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1. INTRODUCTION 

In this contribution we will give an expository account of the numerical 
analysis of hyperbolic differential equations. Recently, these equations have 
become of particular interest to the Numerical Mathematics Department of the 
CWI. Our main purpose is to apply this analysis to the shallow water equa­
tions (SWEs) and therefore, throughout this paper, we will illustrate the 
analysis by giving theoretical as well as numerical results for the SWEs. In this 
introductory section we start with a description of the origin of the SWEs. 

A windfield (or tidal forces) perturbing a water surface which is initially at 
rest will generate two types of water waves: long (or tidal) waves and short 
waves. In the long waves the wave length is large compared with the height of 
the water surface and the vertical accelerations are small compared with the 
horizontal accelerations. In the short waves the wave length is smaller than the 
depth of the water and the vertical accelerations are no longer insignificant. 
We will concentrate on long waves in shallow water generated by wind forces 
(or tidal forces). 

Due to the movement of the water, three other forces will become active: (i) 
bottom friction (ii) Coriolis force (iii) gravity. Let R denote the total resulting 
horizontal force, then we have the following equation 

Du : = .Q!! + [u.l__ +v_£_] u =R, (1.la) 
Dt a1 ax ay 

where u=(u,v{ denotes the depth-averaged velocity of the water and (x,y) 
represents an orthogonal coordinate system. In addition to this equation of 
motion we have the continuity equation (e.g. [7, p. 179]) 

~ + ohu + 3hv = 0 (I.lb) 
a1 ax ay 
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where h denotes the depth. Combining these equations and deriving expres­
sions for the forces due to gravity and Coriolis (see e.g. [7, p. 190] we arrive at 
the SWEs: 

w1 = A(w)wx+B(w)wy+C(y)w+r(w) ( 1.2) 

where w=(u,v,h)T and where the matrices A,B and Care defined by 

A (w)= - [~ ~ ~1 ' B(w)= -[~ ~ ~ , C(y)= [-~ ~ ~1 
hOu Ohv OOO 

The vector r(w) represents the bottom friction, forces due to bottom irregulari­
ties, to the wind field and other atmospheric forces (for a discussion of this 
term we refer to [7]); f and g denote the Coriolis parameter and the accelera­
tion due to gravity, respectively. 

Omitting the external forces represented by r(w) we obtain a system of 
hyperbolic equations in two space dimensions (notice that the matrices A and B 

have the distinct, real eigenvalues {-u-+-vgh,-u} and {-v-+-Vgh,-v}, 
respectively; these eigenvalues correspond to the characteristic directions of the 
SWEs). 

A particularly difficult problem in deriving a mathematical model for a shal­
low sea is the formulation of the boundary conditions along the 'non-coastal' 
boundaries of the sea (along 'coastal' boundaries one usually imposes the 'rigid 
wall' condition which requires that the velocity component normal to the coast 
vanishes). For a discussion of boundary conditions we refer to [7]. In our 
examples we will use periodic boundary conditions along the non-coastal 
boundaries. 

2. THE SPACE-DISCRETIZATION 

A flexible approach in the numerical solution of evolutionary problems in 
PDEs is obtained by applying the so-called method of lines. Herewith the 
numerical solution process is considered as to consist of two parts, viz. space­

discretization and time-integration. 
In the space-discretization the PDE is converted into a system of ODEs by 

discretizing the space variables, while the time variable is left continuous. 
Usually, the space-discretization is performed, either by the finite difference 
method [32], or by the finite element method [42]. Spectral methods can also 
be applied, however [10]. In this paper we restrict our attention to the finite 
difference method since this method is easier to present to the nonspecialist. 
Moreover, in the field of hyperbolic PDEs the finite difference method is still 
most widely used. We note that PRAAGMAN [35] has implemented the finite 
element method for the shallow water equations (1.2). 

In the time-integration the resulting system of ODEs, often called the semi­
discrete problem, is integrated by one of the many existing integration formu­
las which is most appropriate for the problem at hand. This part of the 
discretization process will be the subject of Section 3. 
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2.1. Two simplified models 
Throughout this contribution we will discuss examples and numerical experi­
ments with the aim of illustrating the various aspects and difficulties which are 
encountered in the numerical solution of hyperbolic problems such as ( 1.2). 
For that purpose we will resort to two simplified models which we give first. 

Model 1. A conservative shallow water equation 
Following (12] we consider the nonlinear hyperbolic system 

w1 =A (w)wx+ B(w)wy +C(y)w, (x,y)EQ, 1;;;,,0, (2.1.1) 

for the dependent vector variable w=[u,v,</>f, where u and v have the same 
meaning as in (1.2) and cp=2vgh. Further 

0 
I 

u 2<1> v 0 0 
[ 0 f 0 I 

A(w)= - 0 u 0 , B(w)= - 0 v 2<1> , C(y)= -f 0 0 . 
I 

0 0 0 0 2<1> u l 
0 2<1> v 

It can be verified, using a simple transformation, that (2. l.1) can be obtained 
from ( 1.2), provided all external forces except the Coriolis force f are 
neglected. We prefer to use the same notation w for the dependent variable, 
although its third component has a different meaning than in (1.2). Any confu­
sion is precluded. We observe that in the numerical solution process the treat­
ment of the external forces is relatively simple. Hence, unless otherwise stated, 
we neglect these forces in our examples and experiments. 

An important tool in the analysis of evolutionary problems in PDEs, analyt­
ically as well as numerically, is the total energy integral. For (2. l.l) the total 
energy can be expressed as 

1 I I 
E(t) = 2g Jj<u2+v2+4</>2)4<1>2dxdy. (2.1.2) 

The origin of the name energy integral is that in many applications the physi­
cal energy of the physical system underlying to the partial differential equa­
tions can be expressed by an integral expression. This expression, in turn, is a 
convenient tool for examining well-posedness questions [36]. For example, if 
the physical energy is conserved, E must remain constant in time. If energy 
dissipates, E should monotonically decrease in time. E is also useful for finding 
sensible boundary conditions. 

Following the aforementioned authors, we define the rectangle 

Q = {(x,y):O,,;;;;x,,;;;;L, O,,;;;;y,,;;;;D}. (2.1.3) 

Then, using the boundary conditions, 

w(x,y,t) = w(x + L,y,t), v (x, O,t)=v(x,D,t)=O, (2.1.4) 

a straightforward computation reveals that E(t)=O, i.e., these boundary condi­
tions imply that (2.l.l) conserves the total energy E(t). The conservation of 
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energy property should be accounted for in the discretization of (2.1.1 ). 
Observe that (2.1.4) implies periodicity in the x-direction and that no boun­
dary conditions are necessary for u and <I> at y =O, D. Other boundary condi­
tions may also lead to well-posedness of (2.1.l) on ~ X (t >0). It is also of 
interest to observe that if we add bottom friction to (2.1. l ), i.e., if we replace 
the matrix C by 

C = [~~ _{ ~1, /..=/..(x,y, w)>O, 

0 0 0 

it follows that E(t)<O, which means energy dissipation. Finally, for the gen­
eral problem ( 1.2) it may happen that E will increase in time due to the 
influence of the source term or energy transport through boundaries. 

For future reference we list some specific problem parameters for the just 
described initial-boundary value problem [ 11]: 

Coriolis force f = f + [3(y - D 12) 
Initial height function 

h (x,y) = H 0 +H 1 tanh(9(D/2-y)/2D)+ H 2 sech2(9(D/2-y)/ D)sin(2'1Tx/ L) 

Initial velocities u = -gf'- 1 oh !oy, v = gf"- 1 oh lox 

L=6.0106 m, D=4.4106 m, f=I0- 4 sec- 1, [3=1.510- 11 sec- 1m- 1, 

g = lO m sec- 2 , H 0 =2000 m, H 1 =220 m, H 2 =133 m. 

Model 2. A one-dimensional incompressible flow equation 
Consider the one-space dimensional hyperbolic system 

w, = B(w)wy, yEQ=[O,D], t~O, 

I 
v 2<1> 

B(w) = - 1 , w=[v,<t>f 
2<1> v 

(2.1.5) 

which is obtained from equation (2.1.1) by dropping the x-dependent term 
A (w)wx and the term C(y)w. We again impose the boundary condition (cf. 
(2.1.4)) 

v(O,t) = v(D,t)=O, (2.1.6) 

while no condition for <I> is prescribed. Hence, for <I> the boundaries y =O,D are 
open. The total energy integral E(t) now reads (apart from a constant) 

D I I 
E(t) = fcv2+4<1>2)4<1>2dy, (2.1.7) 

0 

and again we have conservation of total energy, i.e., E(t)=O for t~O. Numer-
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ically this one-space dimensional flow problem has similar properties as prob­
lem (2.1.1 )-(2.1.4). 

