(c) For 11 E Z. UU, t0J11 continuously depends on l. t ;;;.: t,,. 

(a) and (C) follow from Theorem 3. l immediately. (b) can also be fom1ulated in this way: 
if m is a weak solution of ( IOl with initial values at t = t.,. then 

m(t. ·) :::: UU. S)lll(S. ·), l;;;. .\';;;. t,,. 1231 
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Since solutions of ( t 5) are uni4ue by Theorem 3. I. ( 23 l follows by showing that ml r. x) is a 
''eak ~olution of ( t0) for r > s with initial values mls. ·)at r == s. This is easily done by 
using the properties of T and X in Umrna 1.2. 

In order to prepare the application of the theory of strongly posi1ive operators we recall 
that Z is a Banach lattice. The cone Z _ is fonned by the nonneg:ative functions. the ordering 
· ~ · is the point-wise ordering and the modulus (or absolute value) of 11 E Z is given by 
i11:tx1 = i11Lr)j. x E [a>2. I] (see the Appendix and [18j). 

First we not..; that the boumkdness of U{ t. t") holds in a ~tricter. order-theoreci<.: way if 1 is 
large enough. 

PROPOSITIO'-i 4.2 
Fort~ TU,1• a!2 . .!) we have ! UU. t,))ul ~ c[Ju[[v0 for 11 E Z with c depending on t and 

t,,. and vlJ given by (20l. 

ln other words Vu. t0 \ continuously maps Z into the Banach space Z. ·"' (see Appendix 
2). if t;::,: TU,i. a/2. 1). For then m,J(t. ·) = 0, if m0 is given by ( 16). and so the proposition 
easily follows from Corollary 3.3. Finding conditions under which the operators Uu. t.,) are 
strongly positive is much more involved. 

Stro11g posirfriry of the solurion operators 
We look for conditions under which. after a sufficiently long time r. cells of every size in 

\w 2. l) are present in the population. i.e. 

rn(I. x) > 0 for x E (af2. l J. { 2-+) 

\Ve claim that the following assumption will work. 

ASSL'\IPTIO'." -'l.J 
For any x E [!. l) there exist E > 0. y,::: E [a, l]. y;::. x.:: ~~such that 

T(T(s, x. \"), yl?., x)-'.-- E ~ T(T(s. ~.:I. :::2. ~) 

for alls E R. 

Assumption -L 3 roughly states the following: consider a cohort (group) of cells all having 
the same size x E [~. l) and a cohort of cells having size !. at times. Then some daughters 
of the first cohort have reached size x again before all daughters of the second cohort (either 
ha,·e divided or) have reached~. 

In order to show that Assumption 4.3 actually implies (.2..J.1 for large t. we define f1s. X) 

to be the latest possible time at which a daughter of a cell having size x at time s can reach 
size x again. formally 

T(.L x) == sup{TiTts. x. y). y/2. x): x. a,,;;; y :E; l. 2x}. ( .25) 

Remember that the mother cell can split at any size y with x. a < y < l. \Ve also define 
XU. s. x) and :fU. s. x) to be the maximum and the minimum size which daughters of a cell 
having size x at time s can reach up to time t. formally 

,Yu. s . .rl = sup{Xu. T(s. x. y). y/2): x. a~ y::::; Xu. s. xJ. I} 126) 

for r;::. s. t ~ T!s. x. a). ,Y(r. s. x) is the corresponding infimum. Equation (26) only makes 
sense if the mother cell can reach the minimum splitting size a up to time t. i.e. for r > 
Tr s. x. a). or equivalently. a~ XU. s, x). \Ve mention that X. :<; are continuous and that 
Xu. s. X) and .\'U. s. xl strictly monotone increase if r. x increase and s decreases. :-.lore 
precisely. there is some € > 0 such that 
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Furthamore. for any r > 0, ~ x! > x1 > al2 there exists e > 0 such that 

.Y{t. s. x~) - XU. s. x 1) ~ e, if 0 ~ t - s ~ r. t ~ T< s . . t:- a). 

The same statements hold for~- They follow from the Assumptions I. I and from Lemma 2.2. 
Since Assumption 4. 3 states that daughters of a cell having size x E (1. l) at time s can 

reach size x again before time f(s. t). it follows that f(s. !) ~ T(s. x. a) and 

XrT(s. !). s. x) ~ x + b forx E [.\'. ll. 

where a/2 < .i < ~and & > 0 can be chosen independently of s E Rand of .r in any compact 
subset of [.t, !). Equation (27) can be derived from Assumption 4.3 rigorously by exploiting 
Lemma l.2. Similarly. it is intuitively clear and can rigorously be derived from Lemma l.2 
that 

~(f(s, ~>. s. 1l (28) 

Before we actually dive into the proof of (24) we state a couple of useful lemmas. 
The following statement is intuitively evident from the interpretation of X. 

LEMMA 4.4 
Let m be a weak solution of ( 10) for t > t, 1• If s ~ tn. a 2 < .r 1 ,,::;; x! ~ I. and 

m(s. y> > 0 forx 1 ~ y ~ x~. then mlt,:c) > 0 forr ~ s.X!t. s. x1 ),,::;; x ~Xu. s.xJ.x ~ l. 

·in order to prove Lemma 4.4 take into account that m(L x) is a weak solution of ( 10) 
with initial function m(s. ·)at t = s (see Proposition 4.1 and the subsequent remarks). Hence. 
by (15) and (16), m(t, x) ~ m(s, X(s, t, x)) if X(t. s. (1/2) ~ x ~ l. 

