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We provide a detailed study of the recursion y 0 = l, y,,, 1 = y,, + iy~', 
11=0, 1, .. ., m >I, which arises either as a model discretization of a nonlinear ODE 
or in the use of the energy method. Sharp bounds and asymptotic estimates are 
given for the size of the iterates y,,. 1 1986 Academic Pros" tnc. 

I. I NTRODUC'TION 

In this note we study the recursion 

Yo= I, n = 0, 1, 2, ... , ( 1 ) 

where m > 1 is a constant and T > 0 a small parameter. Clearly, for 
m < l/(m - 1) the terms y,, are the approximations given by Euler's 
method to the value at t = m of the solution 

y(t)=[l-(m-l)t] 111 ml (2) 

of the initial value problem 

dy/dt = y"', y(O)=l. ( 3 ) 

Note that this solution exists only for t < 1/(m - 1 ). In this connection the 
recurrence (I) provides a very simple example of applications to a non
linear problem of a method for the numerical integration of ordinary dif
ferential equations. The derivation of sharp bounds for the error y,, - y(n-r) 
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may throw some light on the error propagation mechanism in nonlinear 
situations, which, as distinct from linear situations, is often difficult to 
investigate. 

However, there are other instances in numerical analysis which lead to 
recursions similar to ( 1 ). Our initial motivation arose in the study of the 
2-dimensional system [ 1] 

du/dt=(uru)Au, A=(_~ ~). (4) 

which, in turn, stems from the study of the time-dependent cubic 
Schrodinger equation [4, 5, 6]. The skew symmetry of A implies that, if 
u(t) is a solution of (4), then the Euclidean norm (energy) llu(t)ll does not 
change with t. When ( 4) is discretized by means of Euler's rule with step 
size h the norms e11 = llu11 il satisfy the recursion 

n=O, 1, 2, ... , (5) 

which, upon defining Yn=e~/e~, n=O, 1, 2, ... , r=h 2e6, reduces to (1) with 
m = 3. More generally, ( 1) or recursions similar to it, often appear in the 
application of the energy method in OD Es or: time-dependent PDEs. From 
(5) we conclude that the norms e11 increase monotonically, as distinct from 
the situation llu(t)ll =constant. In Section 2 we show that the norms even
tually exceed any given constant M and we obtain estimates for the 
smallest value of n such that lluJ ~ M. Section 3 is devoted to a closer 
study of the case m = 2. Here we derive sharp bounds for the iterants y,, 
from a detailed investigation of the error y 11 - y(m) committed by Euler's 
rule. 

2. ASYMPTOTIC ESTIMATIONS 

The solution y(t) of (3) increases monotonically from y(O) = 1 up to 
y( 1/(m - 1)) = oo. The iterants y 11 also increase monotonically with n (since 
Yn+i - y 11 >0) and for n large enough exceed any given constant M~ 1 
(since Yn+ 1 -y11 =ry;;'~r). We shall provide asymptotic (r--+O) 
estimations for the smallest value of n such that y 11 ~ M. 

It is well known that the error y 11 - y(m) of Euler's rule possesses an 
asymptotic expansion [3] (see [2] for a simple derivation) 

y 11 = y(m) + rn(m) + O(r 2 ), r--+ 0, m fixed and < l/(m - 1 ). (6) 

Here u(t) is the solution of the variational problem 

u(O) = 0, (7) 
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Differentiation in ( 3) shows that d2y/dt 2 = my 2m 1, so that (7) can be 
rewritten (taking y as independent variable) in the form 

u(O) = 0, y 1m(du ym-mym--lu)= -(m/2)y-1. 
dy 

The problem ( 8) is readily integrated to yield 

u(t) = -(m/2) y"' In y, 0::;::; t < 1/(m - 1 ), 

which substituted into (6) gives 

(8) 

(9) 

Yn = y(t)- !mry(I)"' In y(t) + O(r 2 ), r-+ 0, t = m < 1/(m - I). ( 10) 

The expansion ( 10) is valid uniformly in t as long as t ranges in a 
compact interval O ~ t ~a< 1/(m - I). It is clearly nonuniform for 
O ~ t < l/(m - I); note that for r fixed and t near 1/(m - 1) one has 
y(t)-(m/2) ry(t)"' In (t) ~ 0. 

It is convenient to define Yn for noninteger values of n by means of linear 
interpolation between consecutive integers. The expansion ( 10) is easily 
seen to hold even for real n, since linear interpolation within an interval of 
length r has errors O(r 2 ). 

Let M~ 1 be a fixed constant and let n* =n*(r) be such that y,,. = M. 
We shall compare n* with the value n** defined by the equality 
y(n**r) = M, i.e., 

n**=---
(m - 1) r (m -1) Mm 1r · 

( 11 ) 

We note that since Euler's method is convergent, n*r decreases as r-+ 0 
towards the fixed quantity n**r < 1/(m - 1 ), i.e., the products n*r vary in a 
region of uniformity of ( 10 ). Therefore, setting z = y(n*r ), we can write 

M = z - !mrzm In z + O(r 2 ), 

whence, after a straightforward calculation we conclude 

z = M + !mrMrn ln M + O(r 2 ). 