2.2. Finite difference space-discreti::.ation 
Let 

-6fl a a) 
Wr - J\x,y,t, a_;- , ay w, 

or, in case of one-space dimension, 

- 6fl _1__ ) ri 
W1 - ·'\X,t, ax W, X E-14, 

(x,y)d2, t ;;.;.o, (2.2.l) 

(2.2. r) 

formally represent a system of hyperbolic equations, given on the space 
domain Q. Suppose that on the boundary an of Q correct boundary conditions 

B(w,t) = 0, on an (2.2.2) 

are defined. The space-discretization of this problem essentially consists of 
three steps: (i) A grid Q6 must be defined covering Q U an. We use the symbol 
i:l as a formal notation for the grid distance which, of course, may vary over 
Q6 . (ii) Appropriate finite difference replacements for the operators a1ax, 3/oy 
must be selected at all points of Q6 • (iii) The boundary conditions must be 
taken into account. 

EXAMPLE 2.2.1. The standard finite difference space-discretization of our 
second model (2.1.5) proceeds as follows. The interval [O,D] is divided into Nv 
subintervals of equal length ily, thus defining the grid · 

{Yk :yk=kily for k=O(l)Ny}· 

On this grid we introduce the so-called grid function 

w = [Wo, ... ,wNf, Wk=[Vb<I>kf, 

where each component vector Wk(t)=[Vk(t),<l>k(t)f depends on time t and is 
meant to approximate w(y,t), the exact solution of problem (2.1.5)-(2.1.6), at 
the gridpoint Yk· Hence W is still time continuous. The approximation is 
defined by the choice of the finite difference formulas for approximating the 
space derivative wy- At this place we have to face our first difficulty, i.e. the 
open boundary for cJ> which forces us to approximate v)' in a different way at 
the points Yo =O, YN,.::::: D. We consider the standard second order difference 
formula 

(2.2.3) 

for k = l(l)Nv -1. For k =O, NY define Vk(t)=O according to the boundary 
conditions (2.1.6) and use one-sided first order differences for vy at these 
points, i.e., 
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1 
vy(O,t):::::::: ""A (V1(t)- Vo(t)), 
. uy 

1 
Vy(D,t) '.::::::'.A (VN,(t)-VN,_,(t)). uy . 

(2.2.4) 

After replacing wy on {yk} by these finite difference quotients, the system of 
OD Es 

. Wi-Wo 
Wo = B(W0 ) D.y , Vo(t)=O, 

. w -w 
W = B(W) k+l k-l k l(l)N 1 

k k 2~ ' = y- ' (2.2.5) 

WN -WN-1 
WN = B(W ) , .• 

• N, !J.y 

results. This system is a time continuous, semi-discrete version of the original 
initial-boundary value problem (2.1.5)-(2.1.6). D 

The above example illustrates that the process of space-discretization converts 
an initial-boundary value problem for a PDE into an initial value problem for 
a system of ODEs with t as independent variable. Henceforth we will denote 
this latter system by 

W = F(t, W), 1;;;;.o, W(O) prescribed. (2.2.6) 

This system is usually called the time-continuous, semi-discrete system. Obvi­
ously, there is an intimate relationship with the grid QA· The vector function F 
is always parameterized with the grid distance D.. F approximates the hyper­
bolic operator§" on the grid OA. The length of the vector W, the gridfunction 
which approximates w on QA, depends on D. too. Occasionally, if this clarifies 
the discussion, we will therefore use the notation 

(2.2.6') 

i~stead of (2.2.6). Further, we shall mostly use the autonomous notation 
W = F(W) as our two example models are autonomous. 

As a further illustration we describe the space-discretization of our first 
model (2.1.l )-(2.1.4). Because Q is a rectangle the derivation is nearly the 
same as in Example 2.2.1. 

EXAMPLE 2.2.2. Divide the x-interval and y-interval into Nx and Ny subinter­
vals of length D.x and Ay, respectively. On the grid 

{(x1,yd : x1 = jD.x, j = l(l)Nx and Yk =kD.y, k =O(l)Ny }, 

we define wjk = [ ujb lljb cl>jk f as the time continuous approximation for 
w(x1,ybt) which results from the application of second order symmetrical 
differences at all interior points and first order one-sided differences at the 
boundary points (x1,yk), k =O,Ny- In the x-direction symmetrical differencing 
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is possible everywhere because of the periodicity, 1.e., Wok =WN,k and 

WN,+1.k=W1k· Note that V10 =V;N,=Odueto(2.1.4). 0 

Grid staggering. Grid staggering, originally introduced by HANSEN [ 13]. is 

often applied in space-discretization. By this technique u, v and <I> are calculated 

at different grid points. Herewith, it is possible to decrease the storage require­

ments by a factor four without loss of accuracy with respect to the main terms 

of the SWEs. We will show the idea using the one-dimensional equation (2.l.5) 
of which the main part is described by: 

I 
V1 = - 2</>oc/>y 

I (2.2.7) 
c/>r = -2<1>ovy, 

where we have frozen the coefficients of <l>v and vy. If this system is semi-
discretized in the usual way, we obtain ~ 

I 
(Vi);= -2<I>o(<l>;+1-<I>;-1)/2ily, 

I (2.2.8) 
(<l>1)1 = -2<I>oW1+1 -V1-1)!2ily. 

Observe that in the case where i is running through even values and j through 

odd values, the set of equations is independent of its complement 

{i odd, j even}. Thus we may omit one of these sets, without loss of accuracy, 

thereby reducing the number of equations by a factor two. Applying the same 

technique in the y-direction will lead to a final reduction by a factor four. A 

part of the resulting grid is depicted in Fig. 2.2.1. 

v v 
<I> u <I> 

v v 
u <I> u <I> 

v v 
I 

I I 
•+--+I 
I I 
Ax 

u <I> 

v-
u <I>-

FIGURE 2.2. l 

]~~)' 

The neglected terms have to be composed by use of t~e va~ables ~f the 

reduced set, implying a small loss of accuracy due to averagmg techruques. 
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2. 3. Some fundamental topics 
The choice of a difference method for discretizing hyperbolic equations, such 
as the shallow water equations, depends on many factors. These may vary 
from theoretical to practical and will always depend on the specific application 
area (see e.g. [33], p. 718). In this subsection we will briefly discuss some basic 
topics concerning the space-discretization. These include consistency, stability, 
conservation laws, open boundaries, curved boundaries. Our purpose is to give 
some insight in the choice and analysis of finite difference models. It is 
emphasized that the field is so diverse that completeness is impossible in the 
present paper. The above topics, however, play a role in a lot of investigations 
and are of a fundamental nature. 

Consistency. The approximation is useful only if it is consistent, i.e., upon grid 
refinement the approximation should converge to the continuous_ problem. 
Normally there is no difficulty in setting up a consistent approximation. A 
difficulty may lie in finding approximations which converge sufficiently fast if 
A~o. Further, an always returning and important question is, how accurate is 
the numerical solution computed on a certain grid? We will briefly consider 
these matters for the space-discretization error. 

Consider a general initial-boundary value problem (2.2.1)-(2.2.2) and a 
corresponding semi-discrete approximation (2.2.6 · ). Let wa denote the restric­
tion of the fully continuous function w to the space grid. Hence, in the case of 
Example 2.2.1, we have 

wA(t) = [w(O,t), ... ,w(k!ly,t), ... ,w(N,Ay,t)]T. 

Further, let aA denote the space-approximation error 

aa = FA(we.)-wA. (2.3.1) 

This error is obtained by substituting the exact solution w into the semi­
discrete problem. It measures how much the semi-discrete operator deviates 
from the partial differential operator including the boundary conditions. Next, 
let TJA denote the space-discretization error 

TJA = Wa -wa. 

It follows that 11A is a solution of the ordinary differential system 

~ = Fe.(We. +11e.)-Fe.(we.)+aA, 

which can be rewritten to 

I 

M(t) = f F'e.(we. +Orie.)dO. 
0 

(2.3.2) 

(2.3.3) 

Here Fa denotes the Jacobian matrix of the vector function Fe. which is 
assumed to exist. Note that we have used the mean value theorem for vector 
functions [28, p. 71]. 
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The above derivation reveals three properties of the space error 'IJ.l. which are 
worth mentioning. (i) Though T/!!. comes into existence only by discretiz.ing 
space variables, this error is really time-dependent, even when ati =t=O is con­
stant. (ii) The space error depends on the stability behaviour of the ordinary 
differential equation (2.3.3) when proceeding in time. Evidently, this equation 
should possess similar stability properties as the underlying partial differential 
equation. (iii) The smaller the approximation error O'.f!., the smaller the space 
error T)f!., certainly if (2.3.3) is a stable system. Hence, if the approximation is 
consistent, i.e., at!. -?0 if 6.--?0, the space error 1/!!. will converge to zero, for all 
t, upon grid refinement. 