The next lemma states that the presence of cells of size x. a < .r < l. implies the presence 
of cells of size x/2 by splitting. It is an obvious consequence of the continuity of m and of 
( 15a). 

LEMMA 4.5 
Let m be as in Lemma 4.4, s > !0 , x E (a. l J. If m(s. x) > 0. thc:n m(s. x/2) > 0. 

Combining Lemmas 4.4 and 4.5 yields the follo\ving statement. which is intuitively evident 
from the interpretation of X and 4. 

LEMMA 4.6 
Let m be as in Lemma 4.4. Lett> s > t0 • a/2 < x 1 ~ x, ~ I. t::::: T(s . .r1. a). If 

m(s. x) > 0 for :c1 ,;;; x ~ x,. then m(t, :::) > 0 for .yu. s . .r1) ~::: ~ :i:u. s. x,).: :o:;: !. 

Actually combining Lemmas 4.4 and 4.5 leads to the following conclusion: if s > t,. 
a/2 < .t < I and m(s, x) > 0, then m(t, ::) > 0 for all::: = XU. r . .\'( r. s. x)/2) with::: :o:;: I. 
s ~ r :s;; t, a~ X(r, s, x) ~ I, or, equivalently for all::: = X(t, T(s, :c. y). y/2) with:::~ l. 
x, a :o:;: y ~ I. Lemma 4.6 now follows from the definitions of X and ,Y in (26). 

From (27) and (28) we can now derive Lemma ..+. 7. 

LEM:>!.->. 4. 7 
Let m be as in Lemma 4.4, s > t0 , t == T!s, ~). x E [~. lJ. If m<s. yl > 0 for!""" y ~ x 

then m(r, :) > 0 for: E H .. i] n u. I] with .i = ;{u. s. x). 

Remark 
Note chat i > x + S and that 8 > 0 can be chosen independently of s E R and of x in 

compact subsets of [1. I). 

After these preparations we are ready for the proof of (24). 
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First we note from Lemmas 4..+ and 4.5 that. if the initial value <I> E z _ at time t = t0 

satisfies <P ;t. 0. then 

with some s0 E (t0 , T(t0 , a/2. I))_ Guided by Lemma 4.5 we define 

It follows that 

s, .. 1 = T(s,. :\-), 
x1 + 1 = min(l,X(sJ_ 1, s),x1 )), 

Xo = t 

x* = lirn x, "" l. 
1-x 

for j = 0. l ... _ . and find a strictly increasing sequence x, :;;:; l with 

for. if x* < I. by Lemma 4. 7 and the subsequent remark. x, _ 1 ;::: xi + o with o > 0 for all 
j EN, in contradiction to the convergence of x1 • Now, by Lemma 4.5, 

(29) 

with x max(a/2, !) and xJ - l for j - x. By (27) there exists ·! E [.i, :\-) such that 

X(T(s, :\-), s, .~);::: ! 

for all s E R. in particular 

By the remarks following the definition of X, .r in (26) we obtain 

with o > 0 not depending on j. Since, for large j, x,f 2 > ·!and x) _ 112 > ! - o we obtain from 
(29) and Lemma 4.6 that 

for sufficiently large j, with x1 - l for j - x. If j is large enough, T(si, x,. I) < T(s1 , ._r. !); 
hence 

m(S, x) > 0 for ! ~ x ~ I. 

with some large s > s0 . By Lemma 4.5, 

m(s, x) > 0 fora/2 < x:;;:; l. 

The continuity of m and Lemma 4.5 yield 

m(s. x) > 0 for a/2 < x:;;:; l, s;;:.: 5. 

We formulate this result in terms of the solution operators U(t. t0 ). v E z_ is a quasi
interior point of Z + (see the Appendix. point 4) iff v is continuous on (a/2. l) and i·(x) > 0 
for x E (a12. I]. 
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PROPOSITION -L8 
Let the assumption .+.3 be satisfied. Then. for t, 1 E R. there exists t 1 > tl) such that 

VI t. r,,J<t> is a quasiinterior point of Z _ if t ;;a: r1• <t> E Z _. <t> ;;" 0. 

Note chat r1 is independent of <t>. 
After having established this positivity property of the operators UU. t,i) fort - t0 being 

large we now tum to compactness. 

Compactness of the solution operators 
In order to show that the operators U!t. t0 ) are compact on Z if t - t,i is large enough, 

we consider an arbitrary bounded subset M of Z and consider the weak solutions m of ( 10) 
with initial function <t> E Af for t = t0 • By the Arzela-Ascoli theorem we have to show that 
m( t, ·) is bounded and continuous uniformly in <t> E M for t - tl) being large. Boundedness 
is obvious from Theorem 3.1 and ( 16). For the proof of equicontinuity we set 

\'(S, x) = m(T(s, a!2. x). x> for s ;;a: 11). 

It follows from (14) and Theorem 3.1 that v(s. x) is continuous in x uniformly for s ranging 
in a bounded interval and <I> EM. Transforming (l.+) into an equation for\" we obtain 

fminu:.l ::1 
v(s. x) = "~ D(T(s, ail, y). y)v(j(s. y), 2y) dy (30) 

for s:;;;.: T(t0 • a/2. I), with 

j(s. y) = T(T(s. a!2. y}. 2y. ai2). (31) 

Since m(t, x) = v(T(t. x, a/2), x) fort:;;;. T(t0 • an.. x) we are done. if r can be shown to be 
continuous in (s, x) uniformly in <t> E M. This follows from the uniform (with respect to sand 
<t> EM) continuity in x. if a change of variables fls. yl = r can be perfonned in the right
hand side of (30). To this end we differentiate f with respect to y and obtain. with s = 
T<s, a/2. y) from Lemma l.2(g). 

aJ(s. y) = 2a 1T(s. 2y. a/2) · ( : - 1 ). 
2g(s. y) gl s, 2y) 

Guided by this formula we make the following assumption. 

