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The conditional independence relation for a triple of u-algebras is inves
tigated. For certain operations on this relation, necessary and sufficient 
conditions are derived such that these operations leave the relation invariant. 
Examples of such operations are the enlargement or reduction of the u
algebras, and an absolute continuous change of measure. A projection operator 
for u-algebras is defined and some of its properties are stated. The 
u-algebraic realization problem is briefly discussed. 

1. Introduction. The purpose of this paper is to present certain invariance 
properties of the conditional independence relation, properties of a projection 
operator for u-algebras, and to discuss briefly the u-algebraic realization problem. 

The conditional independence relation for a triple of u-algebras Fi. F2, G of a 
probability space is defined by the condition that for any two positive random 
variables x1 , x2 that are respectively F1 , F2 measurable, one has 

E[x1x2 I G] = E[x1 I G]E[x2 I G]. 

This relation plays a key role in a large number of areas of probability theory 
and stochastic processes. In the area of sufficient statistics the conditional 
independence relation enters in a natural way [1, 2, 8, 17]. The role of the relation 
in sufficient statistics has recently been stressed in [3, 4, 5, 12, 14]. In stochastic 
processes, the conditional independence relation appears in the theory of Markov 
processes, in particular in the concept of germ field [9, 13]. In stochastic system 
theory the relation is essential for the definition of a stochastic dynamic system 
and the stochastic realization problem [10, 18, 19, 20]. Other areas in which the 
conditional independence relation arises are information theory and random 
fields. In all these areas the relation enters in the question of how to reduce 
available information. 

The main problem to be posed and solved in this paper is to give necessary 
and sufficient conditions for the invariance of the relation under certain opera
tions. Examples of such operations are to make F1 smaller or larger, G smaller 
or larger, and to perform absolute continuous changes of measures. A second 
problem to be investigated is to derive properties of a projection operator for 
u-algebras. Finally the u-algebraic realization problem will briefly be mentioned. 

The invariance properties of the conditional independence relation have been 
discovered in an investigation of the u-algebraic realization problem [19]. These 
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properties seem sufficiently interesting to other areas of probability theory and 
stochastic processes to receive proper attention. 

The motivation of the investigation of the conditional independence relation 
is the stochastic realization problem. In this problem one is given a stochastic 
process and asked to construct a stochastic system in a specified class such that 
the output of this system equals the given process. The practical motivation of 
this problem comes from communication and control, econometrics, time series 
analysis, and other areas where model building is important. The stochastic 
realization problem for Gaussian processes has been extensively investigated 
[10]. For non-Gaussian processes there are still many open problems. In a static 
context the strong version of the stochastic realization problem reduces to the 
u-algebraic realization problem. 

The u-algebraic realization problem is given two u-algebras F1 , F2 to classify 
and to construct all u-algebras G that make F1 , F2 conditional independent and 
that are minimal in a to be specified sense. This problem is unsolved [19]. For 
the case where the u-algebras Fi. F2 are generated by Gaussian random variables 
a rather complete solution is available [18]. A generalization of the latter case to 
a Hilbert space framework has been investigated [10]. However, for the u
algebraic case the analogy of u-algebras with Hilbert spaces is not useful because 
the set of u-algebras on a probability space is a lattice on which no orthogonal 
complement exists. The questions that the u-algebraic realization problem poses 
are rather different in nature than those posed in the statistics literature. The 
u-algebraic realization problem therefore requires new tools, and the structure of 
its solution is likely to be rather different from the Hilbert space case. The 
invariance properties of the conditional independence relation are basic tech
niques for the investigation of this problem. 

A brief outline of the paper follows. In the next section the problem is 
formulated and elementary properties of the conditional independence relation 
are mentioned.· The invariance properties are derived in Section 3, while in 
Section 4 several properties of a projection operator for u-algebras are investi
gated. The u-algebraic realization problem is briefly discussed in Section 5. 

2. The problem formulation. In this section the conditional inde
pendence relation is defined and the invariance problem posed. 

