
JOURNAL OF COMPUTER AND SYSTEM SCIENCES 32, 323-362 (J 986)

Conditional Rewrite Rules: Confluence and Termination

J. A. BERGSTRA

University of Amsterdam and State University of Utrecht, The Netherlands

AND

J. W. KLOP

Centre for Mathematics and Computer Science, Amsterdam, The Netherlands

Received September 6, 1982; revised June 11, 1985

Algebraic specifications of abstract data types can often be viewed as systems of rewrite
rules. Here we consider rewrite rules with conditions, such as they arise, e.g., from algebraic
specifications with positive conditional equations. The conditional term rewriting systems thus
obtained which we will study, are based upon the well-known class of left-linear, non­
ambiguous TRSs. A large part of the theory for such TRSs can be generalized to the con­
ditional case. Our approach is non-hierarchical: the conditions are to be evaluated in the same
rewriting system. We prove confluence results and termination results for some well-known
reduction strategies. © 1986 Academic Press, Inc.

INTRODUCTION

This paper is concerned with term rewriting systems involving conditional rewrite
rules. Such systems arise in a natural way from algebraic data type specifications
using positive conditional equations, but may just as well appear in a different con­
text. Our aim is to provide a self-contained introduction in the subject covering
various topics, such as: confluence, reduction strategies and termination, and
decision algorithms for normal forms.

While working in this subject we received Pletat, Engels, and Ehrich [18]. This
paper has had a considerable influence on our ideas, leading us, however, to a dif­
ferent proposal for the semantics of conditional rewrite rules, avoiding hierarchies,
but introducing circularities that turn out to be not problematic in the end.

For some related work on conditional TRSs we refer to [6, 12, 13].
We will now give a survey of the paper. We will consider systems I of positive

conditional equations, as they are called in [7], which have the form

for some n ~ 0. Here the t; = s; (i = 1, ... , n) and t = s are equations, possibly contain-

323

324 BERGSTRA AND KLOP

ing varables. Such systems arise for instance in algebraic semantics as specifications
of abstract data types, see [7]. If J; is a system of positive conditional equations, I: 11

will be the "unconditional part" of I:, that is the set of equation schemes obtained
by removing the conditions (i.e., the LHSs of the implications). The system of
equation schemes L.: 11 can be made into a term rewriting system (TRS), by choosing
a direction of rewriting: t - s. Often this direction is clearly suggested by the
equation t = s. Now we will impose Uust as in [18]) the restriction that the TRS I:,,
is non-ambiguous and left-linear. For such TRSs, which we will call of type 0 in this
paper, the syntactical theory is well developed; cf. [3, 9, 10, 11, 14, 16, 17].

While it is clear how to associate a TRS to a system of equation schemes
(anyway in the case we are considering), this is less clear in the presence of these
conditions:

I. One possibility is to consider "conditional reduction rule schemes" of the
form

f I =SI /\ · · · /\ l n =Sn => f - S.

Such conditional reduction rule schemes will be called of type I. Likewise a TRS is
of type I if it contains only reduction rules of type I.

II. Another possibility is to consider conditional rules of the form

t 1 ls 1 /\ ••• /\ t,, ls,, =>t-s

where "l" denotes "having a common reduct."

III. Third, one could consider

11 -H,\'1 /\ ... /\f,,-HS,,=>t-s,

where -H is the transitive reflexive closure of the one step reduction relation
generated (in a sense made precise below) by these schemes.

It turns out that -this last possibility yields in general not a confluent reduction
(i.e., having the Church-Rosser property). A "better" type of conditional reduction
rule is:

IIIn- 11 -Hll 1 /\ ··· /\tk-+->nk=>t-s, where the ni, i=l, ... ,k, are closed
normal forms in the sense of the unconditional I: u·

Now in all cases I, II, III 1,, 1 there is an obvious circularity involved in the
definition of the reduction relation -· In [18] this problem is solved by means of
an hierarchical approach: the conditions (which are there of type III", to be precise:
of the form t i -+-> true) must be evaluated on a lower level of the hierarchy. Here we
will not suppose such a hierarchical structure of the TRSs, and define the reduction
relation (-) by a "least fixed point" construction; for type I and III" reductions we
can then prove confluence. That is, the circularity is harmless in case III,,, and also
for type I. In fact, the whole syntactical theory for type 0 carries over without effort

CONDITIONAL REWRITE RULES 325

to type I and IIIn, including termination criteria. However, a major problem with

the conditional TRSs is that the set of normal forms and the set of redexes need not

be decidable.
For type III in general it is not surprising to see that such reductions need not be

confluent, for, it is not clear that a condition t; --+-> si is "stable" under reductions.

