
Fundamenta Informaticae IX (1986) 127-168
North-Holland

SYNTAX AND DEFINING EQUATIONS FOR AN
INTERRUPT MECHANISM IN PROCESS ALGEBRA

J.C.M. BAETEN*, J.A. BERGSTRA** and J.W. KLOP***

* University of Amsterdam

** University of Amsterdam, University of Utrecht

*** Centre for Mathematics and Computer Science, Amsterdam

ABSTRACT

A mechanism is introduced to describe priorities in ACP, the algebra of communicating
processes, whereby some actions have priority over others in a non-deterministic choice
(or sum). This mechanism can be used to model the working of interrupts in a distri
buted system. This is illustrated in an extensive example.

1980 MATHEMATICS SUBJECT CLASSJFJCATJON: 68Bl0, 68C01, 68025, 68F20.
1982 CR CATEGORIES: F.1.1, F.1.2, F.3.2, F.4.3.
KEY WORDS & PHRASES: concurrency, process algebra, interrupts, priorities.
NOTE: This work was sponsored in part by ESPRIT contract METEOR (nr. 432).

Introduction

127

Process algebra is an algebraical theory of concurrency, i.e. a theory about concurrent, communicating
processes. Almost anything can constitute a process: the execution of a program on a computer, or the
execution of an algorithm by a person, but also a game of chess or the behaviour of a vending machine.

The starting point for process algebra is the modular structure of concurrent processes at a given level
of abstraction: we consider systems built up from certain basic processes by means of composition tools,
including sequencing, alternative choice and parallel composition.

Process algebra tries to find laws or axioms for these composition operators, based on some a priori
considerations of what features concurrent communicating processes should certainly have. Thus, we use
the axiomatic method; after having established the axioms we can study different models of the theory,
thus obtaining actual semantics. We mention some of the ways in which semantics can be obtained:

* by projective limits as in Bergstra & Klop [4];

* by topological completion as in de Bakker & Zucker [I];

* by bisimulations as defined in Park [JO] and Milner [9].

In this paper, we will not deal with models at all.

In this introduction, we will just give an informal introduction to the composition operators used in
process algebra. For a more technical introduction, we refer the reader to Bergstra & Klop [4], where
also a review of related approaches and comparisons with them can be found, or to Bergstra & Tucker
[5].

Process algebra starts from a collection of given objects, called atomic actions, atoms or steps. These
actions are taken to be indivisible, usually have no duration and form the basic building blocks of our
systems. The first two compositional operators we consider are · , denoting sequential composition, and
+ for alternative composition. If x andy are two processes, then x ·y is the process that starts the execu
tion of y after the completion of x, and x +y is the process that chooses either x or y and executes the

128 J. CM. Bae ten et al. /Interrupt Mechanism in Process Algebra

chosen process (not the other one). Each time a choice is made, we choose from a set of alternatives. We
do not specify whether the choice is made by the process itself, or by the environment. Axioms A 1-5 in
table I below give the laws that + and · obey. We leave out · and brackets as in regular algebra, so
~y+z means (x·y)+z.

On intuitive grounds x(y +z) and xy +xz present different mechanisms (the moment of choice is

different), and therefore, an axiom x(y +z)=xy +xz is not included.

We have a special atom o denoting deadlock, the acknowledgement of a process that it cannot do
anything anymore, the absence of any alternative. Axioms A6-7 give the laws for o.

Next, we have the parallel composition operator II, called merge. The merge of processes x and y will
interleave the actions of x and y, except for the communication actions. In x lly, we can either do a step
from x, or a step from y, or x and y both synchronously perform an action, which together make up a
new action, the communication action. This trichotomy is expressed in axiom CMI. Here, we use two
auxiliary operators lL (left-merge) and I (communication merge). Thus, .xlly is xl[y, but with the restric
tion that the first step comes from x, and x lY is x lly with a communication step as the first step. Axioms
CM2-9 and Cl-3 give the laws for lL and I· Finally, we have in table I the encapsulation operator
a H. Here His a set of atoms, and aH blocks those actions, renames them into a. The operator aH can be
used to encapsulate a process, i.e. to block communications with the environment.

Together, these operators make up the axiom system ACP, the algebra of communicating processes,
in table I. In this system, we cannot describe the working of an interrupt. However, for the development
of process algebra it is essential to incorporate an interrupt mechanism in order to enhance its expressive
power as a specification and verification formalism for concurrent systems.

In this document a new piece of syntax together with semantics defining equations is introduced.
Based on a partial ordering on processes, >, an operator() is defined. Now O(x) is a context of x inside
which action a has priority over b whenever a >b. Interrupts will have higher priority than other actions.
We think that the operator () will have many other uses, besides the modelling of interrupts. To the best
of our knowledge, the present formalization is new, at least within the theory stream around CCS and
CSP.

ACP with the operator() added will yield the axiom system ACP8. In section 2, we prove that this
axiom system has nice theoretical properties. In the rest of the paper, we give several examples of the
use of B. For verification purposes, we need an abstraction operator in some of the examples, and there
fore we make use of the axiom system A CP T• that was introduced in Bergstra & Klop [2]. A CP T can be
seen as a remodularization of the basic concepts of CCS (see Milner [9]).
We must leave as an open issue whether or not ACP8 and ACP T can be combined into ACP rti· From an
intuitive point of view this is not clear as there is no reason why "abstraction" and "interrupts" should
commute.

Table of contents:
I. Definitions and motivation
2. Theoretical matters
3. Simple examples
4. Example: a toy distributed system.

1. Definitions and motivation
1.1. Let a,b,c be (atomic) actions, and suppose we want a to take precedence over b and c, we want a
to have priority over b and c, which we will express by

a>b and a>c

(here > is some partial order on atomic actions). Relative to this partial order, we want to define an
operator () that models this priority, so we want

i) B(a+b)=a;O(a+c)=a;

ii) O(b +c)=b +c.

J.C.M. Bae ten et al. /Interrupt Mechanism in Process Algebra 129

So () chooses a over b or c, but () does not choose between b and c, since they are not >-comparable.
We will define () in an axiomatic way, in the framework of process algebras. Therefore, we will first
review the axiom system ACP, the algebra of communicating processes (see Bergstra & Klop [4]).

1.2. The signature of ACP is as follows: A is a given finite set of atoms, A <;;;P, the set of processes. On
P we have the following operations:

+ alternative composition (sum)

sequential composition (product)

II parallel composition (merge)

lL left-merge

I communication merge

a H encapsulation

8 deadlock

The first five operations are binary; aH is a unary operation for each H <;;;A and BEA is a constant.

1.3. The set of axioms of ACP is as follows (see Bergstra & Klop [4]):

x+y =y+x Al a lb = bja Cl

x +(y +z) = (x +y)+z A2 (a jb)jc =a j(bjc) C2

x +x = x A3 8ja = 8 C3

(x +y)z = xz +yz A4

(xy)z = x (yz) AS aH(a) = a if a ff.H DI

x +8 = x A6 aH(a)=8ifaEH m
Bx = 8 A7 aH(x+y) = aH(x)+an(y) D3

aH(.\)') = an(x).aH(V) 04

xlly = xlly+yllx+xjy CM!

a llx = ax CM2

(ax)!Ly = a (x l[y) CM3

(x +y)llz = xllz +yllz CM4

(ax)jb =(a jb)x CM5

a j(bx) =(a jb)x CM6

(ax) I (by) = (a I b)(x lly) CM7

ex + y l 1 z = x I z +y I z CM8

x 1 (Y + z l = x IY + x I z CM9

Table I.

Here a ,b EA, x J' ,z EP, H <;;;A.

If we view these equations as rewrite rules, going from left to right, and add a rule A2':

(x +y)+z =x +(y +z), we get a term rewrite system RACP. We quote three theorems from Bergstra &

Klop [4):

130 J.C.M. Bae ten et al. /Interrupt Mechanism in Process Algebra

Theorem. (i) RACP is confluent (has the Church-Rosser property);
(ii) RACP is strongly terminating (working modulo Al and A2);
(iii) (elimination) for each ACP-term s there is an ACP-term t not containing II. L I. aH, such that
ACP r s = t.

1.4 Now we return to the problem in l. I: we want to extend ACP with an operator () and give some
defining equations for it, so that (i) and (ii) of I.I are satisfied. So suppose we have a partial order < on
A so that 8 is minimal, i.e. we have

1. not (a <a)

2. a<b "'*not(b<a)

3. a <b & b <c "'* a <c
4. 8<a (if a*8)

for all a ,b,c EA.
In order to define(), we first need to define an auxiliary operator <I: P XP-">P.

x<1y

is pronounced x unless y. In the following we will explain <1. First, on A we have

PI a<1b =a ifnot(a<b)
P2 a<1b=ll ifa<b

So a <I b is equal to a, unless b has priority over a, in which case a <I b becomes 8. In general, we get
x <ly in the following way:

Suppose x is a sum "Zf= 1a,x1, a, EA, x1 EP. Then, in x we throw away (i.e. set equal to 8) those
branches a,x, such that there is a branch b1y1 iny with a1 <b1 ; other branches we leave untouched.

l.5 Example Suppose A = { ll,a ,b ,c ,d} and we have the following p.o. on A:

(In this picture, we have e.g. b <c because c is located above b and there is a line connecting them; so
not (a <d).) We do some calculations: (x J' ,z EP).

a) (ax+by+c)<idz = (ax+by+c)<ld = ax+ll+c = ax+c

b) (ax +by +c)<lc = ll+ll+c = c

c) x<11l=x

1.6 We now present the axiom system ACP9 (see table 2).

J.C.M. Bae ten et al. I Interrupt Mechanism in Process Algebra

x+y =y+x Al a<Jb =a if not (a<b) Pl
x +(Y +z) = (x +y)+z A2 a<Jb = 8 if a<b P2
x +x = x A3 x <Jyz = x<ly P3
(x +y)z = xz +yz A4 x <I (Y + z) = (x <ly)<I z P4
(xy)z = x(Yz) AS xy<lz = (x<lz)r PS
x +a= x A6 (x +y)<lz = x <lz +_}' <Jz P6
Bx= 8 A7

alb=bla Cl
(a I b) I c = a I (b I c) C2
Bia= B C3

xlly = xlly+ylLx+xJy CM! O(a) = a THI
a llx = ax CM2 8(.xy) = O(x).O(r) TH2
ax lly = a(.x llY) CM3 O(x +y) = O(x)<Jy +O(Y)<lx TH3
(x+y)llz = xllz+yllz CM4
(ax)lb =(a Jb)x CMS
a l(bx) =(a lb)x CM6
(ax) I (by) = (a I b)(.x llY) CM7
ex + y JI z = x 1 z + y 1 z CMS