Throughout the paper I 0, F, PI denotes a complete probability space consistin~ 
of a set n, a u-algebra F, and a probability measure P. Let 

F _ {G C F I G is a u-algebra that contains} 
- all the null sets of F · 

If H, G E F, then H V G is the smallest u-algebra in F that contains H and G. 
For any set A c n, IA is the indicator function of A. For G E F let 

L +(G) = Ix: 0 -+ R+ Ix is G measurable!. 

If x: Q-+ Rn is a random variable, then pz E F denotes the u-algebra generated 
by x and the null sets of F. All equalities are supposed to hold almost surely, 
unless mentioned otherwise. 
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In the following the concept of a projection of one q-algebra on another is 
needed. This definition is essentially due to H. P. McKean [13, page 343]; see 
also [14, page II.14; 19]. 

2.1 DEFINITION. For H, GE F let the projection of Hon G be the u-algebra 

u(H I G) = u({E[h I G] I 'Vh E L +(H)}) E F 

with the understanding that all null sets of F are adjoined to it. The operator 
u ( • I • ): F x F -+ F will be called the projection operator for q-algebras. 

Recall that Fi. F2 E F are independent O'-algebras if for any A1 E F1, and 
A2EF2 

P(A1 n A2) = P(A1)P(A2); 

equivalently, if for any X1 E L +(Fi}, X2 E L +(F2) 

E[x1x2] = E[x1]E[x2]. 

[15, IV.4]. The notation (Fi. F2 ) E I will be used to indicate that Fi. F2 are 
independent u-algebras, and I C (F x F) will be called the independence relation. 

2.2 DEFINITION. The conditional independence relation Cl is a relation for 
a triple of u-algebras Fi, F2 , G E F defined by the condition that for all 
X1 EL +(F1), X2 EL +(F2) 

E[x1x2 I G] = E[xi I G]E[x2 I G] a.s. 

Then one calls F1, F2 conditional independent given G, or one says that G splits 
Fi. F2. Notation: (Fi. G, F2) E CL 

Note the analogy between the conditional independence relation and the 
independence relation. 

In this paper attention will be concentrated on the following problem. 

2.3 PROBLEM. The invariance problem for the conditional independence re
lation is, given certain operations to determine necessary and sufficient conditions, 
such that these operations leave the relation invariant. 

Below the above defined problem will be solved for several operations. 
In the following some elementary properties of the conditional independence 

relation are derived that will be used in the sequel. 

2.4 PROPOSITION. Let Fi, F2, GE F. The following statements are equivalent: 
a. (Fi. G, F2 ) E Cl; 
b. (F2, G, Fi) E Cl; 
c. for all X1 EL +(F1) 

E[x1 I F2 V G] = E[x1 I G]; 

d. for all X1 E L +(Fi), E[x1 I F2 V G] is G-measurable; 

, 

I 
r 
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e. a(F1 I F2 V G) c G; 
f. (F1 VG, G, G V F 2 ) E Cl; 
g. for all z E L +(F1 V G) 

E[E[z I G] I F2] = E[z I F2]. 

Condition 2.4.g. is due to Mouchart and Rolin [14, Theorem 2.1], and to 
Dahler [7, Lemma 4]. Below the proof is given for the sake of completeness. 

PROOF. a~ b. This follows from the symmetry in Fi, F2 of Definition 2.2. 
a~ c. This is known, see [6, Il.45). 
c =? d. This is obvious. 
d =?e. This follows from the definition of <J(F1 I F2 V G). 
e =?c. Let X1 EL +(Fi). Then 

E[xil G] = E[E[xil F2 V G] I G] = E[xd F2 V G] 

bye. 
c ~ f. Let X1 E L + (F 1 ). Then c implies that 

hence (Fi. G, G V F 2 ) E CI. Using the equivalence of a and the above one obtains 
(F2 V G, G, F 1 ) E CI and with the above (F2 V G, G, G V Fi) E Cl, and thus the 
result. 

f ~ g. From f follows by restriction that (F1 V G, G, Fz) E CL Let z E 
L +(F1 V G). Then 

E[E[z I G] I F 2 ] = E[E[z I F2 V G] I F2] by (F1 V G, G, F2) E CI, 

= E[z I F2l· 

g =?a. Let x1 EL +(F1), x2 EL +(F2), g EL +(G).Then 

E[x1x2g] = E[x2E[x1g I Fzll = E[x2E[E[x1g I G] I Fz]] by g, 

= E[x2E[x1g I G]] = E[xzgE[x1 I G]] 

= E[gE[x1 I G]E(x2 I G]] 

and the result follows from the definition of conditional expectation. D 

There follow two sufficient conditions for a triple of <J-algebras to be condi 
tional independent. 