For type II it does seem reasonable to conjecture confluence; but we will show that

in fact this conjecture is false. The case of type I is very easy.

The really interesting case is IIIn- We will show that III 11 -reductions are con­

fluent, and have in general all desirable properties of 0-reductions, including ter­

mination (when possible) of reduction strategies like full substitution (or full com­

putation), leftmost reduction, parallel outermost reductions. Most of these results

are already obtained in [18], however, for the "hierarchical" III 11 -TRSs.

Note that we have not placed restrictions on the conditions ti = si (type I) or

t; --+-> n; (type IIIn), other than the unconditional normal form requirement (which

can be immediately checked by looking only at the LHSs t of the RHSs t-+ s of the

conditional rules) in III 11 • This is intended: the ti =s; or t;-++ n; may have other

variables than the ones in t = s. E.g., the rule (as in the definition of an equivalence

relation)

E(x, y)-++ true and E(y, z)--+-> true=> E(x, .::)-+true

is allowed.
On the other hand, an unconditional rule like

E(x, x)-+ true

will not be allowed here, since we stipulated that the unconditional part I: u of the

TRSs I: we will consider, must be of type 0. Let us call a TRS I:' of type O' if it can

be obtained from a type 0 TRS I: by identifying some variables in the LHSs of the

rule schemes.
Now we give a translation of type Ill 11 systems into type 0 and of type II into type

O'. We do not, however, explore the formal aspects of th!s translation and use it

\ I Il

l\ 1 l

i
\ 0'

r1111rn \

x
/O" \

\ 0
'-(in general)

\ not confluent
confluent '

FIGURE 1

326 BERGSTRA AND KLOP

mostly as a heuristic tool to show that type II and III reductions are in general not
confluent.

A survey of the confluence results is given in Fig. 1, where an upward line means
that a TRS of the lower type is also a TRS of the higher type. The central point in
this diagram, type III,,, will also be a focus of our interest in this paper. The wavy
downward arrows refer to the "translation" mentioned above and given in Sec­
tion 2.5. Type O" is a subtype of O', obtained by stipulating that the "non-linear"
operators may not occur in the RHSs of the rule schemes (Sect. 1.5).

We have included an Appendix devoted to O'Donnell's theorem that "eventually
outermost" reductions (including the parallel outermost reductions) must terminate
when possible, and likewise for leftmost reductions in the case of left-normal rules.
In fact, we prove a stronger version, applying also to the case of term rewriting
systems with bound variables, such as A-calculus. Indicating the presence of bound
variables with "*," all our results except Theorem 5.4 generalize from 0 to O*, I to
I*, III,, to m:. Since bound variables are not the main topic of this paper, we have
separated this proof in an Appendix so that it can easily be omitted (or, singled
out). Type 0* reductions systems are called "regular combinatory reduction
systems" in [14], where "regular" means "non-ambiguous and left-linear."

The structure of the sequel of this paper is as follows:
1. Preliminaries. 2. Conditional Term Rewriting Systems. 3. Confluence. 4. Com­
plexity of Normal Forms. 5. Termination. 6. Possible Extensions. 7. Appendix:
Parallel Outermost and Leftmost Reductions.

1.1 Term Rewriting Systems

We will briefly introduce the well-known notion of a term rewntmg system
(TRS), as studied, e.g., in [3, 9, 10, 11, 14, 16, 17]. First we will consider uncon­
ditional TRSs.

A term rewriting system I is a triple (ff, ·r, IR > where :Ji' is a set of ranked
operators, i.e., each FE !i' has an arity which is the number of arguments Fis sup­
posed to act upon. The arity may be 0, in which case Fis also called a constant. 1·
is a set of variables, necessa.ry to describe the set of reduction rule schemes, Ill A
reduction rule scheme, or rule scheme for short, is a pair (t, s), written as t-+ s,
where t, s E Ter(I), the set of terms built from :Ji' and "f~. So IR is a binary relation
on Ter(I). The set of closed I-terms, Ter"(I), contains only terms without
variables a, b, c, ... , x, y, z E ·f·. We will use t, s for terms, but sometimes also
M, N, An instantiation p is a map 'f/-+ Terc(I). If t E Ter(I), then p(t) denotes
the_ result of simultaneous substitution of p(x) for every occurrence of x in t.