Consistency and stability. To clarify the aspect of stability in the above reason­
ing we will give a typical stability estimate for 1/!!.. This stability estimate gives 
insight in the dependence of the space error T/ti on the approximation error 
(2.3.1). 

Let 11·11 be some norm on the finite dimensional solution space of the sys­
tem Wt!. =F!!.(W!!.), e.g., a known /P-norm. Then, according to [2, p. 13], it fol­
lows that 

where 

t 

111/!!. (t)ll ~ eµ.,.,t 1111!!.(0)ll + J eµ.,.,(r -,) Ila!!. ('r)lldr, 
0 

JLirui.x = max µ[Ft!. (W)], 
w 

µ.being the logarithmic matrix norm belonging to 11·11 (for specific details about 
this result and the use and meaning of the logarithmic norm, the reader may 
also consult [6]). Let us assume a zero space error at the initial time t =O. 
Then 

t 

li'IJ!!. (t)\I ~ J eµ,,,.,(t -,) \\a!!.(r)\\dr. (2.3.4) 
0 

In many instances the quantity 1-Lmax can be pr?ved to be independent of the 
grid distance 6.. In that case, this worst case estrmate proves that 

ll'IJ!!.(t)\I ~ c(t)max \la!!.(t)ll, 
t 

c (t) being independent of b.. Conseq~ent~y, if the finite d~fference formula in 
all gridpoints is consistent of order q, i.e., m a formal notat.J.on, 

O'.f!. = 0(6.9), 11-0, (2.3.5) 

it follows that 'IJ!!.(t)=0(6.9) as 6.-0, establishing q-th order c~nve_rgen~e for 
the semi-discrete solution W(t). Apparently, in the above den~at10n time_ 1 

k fix d · (2 3 5) applies for all t but the constant mvolved still was ept e , i.e., . . 
depends on t 1 • 

· · the actual application of the above derivation can be found in 'Con-
1. More details concerrung . . PDEs' JG Verwer and J.M. Sanz-Serna, CWI vergence of Methods of Lines ApproXlmauons to ' . . 
Report NM-R84-04. 
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EXAMPLE 2.3. l. Let us examine the approximation error at:. for the semi­
discrete one-dimensional incompressible flow equation (2.2.5). We will denote 
the k-th component of at:. by at:.,k· If w is at least two times differentiable, a 
straightforward Taylor expansion of w(yk +Liy,t) at all grid points Yk shows 
that 

a1::.,o = O(Ay), a1::.,k=O((Liy)2) (l~k~Ny-1), at:.,N, =O(Liy) 

as Ay~o. Consequently, due to the first order approximations at the boun­
dary, q =I in relation (2.3.5) instead of q =2. 

A decrease of accuracy at a boundary may be reduced by using a higher­
order difference formula. This may, however, destroy the stability of the 
space-discretization. In our terminology this means that the error equation 
(2.3.3) becomes unstable. We will illustrate this later. First we proceed with the 
topic conservation laws which provides us further means for examining stabil­
ity. D 

Conservation laws and stability. Let us once more consider the stability esti­
mate (2.3.4) for the differential system (2.3.3) which determines the space error 
11t:.. Obviously, if it is required to solve the initial value problem over a large 
time interval it is highly desirable that the semi-discrete system itself is stable. 
Stability corresponds to a nonpositive logarithmic matrix norm, so the worst 
case estimate then reads 

t 

11111::.(t)ll ~ fllat:,.(T)lldT ~t max llat:,.(T)ll. 
0 O.;;;T,.;;I 

(2.3.6) 

This estimate still allows a linear growth of the space error, but should be con­
sidered as rather pessimistic. If system (2.3.3) is stable, it is to be expected 
that an eventual growth of T/t:. is less than the linear growth of the above esti­
mate. Certainly this is true if M 11 (t) is a constant matrix, i.e. if Ft:. is constant. 

One must reckon with a much more serious situation if the semi-discrete sys­
tem is unstable, which corresponds to a positive JLmax in the estimate (2.3.4). 
Then the worst case estimate allows an exponential growth of the space error 
which may be fatal. From practical experiences we know that exponential 
growth, also called 'blow up', really occurs. The next example serves to illus­
trate this. 

ExAMPLE 2.3.2. [6]. Consider the ODE system described in Example 2.2.2 
which is a semi-discrete approximation to Model I of subsection 2.1. On the 
space grid Ot:. we approximate the total energy E (t), given by (2. 1.2), by the 
trapezoidal approximation 

A.xay N, N,-1 Ar A 1- A r A Ar A 

Et:.= 2 2;{ 2: wjkwjk+ 2(W10W1o+WJN,WJN)}, (2.3.7) 
g j=I k=I 
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where 

Wjk : = (+ ~k<J>jk> + VJk<i>jk> i<I>JdT, 
ujk• VJ·k and <Pjk being the components of wjk defined in Example 2.2.2. 
Becau~e we have con~er:ation of total energy in Model 1 a legitimate require­
ment is. that. the selill-discrete model conserves the semi-discrete total energy 
(2.3.7), i.e., Eti(t)=O. It turns out that this requirement is not fulfilled. For 
Ax = .6.y =_200 km we have computed EA over a relatively large time interval 
of approximately 17 days by means of a highly accurate, stable numerical 
integration method. Figure 2.3. l shows a plot of EA. One can see that after 
approximately 17 days a sudden 'blow up', or energy explosion, occurs. Of 
course, this explosion completely ruins all results of the numerical computa­
tion. D 

-JO E *10 ~ 
!::, 

5.5 
5.4--~~~~~~~~~~~~~-' 

5.3 

4 8 12 16 20 21 

FIGURE 2.3.1. Explosion of semi-discrete total energy 

(days) 

From the stability estimate (2.3.4) one can deduce that the 'blow up' will be 
delayed if one refines Qti· In practice this is much too costly, however, and 
instead one imposes artificial damping or one tries to obey the conservation 
laws. The (ad hoe) technique of artificial damping is widely known. Alternative 
names are artificial dissipation or artificial viscosity. The basic idea is to add 
small terms to the original PDE such that the semi-discrete approximation 
becomes stable. Observe that bottom friction in our Model I also has a stabil­
izing influence. The inherent difficulty of this technique is that one has to make 
a compromise between stability and accuracy, for one changes the original 
PDE and thus solves a different problem. Fortunately, in many applications 
one is satisfied with a rough accuracy and then the technique of artificial dissi­
pation performs quite satisfactorily. 

The instability illustrated in Figure 2.3. l is essentially due to the fact that in 
the space-discretization described in Example 2.2.2 the conservation of total 
energy E(t) has not been taken into account. If the PDE conserves physical 
quantities such as mass, total energy, momentum, it is sensible to transfer these 
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properties to the finite difference approximation in order to improve it. In this 
connection the conservation law of total energy is an important tool for the 
stability analysis due to the fact that E and E ti can always be written as qua­
dratic functionals. Hence if E ti is constant in time 'blow up' simply cannot 
happen. In numerical literature one has introduced the name energy method 
for stability analyses along the lines of energy conservation laws [36]. The 
energy method is of great use for examining the stability of particularly non­
linear models, since here the standard classical approach of Fourier analysis 
cannot be applied. 

EXAMPLE 2.3.3. Following [6] we will briefly illustrate the energy method for 
the one-dimensional model (2.1.5) which we prefer for reasons of presentation. 
~11 results go through for the related two-dimensional model (2.1.l ). Let 
W=F(W) denote a semi-discrete version of the PDE (2.1.5). The first step in 
the standard energy method is to select an appropriate energy norm, i.e., a 
norm such that llW(t)ll 2 =Eti(t). Suppose that we can deal with an inner pro­
duct norm llWll2 =<W,W>. Then, if Eti is required to be constant in time, 
say, we have 

d 
dt llW(t)ll2 = <F(W(t)), W(t)> =O. 

A function F which satisfies this property for all vectors W is called conserva­
tive, on the analogy of the term used for the PDE. 

Now consider the energy integral (2.1. 7) and define the transformation of 
variables v~+<t>v, <1>~~<1>2 • Then E is in the form of a quadratic functional, 

VlZ. 

D 

E(t) = j(v2 +cp2)dy. 
0 

Next, introduce the inner product generated by the trapezoidal rule approxi­
mation E ti for E: 

l\Wl\ 2 = Eti. 
(2.3.8) 

With an elementary calculation it can now be proved that space-discretization 
of the transformed PDE 

I -112 I ( 2 -'h) •;, v1 = -2v<1> vY-2 v </> _y_</>.</>y, 

</>1 = -(<t>112 v)1 , 
(2.3.9) 

in the sa!lle way as described in Example 2.2.1, yields a semi-discrete approxi­
mation W = F(W) which is conservative with respect to the given energy norm. 
This particular ODE system reads 
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1 v, --cI>·v 
~ I 1' 

V - D l m'lo"" 
k - k - 2Ay 'l'd'l'k +I -<Pk - i), k = l(I )N, -- l. 