Using (2) and ( 11) we then get n* = n** + !m In M + 0( r), i.e., the number 
of steps required in order that the computed solution reaches the fixed 
value M equals asymptotically the theoretical number of steps plus a con
stant. If we again restrict the interest to integer values of n we have the 
estimate 

[ 1 1 m J 
(m - 1) r - (m - 1) M"' 1 r + 2 In M (12) 
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for the largest integer n such that y,, :( M. In this paper the symbol [x] 
denotes integer part of x. The following table compares, for m = 2, values 
of the estimate ( 12) with true values of n 

M true estimated 

0.1 10 11 11 
0.1 100 13 14 
0.01 10 92 92 

0.01 100 103 103 

As an example of application of ( 12) we consider Euler's method for 
problem (4) with u(O)=[l,0]7, h=0.1, u0 =u(O). We ask for the 
maximum number of steps such that the norm llu 11 ll does not exceed the 
true norm II u(nr) II = II u0 II = 1 in more than 10 %, i.e., e;, :( 1.21. As in the 
introduction, a change of variables brings our problem into the form (I). 

Then our estimate yields n = 16, which agrees exactly with the value found 
experimentally. This number of steps spans a time interval of length 
nh = 1.6. The length of the spanned interval approximately doubles when h 
is halved, since n = O(r- 1 ) = O(h- 2 ). 

3. BOUNDS 

In this section we restrict our attention to the case m = 2 in ( 1 ). We 
begin by computing explicitly the 0( r 2 ) term in the expansion ( 6) for the 
global error. Namely, 

y,,=y(nr)+ru(nr)+r 2v(nr)+O(r 3 ), c-+0, m fixed and <l, (13) 

where, for O:(t<l, y(t)=l/(1-t), u(t)= -y 2(t) lny(t), and v(t) solves 
the initial problem ('=d/dt) 

v(O)=O, dv/dt=2yv-(1/6)y"'-(1/2)u"+u 2• (14) 

This problem is best treated by taking y as new independent variable as we 
did in (8). In this way we easily find 

( 15) 

We now turn to the investigation of sharp bounds for the iterants y 11 

using the asymptotic error relation ( 13 ). 

THEOREM 1. Let m = 2 and m < 1. The iterants y,, then satis.fv 

ru(m) = -ry2(m) ln y(nr) :( y,, - y(nr) < 0. ( 16) 
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Proof The inequality y 11 < y(m) is obvious in view of the geometrical 
interpretation of Euler's rule. We prove that 

::. 11 = y(m)-ry 2(m) In y(m) ~ y,,, n = 0, I, ... , [ r 1 ] - 1. 

This expression can be expanded as 

( 17) 

where bracketed indices denote derivatives with respect to t and functions 
are evaluated at t = tn. The first and second terms of ( 17) vanish by 
definition of y, u (sec (3), (7)), while the third is nonpositive. Therefore the 
proof will be finished if we show that 

(l/k!)yik1+(l/(k-l)!)111k i1~0, k = 3, 4, .... ( 18) 

Differentiation of ( 3) leads to /k 1 = k ! _1.k + 1. The derivatives of u are given 
by 

u1k1= -ak/+2_(k+l)!yk+2Jny, k= I, 2, ... , 

where a 1 = Lak=(k+l)ak 1 +k!, k=2,3, ... , so that ak~k!, k= 1,2, .... 
Substitution of y 1' 1, u1' 11 by their expressions in terms of y leads to 
( 18). I 

We emphasize that, after ( 13 ), form fixed and r--+ 0 the lower bound in 
( 16) and the error y 11 - y(m) differ only in 0( r 2 ) terms. On the other hand, 
for a given r the sharpness of the lower bound decreases as n increases, 
since for m close to I, ru(m) ~ y(m ). Later we shall show how to find 
sharper bounds form close to I. For the relative error we can prove 

THEOREM 2. Let c ~ 1, r ~exp( - 1 ). Then if' m ~ I - er In r 1 

1 V11 -v(m) 
--~. . ~O, 

c y(m) 
( 19) 

and 

ry(m) In y(m) ~ 1/c. (20) 

Pro(~( The inequality (21) is a direct consequence of (16) and (20). The 
verification of (20) is straightforward. I 

Remark. We conclude from ( 19) that the relative error is less than 1/c 
uniformly in n, r provided that m is not too close to I. Note that as r is 
decreased the length of the I-interval [O, I - er In r 1] of uniformity of the 
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relative error tends to l, the length of the interval of existence of r(t). We 
shall prove later that a bound like ( 19) does not exist unifo~mly for 
O~t<l. 