.x I (Y + z) = .x IY + x I z CM9

3H(a) =a if a fill DI
3H(a)=oifaEfl 02
aH(.x +y) = 311(x)+3H(Y) 03
aH(.xy) = aH(.x).3H(Yl 04

1.7 Let us verify (i) and (ii) of I. I and some other formulas: (b <a and c <a)

i) 8(a+b) = 8(a)<1b+O(b)<1a = a<Jb+b<la = a+B =a.

ii) O(b+c) = O(b)<1c+O(c)<1b = b<1c+c<1b = b+c.

iii) O(b(a +c)) = O(b)·O(a +c) = b(li(a)<lc + O(c)<la) = b(a<Jc +c<Ja) = b(a +B) = ba.

iv) O(a +b +c) = O(a)<i(b +c)+8(b +c)<la = (li(a)<1b)<1c + (O(b)<ic + ll(c)<lb)<la
(a<lb) <le+ (b<lc+c <1b)<la = a<1c+(b+c)<1a = a+o =a.

v) li(a +b +c) = ll(a +b)<Jc +O(c)<J(a +b) = (8(a)<ib + O(b)<la)<lc + (O(c)<la)<lb

(a<ib +b <1a)<1c + (c<Ja)<lb =(a +o)<Jc + B<1b = a<lc +8<1c +8 =a +8+8 =a.

131

1.8 In section 2, we will prove that this axiom system is well-behaved. Among other things, we prove a
theorem analogous to 1.3 for ACP8.

1.9 Note: about leaving out parentheses: we take • to be more binding then other operations and + to be
less binding than other operations, so we write .xy <lz for (xy)<I z and x + y <I z for x + (Y <I z).

2. Theoretical matters

We will write ACP8 as a term rewrite system, and prove confluency and termination. We find that
ACP8 is a conservative extension of ACP, and prove an elimination theorem.

13~ J. C.l'd. Bae ten et al. /Interrupt Mechanism in Process Algebra

2.l Lemma The following identities hold in ACPe:

P7 (x <ly)<I: = (x <I=)<ly

PS (x <ly)<ly "' x <ll'

TH4 8(x)<lx = 8(x)

Proof.Above the equality signs, we indicate which rule is being used. Let x ,r .:: E P.

P4 A I P4
P7: (x <Jy)<Jz = x <l(y +z) = x<l(Z +y) = (x <lz)<ly

P4 A J
PS: (x<ly)<ly = x<i(v+y) = x<ly

Al TH) A)
TH4:8(x)<lx = O(x)<lx+8(x)<lx = O(x+x) = O(x).

2.2 Definition: We define the term rewrite system RACP8 as follows: take the term rewrite system RACP

JPl-8
(see 1.3, rules Al,2,2',3- 7.Cl-3,CM!-9,Dl-4). and add rules lTHl- 4.

(Reading them as reductions, from left to right)
Note: when proving termination, we will have to work modulo rules Al A2, A2', P7, since applying Al or
P7 twice gives back the original term. and A2' undoes the effect of A2.
We can now state our main theorem:

2.3 Theorem
i) RACP8 is confluent (has the Church-Rosser property);
ii) RACP8 is strongly terminating (working modulo Al, A2, P7);
iii) (elimination) for each ACP8-term s there is a term t not containing <1,8,!l,ll. 1.aH such that
ACP8 r s = t.
iv) ACP8 is a conservative extension of ACP, i.e. for all ACP-terms s .t we have:

ACP r s = t ""' ACP8 r s = t.

Strategy of proof: we first prove (ii) in 2.4-2.12 and then (i) in 2.13-2.15. The elimination (iii) then fol
lows immediately from (ii) and (iv) follows if we combine (i) and (iii).

2.4 To prove (ii), we use the method of recursive path orderings of Dershowitz (see Dershowitz [6] and
Bergstra & Klop [2]). The idea of this method is, that we assign a certain kind of tree to each term in
ACPo. We have a partial ordering~ on these trees, and it follows from the Kruskal Tree Theorem (see
Dershowitz [6]) that this ordering is well-founded. Then, if we show that for each reduction in ACP8, the
trees of the terms before and after the reduction are ordered by =>, we have shown that each reduction in
ACP9 must terminate.

2.5 Definition: Let D be the set of all finite commutative rooted trees whose nodes are labeled with
natural numbers.
Example:

t =

J.C.M. Baeten et al. I Interrupt Mechanism in Process Algebra 133

Notation: t = 3(5,7(9),8(0,(1,5))) = 3(8(0(1,5)),5,7(9)).

Definition: We define a partial order =>on D as follows: t = n(t 1, ... ,tk) => rn(s 1, •.. ,s1) = s
(k ;;;.Q, I ;;;.Q) iff

(i)n>rn andt=>s; foralli =!, ... ,/;or

(ii) n = rn and for each i.;;./ there is a different j .;;.k such that t1 ~ s;: also, for at least one i.;;./ we
have 11 =>s;. (so t1 =l=s;); or

(iii)n<rn andl;""VS forsomej.;;.k.

2.6 Theorem (Dershowitz [6]) => is a well-founded partial order on D.

2.7 Let s ,t be ACP6-terms, and lets 4 t symbolize that s reduces to t in a one-step, outermost reduc

tion by ruler. Now we want to define a mapping</> from terms of ACP8 to elements of D such that the
following hold:

i)ifs4randr = Al,A2,A2',P7,then</>(s)=</>(t);

ii) if s 4 t and r is any other rule, then </>(s)=></>(I). By Dershowitz' theorem, this suffices to show 2.3.ii,
the termination of RACP8.

2.8 Before we can define </>. we need two more definitions.

Definition: Let u be an ACPe-term. We define st(u), the standard part of u or ACP-part of u, induc
tively.

i) st(u) = u if u is an ACP-term;

ii) if u=x Dy, (0 = +,.,11,lLI), then st(u) = st(x)Dst(y);

iii) if u=:aH(X), then st(u) = aH(st(x));
iv) if u=x <Jy, then st(u) = st(x);

v) if u::=ll(x}, then st(u) = st(x).

So we obtain st(u) by leaving out all right hand sidesy of subterms x<Jy, and then leaving out all <J

and II. It is obvious that st(u) is an ACP-term.

Definition: Let u be an ACP9-term. We define I u I, the norm of u, by

I iul = #§(st(u)).1

so I u I is the number of symbols in the reduction graph § of st (u). Note that an immediate consequence
of this definition is that for all ACP9-terms x ,y:

a) Ix I + IY I < Ix + y I
b) lxl+iyl<lx·YI·

2.9 Definition: We define</> inductively. Lett be an ACP6-term

i) t=:a EA. </>(a) = .J (a single node labeled by I)

ii) 1=:aH(x). Then </>(t) =

fig.3

134 J.C.M. Baeten et al. /Interrupt Mechanism in Process Algebra

iii) r=.x Dy, with D +,.,11.ll or I
Thencj>(t)=

fig.4

iv) t =.x <ly. Here we have an intermediate step. First we rewrite x as (· · · ((z .qy 1)<1J2) <1 · · · <1Yk)
(k ;;,,Q), so that the main connective in z is not <1 (in case k = 0, we have z=x). We use the notation
x = z.q{y 1, ••• ,yk}, sot= z<l{Y,yi, ... ,yk), where on the right-hand side of the .q we have a
multiset. Axiom P7 gives us the justification for doing this. Then we define .p(t) =

If o = {Y b ... ·Yk }, we use the abbreviation
.p(t) =

<!> (z)

v) t=8(x). Put W) =

fig.5

I z I + I

<!> (y) ~(o)

fig.6

~1
fig.7

J.C.M. Baeten et al./ Interrupt Mechanism in Process Algebra

2.10 Examples: Let a ,b ,c EA , then

cp(a<1b) =12

1 0

1

cp(a +a) =/\4
1 1

fig.8a,b,c

2.11 Now we will prove claims (i) and (ii) of 2.6.

cp(8 ((a<1b)<le))

135

So suppose we have t ..!:....:;. t ', redex t reduces to t' (outermost) by an application of rule r. We shall

consider 3 cases.

2.11.1 case I: r = Al, A2, A2', P7. Since our trees are commutative, this follows from the definition of

<f>. So for P7, t:=(x <ly)<lz and

<f>(t) =
cp (t ')

fig.9

2.11.2case2:r = A3-7,Cl-3,CMl-9orDJ-4. Thenr=xDy,for D = +,.,ll,llorl,ort:=aH(x).We

also have st(t)4st(t'), since non-standard parts cannot be instrumental in the reduction. But then, by

theorem 1.3, we have It I> It' I (also see note 2.8). Therefore, the top of tree <f>(t) has a higher number

as label than the top of tree <f>(t'). It is shown in Bergstra & Klop [2] that we must also have <f>(t)~<f>(_t').

2.11.3 case 3: otherwise. Because of definition 2.9.iii, we will have to look at redices x<10, with a finite

multiset of terms on the righthandside, and x not of the form (Y<lz). Note that x<10=x and this

identification is correct because

~·:
~fig.JO

(by 2.5.iii)

We will look at each rule in turn.

Pl. not (a<b). cpi_a <l{b }Ua) =

cp(o)

fig. I I

cp(x)

qi(o)

136 J. C. 1W. Baeten et al. /Interrupt lHechanism in Process Algebra

= <P(a <lcr).
P2. (a <b). <P(a <l (b} Ucr) =

<jl(o)

= <P(8)
(we combine this with PS to get B<l er = 8)
P3. cp(x <l {yz} U er) =

= c/>(x<i{y}Ua)
P4.<P(x<i{y+z)Ua) =

= c/>(x<l{y,z }Ucr)
PS. <f>(.xy <la) =

= <P((x <l a)y)

fig.12

• (o I

fig.13

[>!•I

fig.14

o I y}

fig.15

(for the proof, use 2.5.i: we have I xy I +I> I xy I, so we only need that the entire tree on the left major
izes both subtrees on the right)

P6. c/>((x +y)<la) =

J.C.M. Baeten et al./ Interrupt Mechanism in Process Algebra

fig.16

= </>(x <I a + y <I a). (again use 2.5.i)

PS. </>((x<l(v} Uai) <i(v} Ua2) = c/>(x<1(v,v}Ua) ==(write a= a1 Ua2)

I.'

t-(x)

~lv,, , ~(y,, .. 1.__~!nl

== </>(x <1 (v) U a) (by 2.5.ii)

THI. </>(ll(a)) = [2=> .J =</>(a).

