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ABSTRACT

In this paper, we give background information about multi-
coloured polygonal Markov fields and their dynamic repre-
sentation. Also we work out the details of the disagreement
graph for multi-coloured polygonal Markov fields.

Index Terms— Arak process, dynamic representation,
disagreement loop, disagreement graph, image segmentation,
multi-coloured polygonal Markov fields.

1. INTRODUCTION

Segmentation is one of the major tasks for image analysis.
Segmentation partitions the image into homogeneous regions
[1]. There are numerous methods for segmentation. Material
on morphological methods can be found in Vincent [2], chap-
ter 10 in Green et al. [3] Bayesian models. We should also
cite the textbook by Winkler [4].

Polygonal field models were considered by Clifford and
Middleton [5], and a Metropolis-Hastings style sampler was
developed by Nicholls and Clifford [6] with an application to
an image reconstruction problem. In 1982, Arak constructed
Markov field on the plane which takes two colours [7]. This
construction was generalized to random fields with any finite
number of colours by Arak and Surgailis in 1989 [8]. Arak
et al. discussed the different techniques to construct Markov
random graphs with I , V , T and Y -shaped vertices [9].

Kluszczynski et al. revisited image segmentation by
polygonal Markov fields in [10] (also [11]) and implemented
novel simulation methods. Unlike pixel based Markov ran-
dom fields, polygonal Markov fields are able to capture global
aspects of the image. which provides computational effi-
ciency. The dynamic representation which was introduced
also in [7] became useful to obtain important properties of
polygonal Markov fields. The disagreement loop concept
was proposed in [12] which arose from the dynamic repre-
sentation. It provides more efficient simulation for polygonal
Markov fields.

1.1. Multi-coloured polygonal Markov field

Let D ⊆ R2 be a bounded convex and open domain and
µ(dl) be finite, non-atomic measure on set LD of all lines

l in R2 which intersect D, and let J := {1, . . . , k} be the set
of admissible colours for a fixed k ≥ 2. For any collection
(l)n = (l1, . . . , ln), l1, . . . , ln ∈ LD, the set ΓD(l)n consists
of all functions ω : D → J such that

a. ∂ω ⊂
⋃∞
n=0 li∩D, where ∂ω is the set of discontinuity

points of ω.

b. For any line li, the intersection li ∩ D (i = 1, . . . , n)
consists of a single positive length interval and some
isolated points li ∩ lj (i 6= j) [8].

Define ΓD as all polygonal configurations on D by

ΓD =
∞⋃
n=0

⋃
(l)n

ΓD(l)n.

The notation .̂ is used for coloured polygonal configurations.
If there is no .̂ symbol, that indicates lines of polygonal con-
figurations.

Γ̂D denotes the family of admissible coloured polygonal
configurations inD and ∂ω corresponds to γ, the planar graph
in D ∪ ∂D. The notation γ̂ represents the resulting coloured
configurations of D by using the set J which satisfy the fol-
lowing conditions:

• Interior vertices of γ may have degree two (V-node) or
degree three (T-node) or degree four (X-node).

• All border vertices have degree one.

• Subregions which share the same edge of D cannot be
assigned the same colours.

• For each straight line l ⊆ R2 the intersection l ∩ γ
consists of at most one interval of non-zero length and
possibly of some isolated points.

The process ÂD is defined as;

P (ÂD ∈ ε) =
E

∑
γ̂∈Γ̂D(ΛD)∩ε exp[−Φ(γ̂)]

E
∑
γ̂∈Γ̂D(ΛD) exp[−Φ(γ̂)]

, (1)

where

Φ(γ̂) := −NV (γ) logαV −NT (γ) log [(k − 1)αT ]
−NX(γ) log [(k − 1)αX ] + |E(γ)| log (k − 1) + 2ξl(γ)



and the parameters

αX := 1− αV , αT :=
1
2

(1− k − 2
k − 1

αX),

ξ :=
αV
k − 1

+
(k − 2)αT
k − 1

.

Φ(γ̂) is the energy function of coloured configuration γ̂, l(γ)
is the total length of γ, E(γ) is the set of all edges of γ,
NV (γ),NX(γ),NT (γ) denote the numbers of V−,X−, T−
nodes respectively and ΛD is the restriction of the Poisson
line process Λ to D. The notation Γ̂D(ΛD) represents ran-
dom set of coloured polygonal configurations consist of ΛD
which hit D. For further information about the Poisson line
process, see chapter 8 Stoyan et al. [13] and for the specific
choice of the parameters, we refer to [8] and [10].

This process has very important properties which were
shown in [8]. It is isotropic, exactly solvable, consistent and
it has a spatial Markov property.