2.5 PROPOSITION. Given Fi, Fz, GE F. 
a. If F 1 c G or F2 c G, then (F1 , G, F2 ) E CL In particular (F1, Fi, F2) E Cl 

and (F1 , F2 , Fz) E CL 
b. If (Fi. F 2 V G) EI then (F1, G, F2) E Cl. 
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PROOF. a. This follows directly from the Definition 2.2. 

b. Again for x1 EL +(Fi) 

E[x1 I F2 V G] = E[xi] = E[x1 I G] 

by independence and [15, IV.4.2]. D 

Several other elementary properties of the conditional independence relation 

follow. 

2.6 PROPOSITION. Let Fi, F2 , G E F with G = I~, Q l up to null sets of F. 

Then (F1 , F2) EI if{ (F1, G, F2) E CL 

PROOF. The elementary proof is omitted. D 

2.7 PROPOSITION. Let Fi, F2 , GE F. 

a. If (Fi, G, F2) E Cl then (F1 n F2) C G. 

b. Assume that F2 c F1. Then (Fi, G, F2 ) E CI if{ F2 c G. In particular, 

(Fi, G, Fi) E Cl, if{ F 1 c G. 

PROOF. a. Let A E (F1 n F2). Then 

E[IA I G] = E[IA I F2 V G] by A E (F1 n F2) C Fr and (Fi, G, F2) E Cl, 

= IA by A E (F1 n F2) c F2. 

Hence A is G measurable. 
b. This is a direct consequence of a. 0 

3. The invariance problem. In this section results for the invariance 

problem are derived. Some of these results have been stated without proof in 
[19]. 

The investigation of the invariance problem for the conditional independence 

relation as defined in 2.3 is initiated with the invariance with respect to F2 in 

(Fi. G, F2) E Cl. Due to the symmetry of the conditional independence relation 

with respect to Fi and F2, the invariance of the relation with respect to F 1 follows. 

3.1 THEOREM. Let Fi, F2, Fa, GE F with F2 C Fa. One has (F1, G, Fa) E Cl 

if{ (Fi. G, F2) E Cl and 11(F1 I F3 V G) c (F2 V G). 

PROOF. ~ (F1, G, Fa) E Cl implies by restriction that (F1, G, F2 ) E Cl, and 
by 2.4. e 

a(Fii Fa VG) c G c (F2 VG). 
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<= Let x 1 E L +(Fi). Then 

E[x1IFs VG] 

= E[E[x1 I F3 V G] I F2 V G] by a(F1 I F3 V G) c (F2 V G). 

= E[x1IF2 VG] by F2 c F3 , 

= E[x1 I G), 

and the result follows from 2.4.c. 0 

Some consequences of 3.1 and related results are stated next. 

3.2 PROPOSITION. Let F1 , F2 , F3 , GE F. 
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a. One has that (F1, G, F2 V Fs) E CI if{ (Fi, G, F2) E Cl and (F1, G V F2 , F3 ) 

E CL 
b. (Fi, G, F2) E Cl and (Fi, G V F2, Fa) E CI if{ (F1, G, F3 ) E CI and (F1 , G V 

F3, F2 ) E CL 
c. Assume that G c F2. Then (Fi. G, F 2 ) E CI if{ a(F1 I F2 ) c G. 
d. Assume that (F1 V F2 V G, Fa) EI. Then (F1, G, F2 V F3 ) E CI if/ (F11 G, 

F2) E CL 
e. (F1 V Fa, G, F2) E Cl and (F1, G, Fa) E Cl if{ (F1, G, F3 V F2 ) E Cl and 

(Fa, G, F2) E CL 
f. Assume that Fa c (F2 V G).If (F1 , G, F2 ) E Cl then (Fi, G, F3 ) E CL 

PROOF. a. By 2.4 a(F1 I F2 V Fs VG) c (F2 V G), and (Fi, F2 VG, F 3 ) E Cl 
are equivalent. The result then follows from 3.1. 