IR is the set of all closed instances obtained from the rule schemes IR; i.e., if
t-+ s E IR then p(t)--> p(s) E IR for all p. The elements of IR are called closed rules· we
will drop the word "closed" sometimes. The LHSs of the rules are called rede~es;
RED(I) is the set of all redexes of I. A term without redexes as subterms is a nor­
mal form; NF(I) is the set of normal forms.

CONDITIONAL REWRITE RULES 327

A context C [] is a term with one "hole." More precisely: let D be a "fresh"
variable. Then a context C[] is a term containing exactly one occurrence of D.
(The trivial context is D itself.) We write C[t] to denote the result of substituting t
in the open place D.

If Risa binary relation on Terc(.E), then Rm will be the "contextual closure" of R,
defined by

(t,s)eR=(C[t], C[s])eRm for all C[].

R* is, as usual, the transitive reflexive closure of R. For notational ease, we write
R 0 =(Rm)*. Note that 0° = =, syntactical equality.

If the infix notation t --+ s is used, the relation --+ will be called "reduction" and
instead of --+ 0 we use the notation -++ (which is easier to use in reduction
diagrams).

Remark on notation. Terms are notated by t, s, ... as well as by M, N, We
apologize for this inconvenience.

1.2. Applicative vs. Ranked TRSs; TRSs with Many-Sorted Signature

As we have introduced TRSs in 1.1, each operator has a fixed arity and term for­
mation is otherwise unrestricted. In practice however, we will often deal with TRSs
having a (many-sorted) signature, as in Example 2.3(i). This concept is standard in
the literature, and we will not give a definition here. See, e.g., [11]. Nowhere,
however, in this paper will the concept of signature play a role; that is, everything
works out for TRSs with signature exactly as for TRSs without signature restric­
tions, i.e., one-sorted.

Instead of ranked TRSs (i.e. each operator has a fixed arity), one can also con­
sider applicative TRSs. The prime example of such a TRS is combinatory logic (CL)
as in [l, 5], with basic operators S, K, I and terms MeTer(CL) given by the
inductive definition

M: :=/, K, S/(M 1 M 2), and reduction rules schemes

Sxyz-+ xz(yz)

Kxy-+x

lx-+x

(here the convention of bracket associat10n to the left is used). An applicative
system I: can easily be viewed as a ranked system .EA, by introducing a binary
operator A (,) and considering S, K, I as 0-ary operators (constants). Then the
rules of CLA are:

A(A(A(S, x), y), z)-+ A(A(x, z), A(y, z))

A(A(K, x), y)-+ x

A(I, x)-+ x.

328 BERGSTRA AND KLOP

Vice versa, a ranked TRS I:, can be viewed as a "sub-TRS" of an applicative
TRS .E; e.g., if .E, = { C, P(x, Q(y))-+ Q(x)} then L', is a "sub-TRS" of I: (see l.4.0),
where l: has terms defined by M: := C, P, Q/(M1 M2) and the rule Px(Qy)--> Qx.
So the terms of (an isomorphic copy of) 1:, would be given by

In fact, we may use TRSs which are partly applicative and partly ranked; e.g.,

CL+ D(x, x)-+ I.

At one point, however, there is a crucial difference between ranked and applicative
TRSs, namely in the formulation of a theorem about non-linear TRSs, see 1.5.2.2.

1.3. Regular Reductions

An important class of reduction systems is the class of regular TRSs I:=
<ff, "/', IR). Here the rule schemes in IR are subject to the following conditions:

(i) if t-+ s E IR, the leading symbol of t is an operator E ff (so t rt "I');
(ii) if t-+ s E IR, then the variables in s occur already in t;

(iii) if t-+ s E IR, then t is linear, i.e., no variable occurs more than once in t.
(The rule scheme t --> s is called left-linear if t is linear.)

(iv) if IR={t;-->s;liel} then the rule schemes do not "interfere," i.e., they
are non-ambiguous. One also says that IR has the non-overlapping property. This
property is defined as follows.