1.2. Dynamic representation

The dynamic representation is an equivalent description of
the polygonal Markov field which interprets D as two dimen-
sional time-space by using one dimensional evolution of par-
ticle system. This representation was introduced in [7] for
k = 2, αV = 1 and Arak showed that this construction
coincides in distribution with the Arak process which is the
spacial case of polygonal Markov fields with V-vertices only,
two colours and symmetric transition probabilities. Below,
we will give the dynamic representation [8] for the specific
polygonal Markov field which was considered in [10].

Describe the open convex domainD as a set of time-space
points (t, y) ∈ D, where t, y denote the time coordinate
and spatial coordinate of a particle respectively. These freely
moving particles separate D into different coloured regions.
The coordinates of the new birth sites are chosen as follows;

• Interior birth sites form a homogeneous Poisson Pro-
cess with rate παV

k−1 .

• Border birth sites form a homogeneous Poisson Process
with intensity measure

κ(B) = Ecard{l ∈ Λ, in(l,D) ∈ B}, B ⊆ ∂D.

For any straight line l which is not parallel to the spatial axis
and that is contained in D, in(l,D) denotes the entry point of
line l in D.

Interior birth sites consist of two particles which evolve
with initial velocities v′ < v′′ from joint distribution;

θ(dv′, dv′′) = π−1|v′ − v′′|(1 + v′2)−
3
2 (1 + v′′2)−

3
2 dv′dv′′.

Colours are chosen with equal probability, under the condi-
tion that none of two regions which share the same line seg-
ment have the same colours.

The particles evolve with respect to the following rules;

R1 Except for the critical moments, particles move with
constant velocity v.

R2 The changes in velocity vt of a particle in time is given
by a pure-jump Markov process as

P (vt+dt ∈ du|vt = v) =
αV
k − 1

q(v, du)dt

for the transition kernel

q(v, du) := |u− v|(1 + u2)−
3
2 du

R3 A particle with velocity v splits into two particles with
probability

k − 2
k − 1

αT q(v, du)dt

one of which preserves velocity v, the second particle
moves with velocity u ∈ du. The colour between the
particles is chosen from the set J excluding the upper
and lower colour of the original particle.

R4 When two particles collide;

R4a If the colours above and below the collision
points which are i, j ∈ J respectively, are the same
then;

- with probability αV both colliding particles
die,

- with probability αX = 1 − αV both particles
survive and continue their trajectories. The colour for
the interior region after collision is chosen uniformly
from the set J\{i} = J\{j}.

R4b If the colours above and below the collision
points which are i, j ∈ J respectively, are different
then;

- with probability αT the upper particle dies and
the lower particle survives,

- with probability αT the lower particle dies and
the upper particle survives,

- with probability (k−2)αX/(k−1) = 1−2αT
both colliding particles survive and continue their tra-
jectories. The colour for the interior area after collision
is chosen uniformly from the set J\{i, j}.

R5 Upon touching the boundary ∂D, the particle dies.

2. DISAGREEMENT GRAPH

Disagreement graph is a concept which arose from the dy-
namic representation of polygonal Markov fields. Kluszczyn-
ski et al. [10] developed a simulated annealing algorithm
for image segmentation by multi-colour polygonal Markov
fields. For that purpose, they introduced continuous time ran-
dom dynamics on Γ̂D. For their properties, see Theorem 1



in [10]. The disagreement graph has an important role in this
image segmentation algorithm. In every step of iteration, the
disagreement graph determines the changes in the polygonal
configuration. Hence, while a global optimization technique
is used, local changes may also be considered.

Consider removing a birth package x from the coloured
polygonal configuration γ̂ to obtain γ̂ 	 x. A birth package
is carried by each birth site and it contains all randomness of
the resulting particles. The symmetric difference ∆	[x; γ] :=
γ4[γ	x] gives us the disagreement graph which is described
in more detail below.

Let p1 be one of the killed particles. The edges along the
trajectories of killed particles are labelled with a minus. If
some minus labelled edge p1 collides with the boundary of
D, the disagreement path terminates. But it may continue on
another minus, plus or colour changed path which are results
of removing the birth site. Note that a plus path represents an
edge which does not exist in γ̂ but in γ̂	x. A colour changed
edge is an edge that separates regions of which at least one is
assigned different colour in γ̂ 	 x compared to γ̂.

The killed particle p1 would have hit an edge of γ̂, had it
survived. If p1 would have died in γ̂ and the collision point
is a V-node, the minus path terminates but the other collided
particle continues as a plus path or colour changed edge.
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Fig. 1. Disagreement graph after removing a birth package.