b. By a. both sides are equivalent with (F1, G, F2 V F3 ) E CL 
c. By 2.4 (F1, G, F 2 ) E Cliff a(F1! F2 VG) c G. From G c F2 then follows 

that a(F1 I F2) = a(F1 I F2 V G) c G. 
d. ~This follows by restriction.<= (F1 V F 2 VG, F 3 ) EI and 2.5.b imply that 

(Fi. G V Fz, Fa) E CL The conclusion then follows from a. 
e. (F1 V F3 , G, F 2) E CI ~ l(F3 , G, F 2 ) E CI and (F1, G V Fa, F2) E Cl}, while 

{ (F1 , G V F3 , F 2) E Cl and (F1, G, Fa) E Cil ~(Fi, G, Fa V F2) E Cl, by 
applying a twice. 

f. This follows directly from 2.4.d. 0 

Result 3.2.a is also derived in [5; 7, Lemma 3, page 629; 14, Theorem 2.5]. 

Special cases of 3.2.f are given by [7; 9, Lb; 14, Corollary 2.6]. 

3.3 THEOREM. Let Fi, F2 , G1, G2 E F with G2 C G1. One has (F1, G1, F2) E 

Cl and a(Fil G1 ) c G2 iff (Fi. G2, F 2 ) E Cl and a(Fd Fz V G1) C (F2 V G2). 

PROOF. a(F1 I G1 ) = a{F1 I G1 V G2) by G2 C G1 and by 3.2.c a(F1 I Gi) = 
CI(F1 I G1 V G2) C G2 iff (Fi, G2 , Gi) E Cl. Similarly a(F1 I Fz V G1) C 

(F2 V G2 ) iff (Fi, F2 V G2 , F 2 V G1) E CL By 3.2.a both sides of the theorem are 

equivalent with (F1 , G2 , G1 V F2) E CL 0 
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Next some consequences of 3.3 and related results are stated. 

3.4. PROPOSITION. Let F1, G2, F3, Gi. G2, E F. 

a. One has (Fi, G1, F2 ) E CI and (Fi. G1 V F2, Fa) E Cliff (F1, Gi V G2, F2) 

E CI and (Fi, Gi, G2 ) E CL 
b. One has (F1, Gi, F2 ) E CI, (Fi, Gi V F2, G2) E CI, and (Fi, G2, Gi) E CI iff 

<Fi, G2, F2 ) E Cl, (F1, G2 V F2, Gi) E Cl, and (Fi, Gi. G2) E CL 

c. If (Fb Gi, F2 ) E Cl and Fi c Fa, then (Fi, u(Fa I Gi), F2) E CL 

d. (F1 , a(Fil F2 ), F2) E CI and (Fi, u(F2 I Fi), F2) E CL 

e. If (F1, Gi, F2 ) E Cl and u(Fi I Gi) = G2 C (F2 V G1) then (Fi, G2, F2) E Cl. 

f. If (Fi. G1 , F2 ) E Cl then (Fi, u(Gii Fi), F2) E CL Hence u(F2 I F1) c 
u(Gil Fi). 

g. Assume that (F1 V F2 V Gi, G2) E I. Then (Fi. Gi V G2, F2) E Cl iff 
(F1, Gi, F2) E CL 

h. (Fi, u(F2i Fi) V u(F1 I Fz), Fz) E Cl. 

PROOF. a. By 3.2.a both sides are equivalent with (Fi, G1, G2 V F2) E CL 

b. By applying a twice one obtains 

(Fi. G1, F2) E Cl } {(F1, G1> G2) E Cl 
(F,, G1 V F2, G2) E CI ~ (FI> G1 V G2, F2) E Cl}~ {(Fi, G2, F2) E CI, 

(F1i G2, G1) E CI (Fi. G2 V F2 , Gi) E Cl. 

c. F 1 C F3 implies that u(Fi I G) C u(F3 I G) C G. The result then follows from 
3.3. 

d. For X1 E L +(Fi) is E[xi I F2 V u(Fi I F2)] = E[x1 I F2], which is u(F1 I F2) 

measurable, and the result follows from 2.4.d. By symmetry (F1 , u(F2 I F1), 

F2) E Cl. 