1.3.1. DEFINITION. Let IR = {r; Ii E /}, where r; = t;--> s; be the set of rule
schemes of a TRS .E. We may suppose that IR contains no rule schemes which can
be obtained from each other by renaming of variables. l: is called a non-ambiguous
(or non-overlapping) TRS iff the following holds:

(i) if the r;-redex p(t;) contains the rrredex p'(tj), where i # j and p, p' are
some instantiations, then the redex p'(tj) is already contained by p(x) for some
variable x occurring in t;;

(ii) if the r;-redex p(t;) contains the r;-redex p'(t;) for some p, p', then either
p(t;) = p'(t;) or p'(t;) is already contained by p(x) for some variable x occurring in
t i•

Here "r is contained in t" means that r is a subterm of t, notation r <: t. Equiva­
lently: t = C[r] for some context C[] of r. So, in a well-known terminology, non­
ambiguity means that there are no critical pairs.

1.3.2. EXAMPLES. (i) iR = {P(Q(x))-+ R(x), Q(R(x))--> S} IS ambiguous by
clause (i) of Definition 1.3.1;

CONDITIONAL REWRITE RULES 329

(ii) 1R = {P(P(x))--+ P(x)} is ambiguous by clause (ii);

(iii) 1R = { D(x, x) - E, ... } yields a nonregular TRS since the displayed rule
scheme is not left-linear.

1.3.3. Remark. It is possible to be slightly more liberal in the definition of
ambiguity, without losing any of the properties of regular reductions. (This
definition is adopted by O'Donnell [17].) Namely, define E= (ff, "fl, IR) (where
IR = {r; Ii E !}, r; = t; -4 s;) is a weakly non-ambiguous TRS iff the following holds:

(i) if the r;-redex p(t;) contains the rrredex p'(t1), where i #- j and p, p' are
some instantiations, then the redex p'(t1) is either

(a) already contained by p(x) for some x in t; or

(b) p(t;) = p'(t1) and p(s;) = p'(s1). (I.e. the rules p(r;) and p'(r1) coincide.)

(ii) as in Definition 1.3.1.

Note that non-ambiguity of E depends only of the LHSs t; of the rule schemes in
IR, while for weak non-ambiguity also the RHSs s; must be considered.

An example of a set of weakly non-ambiguous rule schemes, which is ambiguous,
is given by the "parallel or" rule schemes:

or (true, x)--+ x

or (x, true) - x.

Let us call a TRS which is leftlinear and weakly non-ambiguous, a weakly regular
TRS. Then the theory for regular TRSs as, e.g., in [14], on which most of the
sequel is based, seems to carry over without problems to weakly regular TRSs. We
will stick to regular TRSs as the basis for the sequel, however.

1.4. Reduction Diagrams for Regular Reductions

Let E be a regular TRS. Then, as is well known, E F= CR. (E has the
Church-Rosser property.) I.e.: if ~1 = t 0 --+ t 1 --+ · · · - tn and ~2 =to--+

t'1 --+ · · · --+ t;,, are two "divergent" reductions of t0 E Ter(E), then there are "con­
vergent" reductions ~3 = tn--+ · · · --+ s and ~4 = t'm --+ · · · --+ s. Instead of saying
that E has the CR-property, we will also say that £-reductions are confluent.

A stronger version of the CR-theorem for regular TRSs asserts that convergent
reductions ~3 , ~4 can be found in a canonical way, by adjoining "elementary
diagrams" as suggested in Fig. 2. In this way the reduction diagram fi2!(~1. ~zl
originates, and in [14] it is proved that the construction terminates and yields
~3 , ~4 as desired. It is fairly evident how to define the elementary diagrams; e.g., if
E = CL as in 1.2, then the following are examples (see Fig. 3). Here "0" denotes an
"empty" or "trivial" step, necessary to keep the reduction diagram in a rectangular

330

t.
m

BERGSTRA AND KLOP

FIGURE 2

shape. 0-steps also occur in elementary diagrams of the form, e.g. (see Fig. 4). The
reduction ~3 constructed above in £&(~I, .~2) is called the projection of ~I by ~2•
written: .~3 =·~I/9f2 . Similarly ~4 =9f2/9fI.

1.4.0. Sub-T RSs

Up to here we have only considered regular TRSs .E = (ff, "f/, IR), where term
formation is unrestricted. However, since most of the relevant properties of regular
TRSs derive from the notion of reduction diagram, it is sensible to enlarge the class
of regular TRSs such that they include also "sub-TRSs" .E' of .E, defined as follows:

Let T<: Ter(.E) be such that T is closed w.r.t. elementary diagrams. (I.e., if
t0 , t I, t 2 E T such that t0 -+ t 1> t0 -+ t 2 then all terms involved in £&(t0 -+ t 1> t0 -+ t 2)

are in T.) Then the restriction .E' of .E to T is called a sub-TRS of .E. We write
.E'i:;;E.