ASSUMPTION 4.9 

(32) 

There exist at most finitely many points x, E [a'2. ~l such that 2g(s. x,J = g(s. 2x,) for 
some s ER. 

By this assumption the interval [a/2. 0 can be divided into intervals [x .• . ctl such that 
lg(s. y) - g(s. ly) is either strictly positive on (X;. x,_ 1) or strictly n\!gative. 

We want to solve the equation 

f(s, h,(s. r)) = r (33) 

with h,(s. r) E (x;. x, • 1). To this end we differentiate <33) with respect to rand obtain the 
following differential equation for /z,: 

a,h,(s. r) (34) 

Since aTg exists and is continuous by Assumption 1.1. a:fls. y) is Lipschitz continuous in 
Is. y) by Lemma l.2(e) and (32). So we find a continuous solution h,(s. rl of t34l and thus 
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of (33) for s ER. r in the interval with endpoints j(s. x,J. f(s. x,. 1l. We now split up the 
integral ( 30! into integrals 

f""1'·"-•l D( T(s. all. y). y)v(j(s. yl. 2y) dy 
n11nh . .t.] 

= r(r. _h,(s. r)) dr. J-i,_•.min{r.1.,i• D(T(s. a/2. h,(s. r)). h,(s. r)) ., 

f«.m1nt< .. r,;1 iJ~j(s. h,(s. r)) 

Since the first integral exists if we take absolute values of the integrand. so does the second. 
We conclude that the integrals are continuous in (s, x) uniformly for <l> E M. 

Summarizing our preceding considerations we conclude that i·(s. x) is continuous in 
(s.x).s;;:;: T(t0 .al2. l),ai2 :s: x::;::; 1. uniformlyfor<l> EM. Sincem(r.x) = v(T(t.x.a/2).x) 

for t ;;:;: T(to. a/2. x). m(t, x) is continuous in (t. x) uniformly for <l> E M. provided that 
T(t. x. all) ;;;:,: T(t0 • a/2, I), a/2 ::;;:: x ~ l. thus in particular if t ;;:;: <b(<b(c0)) with <b(s) = 

T(s. a/2. l). By the Arzela-Ascoli theorem (see, e.g. [22, IX. Sec. 4]) we obtain the following 
result. 

PROPOS!TlON 4.10 
Lee Assumptions 4. 9 be satisfied. Then the operators U(t, t0) are compact on Z for 

t ;;: <!>(<!>(ta)). 

One can presumably prove that the operators U(t. t0) are compact on Z for t ;;;,: <b(t0) by 
studying the generation expansion (18). (19) (see [l], Sec. 5). Recall that at time <b(t0) all cells 
from the initial population (i.e. the cells of the zero generation) have divided or died. 

Furthennore, Assumption 4.9 can be relaxed. e.g. by assuming that the set {(s, y): s ER. 
a/2::;;:: y::;::; i. 2g(s, y) = g(s. 2y)} is contained in the union of finitely many graphs of 
continuous functions x,: R - [a/2, !]. 

5. THE SOLt:TION OPERATORS UNDER PERIODICITY 

In this section we study the operator 

B = U ( t0 + p, t0) (35) 

the properties of which are of crucial importance for the asymptotic behaviour of weak solutions 
of ( 10). if the developmental rates are time-periodic with period p. We will use the language 
of Banach lattices which is summarized in the Appendix. 

From now on we make the following assumption. 

Assi.::-.-1PTION 5.1 
g(t. x). µ(t, x). b(t. x) are periodic in t ER with the same period p > 0 for g. b. µ.. 

This periodicity assumption has the following consequence for the solution operators. 

PROPOSITION 5.2 
U(t + p. t0 + p) = U(t. tll) for all t, t0 ER, t;;;,: t0• 

Proof Let m be the weak solution of ( 10) with initial function <l> E Z at t = t0• By the 
uniqueness of solutions it is sufficient to show that tir(l. ·) = m(t - p. ·) is a weak solution 
of ( 10) with initial values <l> at t = r0 + p. This easily follows from Lemma 5.3. 

LD.1:1-tA 5.3 
T(t + p. x. y) = TCt. x. y> + p. X( t + p. s + p. x) = X(t. s. x). 

The lemma follows from the uniqueness of solutions to the differential equations (6). (7). 
Proposition -l-.1 now implies the following. 
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PROPOSIT!Ol' 5 A 
(a) B is a positive bounded linear operator on Z. 
(b) Fork E ;:-..;, t E [0, pl. l.!(1,) + kp + t. ruJ = U(t,i + r. r,1)8'. 

Assumptions 4.3 now take the following seemingly weaker form (see Lemma 5.3). 

ASSUMPTION 5.5 
For any x E (!. l) there exist y.: E [a. I]. y ~ x.: ao 1 such that T(T(s. x. y). y/2. x) 

< T(T(s. !. :). :12. !>for alls ER. 

Recall the interpretation we gave after Assumption 4.3. Propositions 4.2. 4.8 and 4.10 
imply the following properties of B. 