1
TH2. </>(ll(xy)) =

== </>(ll(x).ll(y)) (use 2.5.i)

TH3. </>(ll(x +y)) =

== </>(ll(x)<ly + ll(y)<Ix)

fig.17

.1

, ~I y I

fig.18

fig.19

, qi(o)
"'-----·-).

137

(again by 2.5.i). Note that in this last case we should write x <1y = =<I {i·} U a and

y <1x = w <I {x} Ur, for some z and w not having <I as the main connective. But then \ x \ ;;.. \ z \,

\y \ ;;.. \ w \, and the proof of => is not harder.

TH4. </>(ll(x)<l{x}Ua) =

138 J.C.M. Baeten et al./ Interrupt Mechanism in Process Algebra

fig.20

= <1>(8(x)<10) (by 2.5.ii).

2.12 This completes the proof of 2.3.ii: RACP8 is strongly terminating, working modulo A I, A2. A2'. P7.

2.13 Now we turn our attention to proving 2.3.i. Since we know that RACP8 is strongly terminating. it is

enough to show that it is weakly confluent (this follows from Newman's lemma, see Klop [8] or Huet [7]).

Showing the weak confluency amounts to looking at all critical pairs (a critical pair is a redex to which

two different rules can be applied) and showing that after these reductions a common reduct can be
r1 r~

found. In other words: if t ~ t 1 and t ~ 12, then there is a term t' such that both 1 1 and 12 reduce to

t' (possibly in more than one step). See figure 21.

/'"\
''~/'

t'

fig.21
We will actually prove more, namely that the open theory of RACP9 is confluent, after adding the extra

rules below (by open theory we mean the theory of finite terms, possibly containing variables). The extra
rules are:

P9 x<18 = x
PIO 8<ix = 8
C4 81x = 8
C5 x 18 = 8

These rules can be proved very easily for closed finite terms x by induction.

We know already that RACP is confluent (by 1.3), so we only have to check critical pairs involving a
new rule (Pl-10, THl-4). Furthermore, Cl-5, CMl-9 and Dl-4 cannot clash with a new rule.

Still, a tedious job remains. We do the work in 2.14, in cases 2.14.1 to 2.14.46.

J. C.M. Bae ten et al. /Interrupt Mechanism in Process Algebra

2.14 Matrix of critical pairs. • means a proof is required; 0 means redices cannot overlap.

TH THTH TH

Al A2 A3 A4 A5 A6 A7 PI P2 P3 P4 PS P6 P7 PS P9 PIO I 2

PI 0 0 0 0 0 0 0 0 0 0 0 0 0 • • . 0 0
P2 0 0 0 0 0 0 0 0 0 0 0 0 • . • 0 0
P3 0 0 0 • • 0 * 0 0 0 • • 0 • 0 0
P4 • • * 0 0 • 0 0 0 • • 0 • 0 0
PS 0 0 0 * * 0 • 0 • * . 0 0 0
P6 • * * 0 0 • 0 . * 0 0 0 0
P7 0 0 0 0 0 0 0 0 0 0 0 0
P8 0 0 0 0 0 0 0 • • 0 0
P9 0 0 0 0 0 0 0 0 0 0
PIO 0 0 0 0 0 0 0 0 0
THI 0 0 0 0 0 0 0 0
TH2 0 0 0 • • 0 *
TH3 • • • 0 0 • 0
TH4 0 0 0 0 0 0 0

I. PI & P8. Suppose not (a <b)

PI
(a <lb)<lb~ <lb.

2. PI & P9. For all a EA, we have not (a <8) (by 1.4.1, 2, 4).

PI
a<l8~a.

3

0

0

0

0

0

0

0

0

0
0

0

0

3. PI & PIO. Note that not (8<a) implies a = 8. (by 1.4.1, 2, 4)

4. P2 & P8. Suppose a <b.

(a <lb)<lb ~<lb

PSl JPIO
a<lb~

5. P2 & P9. We can never have a <8.

6. P2 & PIO. Let 8<a. 8.qago

7. P3 & A4.

x<l(y +z)w-4x<l(y +z)pt(x<ly)<lz

A41 P3 i
x <l (yw + zw)~x <lyw)<l zw

4

0

0 .
•
0

0

0

0
*

0 .
•

139

140 J.C.M. Baeten et al./ Interrupt Mechanism in Process Algebra

8. P3 & A5.

x <1 IJ•z)w 4x <lyz

A5 l 1P3
x <ly(zw)4x <ly

9. P3&A7.x<1~v~x<18.
10. P3 & P7.

(x <1yz)<I w ~x <ly)<lw

P7 l 1P7
(x <I w)<lyz 4 (x <I w)<ly

11. P3 & P8.

(x <lyz)<lyz _!¥3 (x <ly)<ly

~tz4x<1y j~
12. P3 & PIO.

8<1xy~<1x
I I
PIO PIO

~~
13. P3 & TH4.

O(xy)<lxy !48(xy)<Ix~ O(x)O(y)<Ix

~H4 P5 l
i Tl:!2 TH4
O(xy)~ li(x)IJ(y)+- (/l(x)<lx)O(y)

14. P4 & Al.

x<l(y +z)~x<1y)<1z

All l P7

x<1(z +y)~x<1z)<1y

15. P4 & A2.

x <i(y +(z +w))~x<ly)<l(z +w)~(x<1y)<1z)<1w

A2l P4]

x <i((y +z)+w)~x <l(y +z))<lw

16. P4 & A3.

:x <i(y +y)~x <ly)<ly

A3l I~
x<1y __J

J.C.M. Baeten et al. I Interrupt Mechanism in Process Algebra 141

17. P4 & A6.

x <J(y +8)~x <Jy)<JB

A61 I P9

x<Jy ___J
18. P4 & P7.

(x <J(y + z))<Jw ~(x <Jy)<Jz)<Jw

P7l ln,P7
(x <Jw)<J(y +z)~(z<Jw)<Jy)<Jz

19. P4 & P8.

(x <J(y +z))<J(y +z)~4 (((x <Jy)<Jz)<Jy)<Jz

P8l 1P7

x<J(y +z)~x<Jy)<Jz~8 (((x<Jy)<Jy)<Jz)<Jz

20. P4 & PIO.

8<J(x +y)~8<Jx)<Jy

110 JP!O
8~8<Jy

21. P4 & TH4.

P<\._, THJ
8(x +y)<J(x +y)~O(x +y)<Jx)<Jy ~ ((8(x)<Jy +8(y)<Jx)<Jx)<Jy

TH41 P6,P7 l
8(x +y)~ 8(x)<Jy +8(y)<Jx~H2 ((O(x)<Jx)<Jy)<Jy +((O(y)<Jy)<Jx)<Jx

22. PS & A4.

(x +y)z <Jw~(x +y)<Jw)z ~x <lw +y <lw)z

A1 A41
(xz +yz)<lw ~z <Jw +yz <]w~x <]w)z +(y <lw)z

23. PS & AS.

(xy)z <lw ~xy<Jw)z

A5l P5,A51
x(yz)<J ~x <Jw)yz

142 J.C.M. Baeten et al./ Interrupt Mechanism in Process Algebra

24. PS & A7.

~ ~ r ·~: i
8<1y~ll ~

2S. PS & P7.

26. PS & PS.

(xy <lz)<lz ~x <1Z)y <lz

~1 ~ l
xy <1Z ~x <lz)y ~(x <lz)<lz)y

27. PS & P9.

xy <lll~x <lllli'

rJP9
xy

28. P6 & Al.

(x +y)<lz ~x <lz +y <lz

A'l AJ
t~· +x)<lz~<lz +x<lz

29. P6 & A2.

(x +(y +z))<lw~x<lw +(y +z)<lw~x <lw +y<lw +z<lw

A1 i~
((x +y)+z)<lw~x +y)<lw +z<1W~<1w +y<lw +z<1w

30. P6 & A3.

(x +x)<ly ~<ly +x<ly

All IAJ
X<IJ~

J.C.M. Bae ten et al. I Interrupt Mechanism in Process Algebra

31. P6 & A6.

(x +8)<iy ~ <iy +8<iy

A61 PIO l
x <iy ~x <iy +8

32. P6 & P7.

((x + y)<lz)<i w~x <1z + y <1z)<I w ~x <1z)<lw +(y <lZ)<l w

P7l 1P7
((x +y)<iW)<iZ ~X<lW +y <lW)<lZ ~x <lW)<iz +(y <iW)<iz

33. P6 & PS.

((x + y)<lz)<iz ~x <1z + y <Jz)<iz

~1 N l
(x +y)<iz~x<iz +y<lz~8 (x<IZ)<lz +(y<iz)<lz

34. P8 & P9.

35. P8 & PIO.

(O<iX)<lX~<iX

36. P9 & TH4.

P9
O(o)<i 0~ 0(8)

37. THI & TH4.

O(a)<la 2!V a <la

iH4 PI, usej.4.1
0(a)~1 a

38. TH2 & A4

O((x + y)z)~2 O(x +y)/)(z)~ (O(x)<iy +O(y)<ix)()(z)~O(z)<iy)/)(z)+(O(r)<1x)/)(z)

A41 PS I
O(xz + yz)~ O(xz)<iyz + O(yz)<ixz 4'H2 O(x)0(z)<iy + O(v)O(z)<Ix

39. TH2 & A5.

O((xy)z)~ O(xy)O(z)~ O(x)()(y)8(z)

All All
G'(x (yz))~2 O(x)O(yz)i42 8(x)8(y)8(z)

143

144 J. CM. Baeten et al. /Interrupt Mechanism in Process Algebra

40. TH2 & A7.

8(8x)2.1;2 fJ(o)B(x)

A7l TH!l
fJ(o).I.i;' B~ofJ(x)

41. TH2 & TH4.

li(xy)<lxy 2!f IJ(x)ll(y)<lxy ~(x)O(y)<l x

TH4l Pl l
li(xy)..!!f O(x)li(y)~ (li(x)<lx)O(y)

