4

The Locally Icosahedral Graphs

A. Blokhuis, Andries E. Brouwer, and Arjeh M. Cohen

Stichting Mathematisch Centrum Amsterdam, The Netherlands Dominique Buset Université Libre de Bruxelles Brussels, Belgium

ABSTRACT

There are precisely three locally icosahedral graphs, namely the point graph of the 600-cell on 120 vertices, and quotients of this graph on 60 and 40 vertices, respectively.

THE 600-CELL

The 600-cell is a regular polytope in \mathbb{R}^4 with 120 vertices, 720 edges, 1200 (triangular) 2-faces and 600 (tetrahedral) 3-faces. Its Schläfli symbol is {3,3,5}; cf. Coxeter [2], Sec. 8.5. It is the (unique) thin building of type

$$H_4 = \bigcirc_1 - \bigcirc_2 - \bigcirc_3 - \bigcirc_4$$

(where vertices are 1-objects, etc.). The vertices and edges of the 600cell form a graph Q that is locally an icosahedron, i.e., for each vertex x of Q the induced graph on the collection of neighbors of x is isomorphic to the (graph of the vertices and edges of the) icosahedron. In this note we shall determine all locally icosahedral graphs.

The vertices of Q may be described using quaternions (Witt [4]; cf. Bourbaki [1], Ch. VI, Sec. 4, Exercise 12): take the 8 vertices ±1, ±i, ±j, ±k, the 16 vertices $(1/2)(\pm 1 \pm i \pm j \pm k)$ and the 96 vertices obtained from $(1/2)(\pm \tau \pm i \pm (\tau - 1)j)$ using even permutations of (1,i,j,k). Here $\tau = 2 \cos \frac{\pi}{5} = \frac{1}{2}(\sqrt{5} + 1)$ is the golden ratio, root of $\tau^2 = \tau + 1$. Note that this set of 120 quaternions forms a subgroup [isomorphic to $SL_2(5)$] of the multiplicative group of quaternions of unit norm. Define an inner product on Q by $(x,y) = (1/2)(x\bar{y} + y\bar{x})$, where the bar denotes quaternion conjugation. This is the ordinary euclidean inner product when Q is viewed as a subset of the four dimensional euclidean space with basis (1,i,j,k):(x,y) = $\Sigma_{i=1}^4 x_i y_i$ for $x = x_1 + x_2 i + x_3 j + x_4 k$, $y = y_1 + y_2 i + y_3 j + y_4 k$. Two vertices x,y are adjacent iff $(x,y) = (1/2)\tau$. If we fix a vertex x \in Q then the point set of Q is partitioned into the nine sets

$$Q_{\alpha}(x) = \{y \in Q \mid (x,y) = \alpha\} \text{ with } \alpha \in \{\pm 1, \pm \frac{1}{2}\tau, \pm \frac{1}{2}, \pm \frac{1}{2}(\tau - 1), 0\}$$

The stabilizer of x in Aut Q is transitive on each set $Q_{\alpha}(x)$. The following diagram shows the cardinalities of the $Q_{\alpha}(x)$, and for any $y \in Q_{\alpha}(x)$ how many neighbors y has in $Q_{\alpha}(x)$.

The group of automorphisms of Q has order $120^2 = 14400$ and is generated by the orthogonal reflections σ_a : $x \mapsto -a\bar{x}a$ ($a \in Q$). It consists of the $(1/2)120^2$ transformations $\sigma_{a,b}$: $x \mapsto \bar{a}xb$ of determinant 1 ($a,b \in Q$) and the $(1/2)120^2$ transformations $\overline{\sigma_{a,b}}$ of determinant -1. (Note that $\sigma_{a,b} = \sigma_{c,d}$ iff either a = c, b = d, or a = -c, b = -d.) Its center is {±1} of order 2. In other words, Aut $Q \simeq [SL_2(5) \circ SL_2(5)] \cdot 2$ where the \circ denotes central product.