So, in the sequel a regular TRS may be either a "full" TRS where term for­
mulation is unrestricted or a sub-TRS of a "full" TRS. This means that TRSs, where
term formation is restricted by signature requirements are also in our scope.

The next three subsections 1.4.1, ... , 1.4.3 are preliminaries only for the Appendix.

1.4.1. The Pare/lei Moves Lemma

Let !Jf be a E-reduction 10 -+ · · · -+ ln and let s £:; t0 be a redex. Contraction of
redex s (i.e., replacing s by its one step reduct) will be displayed (sometimes) by the
notation 10 -+ ·" t~. Now consider £&(t0 -+ "l~, !Jf) (in Fig. 5). Then the reduction~,
(the projection of reduction step t 0 -+' t~ by ~) consists of a reduction of all the
"descendants" of s via ~-

Sab(Ic) a(Ic) (b(Ic))

0"'"'"" Sabe ac(bc)

FIGURE 3

CONDITIONAL REWRITE RULES

or nr even

la a a

FIGURE 4

a

1
'
'
'
'
'
' -- - -l

331

a

1.4.1.1. Descendants. The notion of "descendant (via.~)" is defined as follows:

(i) If t ~ s is a rule scheme and p(t) ~ p(s) an instantiation such that
t' £p(x) for some occurrence of a variable x in t, then t' gives rise to some copies,
called descendants of t', in p(s), depending on the possible occurrences of x in s.

(ii) Furthermore, if C 1 [C2 [p(t)]] ~ C 1[C2 [p(s)]], where C2 [] is not the
trivial context (i.e., p(t) ~ C2 [p(t))]), then C2 [p(s)] is the (unique) descendant of
C2[p(t)].

Notation. If M ~ N is a reduction step, A £ M, B £ N then A-· - · ~ B means
"Bis a descendant of A."

1.4.1.2. Remark. If B is a descendant of A, A is also called an ancestor of B.
Descendants of redexes are also called residuals. Note that the contractum p(s) of a
redex p(t) is not a descendant of p(t).

If in (ii) C2 [] is allowed to be the trivial context, the resulting notion will be
that of "quasi-descendants." So the contractum of a redex is a quasi-descendant of
that redex.

Note that residuals of a r;-redex are again r 1-redexes. Furthermore, note that in
the above reduction diagram, Ji' consists of a construction of di.~joint residuals
s 1 , s2 , ... of s. (This would not be the case in the presence of bound variables as in A­
calculus.)

1.4.2. Equivalent Reductions

The very useful notion of "equivalence of reductions" was introduced first in [15].
Intuitively, two reductions !J,£1 , ;J/[2 , both from t to t', are equivalent (written
~1 ~ !?12) when the "same" reduction steps are performed but possibly in a per­
muted order. Since redexes may be nested and contraction of one redex may mul-

t'
0

FtGURE 5

t
n

t'
n

R' = t • t 0 I R •

332 BERGSTRA AND KLOP

tiply subredexes, it is not quite clear what "permuted" means; but via the notion of
reduction diagram this can be made precise:

(so E0(~ 1 , ;J.!>2) has empty right and lower sides).

1.4.3. Finite Developments

Let t be a .E-term and let IR be a set of redex occurrences in t. Then a reduction of
t in which only residuals of redexes in IR are contracted, is called a development (oft
w.r.t. IR). It is not hard to prove that every development oft w.r.t. IR must be finite
(see, e.g., [3, 14, 16]).

A development t0 --+ · · · --+ t,, of t0 w.r.t. IR is called complete if it cannot be
prolonged (i.e., in t,, there are no residuals of redexes in IR left). All complete
developments oft w.r.t. IR and in the same result. We even have

1.4.3.1. PROPOSITION. All complete developments of t w.r.t. IR, a set of redex
occurrences in t, are equivalent.

For a proof, see e.g., [14]. I

1.5. Nonlinear Reductions

1.5.1. Type O'TRSs

For the purpose of a classification to be used in this paper, we will call a regular
TRS to be of type 0. We will in the sequel briefly be concerned with a class of TRSs
which will be called to be of type O' and which is obtained as follows from type 0
TRSs.

Let ..[= <.'fF, 'f', IR) be a TRS of type 0. Let ..[' be a TRS ($', "'f', IR') whose set
of rule schemes IR' is obtained from IR by identifying some of the variables occurring
in the rule schemes which were previously different. So ..[' is no longer left-linear.