42. TH3 & Al.

li(x +y)~ ll(x)<ly +O(y)<lx

All lAI
ll(y +x)~ ll(y)<lx +O(x)<ly

43. TH3 & A2.

TH3
ll(x +(y +z))---? O(x)<J(y +z)+O(y +z)<Jx -i,TH3,P4
A2LB((x +y)+z) (O(x)<ly)<lz +(O(y)<Jz +B(z)<ly)<lx

~ .
THJ ll(x +y)<lz +ll(z)<J(x +y) 1P6
THJ,P4l (ll(x)<ly)<Jz +(ll(y)<lz)<Jx +(IJ(z)<Jy)<Jx

(O(x)<ly +ll(y)<lx)<lz +(IJ(z)<lx)<ly f7
P6 l (O(x)<ly)<lz +(ll(y)<Jx)<Jz +(IJ(z)<Jy)<Jx

44. TH3 & A3.

IJ(x +x)~ ll(x)<Jx +ll(x)<Jx

All JAJ
IJ(x)~4 IJ(x)<lx

45. TH3 & A6.

IJ(x +o)~ O(x)<J8+1J(o)<Jx

A61 N,TH!l
ll(x)~O(x) +8~ IJ(x) H<Jx

46. TH3 & TH4.

J.C.M. Bae ten et al. I Interrupt Mechanism in Process Algebra

B(x +y)<l(x +y)2W(O(x)<1y H(y)<1x)<1(x +yJ) P4,P6

TH4 l ((B(x)<ly)<ix)<iy +((O(y)<1x)<1x)<1y

O(x + y) lP7,P7
TH3l ((B(x)<1x)<1y)<1y +((O(y)<iy)<1x)<1x

B(x)ty +B(y)<ix 1TH4,TH4

P8,P8-(0(x)<ly)<iy +(O(y)<IX)<ix

2.15 This completes the proof of 2.3.i, and thereby the proof of 2.3.

2.16 Theorem The following identities hold in the initial term model A..,:

i)

ii)

iii)

iv)

v)

eithera<1x =a ora<1x = 8

a<1(x<1b) = a<1x if not (a<b)

(x<1b)<1a = x<ib if a<b

(x<1y)<1(z<1y) == (x<ly)<iz

B(x <1y) = B(x)<ly

(PI I)
(Pl2)

(Pl3)

(TH5)

Proof All proofs are by induction on terms. An induction on x needs to consider only three cases:

l) x=::a, an atom; (2) x=:::ay; (3) x=:::y +z (this uses 2.3.iii, we can eliminate <1,8,il,IL, 1.aH).

i) Induction on x

case I: suppose x =:::b

case 1.1 not (a <b).Then a <1x = a <1b = a

case 1.2 a <b. Then a <ix = a <ib == ll

145

case 2: x =:::yz and suppose (i) holds for y. We have a <Ix = a <1yz == a <ly. Now apply the induction
hypothesis.

case 3: x ::=:=y + z and suppose (i) holds for y and z.

case3.l a<iy ==a. Then a<ix == a<i(y +z) == (a<iy)<iz = a<1.::. Now apply induction hypothesis.
case 3.2 a <iy = ll. Then a <1x == (a <ly)<iz == 8<1z = 8.

ii) induction on x. Suppose not (a <b).

case 1: x=::c

case 1.1 not (c <b).Then a <1(c <ib) = a <le.

case 1.2 c <b. Note that then we must have not (a <c). So a <I (c <I b) = a <1 ll = a = a <I c.

case 2: x =:::ly . a <I (cy <1 b) == a <I (c <I b)y = a <1 (c <I b) = a <I c == a <I cv .
case 3: x::=:=y + z, and suppose (ii) holds for y and z. a <i((Y + z)<lb) = a <i(v <ib + z <ib)

(a<1(.Y<1b))<1(z<1b) = (a<1y)<1(z<1b) = (a<i(z<lb))<iy = (a<lz)<iy = a<i(v +z).

iii) induction on x. Suppose a <b.

case 1: x ::=:=c.

case 1.1 Not (c <b).Note that then we must have not (c <a). So (c <ib)<la = c <Ja = c = c <I b.

case 1.2 c<b. (c<ib)<ia = 8<1a = 8 = c<ib.

case 2: x=::cy. (cy<ib)<la = (c<ib)y<la = ((c<lb)<ia)y = (c<ib(y = cy<Jb

case 3: x~+z, and suppose (iii) holds for y and z. ((y+z)<lb)<ia = (Y<1b+z<1b)<1a

(y<1b)<1a+(z<1b)<1a = y<1b+z<1b = (y+z\<Jb.

iv) Induction on z.

146 J. C.M. Bae ten et al. /Interrupt Mechanism in Process Algebra

case l: z::=a.

case l.1 a <ly = a. Then (x <ly)<l(a <ly) = (x <ly)<la.
case 1.2 a <ly = 8. In this case, we will prove the following variant of (iii) by induction on y :

(*)if a <ly = 8, then (x <ly)<la = x <ly.
case 1.2.ly:=b. This is (iii).
case 1.2.2 y::=bw. By l.2.1 we have (x<lbw)<:Ja = (x<lb)<la = x<lb = x<1bw, for
8 = a <ly = a <lb.
case l.2.3 y::=w +v. We have 8 = a <ly = (a <l v)<lw. We know by (i) that either a <lv = a or a <l v
=8. Ifa<lv =a,wehavea<lw =8.Thuswehaveeithera<lv =8ora<lw =8.Saya<lv =8
(the proof is very similar in the other case).
Then (x<ly)<la = (x<l(v+w))<la = ((x<lv)<lw)<la = ((x<1v)<1a)<1w = (x<lv)<lw
x <l(v +w).
Thuswehaveproved(*),andnow(x<ly)<l(a<ly) = (x<1y)<18 = x<ly = (x<ly)<la follows.
case2:z::=aw. By case l,(x<ly)<l(aw<ly) = (x<ly)<l(a<ly)w = (x<ly)<l(a<ly) = (x<ly)<la
(x <ly)<1aw.
case 3: z ==:w + v, and suppose (iv) holds for w and v. Then (x <ly)<l ((v + w)<ly) =

(x<ly)<l(v<ly+w<iy) = ((x<ly)<l(v<ly))<l(w<ly) = ((x<ly)<lv)<l(w<ly) = ((x<Jy) <l(w<ly))
<:iv= ((x<ly)<lw)<lv = (x<1y)<1(w+v).

v) Induction on x.
case 1: x::=a.

case 1.1 a <ly = a. Then ll(a <ly) = ll(a) = a = a <ly = IJ(a)<ly.
case 1.2 a <Jy = 8. Then IJ(a <ly) = 0(8) = o = a <ly = ll(a)<ly
case 2: x==:az. By case I, ll(az<ly) = ll((a<ly)z) = ll(a<ly)ll(z) = (ll(a)<ly)ll(z) = ll(a)ll(z)<ly
IJ(az)<ly.

case 3: x==:z+w and suppose (v) holds for z and w. Then IJ((z+w)<Jy) = ll(z<Jy+w<ly)
IJ(z<Jy)<J(w<ly) + IJ(w<Jy)<J(z<Jy) = (IJ(z)<Jy)<J(w<Jy) + (IJ(w)<Jy)<J(z<Jy) =(apply (iv)!)
(ll(z)<Jy)<Jw + (ll(w)<ly)<Jz = (ll(z)<Jw)<Jy + (IJ(w)<Jz)<ly = (IJ(z)<Jw + ll(w)<Jz)<ly
ll(z +w)<Jy.

2.17 Note: Adding equations PI 1-13 and TH5 to RACP6 as rewrite rules (reading from left to right) also
gives a terminating and confluent rewrite system. The many and tedious details of the proof of this
claim we happily leave to the reader.

3. Simple examples
We will now give some simple examples that use priorities, as defined in ACP6, and give some motivation
of the choice of priorities.
We distinguish three cases:

I. give priority to interrupts;

2. give lower priority to time outs, error messages;

3. give priority to internal actions, real time behaviour.

3.1 Example 1:
Let D be a finite set of data, and suppose we have an infinite sequence of data from D,

J.C.M. Bae ten et al. I Interrupt Mechanism in Process Algebra 147

fig.22

The printer will print these data, but can be interrupted by the keyboard. We have the following atomic
actions A : (a) actions of K:

I. k(BR) = key in BREAK

2. k(SP) = key in START PRINTING

3. s (BR) = send BR to the printer

4. s(SP) = send SP to the printer

recursive equation for K:

Ix= [k(BR)s(BR) + k(SP)s(SP)JK. I

(b) actions of P:

I. p(d) = print symbol d;

2. r(BR) = receive BR from the key-board;

3. r(SP) = receive SP from the key-board.

The printer has two states, Printing and Waiting. We let P; stand for printing state after having printed
da.d 1, .•. , d; - 1; and w; stand for waiting state after having printed d0,d 1> ••• , d, _ 1 (i ;;>Q).

Equations for P:

p = Wo

W; = r(SP)P; + r(BR)W;

P; = p(d;)Pi+i + r(BR)W; +r(SP)P;

3.2 Now we define the communication function by:

s(BR)\r(BR) = br

s(SP)\r(SP) = sp

and all other communications give 6. We are interested in

KllP

but want to hide unsuccessful communications. Therefore, we define

H = (s(BR),r(BR),s(SP),r(SP)}

and look at

Now we want to define a partial order an atomic actions giving priority. Note that both br and sp

should have priority over printing actions (br must interrupt printing and s(SP) must be received by the
printer, otherwise the key-board will be blocked and a break cannot be given). All other priorities are
given by 1.4.4. We have the following picture of the partial order (figure 23).

148 J. C.M. Baeten et al. (interrupt Mechanism in Process Algebra

br sp

~/
H {o(d) I dcDl k(BR) k(SP)

~1~/
6

fig.23
Here if two actions a and b are connected by a line, and b is above a, then a <b. If two actions are not
connected, they are incomparable. If we put a set at a certain position, it means each element of the set
has that position. If 0 is defined using this partial order, we can describe the system by:

3.3 Theorem. Put '?Pi = lloan(KllPi) and 01!1/ = 8°on(KllWJ (i;;.O), then we have the following equa
tions:

1. 0·~11; = k(BR}.br. 0m; +k(SP}.sp.'!J'i.

2. "P, = p(di)'5'i+I + k(BR}.br.0llfi + k(SP}.sp."Y,. (i ~0).