LOCALLY ICOSAHEDRAL GRAPHS

Let G be a connected locally icosahedral graph on v vertices. We may give G the structure of a geometry of type H_A (cf. Tits [3]) by taking as

i-objects complete subgraphs of cardinality i $(1 \le i \le 4)$ and as incidence (symmetrized) inclusion. Note that this geometry is thin, i.e., each flag of corank one is in precisely two maximal flags.

By Tits [3], Theorem 1, it follows that $G \simeq Q/A$, where Q is the thin building of type H₄ and A is a group of automorphisms of Q satisfying condition (Q1) of [3]. From (Q1) and the fact that both G and Q are locally icosahedral it follows immediately that two vertices (1-objects) of Q in the same A-orbit have distance at least 4 and hence inner product at most -1/2.

Suppose $\sigma \in A$ fixes a vertex $x \in Q$. Then σ must fix each neighbor of x, and hence all of Q, i.e., $\sigma = 1$. Let x_1 , x_2 , x_3 be three vertices in the same A-orbit, then $(x_1, x_j) \leq -1/2$ for $1 \leq i, j \leq 3$ and $(x_1 + x_2 + x_3, x_1 + x_2 + x_3) \leq 3 - 6(1/2) = 0$, whence $(x_i, x_j) = -1/2$ for $1 \leq i, j \leq 3$ and $x_1 + x_2 + x_3 = 0$. This shows immediately that $|A| \leq 3$. We shall see that each of the possibilities |A| = 1, 2, or 3 leads to a quotient unique up to isomorphism. This is clear for |A| = 1. If |A| = 2 and $1 \neq \sigma \in A$ then $(x,\sigma x)$ cannot be -1/2 otherwise σ would fix the plane π on $\{0,x,\sigma x\}$, but $\pi \cap Q$ is a regular hexagon in π and σ must fix two of its vertices, contradiction. Similarly $(x,\sigma x)$ cannot be $-(1/2)\tau$, otherwise we find that σ fixes two vertices of the regular decagon $\pi \cap Q$. Consequently, $\sigma = -1$. And in fact $Q/\langle -1 \rangle$ is locally icosahedral on 60 vertices and its automorphism group is isomorphic to $[Alt(5) \times Alt(5)] \cdot 2$ and is transitive (rank 5) on the vertex set; it has diagram

Finally, if |A| = 3 and $1 \neq \sigma \in A$ then det $\sigma = 1$ so $\sigma = \sigma_{a,b}$ for certain a,b $\in Q$. Since $\sigma^3 = 1$ we may take $\bar{a}^3 = b^3 = 1$. Conjugating σ with $\overline{\sigma_{1,1}}$ we get $\sigma_{b,a}$ and conjugation by $\sigma_{c,d}$ yields $\sigma_{\bar{c}ac,\bar{d}bd}$. Since PSL₂(5) \simeq Alt(5) has only one conjugacy class of elements of order 3 we may assume that σ is one of the elements $\sigma_{1,1}$, $\sigma_{1,a}$, or $\sigma_{a,a}$. But $\sigma_{1,1}$ has order 1 and $\sigma_{a,a}$ fails the condition $(1,\sigma_1) = -(1/2)$. Thus $\sigma = \sigma_{1,a}$ is (up to conjugacy) the unique possibility. And in fact $Q/<\sigma_{1,a} >$ is locally icosahedral on 40 vertices and its automorphism group is isomorphic to $SL_2(5) \circ Z_A$ and is transitive on the vertex set; it has diagram

REFERENCES

- 1. N. Bourbaki, Groupes et algèbres de Lie, Chapitres 4, 5, et 6, Masson, Paris, 1981.
- 2. H. S. M. Coxeter, Regular Polytopes, Dover, 1973.
- J. Tits, A local approach to buildings, in *The Geometric Vein The Coxeter Festschrift* (C. Davis, B. Grünbaum, and F. A. Sherk, eds.), Springer, 1981, pp. 517-547.
- 4. E. Witt, Spiegelungsgruppen und Aufzählung halbeinfachen Liescher Ringe, Abhandl. Math. Sem. Univ. Hamburg 14 (1941), 289-337.