1.5.1.0. EXAMPLE. .E has set of rule schemes IR = { D(x, y)--+ E, C(x) --+
D(x,C(x)), B--+C(B)}. Identifying x,y we obtain..[' with rule schemes IR=
{D(x,x)--+E, C(x)--+D(x, C(x)), B--+C(B)}.

Now ..[is of type 0, and hence ..[I= CR. However, for the O' TRS ..[' the CR
property does not hold; for, consider CB--+ D(B, CB)--+ D(CB, CB)--+ E and CB--+
C(CB)--+C(D(B,CB))--+C(D(CB,CB))--+C(E). Then C(E), E have no common
reduct, as can easily be proved.

1.5.2. Type O" T RSs

Now let I=($', 'f/', IR) be a TRS of type O'.

CONDITIONAL REWRITE RULES 333

1.5.2.0. DEFINITION. (i) Let t-+ s E IR be a non-leftlinear rule scheme. Let P be
the leading symbol of t. Then P is called a nonlinear operator.

(ii) Now suppose that Eis a ranked TRS of type O'. Then Eis called of type
O" if none of its nonlinear operators occurs in a RHS of some rule scheme in IR.

The following theorem is a corollary of a result in [14], as noted by [5].

1.5.2.1. THEOREM. Let E be of type O". Then E f= CR.

1.5.2.2. Remark. The hypothesis that E is ranked in Definition 1.5.2.0 (ii) is
essential for the confluency of O"-reductions. For, consider E =CL (as in 1.2)
augmented by the rule Dxx-+ E. Then, as demonstrated in [14], the counterexam­
ple to CR for E' in Example 1.5.1.0 can be simulated for the present E =
CL+ Dxx-+ E. Yet the only nonlinear operator Din E occurs in no RHS of a rule
scheme.

Translating E to a ranked TRS EA, we get the rule schemes of CL A (see 1.2)
augmented by A((A(D, x), x)-+ E. Now A is the nonlinear operator (not D) and
indeed A occurs in several RHSs of rule schemes of EA, as has to be the case since
E !*' CR implies evidently that also EA !*' CR.

2. CONDITIONAL TERM REWRITING SYSTEMS

Algebraic specifications of abstract data types often contain not only equation
schemes t(x)=s(x) (which can be modeled by reduction schemes t(x)-+s(x)), but
also conditional equation schemes Q(x) => t(x) = s(x), where Q is some predicate of
the variables x. Indeed, conditional reduction rule schemes of the form Q(x) =>

t(x)-+ s(x) are considered in [16]. There some "well-behavior" of the Q(x) is
explicitly required in order to have confluence and other properties of the generated
reductions.

We will consider reduction rule schemes such as they can be associated to what is
called in [7] positive conditional equations. These are of the form

!1 =Si/\ ... /\ t 11 =s 11 =>t=s (*)

where t ;, s; (i = 1,. .. , n) and t, s are open terms. The basic assumption that we will
make (just as in [16, 18]) to deal with positive conditional equation schemes, is
that the RHSs t = s of these implications, when viewed as reduction rule schemes
t -+ s, constitute a TRS of type 0. The condition /'/\7 = 1 t; = s; will not be subject to
restrictions. In particular it may contain variables not occurring in t = s.

In order to treat (*) as a conditional reduction rule scheme, some possibilities con­
cerning the LHS /'/\ t; = s; arise, as expressed in the following definition. It will turn
out (in 3.6) that only two of the four possibilities are sensible and interesting.

2.1. DEFINITION. (i) A conditional TRS Eis a triple(§","/!", IR), where§" is a

334 BERGSTRA AND KLOP

set of operators and 'I· a set of variables and IR is a set of conditional reduction rule
schemes of the form

Here D is =(convertibility), l (having a common reduct) or -->-+. J; is called,
respectively, to be of type I, II, or III.

(ii) If r is a conditional reduction rule scheme, r" (the unconditional part of
r) is the RHS t-+s of r. Likewise IR" = {ru lrEIR} and I:u = <:?, r, !Ru)·

(iii) As before, Ter(J:) is the set of terms of 1:, Terc(J:) the set of closed terms
and p denotes an instantiation.

(iv) An unconditional normal form of I: is a normal form of l~u· (I.e. a term
which cannot be unified with the L HS t of the RHS t---+ s of some r E IR.)