PROPOSITION 5.6 
(a) If Assumption 4.9 holds then B 1 is a compact operator on Z for sufficiently large). 
(b) For large enough). Bi maps Z continuously into the Banach lattice Z.. ,,,.,, with 1·0( t,i) 

being the quasi-interior point of z _ defined in (20). 
(c) If Assumption 5.5 holds then 8 1 maps z_ \{O} into the quasi-interior points of Z .. for 

large enough j. In particular B is strongly positive on Z (see Appendix. points -L 7). 

The following spectral properties of B now follow easily from the theory of power compact 
strongly positive operators (see [18. Chap. V]l. 

PROPOSITI0'.'1 5.7 
Let Assumptions 4.9 and 5.5 be valid. Then the following holds: 
(a) The spectral radius r 0 = spr B of B is different from zero. 
(b) r0 is an algebraically simple eigenvalue of B and B '. 
(c) There is an eigenvector 11·0 of B belonging to r0 which is a quasi-interior point of z_. 
(d) There is a strictly positive eigenfunctional w~ E Z' of B' belonging tor.,. 11·,'1 = 0 on 

(r,i - BJZ. 
(e) All spectral values of B different from r0 lie in a circle around 0 E C with radius 

strictly smaller than r0 • 

(f) r0 is the unique eigenvalue of B with an eigenvector in Z _. 

See the Appendix, point 5. Since r 0 is a pole of the resolvent of B. we can split up the 
space Z into a direct sum 

Z = span{Wo} G:> i. 

with the eigenvector w0 being provided by Proposition 5. 7(c) and the B-invariant closed subspace 
Z = (rof - B)Z (see. e.g. [26. Chap. l}). The spectral radius of B restricted to i is strictly 
smaller than r0 by Proposition 5.7(eJ. In (d) it is stated that 1,·~ = 0 if restricted to Z. So we 
obtain the following result. 

PROPOSITION 5.8 
Let w~ be normalized such that w~ w0 = I. Then there exists a bounded linear projection 

P on Z with the following properties: 
(a) PB = BP. 
(b) P11·0 = O. w,~P = 0. 
(c) r 1: = spr BP< r 0: = spr B. 
(d) Any 11· E Z has the unique representation 11· = w,',( w)w0 + Pw. 

We conclude this section by characterizing the nonzero eigenvalues and eigenvectors of 
B. Let Bw = qw. q =F 0 and let m be the weak solution of ( 10) with initial value 11· at t = t ... 

i.e. m(t. ·) = U(t. t0)w. Let A.EC be such that e"1' = q and set 
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Then 

by Proposition 5.4(b). We extend m fort < c0 in a p-periodic way. If t ;z,: T(t0 , a/2, 1) 

Jmin{.<.l.'Z} 
m(t. x) = . D(Tit, x. y). y)e"m,_,,,.,_, 1m(T(t, x. y), 2y) dy 

u·-z 
(36) 

by (l5a). Since m(t, x) is p-periodic in t, this equality holds for all t E R (see Lemma 5.3). 
Moreover, m is continuous. 

Conversely, if m is a continuous p-periodic solution of (36) on R x [a/2, 1], then 
m(t, x) = e"m(t, x) is a weak solution of (10) with initial value w = e"1•>m(t0 , -) at t = ta 

satisfying Bw = e"rw. (Use Lemma 1.2.) 
Thus we have obtained the following relation between eigenvalues of B and p-periodic 

solutions of (36). 

PROPOSITION 5. 9 
Let q. f.. E C, q = e>·P. Then q is an eigenvalue of B iff there exists a p-periodic continuous 

solution m on R x [a/2. l] of (36). The eigenvectors w of B belonging to q are related to the 
periodic solutions n1 of (36) by 

6. ASYMPTOTIC BEHAVIOUR OF SOLUTIONS 

ln order to prove our main result on the asymptotic behaviour of weak solutions to (10) 
or to ( l) respectively, we continue the considerations of the last section. 

Let <I> E Zand let m be the weak solution to (I 0) with initial value <I> act = t0• Furthermore, 
let t > t0 + kp, k E N. Then, by Propositions 5.4 and 5.8, 

m(t. -) = U(t. t0)<1> = U(t - kp, t0 )Bk<P = w0(<1>)U(t, t0)Wa + U(t - kp, t0)(PB•<I>), 

and [!PB'!l ~ erk for any r E (r1, r0) with c > 0 depending on r, but not on k. 
By Proposition 5.9 m(t, ·) -= e-''U(t. t0)Wo is a p-periodic continuous solution of (36) on 

R x (a/2. l ]. Since IVo is strictly positive on (al2, I] by Proposition 5.7(a). m(t, x) > 0 for 
t E R, :r E (a/2, I] by Proposition 4.8. Now (36), (20), and the periodicity of m imply that 

H'u(t. x) ~ n1(t, x) ~ cv0(!, x) 

for t E R. x E [a/2, 1] with e., c > 0 not depending on t and x. On the other hand, 
IV(t - kp. t0)PB'<l>I ~ cr1[!<l>[[v0(r) by Proposition 4.2, if t - kp ~ T(l0 , a/2, I) with c de
pending on r. Combining these observations and Corollary 3.3 yields the following. 

THEOREM 6. l 
Let Assumptions I.I, 2.l. 4.9, 5.1and5.5 be satisfied. Then the following holds: 

(a) There exists a unique 'A E R such that (36) admits a continuous nonnegative time
periodic (with period p) solution rn 'i' 0 on R x [a/2, l ]. tn is uniquely determined up to a 
scalar factor. 

