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There are precisely three locally icosahedral graphs, namely the point 

graph of the 600-cell on 120 vertices, and quotients of this graph on 60 

and 40 vertices, respectively. 

TilE 600-CELL 

The 600-cell is a regular polytope inll.4 with 120 vertices, 720 edges, 1200 

(triangular) 2-faces and 600 (tetrahedral) 3-faces. Its Schlafli symbol is 

{3,3,S}; cf. Coxeter [2], Sec. 8.5. It is the (unique) thin building of type 

5 
H4 0-0-0-0 

l 2 3 4 

(where vertices are 1-objects, etc.). The vertices and edges of the 600-

cell form a graph Q that is locally an icosahedron, i.e., for each vertex x 

of Q the induced graph on the collection of neighbors of x is isomorphic to 

the (graph of the vertices and edges of the) icosahedron. In this note we 

shall determine all locally icosahedral graphs. 

The vertices of Q may be described using quaternions (Witt [4]; cf. 

Bourbaki [l], Ch. VI, Sec. 4, Exercise 12): take the 8 vertices ±1, ±i, 
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±j, ±k, the 16 vertices (1/2) (± l ± i ± j ± k) and the 96 vertices obtained 

from (l/2)(± T ± i ± (T - l)j) using even permutations of (l,i,j,k). Here 

1T 1 ~ 2 
T = 2 cos 5 = zC•S + 1) is the golden ratio, root of T = T + 1. Note that 

this set of 120 quaternions forms a subgroup [isomorphic to SL 2(S)J of the 

multiplicative group of quaternions of unit norm. Define an inner product 

on Q by (x,y) = (1/2) (xy + yx), where the bar denotes quaternion conjuga

tion. This is the ordinary euclidean inner product when Q is viewed as a 

subset of the four dimensional euclidean space with basis (l,i,j,k):(x,y) = 
4 

Li=l xiyi for x = x1 + x2i + x3j + x4k, y = y 1 + y2i + y 3j + y4k. Two ver-

tices x,y are adjacent iff (x,y) = (1/2)1. If we fix a vertex x E Q then 

the point set of Q is partitioned into the nine sets 

Q (x) = {y E Q 
a 

- 1),0} 

The stabilizer of x in Aut Q is transitive on each set Qa(x). 'The follow

ing diagram shows the cardinalities of the Qa(x), and for any y E Qa(x) how 

many neighbors y has in QS(x). 

Ii I 
3 

TI1e group of automorphisms of Q has order 120 2 = 14400 and is generated by 
-the orthogonal reflections o : x I+ -axa (a E Q). It consists of the 

2 a 
(1/2)120 transformations o b: x t+ axb of determinant 1 (a,b E Q) and the 

(1/2) 120 2 transformations /'b of determinant -1. (Note that o b = o d 
a,, a, c, 

iff either a = c, b = d, or a = -c, b = -d.) Its center is {±1} of order 2. 

In other words, Aut Q "" [SL2 (5) 0 SL2 (5) J • 2 where the 0 denotes central 

product. 

LOCALLY ICOSAHEDRAL GRAPHS 

Let G be a connected locally icosahedral graph on v vertices. We may give 

G the structure of a geometry of type H4 (cf. Tits [3]) by taking as 
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i-objects complete subgraphs of cardinality i (1 s i s 4) and as incidence 

(symmetrized) inclusion. Note that this geometry is thin, i.e., each flag 

of corank one is in precisely two maximal flags. 

By Tits [3], Theorem 1, it follows that G ""Q/A, where Q is the thin 

building of type H4 and A is a group of automorphisms of Q satisfying con

dition (Ql) of [3]. From (Ql) and the fact that both G and Qare locally 

icosahedral it follows immediately that two vertices (I-objects) of Q in 

the same A-orbit have distance at least 4 and hence inner product at most 

-1/2. 

Suppose a E A fixes a vertex x E Q. Then a must fix each neighbor of 

x, and hence all of Q, i.e., a l. Let x1, x2 , x3 be three vertices in 

the same A-orbit, then (xi ,xj) s -1/2 for 1 s i ,j s 3 and (x1 + x2 + x3, 

x1 + x2 + x3) s 3 - 6(1/2) = 0, whence (xi,xj) = -1/2 for 1 S i,j s 3 and 

x1 + x2 + x3 = 0. This shows immediately that IA\ s 3. We shall see that 

each of the possibilities IA I 1, 2, or 3 leads to a quotient unique up to 

isomorphism. This is clear for \A I = 1. If IA I = 2 and 1 r a E A then 

(x,crx) cannot be -1/2 otherwise a would fix the plane 11 on {O,x,ax}, but 

11 n Q is a regular hexagon in 11 and a must fix two of its vertices, contra

diction. Similarly (x,crx) cannot be -(l/2)T, otherwise we find that a fixes 

two vertices of the regular decagon 11 n Q. Consequently, a = -1. And in 

fact Q/<-1> is locally icosahedral on 60 vertices and its automorphism group 

is isomorphic to [Alt(S) x Alt(S)] • 2 and is transitive (rank 5) on the 

vertex set; it has diagram 

Finally, if IA\= 3 and 1 i a EA then det a= 1 

a,b E Q. Since cr 3 = 1 we may take a3 = b 3 1. 

so a = a b for certain a, 
Conjugating a with a;:-; 

' we get ab and conjugation by a d yields cr- -dbd' ,a c, cac, Since PSL 2(S) "" 

Alt(S) has only one conjugacy class of elements of order 3 we may assume 

that a is one of the elements al,l' al,a' or aa,a· But 

and a fails the condition (l,al) = -(1/2). Thus a= a,a 

al, 1 has order 1 

cr 1 is (up to ,a 
conjugacy) the unique possibility. And in fact Q/<cr 1 > is locally 

,a 
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icosahedral on 40 vertices and its automorphism group is isomorphic to 

SL 2 (S) 0 z4 and is transitive on the vertex set; it has diagram 
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