We will mainly be interested in the following subclass of type III TRSs:

2.2. DEFINITION. Let J; be of type III where in every conditional rule scheme

the n; (i = 1, ... , k) are dosed unconditional normal forms. Then I: is called to be of
type ml/"

2.3. EXAMPLES. (i) This example of an algebraic specification, modeled as a type
III 11 TRS, is given in [18]. The III,,-TRSs there considered, have conditional rule
schemes of the form

f3 -->-+ true~ t---+ s

where f3 is of boolean type; an important difference with the present paper is the
hierarchical structure underlying the III 11 -TRSs studied in [18]. (See Sect. 2.6
below.)

BOUNDED-ST ACK

sorts: b-stack, entry, boo!, int
constants: 0, ME int, true E boo/, 0 E b-stack, EB E entry
functions: PUSH: b-stack x entry-+ b-stack

POP: b-stack-+ b-stack
TOP: b-stack-+ entry
< : int x int ---+ boo/ (less than)
#: b-stack--+ int (#: size)
S: int-+ int (S: successor)

CONDITIONAL REWRITE RULES

axioms: # (0)--+ 0
#(PUSH(x, y))--+S(#(x))
M--+ S(S(S(S(O))))
POP(0)--+ 0
(x) < M--+-> true= POP(PUSH(x, y))--+ x
TOP(0)--+ E8
(x) < M--+-> true= TOP(PUSH(x, y))--+ y

335

(ii) The following example is included merely for illustrative purposes.
'Trivial combinatory logic," TCL, has the same operators I, K, Sas CL in 1.2, and
has conditional rule schemes:

a --+-> I /\ b --+-> I /\ c --+-> I= Sabe --+ ac(be)

=Kah --+a

=la --+a

TCL is a type III 11 TRS.

(iii) CL+ the conditional rule scheme x l y = D(x, y)--+ Eis a type II TRS.

2.4. Generating the rules from the Conditional Rule Schemes

If r = M7= 1 t; --+-> n; = t--+ s is a type III,, conditional rule scheme and p is an
instantiation, then

k

p(r) = m p(t;) -H n; = p(t)--+ p(s)
i= 1

is called a conditional closed rule. The word "closed" will sometimes be dropped; but
the presence of conditions will always explicitly be mentioned. So a rule has the
form p(t)--+ p(s), without conditions. The rules p(t)--+ p(s) which give rise to the
reduction steps C[p(t)]--+ C[p(s)], are generated from IR, the set of conditional
reduction rule schemes, as follows.

First we recall the notation ~, for the set of closed instances of the conditional
reduction rule schemes in IR, and .0?0 for the contextual, transitive reflextive closure
of a binary relation f!ll on Terc(.E) (a set of rules). In order to bring out the "least
fixed point" aspect of the reduction --+ that is determined by IR, we define

2.4.1. DEFINITION (Application of sets of conditional rules). (i) Let.°[be a set
of closed conditional rules MI; --+-> n; = t--+ s and let qy be a set of closed rules
t1 --+ s1 (j E /). Then :il'(1Z?/) ("3£ applied to qy") is the following set of closed rules:

I-> s E '.f('il/) = t--. s E {I/, or: there is a conditional rule Mi< k t, _,_. n, =>- t--. s in :![such that
1, --+> n, E ;1/0 for all i < k.

336 BERGSTRA AND KLOP

(ii) Now let .E= (ffe, j/', IR) be a TRS of type IIIn. Then ~(.E) is the set of
rules of E, and we define

new

(iii) Now the reduction relation -+ of.Eis ~(.Er (the contextual closure of
.~(L')) and -H is ~(Er* (= ~(.E)0).

(iv) We will define the intermediate reductions -+ k (k E w):

(So -+ 0 = 0m = 0 and --Ho= 0"'* = 0* = = .)
(v) Red(L') is the set of redexes, i.e., the LHSs of elements of ~(L'). NF(.E) is

the set of of normal forms, i.e., terms not containing a redex.

2.4.1.1. Remark. (i) Note that -+ = Ukew -+ k·

(ii) Definition 2.4.1 is given for type III<nl conditional rule schemes, but it is
obvious how to adapt the definition to the case of types I, II.

2.4.1.2. EXAMPLE. Consider TCL as in Example 2.3(ii). Then, e.g., SIJI -tt I,
S(SIJ!) II -tt I. However SSII is a normal form, albeit not an unconditional one.