Proof: as we go along, we will skip some steps. To calculate the merge, we need the expansion theorem
(see Bergstra & Tucker (5]) which goes as follows:
if X ,, Xk are given, put X' = the merge of all Xn except X; and Xi ·I = the merge of all Xn except
xi and xj" Then

(ET) X; II ... llXk = 2: XdLX + 2: (X; I Xj)lLX1·1,
· I..:;;i~k Io;;;;i<j~k

i.e. we can start with an action of one of the processes, or with a communication between two of them.

Let i ;;.o.

= 8°on(k(BR)(s(BR)KllW,) +

+ k(SP)(s(SP)KllWi) +

+ r(BR)(KllWi) +

+ r(SP)(K II Pi)) =
= (}(k(BR}.of[(s(BR)KllW,) +

+ k(SPJ.on(s(SP)KllWd) =

= k(BR}.0°0H(s(BR)(KllWi)+r(SP)(s(BR)KllP1) +

+ r(BR}(s(BR)KllWi! +

+ (s(BR)lr(BR))(KllWd) +

+ k(SP).(}0 3H(s(SP)(KllWi) + r(SP)(s(SP)KllP,) +

+ r(BR)(s(SP)KllW,) +

+ (s(SP)lr(SP))(KllP,)) =

(1)

J.C.M. Baeten et al. I Interrupt Mechanism in Process Algebra

= k(BR)8(br.aH(KllW;)) + k(SP)fJ(sp.aH(KllP;}) =

= k(BR').br.'illf; + k(SP').sp.'&;.

= 8(k(BR').3H(s(BR)KllP;) +

+ k(SP').aH(s(SP)KllP,) +

+ p(d;).3H(KllPi+i)) =

= k(BR').fJ(p(d;').aH(s(BR)KllP,+1) +

+ (s(BR)jr(BR)').3H(KllW;)) +

+ k(SP').8(p(d;').aH(s(SP)KllP;+1) +

+ (s(SP)jr(SP)').3H(KllP;)) +

+ p(d;)'!i';+1 =
= (this is where we use the priority)

k(BR').br.G/lf; + k(SP').sp.'!J'; + p(d;').'!i';n

We can make the following state transition diagram:

fig.24

149

(2).

3.4 Example 2: Suppose we have a file F containing an infinite sequence of data from a finite set D, so F
contains

a = <do,d1,. .. >.

These data can be sent to the printer and subsequently printed, or a file crash might occur, in which case
an error statement will be generated.

Ri----(iil
'lire' p';tnl'cr

fig.25

150 J. C.M. Bae ten et al. /Interrupt Mechanism in Process Algebra

We have the follov,ing atomic actions A :
(a) actions of F:

l. g (d) = get the next symbol, d ED, from the file

2. s (d) = send d ED to the printer

3. er = file crash.

Let f~ stand for the state of F after do, ... ,d, _1 have been sent (i ;;;>0). Then F is described by the fol
lowing equations:

F = F0 I
F, = g(d,).s(d;).F;+i +er (i;;;>O).

(b) actions of P :

l. r(d) = received ED from the file

2. p(d)=printdED

3. o(CR) = observe file crash

4. p(CR) = print 'FILE HAS CRASHED'.

Recursive equation for P :

p = 2, r(d).p(d).P +o(CR).p(CR). I
deD

(c) communication actions:
if dED, then r(d)ls(d) = c(d) (communicated). All other communications give 8. Since we want to
hide all unsuccessful communications, we define H = {r(d),s(d) j d ED}. and look at

3.5 Priority. Here the rationale of defining priorities is different. The file-crash er might occur at any
moment, but o(CR), the observation of a file-crash, can only occur if the file has actually crashed. We
ensure this by giving o(CR) a lower priority than every 'regular' action of F, so we must have
o(CR)<g(d) and o(CR)<c(d). This gives the following picture (figure 26).

{g(d) I de DJ {c(d) I de DJ

~/
{p(d) I de D) o(CR) er H

~j//
fig.26

If 0 is defined using this partial order, we can describe the system by:

3.6 Theorem: Put 9; = D0 an(F,llP), and 0'; = 0°an(Fi+ 1llp(d1)P) (i;;;>O), then we have the following
equations:

J. C.M. Bae ten et al. I Interrupt Mechanism in Process Algebra

I) 'J, = g(d;).c(d;).<ff'; + cr.o(CR).p(CR)

2) 0'; = g(d;+1).p(d;).c(d;+ 1)P;+1 +
+ cr.p(d;).o(CR ').p(CR) + p(d,)§; + 1 (i ~O)

Proof let i ~O.

g, = 8°aH(F; llP)

= 8(g(d;).aH{s(d;)F;+1llP) + cr.aH(P) +

+ o(CR).aH(F1 llp(CR))) =
= (useg(d;)>o(CR))

g(d; ').8((s(d;) I r(d;)'J.3H(F; + 1 llp(d;)P)

+ o(CR).3H(s(d;)F, +illp(CR))) +
+ cr.8(o(CR).p(CR)) =

= (use c(d;)>o(CR))

g(d;').c(d;)."P1 +cr.o(CR).p(CR).

~P, = 0°3H(F;+ 11ip(d,)P) =

= O(g(d;+1J.aH(s(d.+1)F;+2llp(d,)P) +

+ cr.aH(p(d1)P) +

+ p(d;).aH(F,+illP)) =

= g(d;+1J.8(p(d;).aH(s(d;+1)F;+2llP)) +

+ cr.p(d,).o(CR').p(CR) +

+ p(d,).~T, +I =

= g(d;+1'J.p(d;).8(c(d;+1).aH(F;+2llp(d;+1)P) +

+ o(CR).3H(s(d.+iJF.+2llp(CR))) +

+ cr.p(d;'J.o(CR).p(CR) + p(d,).~t;+i =

=(use c(d1+1)>o(CR))

g(d; + 1J.p (d;).c (d, + 1)~P; + 1 +

+ cr.p(d1 ').o(CR).p(CR) + p (d,).~~ H

State transition diagram:

151

(I)

(2)

152 J.C.M. Bae ten et al./ Interrupt Mechanism in Process Algebra

--{';)/'

t(d,I

~ u

II~
- ~-?l)----,1'-j---j\

c

fig.27
3.7 Now we want to focus on the printing actions, in the system just described, and abstract from the
other actions. This will give an easy equation for the system. The tool to carry out abstractions is ACPr,
which is ACP with an abstraction operator -r1 and silent steps r (see (Bergstra & Klop [2]).

Since we do not want to mix ACP8 and ACPr, we will assume that all (} and <I are eliminated from
terms like 6J, and '5', (possible by 2.3.iii), so that they become ACP-terms. The axiom system ACPr is
presented on the next page. (table 4)

3.8 Abstraction Define I {c(d),g(d)ldED }U(cr,o(CR)} and look at

I TJ o(}o() H (FllP)

From theorem 3.6, we obtain the following equations:

l)-r1('!f;) = 1'(rr1('3';) + rp(CR))

2)-r1(0';) = T (rp(d;}T1 (0'1+1) + rp(d,)p(CR) + p(d;)-r1(6J,+ 1)).

J.C.M. Baeten et al./ Interrupt Mechanism in Process Algebra 153

ACP,

x+y=y+x Al XT = X TI
x+(y+z) = (x+y)+z A2 TX +x = TX T2
x+x = x A3 a('rx +y) = a('rx +y)+ax T3
(x +y)z = xz +yz A4
(xy)z = x (yz) AS
x+o = x A6
ox = 8 A7

alb = b/a Cl
(a lb)/c = a l(b /c) C2
Sia = o C3

x llY = x IL.y + y IL.x + x [y CM!
a IL.x = ax CM2 TIL.X = TX TM!
(ax)IL.y = a (x llY) CM3 (TX)ll_y = 'r(X flY) TM2
(x+y)ILz = xlL.z+ylL.z CM4 TIX = 8 TC!
(ax)\b = (a lb)x CMS XIT = fi TC2
a\(bx) = (a\b)x CM6 (TX)[y = X lY TC3
(ax)\(by) = (a \b)(x llY) CM7 X \(Ty) = X [y TC4
(x +y)\z = x\z +y\z CMS
x l(Y + z } = x lY + x lz CM9

OH(T) = T DT
T1(T) = T Tll

oH(a)=aifaeH DI ,,., (a) = a if a fif TI2
oH(a)=oifaEH D2 ,,.,(a)= Tif a El TI3
a11(X +y) = OH(x)+oH(y) D3 ,,.,(x +y) = T1(x)+T1(.Y) T14
aH(-':Yl = aH(x).aH(Yl D4 T1(Xy) = T1(X).T1(Y) TI5

3.9 Example 3 Let us now modify the previous example by changing the priority ordering in the follow
ing way:

{g(d) I dED} {c(d) I dED}

{p (d)
L---~ I dED} o(CR) er H

~1~~>_/

fig.28
This expresses that in real time the 'internal' actions g(d) and c(d) will always precede the external ac
tion p(d). This is a simplifying assumption about the real time behaviour of the system and its environ
ment.
Now theorem 3.6 turns into:

3.10 Theorem (abbreviations as in 3.6):

l)'!f, = g(d1).c(d1)0'1 + cr.o(CR).p(CR)

2)6Jl1 = g(d;+ 1).p(d1).c(d1+ 1) '3'1+ 1 + cr.p(d1).o(CR').p(CR). (i;;.O).

Now §; has disappeared from the second equation, so this simplifies to:
!'):'!Yo= g(d0).c(d0). 6Jlo + cr.o(CR).p(CR)
2 as above, and the following state transition diagram (compare with the complicated diagram in 3.6)

154 J.C.M. Baeten et al. /Interrupt Mechanism in Process Algebra

o(CR)

~
fig.29

When we do abstraction as in 3.8, we get

I'): T1('1fo) = T (To'T1(%) + 7'op(CR))

2) r1('!J';) = T (r.p(d;).TJ ('!1';+1) + T.p(d;).p(CR))

4. Example: a toy distributed system
4.1 Set-up

file

display

_ /---~·-~-:--'_-~, !~.:-.-~ keyboard printer

fig.30
Description: At a command from the key-board, a word (string of data) will be released from a file hold
ing infinitely many words, and sent to the printer. Then the word can be printed symbol by symbol. At a
signal from the timer, the status of the printer will be requested and the answer displayed. Printing can
be interrupted by a BREAK from the key-board.

4.2 Aim We want to give a description of this system, using process algebra. First we will give recursive
equations defining each component of the system. Then we will look at the free merge of these processes,
will encapsulate unsuccesful communications and give priority to interrupts. Next, we will give recursive
equations for the whole system, and then, in order to focus on certain aspects of the system, we will
abstract from other elements. We present three ways of doing that.