(b) If m is a weak solution of ( 10) \l.:ith continuous initial function <I> on (a/2. l] at t = t0 • 

<l>( al 1) = 0. then. for t _,. x. 

with some e. > 0. The scalar a depends in a linear and strictly positive way on the initial 
function <P. 
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~lore precisdy. one can say that a( '-P l i~ a strictly positive bounded linear functional on 
z. The Landau symbolr (!)represents a bounded furn.:tion 1~11t. xl. Actually mu. ·l = 
Vu. t0)cf> with bounded linear operators l.iu. r,,} on Zand II Cu. r11 ll! is bounded on (t, 1• x). 

We now translate this result to weak solutions of I l l via I 8). ( 9 )_ We define 

£1r. xl =exp ( - f: (blgHT!t. x. :l. :l <.l: ). 

COROLLARY 6.2 
Under the assumptions of Theorem 6.1 the following holds. 
Let 11 be a weak solution of ( l l for t > t,, such that 11( r11 • x)i E( t,,. xl is continuous in 

x E [a/2. 11 and 1tUu. al:!) ::: 0. Then. for r - x. 

nu. x) = e"1iU. x)<a - e-"r (!)) 

with some c > 0. ln this expression A. and the time-periodic (with period p) function n do not 
depend on the initial function 11(!,J. ·). The scalar a. however. depends linearly and strictly 
positive on the initial function. 

More precisely, n{'V). '1' = 11(t1i, · ). is a strictly positive bounded linear functional on 
the Banach space Zt11 ... ,. r (l) stands for a bounded function '! (! • .rl. Actually ~( t. ·) = 
Ou. t0)'1' with U(t. t0) now being bounded linear operators from Zt,, _.,to Zand !IUU. t0 lii :s;; 
const for all t ;;:;.: r0 • 

Though Assumption 5.5 has a clear biological meaning (see the interpretation following 
Assumption 4.3) one would like to have an assumption in terms of the growth rate gas well. 
l.infortunately a condition of that kind which is not too complicated can only be given in the 
very special case 

g( t. x) = -y( tlglxl. 

Then. by (6). 

f"·'-" -y(s) ds 

and Assumption 5.5 takes the following form. 
For any x E [t, I) there exist y.: E [a. 11. y ;;:::: .r. : ;;-: ~such that 

-< -. I\ d~ f' d~ 
,~g(~) :cg(~) 

i.e. -- - -- <0. f·.: { I I } 
: c gr:?.~) 2g( ~) 

But this already follows from Assumption 4.9. So we obtain the following result. 

COROLLARY 6.3 
Let Assumptions I. I. 2.1 and 5.1 be satisfied. gu. x) = -y(tlgl.r) with g(2x) 7" 2gCtl 

for all but finitely many x E [a/2. !I. Then the statements (a) and (b) of Theorem 6.1 and 
Corollary 6.2 are valid. 

7. THE Tf\!E-HO\IOGE:>;EQL"S CASE REVISITED 

For time-independent developmental rates one expects Theorem 6.1 and Corollary 6.2 to 
hold with m(l, x) and 1i(t . .tl not depending on r. In fact. we established the theorems in this 
form in {I I under one of the fol!O\\.·ing conditions on the growth rate g: 
(il g(2.tl < 2gCtl. x E [a:2. !I. 
(ii) a ;a.: ~. g<.t) = x for x E (al:!. 131: g(x) < x for x E (j3. 11 with 13 < I. 
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Unfortunately neither condition is satisfied by the experimental data for g of Anderson et 
al. [::?]: in particular they found a < ~- This situation is especially unsatisfactory because 
Anderson et al. gathered their data from cell populations which. after the experiment had run 
for some time. showed e'<ponential growth with a stationary size distribution. So our theorem 
should hold for their daca. In [ 11 we guessed that a substantial generalization of conditions (iJ 

or (ii) would be very laborious or even impossible. Fortunately. this fear is unfounded. Let us 
assume that 

gl2x) ':;6 2g(x) for x E J. (37) 

J being a nonempty open subinterval of [ai2. ~l ==:/.Since g is continuous. (37) is a necessary 
condition for asymptotic exponential growth with stationary size distribution. as we pointed out 
at the beginning of [I. Sec. S]. Replacing Assumption 4.9 by !37) we in general lose the 
compactness of the operators U(t. t,,} even if t - 10 is large. The hope. however. is that !37J 
is strong enough co imply that the radius of the essential spectrum of U(t. f0 ) is strictly smaller 
than the spectral radius of U(t. tn). The spectral values in the complement of the essential 
spectrum essentially behave like the spectral values of a compact operator. We proceed as in 
Sec. 8 of [I] where the reader can also find details and references concerning the essential 
spectrum. (The essential spectrum consists of all elements of the spectrum which are not poles 
of the resolvent with a residue of finite rank.) 

A solution m of ( 15} can be split up as follows: 

m(t. x) = m(t. X) + 1n(t. X). (38) 

with 

m(r. x> == J Ku. x. yJm1Tu. x. y!. 2yl dy + mu( c. xJ. t391 
I J 

1n(t, .t) = f K(t. x. y)1i11T(t. X, y), 2y) dy + f, KU. x. y!m(T(t. x. y). 2y) dy. (40) 

With m11 being given by (16) we define solution operators l'1 t. t11 ) and VU. f11 ) by 

In particular 

Yiu. rl)><l> 

(J (t. fq )<l> 

mu. -i. 

1il ( t . . ). 

U(t. t0 ) = U<r. lo) + U(t. fol. 