__ l_ (<l>kv, v .n',~ u ') k = l(l),•",, -- I_ 2Doy +I k+l-'*'k-l~k-J, .v . 

l <I>'"' v A N-1 N-1· uy • • 

where Dk is given by 
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Dk= - 4~y [Vk<l>k 1~(Vk+1-Vk_i)+(Vt+1<l>i -Vi-1(j)A- 11 i)J 

See [6] for more details. 0 

Open boundaries and stability.. For a dependent variable a boundary is called 
open if no boundary condition is present. Open boundaries normally lead to 
inaccuracies (see the discussion in Example 2.3. l) due to the use of one-sided 
difference approximations which tend to be less accurate than symmetric 
approximations, at least for problems with smooth solutions. An additional 
difficulty with open boundaries is that the use of higher order one-sided 
approximations may tum a stable approximation into an unstable one. We will 
illustrate the nuisance of unstable boundary conditions for the just described 
PDE (2.3.9). Recall that v is zero at the boundaries y =O, D, while </> is not 
prescribed. Hence for <J> the boundary is open. 

EXAMPLE 2.3.4. As shown above the semi-discrete approximation (2.3.10) con­
serves the semi-discrete energy Ea. Let us apply the usual one-sided second­
order difference awroximation at the boundaries, instead of (2.2.4), for 
approximating ( V <J> v )y- The first and last equation of (2.3.l 0) are then 
replaced by 

. -1 v, .n'h 
<l>0 = 2Ay (4<l>1 V1 -'Vz Vz), 

. 1 v, .n'h ) 
<l>N = -- ( 4<l> N - 1 V N - 1 - '*' N - 2 Vv - 2 · 

• 2Ay ' ' ' ' 

It is straightforward to prove that now 

E = - 1- [(3<l>N'h - 1 VN --1 -<l>'Nh -" VN )<l>N +(<l>i V2 - 3<1>;1 V1 )<l>oJ. 
A 4Ay ' ' ' ~ . ' l ' 

Hence, Ea ::;;i:O and the energy will increase as soon as the right hand side 
expression becomes positive. From then on we have to face _severe. instabilities 
the origin of which lies in the use of the second order one-sided ~1fferences at 
the boundary points. Note that Ea is again constant for the (physically unreal­
istic) boundary condition <1>=0. 0 
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Curved boundaries. The domain S2 of our first model in subsection 2.1 is the 
rectangle (2.1.3). Finite differences are easily implemented on such simple 
domains. In applications, however, Q may be rather irregular leading to curved 
boundaries. For example, part of an may consist of a curved coastline. It shall 
be clear that such a domain is poorly approximated by an orthogonal grid. 
This poor representation of n will cause larger approximation errors aa near 
the boundary an than in the interior of the domain. These larger approxima­
tion errors, in tum, may increase the space approximation error 'Ila over a con­
siderable part of n, if not the whole of n. To some extent it depends on the 
application whether this specific error increase is unacceptable. For in many 
practical computations the physical data, for example at a boundary, already 
contain inaccuracies which overshadow numerical errors due to a bad boun­
dary representation or other numerical errors. In such applications one is 
satisfied with low accuracy finite difference models and orthogonal_ grids are 
still useful. 

A cure for the above mentioned boundary inaccuracies is the use of curvi­
linear grids. Gridlines then can be chosen coincident with boundaries leading 
to a significantly more accurate discretization of the domain 0. Clearly, the use 
of curvilinear grids does complicate the implementation of finite differences. 
Already the creation of !Ja itself may become very cumbersome. For that rea­
son one has developed so-called grid or mesh generators, computer programs 
which assist the engineer in setting up nonrectangular grids without irregulari­
ties such as too small comers between grid lines. 

Loosely speaking, the derivation of approximations for partial derivatives on 
nonrectangular grid-elements are always based on a (local or global) co­
ordinate transformation T which maps the nonrectangular grid-element onto a 
rectangular one where standard approximations are applicable. The effect of T 
is that one performs a standard space-discretization of a transformed PDE on 
a rectangular grid-element. The choice of T influences the accuracy of the 
discretization of course. DEKKER [4] has developed a method which minimizes 
the errors of derivative approximations on nonrectangular grid-elements. In 
case an explicit parametrization of the curvilinear grid-lines in the (x,y )-plane 
is available a suitable transformation is easily found [25). The next example 
illustrates this. 
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FIGURE 2.3.4. A curvilinear and a square grid-element 

ExAMPLE 2.3.5. Consider Figure 2.3.4. Suppose that in the (x,y)-domain Q of 

the PDE curvilinear gridlines X=X(x,y), Y= Y(x,y) have been defined. We 
seek a transformation T which maps the curvilinear grid onto a square grid in 
the (X, Y)-plane with grid distance 6.. Hence T is defined by 

X(x,y) = j6., Y(x,y)=k6., 

j and k being gridindices in the square grid. Supposing that X and Y are 
differentiable, it holds that 

_l_ = ax _a_ + lr _a_ _l_ = ax _a_ + R __!_ 
ax ax ax ax a y ' ay ay ax ay a y , 

where Xx, Xy, Yx and Yy are explicitly known. Because of the transformation 
T standard differences can be used for approximating a1ax and a;a Y in the 
(X, Y)-plane. 

In case no explicit parameterization X(x,y), Y(x,y) is available, one can 

approximate Xx, ... , Yy on the curvilinear grid in the (x,y)-plane. There are 

various possibilities to do so [4], [25]. Of course, in applications one mostly 
has to make this approximation. 0 

REMARK 2.3.6. By nature the finite element method leads to an easier way of 

handling curved boundaries. Differently from the field of hyperbolic PDEs, in 

recent years the finite element method has become quite popular for parabolic 

equations. PRAAGMAN [35] has implemented the finite element method for the 

shallow water equations and reports satisfactory results. More research is 
needed however for more definite conclusions how finite differences and finite 

elements compare to each other in the extensive and diverse field of hyperbolic 

equations, such as in shallow water applications. 0 
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3. TIME INTEGRATORS 

In this section we start with the time-continuous, semi-discrete system (2.2.6). 
In principle, any ODE solver can now be applied to this equation in order to 
obtain a numerical approximation to the solution of (2.2.6). Thus, using an ini­
tial value problem solver from a program library such as NAG or IMSL will 
provide us with a numerical solution of the SWEs. However, the costs both in 
terms of computation time and of storage will be enormous. The reason is that 
such library programs, being designed as general purpose methods, do not take 
into account the two characteristic properties of semi-discrete hyperbolic sys­
tems, in particular the semi-discFete SWEs: 
A. The large number of component equations in the system (2.2.6) (3 times 

the number of spatial grid points used in the semidiscretization). 
B. The large, almost imaginary eigenvalue interval of the Jacobian matrix 

aF 13 W of the right-hand side in (2.2.6) 

Property A is obviously responsible for the excessive storage requirements 
when applying a general purpose method, at the same time implying that each 
integration step is relatively expensive. Property B causes the system (2:2.6) to 
be marginally stable; it is therefore expected that a numerical approximation 
to (2.2.6) will easily become unstable unless either small integration steps or 
special numerical approximations are used. 

It is the purpose of this section to give a survey of possible integration tech­
niques for solving (2.2.6) that take into account the properties A and B. 

3.1. Runge-Kutta methods 
Let Wn, n =O, 1,2, ... denote numerical approximations to the exact solution 
W(t) of (2.2.6) at tn = t0 + nAt, At being the integration step. Then an impor­
tant class of numerical approximations to (2.2.6) is given by 

m 

ww~ I = w n +At 2: a).IF~)+ J, 

/=I 

F~l+ I:= F(t~)+ 1' w~l+ I), j = 1,2, ... ,m, (3.1.1) 

m 

W n +I = W n +At 2: b,F~)+ I. 
/=! 

This method is called an m-stage Runge-Kutta method. The Runge-Kutta 
parameters aJ,l and b1 are determined by accuracy and stability conditions. The 
intermediate points t~~ 1 are usually defined by 

m 
Ul -ln+I - tn+At2:aj,I. (3.1.2) 

I= I 

In this case, the ww~ I are approximations to w ( tW~ I ). we will assume that 
(3.1.2) is always satisfied. 

EXAMPLE 3.1.1. The most famous (and at the same time an appropriate time 
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integrator for the SWEs) is given by (KUTTA [26]) 

W(I) 
n +I 

w<3) 
n +I (3.1.3) 

If F(t, W) is sufficiently smooth it can be proved that (see e.g. [27]) 

Wn+1-WCtn+1) = O((At)4 ) as At~O, tn+I constant. 