4.3 Description of components, using state transition diagrams (or process graphs).
4.3.1 Keyboard K. The key-board can generate a message, and send it along channel l. After that, it is
back in its original state.

J. C.M. Bae ten et al. I Interrupt Mechanism in Process Algebra 155

fig.31
actions of K: I. k (BR) = key in BREAK (will stop printing); 2. k (LO) = key in LOAD (will get a
word from the file and load it into the memory of the printer); 3. k(SP) = key in START PRINTING
(will cause the printer to start); 4, 5, 6: s l(BR), s l(LO), s l(SP) = send BR, LO, SP along channel I.

Recursive equation for K:
K = (k(BR).sl(BR) + k(LO).sl(LO) + k(SP).sl(SP))K.

4.3.2 Display D. The display can receive a message along channel 2 and display it. After that, it is back
in its original state.

X = PE,PW,PP,PL,PD,PR,FE,ND,NR
(the diagram actually consists

of 9 loops as shown)

fig.32

actions of D: I. d(PE) =display: PRINTER ERROR
2. d(PW) = display: PRINTER WAITING
3. d(PP) = display: PRINTER PRINTING
4. d(PR) =display: PRINTER READY.
5. d(PL) =display: PRINTER LOADED, PLEASE KEY IN SP.
6. d(PD) =display: PRINTER DONE, PLEASE KEY IN LOAD.
7. d(FE) = display: FILE ERROR
8. d(ND) =display: PRINTER NOT DONE, PLEASE WAIT
9. d(NR) =display: PRINTER NOT READY, PLEASE WAIT
10-18. r2(X) = receive message X along channel 2 (X = PE,PW,PP,PR,PL,PD,FE,ND,NR) Here
PW,PP,PR(2-4) are status reports from the printer; PL,PD(5,6) are messages from the printer that it
has completed a certain phase; PE,FE(l,7) are error messages, generated when file or printer do not
respond; ND,NR(S,9), are messages, generated, when LO or SP is keyed in too early.

Recursive equation for D :

D = (
X ~ PE,PW,PP,PR,
PL,PD,FE,ND,NR

r2(X).d(X))D.

4.3.3 Timer T. The timer can tick, and then it sends a message along channel 3. After that, it is back in
its original state.

156 J. C.M. Bae ten et al. /Interrupt Mechanism in Process Algebra

fig.33
actions of T: I. r = TICK;
2. s 3(SR) = send message STATUS REPORT? along channel 3 (will ask for a status report of the
printer).

Recursive equation for T:

T = t.s3(SR).T

4.3.4 File F. The file holds infinitely many words of length N. Say [) is a finite set of data (maybe con
taining a blank), then we let ION stand for the set of all words of length N. At the request LOAD, F
will release the next word and send it to the printer.

If F = <x i,x 2,. .. > (the original state), we put F, = <x; + i.x, +2, ... > (i EN, the state after releasing
i words (the x; are in [)N).

4 (LO) s4(x)

fig.34
In this diagram, we use the following convention: if, inside a node we put a symbol S, then by S we
mean the subgraph with S as root.

actions of F:

1. r4(LO) = receive message LOAD along channel 4;

2. g(x) = get the next word x E[)N from the file

3. s 4(x) = send x E [)N along channel 4.

Equations for F:

F = F 0

F, = r4(LO).g(x;+1).s4(x1+1)Fi+i (iEN).

4.3.5 Printer P
The printer has three basic states:

I. waiting, with printing queue empty (P ,);

2. ready, with printing queue a word x EION (printing has not started yet) (R,);
3. printing, with printing queue a word x E [)"N = U II)" (Px).

n = l, ... ,N

The following is a state transition diagram, using a word x = d1 dN E[)N.

J. C.M. Bae ten et al. /Interrupt Mechanism in Process Algebra

c5(SR I

sS(PW I

~-----____ , ;;_;fJ \

actions of P :

I. r5(x) = receive x E[)IN along channel 5;

2. r5(BR) = receive BREAK along 5;

3. r5(SR) = receive STATUS REPORT? along 5;

4. s 5(PW) = send PRINTER WAITING along 5;

5. s 5(P R) = send PRINTER READY along 5;

6.s5(PP) =send PRINTER PRINTING along 5;

7. s 5(PL) = send PRINTER LOADED along 5;

8. s5(PD) = send PRINTER DONE along 5;

9.p(d) =print dE[)I.

Recursive equations for P:

}
(answers

to SR)

} (state changes)

i) P = P, = 2:xED' r5(x) s5(PL) R, + (r5(SR)s5(PW) + r5(BR)) P,

ii) for all X E [)IN

Rx = r5(SR)s5(PR)R, + r5(SP)P, + r5(BR)P,

iii)for all x E [)I", n = 2, ... , N, x = d 1 · · · dn :

P, = r5(SR)s5(PP)P, + p(d 1)PJ, d. + r5(BR)P,

iv)for all d E[)I:

Pd = r5(SR)s5(PP)Pd + (p(d)s5(PD) + r5(BR))P,.

4.3.6 Micro-processor M :

In M we need three states, according to the state of the printer, so:
M.., = state when printer is waiting;
M, = state when printer is ready;
MP = state when printer is printing.

rS(SR)

s5(PR)

actions of M are all communication actions; description of letter codes are given elsewhere.

l,2,3:rl(BR), rl(LO), rl(SP);

4-12:s2(P£), s2(PW), s2(PP), s2(PR), s2(PL), s2(PD), s2(FE), s2(ND), s2(NR);

13:r3(SR);

14:s4(LO);

15:r4(x) (x E[)IN);

16-1S:s5(x) (x E [)IN); s 5(BR), s 5(SR);

19-23:r5(PW), r5(PR), r5(PP), r5(PL), r5(PD).

157

158 J. C.M. Bae ten et al. /Interrupt Mechanism in Process Algebra

r5(P<)

-i //~2{fE)

"'
~i

~

:: i

Recursive equations for M:

i)M = M.., = [r3(SR)s5(SR)(s2(PE) + r5(PW)s2(PW)) +
+ rI(SP)s2(NR) + rl(BR)sS(BR)]Mw +

+ rl(LO)s4(LO)[s2(FE)Mw +
+ ~ r4(x)s5(x)(s2(PE)Mw + r5(PL)s2(PL)M,)]

x EO"'

ii)M, = (rl(LO)s2(ND) + r3(SR)s5(SR)(s2(PE) + r5(PR)s2(PR))M, +
+ rI(SP)s5(SP)Mp + rl(BR)s5(BR)Mw

iii)Mp = (rI(SP) + rI(LO)s2(ND) + r3(SR)s5(SR)(s2(PE) + r5(PP)s2(PP)))MP

+ (rl(BR)s5(BR) + r5(PD)s2(PD))M.,.

4.4 We have now described each component, and now we want to study the interleaving of these
processes, i.e.

I KllD llTllFllP llM I
When we expand this term, we have to know the communication function on actions. Basically, only
ri (X) I si (X) (i = l,2,3,4,5 and X a two-letter code or a word in ION) give non-S communications.
Specifically:

i) rl(BR)lsl(BR) = r5(BR)ls5(BR) = br (break)

ii)r3(SR)ls3(SR) = r5(SR)ls5(SR) =

= r5(PW)ls5(PW) = r2(PW)is2(PW) =
= r5(PR)ls5(PR) = r2(PR)is2(PR) =

= r5(PP)ls5(PP) = r2(PP)ls2(PP) = sr (status report)

iii)rl(LO)is l(LO) = r4(LO)ls4(LO) =lo (load)

iv)rl(SP)lsl(SP) = r5(SP)ls5(SP) = sp (start printing)

v)r5(PD)ls5(PD) = r2(PD)ls2(PD) = r5(PL)ls5(PL) =
= r2(PL)ls2(PL) = r2(ND)ls2(ND) = r2(NR)ls2(NR)

= pm (printer message)

J.C.M. Baeten et al. I Interrupt Mechanism in Process Algebra

vi)r2(PE)ls2(PE) = r2(FE)ls2(FE) =em (error message)

vii)for x E: ION

r4(x)ls4(x) = r5(x)ls5(x) = sd(x)(senddata)

viii)all other communications (i.e. those not defined by i-vii above or rule Cl) are 8.

159

4.5 Then, we want to throw away (encapsulate) all unsuccessful communications, so if we define H to be
the set of all ri (X) and all si (X) (i = 1,2,3,4,S;X a two-Jetter code or a word in [)N), we want to look at

1alf(KllDllTllFllPllM) I
4.6 Priorities We will define priorities in a certain way, so that strings of actions that belong together,
will be executed together, so that the formulation of theorem 4.8 becomes readable. The principles
behind this formulation are explained in section 3.

Define£ cc (t,k(BR),k(LO),k(SP)) U {p(dJldED}('extemal'actions)and

C = {pm ,hr ,lo,sp ,sr) U (sd(x),g(x) Ix EDN}

U(d(XJIX = PE,PW,PP,PR,PL,PD,FE,ND,NR)

(communication actions and other 'internal' actions), then we have the following picture:

c

/\
em E

"·",I/
6

fig.37
(conventions as explained in 3.2).

If (J is defined with respect to this partial ordering, we look at

"(J\0 = 8°011 (KllDllTllFllPllM)

4.7 Now we will prove some recursive equations that hold for the whole system ·~ll(i. First some abbrevia
tions:

"li\', = (i0 011(KllDllTllF1 llP,llMwJ (i EN)

(printer is waiting and i words have been handled)

':il, = 0°iJ 11 (KllDllTllf~llR,llM,) (i;;.l)

(printer is loaded, the i --- th word is being handled)

"P," 0"d 11 (KllDllTllF,llP,llMp) (i;;;.J,n I, N,

x is (the tail of) x, of length n).
(printer is printing the i th word, still n characters to go)

•·P,0 ~· 8°a11 (KllDllTllF,ll(s5(/'D)P)llMp) (i;;.ol)

(printer has just printed the last character of the i -th word)

4.8 Theorem:

I. '~l\ 1 k (IJ R).hr .br •1111, +
I- k(LO)./o./o.g(x,, 1).sd(x,, 1)..id(x, + 1).pm.pm.d(PL).''.il, + 1 +
+ k(SP }-sp.pm.d(NR }-''ll\, +
+ 1.sr..sr~>r..sr.d(PW}-dli\1 • (i ;;;.())

160 J.C.M. Baeten et al. /Interrupt Mechanism in Process Algebra

2. <31, =k(BR).br.br.G/Jl/ +
+k(LO)./o.pm.d(ND).Gfi.; +
+ k(SP).sp.sp.'!Yf +
+ t.sr.sr.sr.sr.d(PR)'&c;. (i ;;.J)

3. ~r;" =k(BR).br.br.G/JJ, +
+ k(LO).Jo.pm.d(ND)'!Y," +
+ k(SP).sp.~T'," +
+ t.sr.sr.sr.sr.d(PP)Gf';" +
+ p(d)Gf';"- 1 (i;;;. I, n = I, ... , N, dis the (N + 1-n)th character of X;)

4. ~l'? =pm.pm.d(PD).GJJf;.