e. F2 C (F2 V Gi) and 2.5.a imply that (Fi, Gi V F2, F2) E CL Furthermore, 

by 2.4.c u(F1 I F2 V Gi) = a(Fi I Gi) c G2 c (F2 V Gi). Now apply 3.3 with 

G1 replaced by F2 V Gi to obtain (Fi, G2 , F2) E CL 

f. Take in e G2 = u(Gi I Fi) V a(F2 I Gi). Then (Fi. u(Gd Fi) V u(F2l Gi), F2) 

E Cl. By 3.4.d (Fi, u (Gd Fi), Gi) E Cl, hence (Fi, u (Gi I F1 ), u(F2 I G1)) E 

Cl. Combining these results with 3.2.a yields (F1, u(Gi I Fi), F2 V u(F2 I Gi)) 

E Cl, hence (Fi, u(Gi I Fi), F2) E Cl. This and 3.2.c give u(F2 I Fi) c 
u(G1 I Fi). 

g. (F1 V F2 V Gi, G2) E I and 2.5.b imply that (Fi. G1 V F2 , G2 ) E CI and 

(F1, Gi, G2) E CL The result then follows from a. 

h. By d (F1, u(F2IF1), Fz) E CL Then u(F1IF2 V u(F2 1Fi) V u(Fi1F2 )) = 
O"(F1IF2 V u(F2l F1)) C u(Fzl Fi) C (u(F2 1 Fi) V u(Fil F2 )), and the result 
follows from 2.4. D 

3.5. PROPOSITION. Let Fi, F2, F3, F4, G1 , G2 E F. Assume that (F1 V F 2 V 

Gi, F3 V F4 V G2) EI. Then (Fi V F3 , Gi V G2, F2 V F4 ) E Cliff (Fi. G1, F 2 ) E 
Cl and (F3, G2 , F4 ) E CL 
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PROOF. =9 By restriction (Fi, Gi V G2, F2) E Cl, and by 3.4.g (Fi. Gi. F2) E 
Cl. By symmetry one obtains (F3 , G2 , F4 ) E Cl. 

<==. By 3.2.d (Fi, Gi. G2 V F3 V F2 V F4) E Cl, and by 3.2.a (Fi, G1 V G2, 
Fa V F2 V F4) E Cl. Similarly one proves (Fa, Gi V G2, Fi V F2 V F4) E Cl, hence 
(Fa, G1 V G2, F2 V F4) E Cl. The result then follows from 3.2.e. 0 

Next the invariance of the conditional independence relation with respect to 
a measure transformation is investigated. In the following there are two proba
bility measures on {n, FI, denoted by Po, Pi. Expectation with respect to these 
measures is denoted by Eo( •),respectively Ei (•).If Po, Pi are equivalent proba
bility measures on {n, Fi V F2 V Gl, then by the Radon-Nikodym theorem there 
exists a Fi V F2 V G measurable random variable p: n ~ R+ with E0 [ p] = 1, such 
that for all A E Fi V F2 V G 

Ei[IA] = Eo[lAp]. 

The reader is reminded of the formula 

E1[X I G] = Eo[xp I G]/Eo[P I G] 

valid for any random variable x: n ~ R such that Eol xp I < oo[ll, 24.4]. The 
conditional independence relation with respect to the probability measure Po, P1 
is denoted by Cl(P0 ) respectively Cl(Pi). 

3.6. THEOREM. Let Fi. F2, GE F, and Po, Pi be two equivalent probability 
measures on IO, FI. Assume that {n, F, Pol and {n, F, P1} are both complete. Let 
p: n ~R+ be the Radon-Nikodym derivative dP1/dPo with respect to F1 V F2 VG. 
Assume further that (Fi, G, F2 ) E Cl(P0 ). Then (Fi, G, F2) E CI(Pi) iff there exist 
Pi E L +(Fi V G), P2 E L +(F2 V G) such that p = P1 · P2 a.s. The decomposition p 
= Pi · P2 is nonunique in general. 