The method is said to be of order 4. Notice that the ww~ I are defined by 
(3.1.3) explicitly. In the particular case of the SWEs, this method when imple­

mented on a computer requires 3 arrays for storing the WW~ 1 and F~~ 1 dur­
ing the computation of an integration step. O 

In Table 3.1.1 we present a few numerical results obtained by this method 
when applied to model 1 (equations (2.1.1)-(2.1.4)) in the semi-discrete form 
(2.2.6). These results refer to the relative height deviation defined by 

h -href 
£:= ---~--

max I h,e1 -h,e1 1 

with href a sufficiently accurate reference solution and href the mean value of 
href· For a few grid points we have listed the accuracy expressed in terms of 
the number of correct significant digits, i.e. 

sd : = - 10 log(max I£ I). 

TABLE 3.1.1. Model 1 with Ax =Ay=l00*103 m and tend=48*3600 sec. 

Grid point At= 1200 At =600 At=300 

(48,00) 2.80 3.77 5.01 
(48,12) 2.37 3.35 4.68 
(48,24) 2.48 3.28 4.54 
(48,36) 2.41 3.34 4.53 

The reference solution for (2.2.6) was obtained by using a high order method 

with extremely small integration steps. 
These results clearly reflect the fourth order behaviour of the Runge-Kutta 

integrator, i.e. on halving the integration step the sd-value_ should increase by 
4log2~1.2. For At.;;;:600 this (asymptotic) order property is shown. 

In order to analyse the stability characteristics of a numerical method one 

often uses the linear equation 
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W(t) = A.W(t), AEAn (3.1.4) 

as a stability test model. Here, An denotes the eigenvalue spectrum of aF1aw 
at tn. Applying (3.1.1) to (3.1.4) leads to the relation 

(3.1.5) 

where R (z) is a rational function in z the coefficients of which are expressions 
in terms of the parameters aj,l and b1• It can be shown [39] that 

_ det[/-Az+ebTz] _ T 
R(z) - det[/ -Az] ' e-[l, ... , l] , (3.1.6) 

where A is the matrix (aj,i); j,l =I, ... ,m, and b is the vector (b1> ... ,bm)T 
(observe that the Runge-Kutta method is completely defined by the matrix A 
and the vector b). The stability region § of a Runge-Kutta method is defined 
as the region in the complex z-plane where I R (z) I ~ 1. The method is said to 
be stable for a given problem at tn if /),,.tJ.. lies in the stability region. Notice 
that the stability region § is completely defined by the numerical method 
without reference to the particular problem to be solved. Evidently, if a 
method is stable at tn, the numerical solutions of the test equations (3.1.4) 
satisfy the condition 

(3.1.7) 

In many cases, the (linear) stability condition {)./An C§ leads to satisfactory 
numerical solutions of nonlinear problems. But we should bear in mind that 
the above given analysis is based on the test equations (3.1.4) and should be 
applied with care to more general problems. For a discussion of nonlinear sta­
bility analysis we refer to DEKKER and VERWER [6]. 

Adopting /).t An C § as the stability condition it follows from property B that 
the SWEs require numerical methods the stability regions of which contain a 
relatively large imaginary interval [ - i /:I, i m (notice that § is symmetric with 
respect to the real axis). For implicit methods this is easily achieved. However, 
from a practical point of view we are mainly interested in explicit Runge-Kutta 
methods (aj,l=O for j~f) which turn out to have rather modest /3-values. 

EXAMPLE 3.1.2. Here we mention some well-known explicit Runge-Kutta 
methods and the corresponding stability function R(z), which reduces to a 
polynomial for these explicit methods. Also the imaginary stability boundary 
/3, the number of stages m and the order p are given. For the coefficients aJ,I 
and b1, defining the Runge-Kutta schemes, we refer to e.g. [27] 

method of Euler; R(z)= 1 +z, /3=0, m = 1, p =I, 

method of Runge ; R (z) = 1 + z + ~ z 2 , /3 = 0, m = 2, p = 2, 

method of Heun; R(z)=l +z + ~ z 1 + ! z 3 , /3= V3, m =3, p =3, 

method of Kutta; R(z)= 1 +z + ~ z 2 +iz3 + 2~ z 4 , /3=2 V2, m =4, p =4. 
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Thu~'. the methods using 3 o.r 4 stages in this example possess a nonvanishing 
stability boundary /3 on the imaginary axis. The corresponding stability condi­
tion /:::,.t An C § can be written as 

/:::,.t ~ 1, S :=spectral radius of aF;aw, (3.1.8) 

provided that An is purely imaginary. Since in the case of the SWEs, 
S = 0(/:::,. - I), /:::,. being the mesh size on the spatial grid, condition (3.1.8) allows 
us to use grid parameters /:::,. and /:::,.t of comparable magnitude as 6., D..t ~o. 
However, in an actual computation the order constant in S = 0(6. - I) may be 
large (e.g. in computations with large values for the depth function); also, it is 
often allowed to use /:::,.t-values which are large compared with /:::,. (see [38, p. 
214]). In such cases, (3.1.8) may impose a severe limitation on the integration 
step /:::,.t, just for the sake of stability and not for the sake of accuracy. It is 
therefore of interest to look for (explicit) Runge-Kutta methods with a large 
stability boundary /3 on the imaginary axis, that is to look for methods pos­
sessing a (so-called) stability polynomial R(z)=Pm(z) of the form (3.1.6) which 
assumes values on the unit disc on the largest possible interval [- i/3, i/3]. 
Before giving results for this minimax problem we give a theorem which relates 
the order of the method to the specific form of P m(z ). 

THEOREM 3.1. l. If the Runge-Kutta method (3.1.1) is of order p then 

diP 
__ m (0) = 1 

dzl 

for j =O, 1, ... ,p. (P m(z) is called consistent of order p.) 0 

THEOREM 3.1.2. If p;;.l and m;;.2 then f3~m -1 (form odd see [171 form 

even see [ 40V. 0 

THEOREM 3.1.3. lfp=l,2andm=2k+l, k=0,1,2, ... , then 

P.(,)= r,[1+;:2 J+~ [1+ ;:2 Ju,_,[1+;:,] (3.1.9) 

solves the minimax problem and the corresponding /3 value is the largest possible, 

i.e. /3=m -1 [17]. 0 

This result has recently been extended [37]; now a polynomial is available for 

all values of m: 

THEOREM 3.1.4. For p = 1 the polynomial 
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P.(,) ~ ;•-•r._, [ ;(m,-1) l (3.1.10) 

+ I ·m {'T' [ Z l T [ Z l} -1 ~m - m-2 
2 i(m-1) i(m-1) 

is the optimal polynomial and has f3 = m - l. D 

THEOREM 3.1.5. lfp =2,3,4 and m =4 then 

P (z) = l+z+l.z 2 +l.z 3 +-1-z4 
4 2 6 24 (3.1.11) 

solves the minimax problem and /3 = 2 V2 [ 17]. D 

In selecting a stability polynomial one should take into account that the larger 
m the more expensive an integration step. Hence, using large m-values in 
order to increase /3, has to be paid for by m right-hand side evaluations. This 
suggests considering the effective (or scaled) stability boundary [3/m. From 
Theorem 3.1.2 it follows that /31m~l-llm so that it hardly pays to use a 
large value for rn. In this connection, we observe that the fourth order consistent 
polynomial P 4(z) given in Theorem 3.1.5 has an effective stability boundary 
/31 m = 1h V2 which is already more than 70% of the asymptotic value of the 
second order consistent minimax polynomial of degree infinity. Therefore, the 
polynomial (3.1.11) is recommended as a stability polynomial if one decides to 
use an explicit Runge-Kut ta method for the SWEs. 

The next step is the choice of a Runge-Kutta method possessing (3.1.11) as 
its stability polynomial. An obvious choice is the fourth order method of Kutta 
(3.1.3) (see also Example 3.1.2), and in fact PRAAGMAN [35] used this method 
in solving the SWEs. An alternative might be the methods of MERLUZZI and 
BROSILOW [31] who (following ideas of STETTER [39]) developed methods which 
allow for global error estimation with low extra costs. 

3.2. Linear multistep methods 
A second important class of numerical approximations to the ODE (2.2.6) are 
the linear k-step methods defined by 

k 

2:[a1Wn+1-1-i'.ltb1Fn+1-iJ = 0, 
I ==O 

Fn+1-1:=F(tn+1-1, Wn+1-1), 

(3.2. l) 

where the coefficients a1 and b1 are determined by accuracy and stability condi­
tions. 

As in the case of Runge-Kutta methods we are particularly interested in 
explicit methods, i.e. b0 =O. However, implicit methods are also important for 
us as a starting point in constructing special predictor-corrector methods (see 
subsection 3.2.2). 
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3._2_.J. Expl~cit linear multi~tep methods. Just as for Runge-Kutta methods, sta­

bility reqmrements fo~ linear multistep methods are obtained by applying 

(3.2.1) to the test equations (3. l.4). This yields a relation of the form 

[p(E)-i\.Lita(E)JWn + 1-k = 0, AEA,,, n + l ~k, (3.2.2) 

where E is the shift operator defined by EW = w 
n n +I 

so-called characteristic polynomials defined by 
and where {p,a} are the 

k k 

p(r) := ~a,rk-I; a{t) := "L,b1r-1, bo=O. (3.2.3) 
l=O l=O 

The stability region § is now defined as the region in the complex z-plane 

where the characteristic fanction 'IT(t,z): =p{t)-zam has all its roots r on the 
unit disc. 