Proof: We use ET as in the proof of 3.3.
I. Let i ;;.Q

"2lf; = 0°aH(KllDllTllF;llP,llM,.,) =

0°aH(k(BR).((s !(BR)K)llD llTllF; llP,llM,.,) +

+ k(LO'j.((s l(LO)K)llD llTllF; llP,llM,.,) +
+ k(SP).((s l(SP)K)llD llTllF, llP,llMwl +

+ r2(PE).(Kll(d(PE)D)llTllF; llP,llMwl +

+ r2(PW).(K ll(d(PW)D)llTllF, llP ,llMw) +
+ r2(PP).(K ll(d(PP)D)llTllF, llP ,llMw) +

- - - -(six more r2(X))- - - - -

+ r2(NR).(Kll(d(NR)D)llTllF, llP,llM,.,) +
+ t .(K llD ll(s 3(SR)T)llF; llP ,llM,.,) +
+ r4(LO).(K llD llTll(g(x; + 1)s4(x; + 1)F; + 1lllP,llM,.,) +
+ ~ rS(x ').(K llD II TllF, ll(sS(PL)Rx)llM,.,) +

XED'"

+ rS(SR).(KllDllTllF,ll(sS(PW)P,)llM,.,) +

+ rS(BR).(K llD llTllF; llP,llM,.,) +

+ r3(SR).(KllDllTllF;llP,ll(s5(SR)(s2(PE) + r5(PW)s2(PW))Mw) +

+ rl(SP'j.(KllDllTllF;llP,ll(s2(NR)Mw)l +

+ rl(BR).(KllDllTllF;llP,ll(sS(BR)Mw)) +

+ rl(LO).(KllDllTllF;llP,ll(s4(LO)(s2(FE)Mw+ · · · M,))) +

+ 8) (no communications possible) =

= /J(k(BR).aH((sl(BR)K)llDllTllF;llP,llM,.,) +

+ k(LO).aH((sl(LO)K)llDllTllF;llP,llMw) +

+ k(SP).aH((s l(SP)K)llD llTllF; llP,llMw) +

+ t.oH(KllDll(s3(SR)T)llF;llP,llMw) =
= k(BR)./J(t.aH((s l(BR)K)llD ll(s 3(SR)T)llF; llP,llMw) +
+ (s !(BR) I r l(BR)).aH(K llD llTllF; llP,ll(s 5(BR)Mw))

J.C.M. Baeten et al. /Interrupt Mechanism in Process Algebra

+ k(LO).O(t.aH((s l(LO)K)llD [[(s3(SR)T)llF, llP,llMw) +

+ (sl(LO)lrl(LO)).aH(KllDllTllF;llP,[[(s4(LO)(· · · Mw+ · · · M,))) +

+k(SP).O(t.aH((s l(SP)K)llD ll(s J(SR)T)llF, llP,llMw) +

+ (s l(SP) I r l(SP)).aH(KllD llTllF; llP,ll(s2(NR)Mw)) +

+ t.O(k(BR) · · · + k(LO) · · · + k(SP) · · · +

+ (s3(SR)!r3(SR)).aH(KllDllTllF;llP,ll(s5(SR)(· · ·)M..,)) =

= (by 4.6)

k(BR).br.O(k(BR) · · · + k(LO) · · · + k(SP) · · · + t · · · +

+ (s5(BR)lr5(BR)).aH(KllDllTllF;llP,llM,.) +

+ k(LO)./o.O(k(BR)" .. + k(LO)" .. + k(SP)" .. +I ... +

+ (s4(LO) I r4(LO)).aH(KllD llTll(g(x, + 1)s4(x,+ 1)F, + 1)11P,ll

ll(s2(F£)M.., + ~r4(x) ...)) +

+ k(SP).sp.O(k(BR) ... + k(LO) ... + k(SP).. + I. +

+ (s2(NR) I r2(NR)).aH(Kll(d(NR)D)llTllF, llP,llMw) +

+ /.sr.O(k(BR) · · · + k(LO) · · · + k(SP)" · · + I · · · +

+ (s S(SR) I r S(SR)).aH (K llD llTllF; ll(s S(PW)P,)li(s 2(PE) +

+ r5(PW)s2(PW))Mw) =

= k (BR).br.br.011.i/ 1> +
+ k(LO)./o./o.O(k(BR) ... + k(LO) ... + k(SP) ... +I ... +

+g(x,+1).aH(KllDllTlls4(x1 + 1)F,+ 1llP,ll(s2(F£)··· + ~r4(x)···)) +

+ (s2(FE)lr2(FE)).aH(... li2) +

+ k(SP).sp.pm.O(k(BR) · · · + k(LO) · · · + k(SP) · · · +I··· +

+ d(NR).aH(KllDllTllF;llP,llMwlJl3> +

+ t.sr.sr.O(k(BR) · · · + k(LO) · · · + k(SP) · · +I··· +

+ (s5(PW)!r5(PW))aH(KllDllTllF;llP,lls2(PW)Mwl +

+ (s2(PE) I r2(PE))aH(. ..))14l.

161

Now term I is right, and it is easy to see that term 3 is also right. Therefore, we only continue with terms
2 and 4.

2 = k(LO)./o.lo.g(x;+ 1).0(k(BR)" · · + k(LO)" · · + k(SP) · .. + t · · · +

+ (s4(x;+1llr4(X;+1)).aH(KllDllTllF;+1llP,llsS(x;+1)(...)) +

+ (s2(FE)lr2(F£)).aH(...)) =

= k(LO)./o.Io.g(x;+ 1).sd(x;+ 1).0(k(BR) · · · + k(LO) .. + k(SP) · · · + t · · · +

+ (s S(x; + 1) I rS(x; + 1)).aH (K llD II T llF; +ills S(PL)Rx, .,II

ll(s2(P£)Mw + r5(PL)s2(PL)M,)) =

= k(LO)./o./o.g(x;+ 1).sd(x;+ 1).sd(x,+ 1).0(· · · + + · · · + · · · +

+ (s S(PL) I r S(PL)).aH(K llD llTllF; + 111Rx,)ls2(PL)M,) +

+ (s2(PE)lr2(P£)).aH(...)) =

162 J.C.M. Baeten et al. I Interrupt Mechanism in Process Algebra

= k(LO')./v.lo.g(x1+1J.sd(x,+1'J.Pm.O(· · · + · · · + · · · + · · · +
+ (s 2(PL) I r2(PL)').aH(Klld(PL)D llTllF1 + i!IRx,.,llM,) =
= k(LO').lo.Jo.g(x1+ 1).sd(xi+ 1).sd(x1+1'J.Pm.pm.O(· · · + · · · + · · · + · · · +
+ d(PL').3H(KllDllTllF,+1llRx,)IM,) =

= k (LO ').Jo.Jo.g(x, + 1).sd(x1+ 1').sd(x, + 1').pm .pm.d(PL ').0\, + 1;

4 = t.sr.sr.sr.O(· · · + · · · + · · · + · · · +
+ (s2(PW) I r2(PW))3H(Klld(PW)D llTllF1 llP,llMw)) =

= t.sr.sr.sr.sr.f)(· · · + · · · + · · · + · · · +
+ d(PW)3H(KllD llTllF, llP,llMw)) =
= t.sr.sr.sr.sr.d(PW)61JS1

This finishes the proof of l.

2. Let i;;,. J.

01, = ll0 3H(KllDllTllF,llRx,llM,) =
O(k(BR ').aH(s l(BR)KllD llTllF1 llRx,llM,) +
+ k(L0').3H(sl(LO)KllDllTllF,llR,,llM,) +
+ k(SP').3H(sl(SP)KllDllTllF,llRx,llM,) +
+ 1.3H(KllD!ls3(SR)TllF111Rx,llM,)) =

= k(BR').O(t · · · + (sl(BR)lrl(BR)').3H(K]IDllTllF111Rx,lls5(BR)Mw)) +
+ k(LO').O(t · · · + (sl(LO)lrl(L0)').3H(KllDllTllF1 llRx,lls2(ND)M,)) +
+ k(SP').O(t · · · + (s l(SP)lrl(SP)').aH(KllD llTllF1 llRx,llsS(SP)Mp)) +
+ t.O(· · · + · · · + · ·· + (s3(SR)lr3(SR)').3H(KllDllTllF,llRx,lls5(SR)(· · ·)M,) =

= k(BR ').br.O(· · · + · · · + · · · + · · · +
+ (s5(BR)lr5(BR)').3H(KllDllTllF1llP,llMw)) +
+ k(LO')./o.8(· · · + · · · + · · · + · · · +
+ (s2(ND)lr2(ND)).3H(Klld(ND)D llTllF1 llRx,llM,)) +
+ k(SP).sp.O(· · · + · · · + · · · + · · · +
+ (s5(SP)lr5(SP)').aH(KllDllTllF,llPx.11Mp)) +
+ t.sr.()(.. · + .. · + ... + ... + (s5(SR)lr5(SR)').3H(KllDllTllF,ll

lls5(PR)R,,ll(s2(PE) + r5(PR)s2(PR))M,)) =
= k(BR ').br.br.61§1 +
+ k(LO').Jo.pm.O(.. · + .. · + .. · + .. · + d(ND').3H(KllDllTllF1llR,,llM,)) +

+ k(SP').sp.sp.'J(+
+ t.sr.sr.O(· · · + · · · + · · · + · · · +
+ (s5(PR)lr5(PR)').3H(KllDllTllF1!1R,,lls2(PR)M,) +
+ (s2(PE)lr2(PE)).3H(· · ·)) =

J. C.M. Bae ten et al. I Interrupt Mechanism in Process Algebra

= k(BR).br.br.G/Jl; +
+ k(LO)./o.pm.d(ND).6.A; +
+ k(SP).sp.sp.'!I'r +
+ t.sr.sr.sr.8(· · · + · · · + · · · + · · · +
+ (s 2(PR) I r2(PR)).aH(K lld(PR)D II TllF, II Rx, llM,)),

and we can finish as in I.