Observe that U(t. t0) defines an evolutionary system. 

t-+2> 

We claim that (37) implies compactness of the operators Vu. t,!) for r - t,) being large 
enough. We proceed as in the proof of the compactness of the operators U(t. to) for large t - t,1 

in Sec . .+. 
We find that 

V(S. X) = m(T!s. an .. x). X) 

is continuous in x uniformly for s ranging in a bounded interval in (t,,. X) and for initial values 
<I> in a bounded subset M of Z. Let 1n(t. x) denote the second integral on the right-hand side 
of HO). Then 

1fl{T(s. a/2. x). x) == J Dff(s. a/2. y). _r)\'(f!s. yl. 2y> dy 
1•10 .. 11 



for S ~ TI L a 2. 1 " rran~h.:ir:itJLon J; ~,, J :~ r 

and find that m it. t .! IS 

Here. as before. 

mu. xi is 

LEMMA 7. l 
The operamrs i. 

connnuous m 1 .~ di{ d:•I i!I! t ~ ! " 2. ! ; 
as a convergent ~ent:s a~ m Thc1irem ~- ! . 

For Lemma 7. I to hold we did not need 1h::it the 
This :s different for the ne\t lemma 

LEM'.1.1,\ 7.2 
Let g, µ., b be time mdependent !ft~ 6!640U0 )JL lh<.: 

smctly smaller than the spec!ral rmfa.1s of U\/. 
spectrum of L'lr, is smaller than the 

In order 10 prove Lemma 7. 2 we firs( noie that. if the 
on t, 

DU. y) = Dlyl 

is independent oft [see l llj. Furthemiore. 

m •.PE\! 

m $ E /!.!. 

rJdiUS ,)f I. /,,l b 

the essenttal 

TU. x, y) - I =: T,;LI. .1 l ..l.5) 

does not depend on t. We note chat 39! can be vmtten m rhe form of 1 ! 5 1 if D is t>' 
DJ: 

D1 y l for a 2 ,,;;, y ,.s; L r $. J: 
0 otherwise. 

Though the positivity and compactness results in Sees. -1. 5 may cease hl be 'al!J urn.kr this 
modification. Propositions 4. l. 4.2 and 5.9 equally hold for U. 

In Sec. 5 we found p-periodic solutions of 136) !rum the propemes of thi: o~raror~ 
U(t, t,). _We now go this way backwards and uy to obtain mforma110n on rhi: operators 
U(t, U(t. t0) by looking for special periodic. namely r-independent sQiutions of 136J. This 
is possible because of (~4l and \45). To this end we define operators V'. on Z b: 

I V{ill(.t) = 

for A E R. u E Z. Here we admit any open subinterval J or I a 2. ~I. m particular J = ~. 
i.e. = D. Recall that D1(y) > 0 if a a::: < r < ~- .\· r/:. J (see Lemnu ~ 21. We now study 
the eigenvalues and the positive eigenvectors of V{ in dependence on ;\. S mce Propo~iti1..111 5. 9 
also holds if Dis replaced by D1 , any pair A E c. Ii E z with II = r<11 f.'rl'\ide~ :rn eigenvalu~ 
e'" of - p, t1.1l wi1h eigenvector u. Here t. r0 l, t ;ii: 1,,. denote th<: solution ~)perators 
associated with Eq. (39). 

LE:>.!~1A 7.3 
(a) Let J be an open subinterval of a,·2 - €. ~ - Et for some<:>\) Then there ex1>!s 

A. = l\1 E R such that the spec1ral radius of V{ I'-' i::qual to I . funhcrmor.:. for ii. l..1. thi::ri: 
are \'I E z_. 'i ;>!o 0 and 1·; E z· .. 1·;,,: 0 such that \"~1·, = I; and l r: I\' = ":. 
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lb) Let. in addition. the length of J be strictly smaller than 

n + I '2n 

for any /1 EN with a< !In. Then vJ is comparable with vu in t20) and v;(v) > 0 for every 
i· E Z_ with V{(v) =F 0. If J = ~. i.e. DJ = D. vj is strictly positive. 

Remark 
The notation X.1' vJ> v; may be misleading insofar as it suggests that these entities are 

uniquely determined <in the case of v1 • v; up to normalization). In general this might not be 
the case. It will be the case. however. if J satisfies both the conditions of Lemma 7.3(a) and 
(b). Note that vu in (20) is now time independent. The case J = ~ has already been dealt with 
by one of us in (27]. 

Proof of lemma 7.3. Drop the index J for convenience. Let r., denote the spectral radius 
of V,,. It can readily be seen that JjV-,.JJ-+ 0 for X.-+ :x. Recall that T,i(x. y) < 0 for x > y. 
Thus r, - 0 for A.-+ x. In order to see that r-,. - :x; for X. - - x we choose i· E z_, \'(X) = 0 
for x =Si L i·( I) > 0. Then 

for~ =Six =Si \,in particular V-,.\' ;;i: c1o.v with C1o. > 0 for X. ER and t\-+ x for x.- -x. This 
implies that r1o. ;;i: C1o. > 0 for A. E Rand c .. - x for A. - - :x. Note that v .. continuously depends 
on A. in the uniform operator topology. The fonnula ri.. = inf.llV~il' n = lim,.-xJIV~IJ 1 " reveals 
that r, is continuous from above. i.e. limA-i.. r~ ~ r-,.. Since every nonzero spectral value of the 
compact operator v .. is an isolated point of the spectrum, the perturbation result in Theorem 
3.16 in (28. Chap. IV) implies the continuity of r1o. from below. i.e. lim,;_, r~ ;;i: r,. The 
intem1ediate value theorem now implies the existence of some A. E R with r" = 1. The existence 
of \'1 and v; follows from the Krein-Rutman theorem (see. for example. (29]). 