The stability condition, widely adopted in practical computations, reads 

D.t An C § so that we are again faced with the problem to construct a method 

the stability region§ of which contains a large imaginary interval [-i/3,i/3]. 

EXAMPLE 3.2.1. As an example of explicit linear multistep methods we men­

tion the extensively used k-step Adams-Bashforth methods, which are charac­

terized by their p-polynomial possessing the form p(t) = r -r -I. The a­

polynomials may be found in [27]. For k =2,3,4 (yielding methods of order 

p =2,3,4, respectively) we have the respective imaginary stability boundaries 

/3=0, /3=.72 and /3=.43. D 

The stability boundaries given in this example are at the same time the 

effective boundaries because each integration step requires just one F­

evaluation. A comparison with the results obtained for Runge-Kutta methods 

of the same order reveals that (cf. Example 3. 1.2) the Adams-Bashforth 

method of order 3 has a larger effective stability interval along the imaginary 

axis, but the fourth order method does not. Both second order methods have 

/3=0. 
The maximization of the imaginary stability interval of explicit multistep 

method has been studied in JELTSCH and NEVANLINNA [24]: 

THEOREM 3.2.1. 
(a) The imaginary stability boundary /3 of an explicit linear multistep method 

cannot exceed 1. 
(b) Let r E[O, 1) and k E {2,3,4} be given. Then there exists an explicit linear 

k-step method of order p =k with /3=r. D 

EXAMPLE 3.2.2. 
Leapfrog method: k = 2 

p(D = r2 -1, a{t)=2t, /3= l, p =2 
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Jeltsch-Nevanlinna methods: k = 3,4 (t:>O) 
2 

p(K) = (r-1)<r+1- 3 1:)(f-1+€), 

a<n=2f(f- l)+ft:(2f + l)+ l~ ;(f2 -8f + 5), /3= 1- O(t:), p =3. 

P<n = (f2 -l)(r2 -2 3;~ f+l), a(K)= 3 ~£ K<r2 +2(€-l)r+1), 

/3= 1-0(t:), p =4. D 

In Table 3.2. l results obtained by the leap-frog method are listed for problem 
(2.2.6) corresponding to model 1. 

TABLE 3.2.l. Model 1 with Ax =6.y = 100* 103 m and tend=48*3600 sec 

Grid point At =400 6.t =225 flt =75 

(48,00) 1.56 2.26 3.19 
( 48, 12) 2.30 2.41 3.30 
(48,24) 1.95 2.27 3.16 
(48,36) 2.44 2.79 3.31 

With the exception of the last grid point, the second order behavior is 
clearly shown for 6.t = 75. Note that the results of the fourth order RK­
method ( cf. Table 3.1.1) are much more accurate. 

3.2.2. Predictor-corrector methods. The rather modest stability results obtained 
for explicit Runge-Kutta and linear multistep methods lead us to consider 
implicit methods. In particular we will study implicit linear multistep methods 
because of their simple structure. Thus, let W 11 + 1 be defined by (3.2. l) with 
b0 =j=O, or briefly 

(3.2.4) 

where;: ~,, is a linear combination of w1 and F1 values with j~n. In order to 
solve this implicit relation we employ a predictor-corrector method. 

Following [21] we define them-point iteration scheme 

W~~ 1 = f lµpW~ +P + /.ipLltF(t,, +l>W~+/l)]+;\.J~n• (3.2.5) 
/=I 

j=I, ... ,m 

where w~0~ 1 is obtained by a suitable predictor method (e.g. an explicit linear 
multistep method) and w~m~ 1 is accepted as an approximation to the exact 
solution of (3.2.4). By requiring that the j-th row sum of the matrices M =(µp) 
and M=(/.tp) are respectively given by 1-\ and b0\, we achieve that if 
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W~~ 1-c>W as J-c>oo_ then W equals the exact solution of (3.2.4). In doing so. 
~3.2.4} may be considered as the corrector equation and (3.2.5) as an correction 
iterat10~. Th~ scheme (3.2.5) is said to be consistent with (3.2.4). 

The iteration scheme (3.2.5) is conveniently characterized by the iteration 
polynomials 

(3.2.6) 

j = 1,2, ... ,m. 

The consistenc~ condition implies that P1(1 I b0 ) =I for all j. The following 
theorem determmes the accuracy of the predictor-corrector method [21]: 

THEOREM 3.2.2. Let W1 =W(t1)for j~n. then 

W~":?i-W(tn+d == [/-Pm(Z)][Wn+l-W(tn+!)] 

+ P m(Z)[W~0~ 1-W(tn+1 )]+ O(litq). 

aF 
q~3+2minfP,p}, Z:=llt aw Ctn+i.Wn+1) 

where p and p are the orders of accuracy of the corrector and the predictor respec­
tively. 0 

This theorem expresses the (local) error of the predictor-corrector method in 
terms of those of the predictor and the corrector plus higher order terms. It 
clearly shows that the solution of (3.2.4) is approximated better as llPm(Z)ll is 
smaller. Furthermore, the theorem gives us the exact order of the method: let 
P mCz) have a zero at z = 0 of multiplicity r, then the predictor-corrector 
method is of order p • =min{p, p +r, 2+2minf.P,p} }. 

Next, we consider the stability of (3.2.5). Assuming that we can find a pred­
ictor and an iteration polynomial P m(z) such that (3.2.4) is solved with 
sufficient accuracy, the stability properties are determined by those of (3.2.4). 

The following theorem is known: 

THEOREM 3.2.3. 
(a) Only for p ~ 2 there exist linear multistep methods with an infinite ima­

ginary interval of stability [22]. 
(b) For p>2 the imaginary interval of stability cannot exceed [-iv'3.iv'3] 

[5], [23]. D 

EXAMPLE 3.2.3. A few methods possessing an infinite imaginary interval of 
stability are [27]: implicit Euler (k = 1, p = 1), the trapezoidal-rule (k = l, p =2) 
and the backward differentiation method (k = 2, p = 2). Within the class of 
methods with p > 2, the fourth order, 2-step Milne-Simpson method has the 
maximal attainable imaginary stability boundary {3= v'3. D 
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Theorem 3.2.3 indicates that we should be content with a first or second order 
corrector in our attempt to construct predictor-corrector methods with large 
imaginary stability boundaries. In particular, the implicit Euler and the second 
order backward differentiation method are recommendable because of their 
strong damping of higher frequencies (which are easily introduced by round-off 
errors). 

Let us now consider the imaginary stability boundary /3 of the complete 
predictor-corrector method. We will do this by relating /3 to the real stability 
boundary !3reat of the method. Since the derivation of !3real has been studied in 
some detail [21] we can avoid a lot of tedious computations. The following 
theorem is easily proved. 

THEOREM 3.2.4. Let !3rea1(m) be the real stability boundary of the predictor­
corrector pair using the iteration polynomial Qm(z). Then this predictor-corrector 
pair using the iteration o/ nomial P2n1(z)=Qm(b 0z 2 ) has the imaginary stability 
boundary /3= f3rea1(m)lbo. D 

EXAMPLE 3.2.4. In [21] a predictor-corrector pair consisting of the predictor 

Wn+I = 2Wn-Wn-I 

and the second order backward differentiation corrector (see Example 3.2.3) is 
considered for which iteration polynomials are constructed such that 
f3reai(m)jl.37m 2 as m-"?oo. Hence, by Theorem 3.2.4 we can construct a 2m­
stage predictor-corrector method with ,Bjl.43m. Effectively, however, we 
obtain the value . 72 for m sufficiently large. D 

The methods suggested by Theorem 3.2.4 are not optimal. In order to get some 
insight into how good or poor these methods are we have done a numerical 
search for the optimal iteration polynomial P 2(z) in the case of the predictor­
corrector pair mentioned in Example 3.2.4. We found 

P2(z) = l.0-.408z +.272z 2 , .B= 1.97. 