The result of 3.6 is related to one of the equivalent definitions of a sufficient 
statistic. The definition is that the statistic z is sufficient for the estimation of x 
given y if for the joint density Pi of x and y there exist positive functions P2 and 
Pa such that 

pi(x, y) = P2(x, z)p3(y). 

[Bahadur, 1; Rao, 16, page 131). 

PROOF. <==. By 2.4 (Fi V G, G, G V F2) E CI(Po). Let xi EL +(Fi). Then 

E1[x1 I F2 V G] = Eo[X1P1P2 I F2 V G]/Eo[PiP2 I F2 V G] 

= p2Eo[X1P1 I F2 V G]/p2Eo[Pd F2 V G] 

= Eo[X1P1 I G]/Eo[P1 I GJ 

because Pi({p2 = 01) :S Pi(IP = 01) = 0, and by CFi VG, G, G V F2) E CI(Po), 
hence Ei[x1 I F2 V G] is G measurable and the result follows from 2.4.d. 
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~Define 

p1 = Eo[P I Fi V G], 

P2 = Eo[P I F2 V G]/Eo[P I G]. 

Let A1 E (F1 VG), A2 E (F V G).Then one has 

Eo[IAJA2P1P2] 

= Eo[Eo[IA,P1IA2P2 I G]] 

= Eo[Eo[IA,Pi I G]Eo[IA2 P2 I G]] by (F1 V G, G, G V F2) E CI(Po), 

= Eo[Eo[JA1 P I G]Eo[IA2 P I G]/Eo[P I G]] by the definition of Pt, p2, 

= Eo[Ei[IA, I G]E1[IA2 I G]Eo[p I G]] 

= Eo[E1f!AJA2 I G]Eo[P I G]] by (Fi. G, F2) E CI(Pi) 

= Eo[E1[IAJA2 I G]p] = Et[IAJA2 ]. 

An application of the monotone class theorem then yields that for all A E 

(F1 V G) V (G V F2) =Fi V F2 V G 

Eo[IAPtP2] = Ei[IA], 

hence P1P2 is a version of p, or p = Pt · P2 a.s. 0 

4. The projection operator. In this section some results for the projection 

operator are derived. These results have been used in (18, 19]. 

4.1. PROPOSITION. Let Fi, F2, F3, GE F. 
a. If F1 c F2 then <J(F1 I F2) =Ft. 

b. If Fi :J F2 then <J(F1 I F2) = F2. 

c. If (Fi, G, F2) E Cl then <J(F1 I F2 V G) = <J(F1 I G). 

d. o-(Fd <J(Fil F2)) = <J(Fii F2). 

e. o-(Fii <J(F2 I Fi) V <J(Fii F2)) = a(F2 I Fi). 

f. If (Fi, G, F2) E CI then a(a(G I Fi) I F2) = o-(F1 I F2). 

g. o-(<J(F2I F1) I F2) = <J(F1 I F2). 

h. o- ( (J (Fi I F2) I (J (F2 i Fi)) = a (F2 I Fi). 

i. If F1 c F3 then F1 V <J(F2 i F3)= u(F1 V F2 i F3). 

j. o-(a(F2IF1) V o-(FdF2) !Fi)= cr(F2iFi). 

It follows from 4.1.a that for any Ft, F2 E F cr(cr(Ft I F2) I F2) = cr(F1 l F2). 

Thus for any F2 E F, is er(· I F2 ) the projection operator onto F2 • The results 

4.1.d, g, h, i have also been derived in [14, Corollary 4.9, Theorem 4.10], but are 

mentioned here for the sake of completeness. 

PROOF. Let F12 = u(F1 I F2) and F2t = cr(F2 i F1). 

a.b. This is obvious from the definition of the projection of F 1 on F2 • 
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c. For x1 EL +(Fi), (F1, G, F2) E Cl implies that 

E[x1 I F2 V G] = E[x1 I G]. 
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The result then follows from consideration of the generators of the two 
<r-algebras. 

d. By 3.4.d (Fi, F12, F2) E Cl, and the result follows from c. 
e. Again (Fi, F2i, F2) E Cr, and by restriction (Fi, F2i, Fd E Cl. Then 

<r(F1 I F21 V F12) = u(Fil F21) by (Fi. F21> Fd E Cl and c, 

= F21 by F21 c F1 and b. 

f. u(G I Fi) c F1 implies by a that u(cr(G I Fi) I F2) c F12 . (Fi, G, F2) E Cl and 
3.4.f imply (F1, cr(G I Fi), F2) E Cl. Again by 3.4.f (Fi, u(u(G I Fi) I F2), F2) 

E Cl. From this and 3.2.c follows that Fi2 C u(<r(G I Fi) I F2). 
g. By 2.5.a (F1, F2, F2) E Cl, and the result follows from f. 
h. F21 = a (F12 I Fi) by g. 