Part (b) follows from the fact that there is some j E N such that ( V~ \:)(x) > 0 for 
al2 < x ~ 1, if v E Z+ and V,y ~ 0. In fact, if Vkv ~ O. v E z_, then (V,,v)(x) > 0 for 
1 :s::: x :s::: 1. Let us suppose that we have already proved 

Then 

a l 
(V{- 1i·)(.t)>Ofor -<-~x~ 1.}~2. 

2 j 

D'(.v)( V{- 1 v)(2y) > 0 for lj, al 2 ~ y ~ ~: y E J. 

If V-:;;:;; a/2. D1(y)(V:.,- 1 v)(2y) > 0 for a/2 ~ y ~ a/2 + e: hence ( V:.,i·)(x) > 0 for a/2 < 
x.;;; !. If kj > a/2, D1(y)( v:..- 1 v)(2y) cannot vanish a.e. on [!). l!(j + l)] because, by as
sumption. the length ofJ is strictly smaller than the length of[!}, I !(j + 1) ]; hence ( V'.., \')(x) > 0 
for I i(j + 1) < x < ~. Repeating this step several times we find some j such that ( V~ v)(x) > 0 
for ai2 < x ~ 1. • 

We now prove the crucial result which will imply that the spectral radius of U(t, 10) is 
strictly smaller than the spectral radius of U(t, t0), t > t0 • 

LE:l.1'.\IA 7 .4 
Let J be an interval satisfying the assumptions in Lemma 7.3(a. b). Let X.. x., E R be 

such that the spectral radius of V~ and V{1 equal l. Then >... > >...,. 

Proof. We suppose that A. =Si A.,. Choose \'.t E z _. v1 7"' 0 such that V{, v, = v1 . Since \"' 
is strictly positive by Lemma 7.3(b). i1~\·1 > V{i·1 ;;:i: V{1 v1 = \'1 • Recall that T,,(x. y) =Si 0 for 
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y ~ x. :"-iow choose a strictly positive fonctional r" = V~1·' according to Lemma 7.3tbJ. Then 

a contradiction. 

( \'~1·' )( \"1) 

1·' ( 1"1) 

1·'1 V~1·.) 1·'! r,1 
= >--==!. 

1·'11·, J 1·'1 r,) 

• 
Let us now fix the nonempty open subinterval J L)f I ; [a 2. l j such that J satisfie~ both 

the assumptions in Lemma 7.3 and in <37). Chuose an arbitrary f' > 0. Proposition 5.9 and 
Lemmas 7.3. 7.4 now imply that e·"·' and e'"' are positive eigenvalues of B = UU,, + p. t,.J 
and B = U(l0 -;- p. t0 ) respectively with eigenvec[l)rs 1-. \-which are comparable to 1·,) in <201. 
and that er• > e1''1• Thus Z,, = Z, = Z; as Ban..ich sp~tces. Obviously B and B map Z, and 
z,. continuously into themselves and have the spectral radii e"' ar::t e•'' 1 on these spaces (see the 
Appendix. point 8). It follows from proposition ..J..2 that B an~ 8 map Z continuou)ly inc0 Z .. 
for p ~ T11(al2. I). The next lemma will imply that B and B have the spectral radii e''' > 
e1'"'1 on Z so that Lemma 7. 2 follows from Lemma 7. 1 . 

LEMMA 7.5 
Let W. Z be Banach spaces. W a linear sub~pac.e of Z. Let B be a bounded linear operator 

on Z such that BZ c;;;; W and B is also a bounded L)perator on W Tht:n. with the possible 
exception of 0 E C. B has the same spe\:trum ,m Zand on W. 

By the open mapping theorem the proof of the lemma reduces to showing that. for 'I = 0. 
qi - B is a bijection on Z iff it is a bijection on H". But proving this is almost trivial and left 
to the reader. 

In order to conclude the consideration of th<: time-homogeneous case we remind that ( 37) 
implies Assumption 5.5. as we have seen in the remarks preceding: Corollary 6.3. Thus Prop
ositions 5.6(b, c) hold. The power compactness of B stated in proposition 5.6(a) was only 
needed to guarantee that the spectral radius r., L)f B = Cl r11 + p. t,,) is a pole of the resol\ent 
of B. In order to realize that r 0 keeps this property under the prt:senc conditions we first note 
that r0 is a spectral value of the positive operawr B (see I l 8. V.-1.. l I). By Lemma 7.2 r, has 
the same properties as a nonzero spectral value of a compm:t operator. in particular r., is an 
eigenvalue and even a pole of the resolvent of B (see ( l. Sec. 8 p. Thus Propositions 5. 7 and 
5.8 are valid (see (18. Chap. V]J and so are Th<:orem 6.1 and Corollary 6.2. if \\C replace 
Assumptions -l-.8. 5.1 and 5.5 by (37) and the rime independence of g. h. µ. . .\ote that 1i1 in 
Theorem 6.1 is now a time-independent solution of 1i1 = \'\1i1. Thus. by (-HJ. 1i1 i~ differentiabk 
for al 2 < x < l. x ¥- ~ and satisfies the differential equation 

( . ..!:..._ + ~)· ri1(x) = D(.t)1i112x) for a 2 < x < l .. x ;= }. 
glx) dx 

1.+8:1J 

DCx)1iH2x> ::;;; 0. x;:;.:: ~-

and the boundary condition 

rfz(a.'2) = 0. 

So Theorem 6.1 takes the following form. 