If p1 survives in γ̂ and the collision point is a T-node, the
minus path continues and the other collided particle continues
on its trajectory as a plus path or a colour changed path.

Collisions between plus labelled edges only lead to plus
labelled edges and the disagreement graph follows these paths
or it terminates if particles die in collision. This collision and
colouring happen according to R4.

Collisions between a plus and a minus edge always result
in an X-node as both particles continue without interaction.

At some moment, a plus particle may collide with an edge
of γ and R4 is applied. If both particles die, the disagreement
graph follows the trajectory of the old particle and is assigned
with a minus. If only plus particle survives, the disagreement
graph follows the trajectory of the old particle which is la-
belled as a minus after collision and the trajectory of plus
labelled particle. If only plus particle dies, the old particle
continues its trajectory as colour changed edge. If both par-
ticles survive, the disagreement path follows the trajectory of

plus labelled edge and the trajectory of the old particle which
is assigned with a colour change after collision.

If there is a collision between colour changed edges, R4
has to be applied. First assume that the colours above and be-
low the collision point coincide in the old coloured graph γ̂.
If the collision node is of V-type, the disagreement graph ter-
minates in the case of colours above and below collision point
remain unchanged in γ̂ 	 x. If the colours above and below
the collision point are different in γ̂ 	 x, with probability αT
the disagreement graph follows the trajectory of one colour
changed edge or with probability 1 − 2αT the disagreement
graph follows the trajectory of both colour changed edges and
the colour between these edges will be chosen according to
R4. If the collision node is of X-type, it will also be of X-type
in γ̂	 x, but the trajectory of disagreement graph depends on
colours above and below particles after collision. The dis-
agreement graph may terminate or follow one colour changed
particle or continue along both particles as colour changed.

Next assume that the colours above and below the colli-
sion point do not coincide in the old coloured graph γ̂. If the
collision node is of T-type and the colours above and below
the collision coincide in γ̂	x, with probability αV both parti-
cles die and disagreement graph continue along the trajectory
of the survived particle as a minus (see fig. 2). With proba-
bility αX both particles survive and the colour of the interior
angle is chosen uniformly excluding the colour above and be-
low the collision point and one obtains a plus path and a path
whose status depending on the corresponding edge in γ̂. If the
collision node is of T-type and the colours above and below
collision point are still different in γ̂ 	 x, either disagreement
graph terminates or continues along the the trajectory of the
survived particle as a colour changed depending on colours
above and below of collision point. If the collision node is
X-type, it will be also X-type in γ̂ 	 x, and the trajectory of
disagreement graph can be found similar to the same colour
case.
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Fig. 2. Collision of colour changed edges while colours above
and below collision point do not coincide in γ̂ but in γ̂ 	 x.

Next assume there is a collision between a plus labelled
edge and a colour changed edge. We need to apply R4 again.
If both particles die, the disagreement graph follows the tra-
jectory of the colour changed particle and is assigned with a
minus. If only the plus labelled edge survives, the disagree-



ment graph follows the trajectory of the colour changed parti-
cle as a minus path after collision and the trajectory of the plus
labelled particle. If only the plus labelled particle dies, the
colour changed edge continues its trajectory and the disagree-
ment graph continues along that trajectory. If both particles
survive, the disagreement path follows the trajectory of the
plus labelled edge, and possibly the trajectory of the colour
changed edge.

The collision of a colour changed edge with an edge com-
mon to γ̂ and γ̂ 	 x is analogous to the previous case.

If we consider adding a birth site x to the coloured polyg-
onal configuration γ̂, the resulting configuration will be γ̂⊕x.
Similarly, the symmetric difference (∆⊕[x; γ] := γ4 [γ⊕x])
of γ̂ and γ̂⊕x describes the disagreement graph. The emitted
particles from this birth sites, as well as velocity updates of
particle or splits are labelled as plus paths. The minus path
represents the edge which exists in γ̂ but in γ̂ 	 x.

In this case, particles follow the same collision and evolu-
tion rules as in the removing birth site. However, we get the
dual picture for disagreement graph. (E.g. if a plus edge hits
an edge of the old configuration and both die, the disagree-
ment graph continues with a minus, along the trajectory of
the old particle. The plus path terminates.) This concludes
our discussion of the disagreement graph.

3. CONCLUSION AND FUTURE WORK

Currently, we are working on implementing the disagreement
graph for polygonal Markov fields in C++ and looking for-
ward to use multi-coloured polygonal Markov field for im-
age segmentation. Similar methods as in Kluszczynski et al.
[10], considering the image segmentation problem as statisti-
cal estimation may give satisfactory results also for the multi-
coloured case.
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