= a(F12IF1 V F2i) = a(F12IF21) by (F1, F21, F12) E Cl. 

L By assumption F1 C a(F1 V F2 I Fa), and also dF2 I Fa) C a(F1 V F2 I Fa), 
hence F1 V a(F2 I Fa) C a(F1 V F2 I Fa). Let x1 EL +(F1), x2 EL +(F2). Then 

E[x1x2 I Fa] = x1E[x2 I Fa] 

is F1 V a(F2 I Fa) measurable. A monotone class argument shows that for all 
Y E L +(F1 V F2)E[y I Fa] is F1 V a(F2 I Fa) measurable, hence a(F1 V F2 I Fa) 
CF1 V cr(F2IFa). 

j. By i a(F21 V F12I F1) = F21 V a(F12I Fi)= F21 by g. D 

5. The u-algebraic realization problem. A problem formulation and a 
brief discussion of the a-algebraic realization problem follow. 

5.1. DEFINITION. The minimal conditional independence relation Clmin for a 
triple of a-algebras Fi, F2 , G E F is defined by the conditions 

1. (Fi, G, F2) E Cl; 
2. if HE F, H C G, and <Fi, H, F2) E Cr, then H =G. 

Notation: (Fi, G, F2) E Clmin· Then one says that Fi, F2 are minimal conditional 
independent given G, or that G splits Fi, F2 minimally. 

5.2. Problem. The a-algebraic realization problem is given jQ, F, PI and Fi, 

F2 E F to solve the following subproblems. 
a. To show existence of a GE F such that (F1, G, F2) E Clmin· 
b. To classify all GE F such that (Fi, G, F2 ) E Clmin and G C (Fi V F2); and 

to provide an algorithm that constructs all those a-algebras G. 
The existence subproblem of 5.2 is trivial. It is known that (Fi, a(F1 I F2), F2) 

E Clmin and that (Fi, a(F2 I Fi), F2 ) E Clmin [McKean, 13, page 343, property e; 
Mouchart, Rolin, 14, Theorem 4.3]. Moreover, if G C Fi, then (F1 , G, F2) E Clmin 
iff G = a(F2 I Fi). 
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There remains thus the classification subproblem of 5.2. In this subproblem 
one can distinguish three major questions: 

1. what are necessary and sufficient conditions for a a-algebra G such that 

(FI' G, F2) E Cimin ?; 
2. what is the classification of such u-algebras G; 
3. how to construct an algorithm that produces all such G's? 
As to the first question, assume that (F1, G, F2) E Cl. A necessary condition 

for F1, F2 to be minimal conditional independent given G is that 

u(F1 I G) = G = a(F2 I G). 

This follows directly from 3.4.c. However this condition is not sufficient, see 
[19, Example 4.4]. This question is still open. 

The questions of classification and algorithm construction have not been 
solved. A step in the construction of minimal G's is given by 3.4.c, if (F1, G, F2) 
E Cl then (Fi. a(F1 I G), F2 ) E Cl. Based on the analogy with the Hilbert space 
framework a partial result is given by [19, Theorem 4.11]. 

The structure of all u-algebras G such that (F1, G, F2) E Cimin is rather 
puzzling. For G = a(F1 I F2 ) or G = u(F2 J F1) one has (Fi. G, F2) E Clmin· Under 
a condition (F1 , G, F2 ) E Clmin and G C (F1 V F2 ) imply that G C (a(F2 J Fi) V 
a(F1IF2)). However this is not true in general. Also a(a(F2IF1) I u(F1IF2)) = 
a(F1 I F2 ) by 4.1.h, but his property does not hold for all minimal G's. Additional 
information and results are given in [18, 19]. 
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