THEORE:\1 7.6 
Let Assumptions l .1. 2.1 be satisfied. Let g. µ. b be time independent and g( 2xl or= 2gtxJ 

for some x E (a/2. !l. Then the following holds. 
(al There exists a unique >-.. E R with a nonnegative solution 1i1 ..: 0 of (...J.8J. 1.+9J. 1i1 is 

uniquely determined up to a scalar factor. 
(b) lf m is a weak solution of ( 10) with a continuous initial function et> on [a 2. I] at 

t = fu. cf>(a/2J = 0. then fort-> ::r.:. 

m(l. x) = e·"1iz<x1 ·ta - e-" r I [)J 
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v.ith E > 0 and a as in Theorem 6.1 
SI l 

Again the dependence of a and r ( I l on the imrial values 11 can bi!' described in more 
detail. as we did in the sequel of Theorem 6. I. 

When Theorem 7 .6 is translated to Eq I I). we no<e that fi(!. xl in Corollary 6. 2 is time 
mde~ndcnt, continuous in x. differentiable in :c "" a. land a solution of tile differential equation 

d 
.\lil:c) -r d:; (g · ii)(x) + tµ. -t- b) · ti(x) = 4b · rit2.t). x E ta:2. I), .t.,., a, i. (50a} 

b · n(x) == 0 if .t rt, [a, I), 150bl 

and the boundary condition 

1i(al::!) = 0. (51) 

Furthermore, ri(:c)/E(.t) is bounded in x E (al2, IJ with 

E(.t) =exp ( - f: (big)(:) d:). (52) 

So Corollary 6.2 takes the following form. 

COROLLA.R Y 7. 7 
Let the assumptions of Theorem 7.6 be satisfied. Then the follo\lling holds. 
(a} There exists a unique .\ E R with a nonnegative solution ii ;<: 0 of (50), {5 !) such 

that ii(:c)/ E(x) is continuous on [al 2. I J. n is uniquely detennined up to a scalar factor. 
(b) Let n be a weak solution of (l) fort> r0 such that n(r0 , x}if(x) is continuous in 

x E [a/2, IJ. Then, for r - x, 

n(t, .t) = e~'ri(x) ·(a + e-" f (Ill 

with E > 0 and o. as in Corollary 6.2. 

We remark that these results for the time-homogeneous model can also be obtained using 
the semigroup theory we applied in [IJ. The proof of the strong positivity of the solution 
operators could then be replaced by a more thorough analysis of the operators V~ in (47), in 
particular by the considerations in (27, Sec. 7J. Though g(2t) < 2gM for all x E [a/2, l] is 
supposed there, the proof of Theorem 7 .2 reveals that (37) is sufficient because the eigenfunction 
<1>0 is strictly positive. For time-dependent developmental rates a direct proof of the strong 
positivity of U(t, t0) seems unavoidable. 

A.C'kno,.1t'dgmenr-Thc work of H. Thtcmc: has been supported by the: Deutsche Fonchungs-gemeinschaft 1DFGl and. 
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APPE:-.IDIX: SO.ME VOCABULARY FRO~! THE THEORY OF BA'.'iACH LATTICES 

l. A Banach lattice Z is a Banach space with norm 11-\I and a veccor lattice with cone Z •. ordering ··:e;" and 
absolute value (or modulus) I·\ with these two structures b.:ing interlinked by 

lul .;; lvl implies llwl .;;; llvll !All 

for all u. "E Z (see (18]). 
:?. Let l' E Z .. l' F 0. 11 E Z is called v-bounded iff 

\u\ .;;; n· for some c > 0. IA21 

The set Z,. of v-bounded elements is a linear subspace of Z and becomes a Banach space itself by the \"•norm llu'l.. 
which is by definition the smallest c such that ( A2J is satisfied (see ( 17. Sees. 1.2. 1.3] ). The Banach space Z, becomes 
a Banach lattice by restricting the lattice structure of Z to Z,. in particular Z, • = Z, n Z •. If Z is a function space. 
then llu!I. = sup{l(utv)(x)j; v(.t) .,a O}. The cone Z,_ has interior points in the Z.-topology. 

3. Let u, ,. E Z. u is called v-positfre iff u ;;!o on· for some E > 0. u and \' are called comparable (or order
equivalen[) iff u is v-bounded and \•-positive. u and ,. are comparable iff Z,. and z. are equal as Banach lattice (in 
particular z. = Z,. as sets and IJ·ll .. and IHI. are equivalent norms); furchennore. u and v are comparable iff u is an interior 
point in Z,. and vice versa. 

4. v E Z. is called a quasi-interior point iff Z, is dense in Z. or equivalently. iff ,.· ,. > 0 for an~· 1·' E Z' .. r' ;,; 0 
(see [18. Thm. 11.6.3]). 

S. A functional v' on Z is called posirive iff v'(u) ""0 for all u E z .. l"' is called striccly positfre iff 1·'(<1) > 0 
for all u E z •. u ;.& O. 

6. A linear operator A from one Banach lattice into another is called positi1·e iff it maps one cone into the other. 
Positive linear operators between Banach lattices are automatically bounded (see (18. Sec. 11.5.3]1. 

7. A positive linear operator A is called scrongly positfre iff for any u E Z •. u ;" 0. A "u is a quasi-interior point 
of z. for some n E N. 

8. A positive operator A on Z maps z .. " EX., into itself iff Ai· is v-bounded (i.e. At· E Z.J. The operator norm 
llAll. of A on X, satisfies \IAll, = llAvll,. If M = ,.,,. for some r > 0. then ilAll. = ,. and r is the spectral r~dius of A on 
Z,. 