3.3. Multigrid methods 
A multigrid method can be used for solving the implicit relations obtained 
when an implicit Runge-Kutta or multistep method is applied to (2.2.6). Let us 
consider an implicit k-step method which requires the solution of equation 
(3.2.4) in each integration step. In the multigrid technique we do not only 
consider this equation but we define on a sequence of successively coarser 
grids a similar equation. Thus, we have a sequence of problems of the form 

(3.3.1) 

where the number of components in W n + 1, F and ~n correspond to the 
number of grid points in the grid considered. In fact, in the more advanced 
applications of the multigrid method the right-hand side vectors ~n are 
modified except for the ~n corresponding to the finest grid. We will not discuss 
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these modi~cation but refer to the literature (e.g. [ l ], [ 15]). By first solving the 
coarsest gnd problem one may construct a rather good initial approximation 
to the solution of the next finer grid problem, and so on. Usualk a linear 
inte~olation. procedu~e is applied. These approximations can be i~proved by 
addmg certam correction terms for which we again refer to the literature. As a 
result we obtain initial approximations which differ from the solution of (3.3. l) 
only in the high frequency range. Thus, in order to solve the problems (3.3.1) 
one may use any iteration scheme (usually called relaxation method) that takes 
advantage of the fact that the initial approximation is incorrect only in the 
high frequency range. For functions F(t, W) the Jacobian matrix of which has a 
real spectrum with an orthogonal eigensystem, Gauss-Seidel relaxation or Incom­
plete LU relaxation [44] are widely used. Chebyshev relaxation (advocated in 
[20]) may be another possibility, particularly when vectorcornputers are to be 
used (cf. subsection 4.1). However, in the present case we do not have a Jaco­
bian matrix with a real spectrum, but with an imaginary spectrum instead. For 
such problems there is hardly any experience. 
_ Let us apply the iteration scheme (3.2.5) to (3.3.1 ), that is ~" is replaced by 
Ln. Omitting higher order terms in !it we deduce from Theorem 3.2.2 

Wn+1-W~m4, = Pm(Z)[Wn+I -W~0~1J. 

Since w n +I - w~0~ I is supposed to contain only high frequency components, 
we should look for polynomials P m(z) such that the matrix 
Pm(Z)=Pm(t:..taF1aW) damps all high frequencies. In the case of the SWEs, 
the eigenvectors of aF ;aw corresponding to the eigenvalues with large ima­
ginary parts present the high frequencies so that we should construct polyno­
mials Pm(z) satisfying the condition Pm(l/b 0)= 1, such that IPm(iy)I is as 
small as possible on an interval a,,;;;;;lyl,,;;;;;b. Here, a=a!itS and b=litS, a 
being some parameter <l (say a=lh), and Sis the spectral radius of aF1aw. 
As far as the authors know this minimax problem has not yet been solved for 
general m. Form = 1 we straightforwardly find that 

l+zlbob 2 . 
P 1(z) = 2 2 with maxlP 1(z)I =-===== 

1 + l!b0b [ia,ib] Vl + llb6b 2 
(3.3.2) 

is the minimax polynomial for all Q:;;;;,a:;;;;,b. For :11 =~ ~d m =4 a n~meri~al 
computation for several intervals [ia,ib] resulted m numm~ polynormals :"'Ith 
extremely small values for the odd degree coefficients. Thi~ ~uggests consider­
ing the polynomials Pm(z)=Qm 12 (z 2 ) with m even. The ~mmax problem on 
[ia,ib ], i.e. a 2 ,,;;;;;; -z 2 ,,;;;;;b 2 , is solved by Chebyshev polynormals: 

(3.3.3) 



260 P.J. van der Houwen et al. 

EXAMPLE 3.3.1. Let (3.3.1) correspond to the second order backward 
differentiation method (b0 = 213) and choose a= 'h, i.e. a = b 12. Then the 
polynomials (3.3.3.) damp the high frequencies by a factor 

!IT.,, [ ~ + :, ]. 

In Table 3.3.1 a few values are listed. 

b 

1 
2 
4 
8 

16 

TABLE 3.3.1. Damping factors obtained by (3.3.2) and (3.3.3) 
for a =b/2 and b0 =2/3 

m=l m=2 m=4 m=6 m=8 m=lO m =12 

.83 .13 .009 <10-3 -o ,..._,o -o 

.95 .32 .05 .009 .001 -o -o 

.986 .49 .13 .04 .009 .003 .....,o 

.997 .57 .19 .06 .02 .006 .002 

.999 .59 .21 .07 .02 .008 .003 

In order to illustrate that these polynomials are close to the optimal polynomi­
als we explicitly give the fourth degree polynomial for 2a = b = 4: 

[Pm(z)loptimal ~ .58801 +.028363z +.144657z 2 +.002135z 3 + .00726lz4 

[P m(z)]chebysh..., ~ .62092 +O.Oz + .15144z 2 +O.Oz 3 + .007572z4 

with respective damping factors .1344 and .1363. 0 

3.4. Splitting methods 
Sofar we did not exploit the special structure of the right-hand side function 
F(W). We will now consider time integrators which take advantage of the 
specific form of F(W). These methods fall into the class of one-stage splitting 
methods defined by 

1 
W,,+ 1 = W,, +Aat[G(W,, + 1 ,W,,)+(~ - l)G(W,,,W,,)] (3.4.1) 

or into the class of two-stage splitting methods defined by [19] 
I 

w~1~1 = w,,+2at[G(W~1~1.W,,)+(2A-l)G(W,,,W,,)J 

- ..l. (I) _l_ W,,+1 - W,,+ 2 M[G(W12 +1,W,,)+(2 A )G(W,,,W,,+i)+ 
(3.4.2) 

-
Here, G(W, W) is a so-called splitting function satisfying the splitting condition 
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G(W,W)=F(W). The one-stage method is first order accurate for all A.. The 
two-stage method is second order for all A.. In the literature one meets also 
two-stage methods which use different splitting functions in the successive 
stages. 

3.4.1. One-stage methods. The one-stage methods may be considered as a 
method in between the explicit and implicit El;!ler method. If A.=O we have the 
explicit Euler method and if A.= 1 with G(W, W) = F(W) we obtain the implicit 
Euler method. 

In the examples given below we have A.= I. Furthermore, the function F(W) 
is defined by the discretization of the right-hand side of ( 1.2) omitting the 
force term r. Thus, 

UDx+VDy -J 
F(W)= - f UDx + VDy W, 

where Dx and Dy are discretizations of a1ax and a;ay, and U, V, and H are 
the diagonal matrices diag(U), diag(V) and diag(H); we will also write Hx 
instead of DxH, etc .. 

EXAMPLE 3.4.1. Fischer -Sielecki method [9] 
- -

0 0 0 UDx+VDy -J gDx 
- - -

G(W,W)=- f 0 ow 0 UDx+VDy gDy W. 
- - - -
Hx+HDx Hy+HDy 0 0 0 0 

When implemented this splitting function generates a corn letely explicit 
scheme. The stability condition reads Llt~2 llgHll(S~ +SJ) where Sx and 
Sy are the spectral radii of Dx and Dy- For a detailed discussion of the 
Fischer-Sielecki method and its modifications we refer to [18]. 

Navon's method [34] 
-

UDx+VDy 
-

G(W,W)=- f 
0 

gDx [o -J ol _ 
gDy W - 0 0 0 W. 

- - - - 0 00 
UDx+ VDy+ Ux+ Vy 

By first solving the (linear) equation for Hn + 1 we obtain a (nonlinear) equa­
tion in Un+ 1 alone and a (nonlinear) equation for Vn + 1 alone. 
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3.4.2. Two-stage methods. In the case of (3.4.2), both stages should be defined 
in such a way tha! W~1~ 1 and W n + 1 can be 'conveniently' obtained, that is 
oG/oW and oGJaW are required to have a simple structure. 

EXAMPLE 3.4.2. Classical ADI splitting 

-
[UD, 0 gDx VDy -J 0 

- -G(W,W)=- f UDx 0 w- 0 VDy gDy w. (3.4.3) 

HDx 0 UDx - -
0 HDy VDy 

This splitting is the most natural one ( cf.[ 19] for a survey), and leads to an 
ADI type splitting method. In fact, this type of method (with ;\ = 112) was inves­
tigated by GusTAFSSON [12] who gives a detailed discussion of the solution of 
the implicit relations (notice that the stages in (3.4.2) are one-dimensional 
implicit when using (3.4.3)). A linearized version of this ADI method has been 
considered by FAIRWEATHER and NAVON [8]. The (linear) stability analysis 
indicates unconditional stability for linear models with constant coefficients. 

Leendertse's method 
The scheme of Leendertse, in the way it was originally introduced [29], can 
also be formulated as a two-stage method of the form (3.4.2) with ;\ = 112. To 
that end, however, we have to define two splitting functions, which are 
different for both stages. In the first stage, this method uses G(W, W) with 
components 

- -
G1 = -[UxU+ UyV-jV+gHx] - - -

-[UVx + VVy+ jU+gHy] (3.4.4) 

G3 -[UHx + HVx + VHy + HVy]. 

By first (simultaneously) solving U and Hand afterwards (explicitly) calculat­
ing V, only tridiagonal systems have to be solved. 

In the second stage a slightly different splitting function is used. To be more 
precise, the advective terms are replaced by 

- - -
-[UxU+UyVJ, -[UVx+VVy]. 

Solving this stage is similar to the first one, but now the roles of U and V are 
interchanged. 