163

3. Let j;;.l, n =I, ... ,N and x = d 1 · · · dn is (the tail of) x,. Then d 1 is the (N +l-n)'h character
of x,.

case 1: n > I. Then

'!I';" = /1°aH(KllD llTllF; llPx 11Mp) =

= ll(k(BR).aH(s l(BR)K llD llT[IF; llPx llMP) +
+ k(LO).aH(s l(LO)KllD llTllF; llP,, llMp) +

+ k(SP).aH(s l(SP)KllD llTllF, llP, llMp) +
+ 1.aH(KllDlls3(SR)TllF;llP,11Mp) +
+ p(d1).aH(KllD llTllF; llPd, ... d, llMp))

= k(BR)(s l(BR) I r l(BR)).8°aH(KllD llTllF; llP, lls 5(BR)Mw) +
+ k(LO)(s !(LO) I r l(LO)).8°aH(KllD llTllF, llP, lls 2(ND)Mp) +
+ k(SP)(sl(SP)lrl(SP))./1°aH(KllDllTllF;llPxllMp) +
+ t(s 3(SR) I r 3(SR)).8°aH(K llD llTllF; llPx lls 5(SR) · · · MP)

+ p(d1)'!I';"-1.

Again it is easy to finish the proof.

case 2: n = 1. The first four terms are the same, so

'ff/= /1°aH(KllDllTllF;llPd,llMp) =

= k(BR).br.br.G/Jl; + k(LO).lo.pm.d(ND)GJ';1 +
+ k(SP).sp.GJ'/ + t.sr.sr.sr.sr.d(PP)'!I'/ +
+ p(d1)8°oH(KllD llTllF; lls5(PD)P,11Mp) (by 4.3.5.iv) =

=--·+·--+·--+--·+

+ p(d1l'!I'P

4. Let i ;;. I.

GJ'f = 8°aH(KllDllTllF;lls5(PD)PllMp) =

= ll(k(BR) .. · + k(LO) · · · + k(SP) .. · + t · · · +
+ (s5(PD)lr5(PD)).aH(KllDllTllF;llPlls2(PD)Mw)) =

= pm.8(· · · + · · · + · · · + · · · +
+ (s2(PD)lr2(PD)).aH(Klld(PD)DllTllF;llPllMw)) =

= pm.pm.8(· · · + · · · + · · · + · · · +
+ d(PD).aH(KllDllTllF;llPllM)) =

= pm.pm.d(PD).G/Jl;.

164 J.C.M. Baeten et al. I Interrupt Mechanism in Process Algebra

This completes the proof of theorem 4.8.

4.9 Now we want to focus on certain aspects of the system just described, and abstract from others. We
will present three ways of doing this, namely:

I. abstract from all internal steps, focus on key-board, display and printer;

2. abstract from all internal steps, focus on file and printer (i/ o view);

3. get easier equations for 2 by hiding interrupts.

As in 3.8, we work in ACP., but now we need an extra abstraction rule, since infinite T-paths can occur.
The rule is explained in 4.10.

4.10 Koomen's fair abstraction rule (KFAR) (see Bergstra & Klop [3]).

This rule allows us to compute 7"! (X) for certain X, thereby expressing the fact that certain steps in I
will be fairly scheduled in such a way that eventually a step outside I is performed. Formally,

Vnelk Xn = in.Xn+I + Yn (i.eJ) (KF AR)----'"--"---_,,;;__;,,;_...;__.;;....c,;;.._....;,.
T1(Xn) = M1(Yo + ... + Yk-1)

Here Zk = {O, ... , k - I} and addition in subscripts works modulo k. For the use of KFAR, also see
[3].

4.11 Define I = { t ,br ,sr ,lo ,sp ,pm ,em } U

U {g(x) Ix EON} U {sd(x) Ix e[)N} U

u {d(PW),d(PR),d(PP)}.

This means we abstract from the timer, the file, all communications and the status reports. Now apply
ing T1 to the equations of theorem 4.8, and using KFAR, gives:

I. T1(Gllf;) = T((k(BR) + k(SP)d(NR))'T1(Gllf;) +
+ k(LO)d(PL)T1(~+ 1)) (i;o.O)

2. T1('31i) = T(k(BR}r1(G/Jf;) +
+ k(LO)d(ND)1°[(~) +
+ k(SP)T1(q>(i)) (i ;;.J)

3. "'1(q>[') = T(k(BR)T1(G/Jf;) +
+ k(LO)d(ND)T1(15.P;") +
+ k(SP)T1(<5'[') +
+ p(d)q>['- 1) (i;o.O,n =I, ... ,N,

d is the (N + 1 - n) th character of x;)

4. 'T1(qip) = Td(PD)T1(G/Jf;).

We can make the following state transition diagram of T1(G/Jf0). (Suppose x 1 = d 1 · • · dN)

J. C.M. Bae ten et al. /Interrupt Mechanism in Process Algebra

k(BR)

4.12 Second version:
Diagram:

(pi p(dN)
JI

',
' ' '•

"" "' '"~
"-
I
I

---·~ (? /-1 I I

/
'/

p(rll/ //

L/'
('/~ I k----------

/
--~

d(PO)

k(BR I

1r- ~~
I I
I I
I I
I I

I

)>.'_

---

1" "' -~"'

t t/R.2 }
4--,.,, I _..,..t°,,

•

--------~--------

fig.38

T,tll/0)

g{•1)

I
I

,-'!!~,
I

{ t/J.2) ' __ ,,.

'•, ~ -~.

p(d 1 I

fig.39

165

k(SP)

166 J. C.M. Bae ten et al. /Interrupt Mechanism in Process Algebra

Define J = { t ,br ,sr ,lo ,sp .pm ,em } U

U {sd(x) Ix eDN} U

u { d(PW),d(PR),d(PP),d(PE),d(PL)d(PD),

d(FE),d(ND),d(NR)} U

U {k(LO),k(SP),k(BR)}.

This means we abstract from the timer, the display, the keyboard and all communications. Now apply
"'I and use KFAR We get:

I. 'TJ(6lll;) = Tg(x;+1).'1'J(~+ 1). (i;;aO).

2. 'l'J(~) = T('1'•'1'J(6lifi) + MJ('!J'/")). (i-;;..l).

3. 'l'J ('!!'rl = 'J'(·MJ (61JS;) + p(d).TJ('il'r- 1)). (i ;;aO,n = 1, ... , N, d the (N + 1-n)th in x;)

4. '1'J('!f';°) = '1'o'l'J(6lll;) (i ;;aJ).

4.13 In order to see better, that the input is really that what is printed, we will use the following trick.
Define B = {k(BR)} and look at

! '1'J 0 3a(G!lf;) I
This means that we throw away all paths that have a break, and then do the abstraction of 3.12

Oaim: Suppose X; + 1 = d'1 • • • d~,(i 'd>O).

'T; 0 a8 (6llf;) = T.g(x;+1)p(dDp(d~) · · · p(dj,,).T1 °a8 (6lll;+1).

Proof: we start with the equations of theorem 3.8.

aa(6!Jli) = l:l + a1a2a2.g(x;+1)a3a3a4a4a53s(~+1) +
+ a6a1a4as3a(6lll;) + D9'J10D1oD1oD1oD11<ls(6lif;)

(here the a1-au symbolize internal steps), so by KFAR we have

I. '1'J 0 as(6lif;) = Tg(x;+1).T; 0ila(~+1l
Likewise

2. TJ 03a(~+1) == 'T•'TJ 0 as(<il'/"+1)
and

3. '1'J 0 as('!l';\1) = Tji(dJv+1-.).'1'J 0 3a('il't+-11) (n ==I. ... ,N)
and

4. TJOa8 (<5';\ 1) = T•T; 0 a8 (6llf;+ 1).

Combining these gives

'TJ 0 as(6!Jli) = Tg(x;+1).TJ 0 3a('!ili+1) =

= Tg(x;+1).M·J 0 3a(<il'/"+1) =

= 'Tg(x;+1).'1'.p(d\).T; 0 38 (<il'/"+[1) =
= Tg(x;+ 1).p(d\).'1'.p(d~).'1'Jo38 (<5'/"+! 2) =

=
= -rg(X;+1).p(d\)p(d~) · · · .-rp(dj,,).'TJ 0 3s(lffP+1) =
== Tg(x1 +1).p(dDp(d~)- · · p(dj,,yr-.'1'J 0 a8 (6llf;+ 1) =
== -rg(x1+1).p(dDp(d~) · · · p(dj,,)'r1 °a8 (6lll1+ 1).

J. C.M. Bae ten et al. I Interrupt Mechanism in Process Algebra 167

References
[l] DE BAKKER, J.W. & J.l. ZUCKER, Processes and the denotational semantics of concurrency, Informa

tion and Control, 54 (112), 1982, pp.70-120.

[2] BERGSTRA, J.A. & J.W. !<LOP, Algebra of communicating processes with abstraction, Theoretical
Comp. Sci. 37 (I), 1985, pp. 77-121.

[3] BERGSTRA, J.A. & J.W. Kl.OP, Verification of an alternating bit protocol by means of process algebra,

Report CS-R8404, Centrum voor Wiskunde en Informatica, Amsterdam 1984.

[4] BERGSTRA, J.A. & J.W. Kl.OP, Process algebra for synchronous communication, Information and Con
trol 60 (1/3), 1984, pp. 109-137.

[5] BERGSTRA, J.A. & J.V. TuCKER, Top-down design and the algebra of communicating processes, Science
of Comp. Programming 5 (2), 1985, pp. 171-199.

[6] DERSHOWITZ, N., Orderings for term-rewriting systems, Theoretical Computer Science 17, 1982, pp.
279-301.

[7] HUET, G., Confluent reductions: abstract properties and applications to term rewriting systems, J. ACM
27 (4), 1980, pp. 797-821.

[8] !<LOP, J.W., Combinatory reduction systems, Mathematical Centre Tract 127, Mathematisch Centrum,
Amsterdam 1980.

[9] MILNER, R., A calculus for communicating systems, Springer LNCS 92, 1980.

[10) PARK, D.M.R., Concurrency and automata on infinite sequences, Springer LNCS 104, 1981.