We next improve the upper bound in ( 16 ): 

THEOREM 3. Let m = 2 and m;;::; l -- r In r 1• The iterants y 11 then satisf.J' 

Yn - y(m) :( rn(nr) + r 2v(m ). (21) 

Proo( We prove that if.::- 11 =:y(nr)+rn(m)+r 2 t•(m), then 

m ~ I - r In r 1 

This expression can be expanded as 

The terms in r, r 2, r 3 vanish by definition of y, u, le. The series can be 
shown to be positive by an argument similar to that employed in the proof 
of Theorem 1. It remains to be proved that (a is positive) -2u-w?0, or 

2 - ry - ry ln y :;::: 0. (22) 

From (20) with c= l we can write ry lny~ I, which clearly leads to (22). 
This concludes the proof. I 

It was pointed out before that the bounds obtained so far lose their 
sharpness if m is close to 1. In the proof of our last theorem we employ a 
change of scale in y, t near t = 1 which enables us to describe the behaviour 
of y 11 when m = I or is very close to I. 

THEOREM 4. Assume that r = 1/ N, N an integer. Then the value y v 
corresponding to the fast grid point t = 1 in [O, I] behaves like N/ln N. More 

precisely, 

I. y 11 ln N l 
!ID . 

v • , N 
(23) 

Proo( Let c:;::: 1 be a fixed constant and set 

[ 1 11 l I n*= --cln-. ?--cln--1. 
r r r r 
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Here r is assumed to be small enough in order to guarantee that n* ~ 0. 
From (19), 

y,,.~(1-~)y(n*r);:;:(1-~)y(t-crln~-r)= 1 F(c) 
c c r r nr- 1 +rc 1 ' 

where we have set F(c) = (c - I )/c 2. In order to describe the behavior of the 
iterates y,, for n ~ n* we introduce the scaled iterates 

k=O, 1, ... , N-n*. 

These satisfy 

Y0 ~ l, (24) 

k=O, 1, ... ,N-n*-1, 

i.e., a recursion of the form ( l ). If we set n** = N - n*, we have 
n**=r 1 -[r 1 -·clnr 1 ], so that the lower bound in (16) applied to 
the new recursion (24) yields 

( F(c) ) Y,, .. ~l/t(r,c) 1- 1 1 l/t(r,c)lnl/t(r,c), 
ln r +c 

(25) 

where 

l(l/t(r,c)=l-(~-l~-cln~J) F(c) 
r r r ln r 1 + c · 1 • 

Note that it is allowed to have Y0 > l in (24) as all iterates increase with 
Y0 . Returning to the original iterates y,,, (25) can be written to 

( 1 r) ( F(c) ) dn-+- y,v~F(c)l/t(r,c) t- 1 1 _ 1 l/t(r,c)lnl/t(r,c). 
r c nr +c 

Letting now r --> 0 we find 

whence 

I. . ( I 1 ') I ' ' 1mmf r n-+- y,v~F(c)(l-cF(c))=(c--c)/c-, 
r c 

( 1) c2 -c liminf rln- YN~--,-. 
r c-
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Since this holds for every c ~ 1 we conclude that 

It remains to be proved that 

lim sup ( r In D YN :::c::; l. 

This can be done in a similar way using now the bounds of Theorem 3 
rather than ( 16 ). I 

COROLLARY. Assume that r = 1/N, Nan integer. Then the relative error 
for the value y N 1 corresponding to the last grid point t = 1 - r in [O, 1 ) 
sati.~lies 

)' /\/ I - \'( 1 - T) J . . . 1 
y( 1 - r) ~In N - ' 

r--> 0, 

and thus approaches - 1 as r --> 0. 

Proof From the recursion formula 

!N(j1+4yN/N-I), so that, using (23), YN 
Relation (26) is trivial now, since y( I - r) = N. I 

we have 

1 ~ N/In N as 

(26) 

YN - I= 

N--> oc. 

Finally we provide some numerical illustrations of the theorems above. 
When r = 0.05, n = 10 the theoretical solution y(nr) takes the value 2. The 
approximation is y,,= 1.8844 with error -0.1156. The lower bound (16) 
yields -0.1387 and the upper bound (21) gives -0.1151. The table 
illustrates the estimates of Theorem 4 and its corollary. 

Yv N 'Yv In N N-'Ys ,-I I/In N-1 

1.E-1 6.12EO 1.41 -0.571 -0.566 
l.E-2 3.03E I 1.39 -0.756 -0.783 
l.E-3 !.93E2 1.33 -0.834 -0.855 

l.E-4 !.39E3 1.28 -0.876 -0.891 
l.E-5 I.08E4 1.24 -0.901 -0.913 
l.E-6 8.8IE4 1.21 -0.918 -0.927 

l.E-7 7.41 ES 1.19 -0.931 -0.938 
l.E-8 6.39E6 1.17 -0.940 -0.946 
l.E-9 5.61E7 1.16 -0.948 -0.952 
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