In a later version of this scheme [30] there has been used a staggering in 
time for the velocity components; this results in a calculation of U and H at 
time levels n + 1h and of V and H at levels n. 
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Stelling's method [38] _ 
This method uses A=lh and a splitting function G(W,W) with components 

- -
G1 -[UxV+UyV-jV+gHx] 

- - ,... -
G1 -[ UVx + VVy +JU+ gHy] (3.4.5) 

G3 -[UHx+HVx+VHy+HV1 ] 

In the first stage (implicit in W = W~1~ 1) the vector V = V~1~ 1 can be solved 
'conveniently' by using one-sided difference operators; then U=U~1~ 1 can 
explicitly be expressed in terms of V and H=H~1~ 1 , and substitution into the 
equation for H yields an equation in H alone. The second stage is treated in a 
similar manner. Notice the strong-implicit treatment of the convection term. 
This method is claimed to be highly stable even in the presence of nonlinear 
terms. 

4. FUTURE DEVELOPMENTS 

In this section we will briefly discuss a few aspects which may become impor­
tant for the solution of the SWEs. 

4.1. Vector processing 
Since the numerical solution of a large-scale, realistic shallow water model is a 
tremendous task, a huge increase in computer speed as well as memory capa­
city is needed in order to obtain a sufficiently detailed simulation for engineer­
ing purposes. A useful alternative to the traditional scalar computer may be 
the so-called vector computer. The last type of machine is designed to enhance 
the concurrency of arithmetic operations, which results in a high system 
throughput. To be more precise, vectors (i.e., ordered sets of values) are 
operated with one single instruction. 

Since 1984 the CWI has access to a CYBER 205, which is a vector proces­
sor, also called. pipeline machine. Therefore, we will globally consider the 
consequences for solving the SWEs when using such a computer. (For a 
detailed discussion of parallel computing we refer to [16].) 

In order to utilize the potential speed of a vector computer we have to 
satisfy certain constraints. 

First of all there is the necessity to adapt the computer program to the archi­
tecture of the particular computer. More or less, this argument holds for any 
type of computer but on a vector processor the effects are more pronounced. 
More serious is the requirement to suit the algorithm to the specific architec­
torial nature of the computer. Traditionally, numerical algorithms were 
selected on their 'mathematical' qualities, for instance, the rate of convergence 
in iterative processes. When using a vector computer it is no longer true that 
algorithms which are 'mathematically' superior to others will result in a better 
(i.e., faster) performance, which is usually the case on a scalar computer. 
Therefore, to obtain optimal performance from a vector machine, it is neces­
sary to construct an algorithm which is best suited to that particular machine 
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(running with a particular compiler). In doing so, we have to consider several 
aspects which will inhibit vectorisation. If vectorisation has to be performed 
by the compiler, only the source code will be examined. Evidently, DO-loops 
will be the most likely places where suitable sequences of operations can be 
found. Therefore, we should keep these loops going on, working on vectors the 
length of which is as large as possible. Hence, loops containing IF-statements, 
GOTO-statements or 1/0-statements will inhibit vectorisation. Also certain 
index expression are a barrier to vectorisation, such as indirect addressing or 
nonlinear index expression. Moreover, calls to subroutines or functions within 
DO-loops make these loops nonvectorisable. The reason for this is that sub­
programs generally are compiled seperately. 

However, the most restrictive aspect with respect to vectorisation is recur­
sion, which means that in a sequence of evaluations the latest term depends on 
one or more of the previously computed terms, as, for example, in 

DO 10 1=2,N 

10 A(I) = A(l - 1) +SCALAR *B(I) 

Because the evaluation of a recurence relation essentially is a sequential pro­
cess, recurrency conflicts with the nature of vectorisation. Recurrences are 
quite common in all fields of numerical analysis; examples are the calculation 
of the innerproduct of two vectors, solutions of linear equations by Gaussian 
elimination and in principle any iterative process in which a new approxima­
tion is calculated using previous approximations. Fortunately, for some of 
these problems manufacturers of vector computers provide a solution, e.g. the 
CYBER 205 has a special innerproduct instruction. The recursion which has 
our special attention occurs in the Gaussian elimination process used for solv­
ing tridiagonal systems. These systems frequently occur in the splitting 
methods as described in subsection 3.4. Therefore, in using these splitting 
methods we will have to use other techniques to solve the tridiagonal systems 
(such as recursive doubling or cyclic reduction). However, this usually requires 
additional arithmetic operations and storage. 

A last aspect which we want to consider is the portability. Because FOR­
TRAN originates from the fifties it lacks any feature for a standard treatment 
of vector processing. In consequence, each manufacturer developed his own 
dialect. Needless to say that this is disastrous for portability. 

Notwithstanding these reservations, we think that it will be possible to take 
advantage of this vector processing machine by adapting both the program 
and the algorithm to this particular computer. Extensive tests have to show 
which algorithm is maximally benefitted from this type of computer. 

Considering the various methods which are described in Section 3 we make 
a few remarks. 

An aspect which seems to be in favour of the explicit methods (such as the 
Runge-Kutta schemes) is that these methods work with long vectors, whereas 
the splitting methods typically operate on vectors the length of which equals 
the number of points in one space-direction. This aspect is especially 
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important for the CYBER 205 because this machine has a relatively large 
start-up time, which is greatly amortized by executing long vectors. Further­
more, the explicit schemes require only F(W)-evaluations to solve (2.2.6). 
Because of their explicit nature, the vector W is known prior to the calcula­
tions within F, which makes these schemes - at least in principle - highly 
vectorisable. 

The refinement of the model describing the SWEs will also have influence on 
the performance of a vector computer. Evidently, the more sophisticated the 
model is, the more complicated the program will be. For example, very irregu­
lar shapes of the boundary (or even time-dependent boundaries which require 
a flooding and drying procedure) or special treatment of the advection terms in 
the SWEs in the neighbourhood of the boundaries, etc. Such situations will 
cause the program to perform a lot of tests to detect these irregularities. These 
IF-statements as well as the enormous overhead will prevent the program from 
optimal performance. 

A last facet is the ambiguity of the word performance. Is it merely the CPU 
time that counts or do we also take into account the time needed for transput 
of data? Another definition of performance could be in terms of costs on a 
particular computer installation or in terms of memory. 

4.2 Vertical stratification 
The general equations describing the motion of flow in shallow water are, in 
principle, three-dimensional. However, the enormous computational task such 
a 3-D system would require in numerical computations, is out of the scope of 
nowadays computers. 

Therefore, in the momentum equation for the vertical velocity component, 
usually the following assumptions are made: 
(i) the vertical acceleration is small with respect to the acceleration of grav­

ity. 
(ii) as the horizontal dimensions are large compared with the depth, the 

vertical velocity is small with respect to the horizontal velocity. 

By these assumptions this momentum equation can be drastically simplified 
yielding a relation between pressure and gravity [7]. Then, this relation can be 
used to eliminate the pressure from the other momentum equations. A next 
step is introducing the depth-averaged horizontal velocity components 

1 h . 1 h 

u = - Ju dz and v = - j v dz. 
ho ho 

Now, assuming that the free surface and the bottom are streamlines, which 
serve as vertical boundary conditions, the equations are integrated over the 
depth which eliminates the vertical velocity component from the system. It is 
this system which was considered in the previous sections, where the bars were 
dropped. 

In many applications, this traditional approach has proven to be rather 
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satisfactorily. However if the fluid is not homogeneous with respect to tem­
perature or salinity it may be necessary to consider a model with more than 
one layer. Now, in each of these layers the SWEs as defined in (1.2) are used, 
extended with a variable p denoting the density in that particular layer. Conse­
quently, p will be a function of the temperature or the salinity. Evidently, these 
layers have to be connected by appropriate interaction conditions, i.e., vertical 
boundary conditions are imposed assuming that the borders between the layers 
are streamlines again. These models with vertical stratification have been stu­
died in the literature (see e.g. [14], [41]) but are still in a rather premature stage 
of development. Further research in this field is necessary in order to obtain a 
more flexible treatment of realistic models. This technique of using layers is 
also valuable for modelling the three-dimensional circulation of a homogene­
ous sea ( cf. [3]). Thanks to the ever-increasing computer power the refinement 
of the models is possible. This may eventually lead to models with many layers 
or even to fully three-dimensional calculations. Perhaps, in the end, it may give 
a better comprehension of the phenomenon of turbulence which is still so 
poorly understood. 

4.3 Error estimation 
A step forward in shallow-water calculations would be an estimation of the 
global error. The costs of such an estimation may be considerable. For this rea­
son error estimation got little attention. However, a good estimation of the 
error would increase the reliability of the results, which will be a good starting 
point for probability calculations in civil engineering projects and thereby may 
lead to cheaper designs. 

In future research on shallow-water equations at the CWI we will concentrate 
on the use of vector computers and on error estimation. 
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