2.5. Embedding Conditional T RSs in Unconditional Ones

By introducing some more operators in a conditional TRS of type II or III, we
can eliminate the conditions. That is, the conditional TRSs can be embedded in
unconditional ones. We will not explore the more formal aspects of this embedding,
but use it as a heuristic tool to construct the counterexamples to the CR-property
for some type II and type III TRSs in the next section, and moreover we will use
the embedding in order to state a natural criterion for decidability of the set of nor­
mal forms in a type IIIn TRS I, in Section 4.

2.5.1. DEFINITION. Let E = (ffe, "f/, IR = {r; Ii E J}) be a TRS of type III.

(i) To each conditional rule scheme

k

r;: /'/:\ tj -tt s1 => t-+ s
j= I

we associate the pair of rule schemes r;, r;' (i E J):

r;: t -+ b; (t 1 ,. • ., t k) s

r;': D; (s 1 ,. .. , sd-+ I.

CONDITIONAL REWRITE RULES

(ii) Ea=(~, "Y, !Ra), where

ffeo =ff' U {J} U {c5; iiEJ}

IR8 = {r;, r;' lieJ} u {Ix-+x}.

2.5.2. DEFINITION. Let I= (ff', "f!', IR = { r; Ii E J}) be a TRS of type II:

(i) To each conditional rule scheme

k

r;: M t1 ! s1 => t-+ s
J=!

we associate the pair of rule schemes r;, r;' (i E J):

(ii) E 0 is defined analogous to Definition 2.5.1.

337

To understand the next proposition we recall our basic assumption that I u• the
unconditional part of E, is a TRS of type 0.

2.5.3. PROPOSITION. (i) Let Ebe of type Illw Then La is of type 0.

(ii) Let Ebe of type II. Then La is of type O' (but not type 0 11).

Proof Obvious. I
2.5.3.1. Remark. If E is of type III, I a may be ambiguous as well as non:left­

linear.

2.5.4. PROPOSITION. Let E be of type Illn. Then for all t, s E Ter(I):

Proof A routine induction on n (in --++ n); each I-reduction step can be
simulated in Ea, by construction. I

2.5.4.1. Remark. The reverse implication (<=) in Proposition 2.5.4 holds also,
but since we have no need for it, we will omit a proof.

2.6. Hierarchical Conditional TRSs

In [18] an interesting class of IIIn-TRSs is introduced and analyzed, namely
conditional TRSs with a hierarchical structure. In order to define these
hierarchically structured TRSs, first the following definition.

2.6.1. DEFINITION. (i) Let IR be a set of conditional rule schemes, and T £.

338 BERGSTRA AND KLOP

Terc(L') some set of terms. Then IR r (r;; iR) is the set of all conditional rules obtained
by instantiations p: Y -+ T.

(ii) If L'=(:Ji',Y,IR) and L"=(:Ji'',"f!'",IR') are TRSs, then L'r;;L"«:>
,;ffe'r;;:Ji'' and !Rr;;IR'. Now Pletat et al. consider in [18] TRSs obtained as follows:

Given is a finite chain L'0 £L'1 £ ... r;;En, where L';=(:fi';,Y,IR;), i~n, 11\\! 0

contains only unconditional rule schemes, R;+ 1 (i < n) contains conditional rule
schemes /'/:\ tj -# nj => t-+ s of type Hin such that the conditions tj ~ nj contain
only terms ETer(E;). (In fact the E; (i~n) in the definition of [18] are subject to
signature restrictions; this does not seem essential, however.)

Furthermore, let Ebe En; then the set of closed rules of L', Rh(L'), is defined by
the following inductive definition. (Cf. Definition 2.4.1; we write Rh(E) instead of
R(L') here to denote that the hierarchy has to be taken into account.) Let T;
abbreviate Ter°(E;), i = 0, ... , n:

Rh(Eo) = 1R60

Rh(L';+ i) = Rh(E;) u IRT.;. I (Rh(L';)).

In order to have the CR property, [18] requires the property of "forward-preser­
ving":

for all i < n. This property is implied by a syntactic requirement, viz. if
If:\ tj -# nj => t-+ s is a conditional rule scheme in IR; + 1 , then t contains a "new"
operator E~+ 1 -ff;.

We note that the hierarchical approach does not yield always the same con­
gruence on the set of terms as our definition. Namely: let .sil be an algebraic
specification with conditional equations. Suppose to .sil we can associate a type Hin
TRS E.<1• as in Example 2.3(i) ("BOUNDED STACK") which was taken from
[18]. Then the reduction -+ which we have constructed as a "least fixed point,"
yields the same congruence as the initial algebra semantics of d. We will not give
the routine proof of this fact here.

However, when .sil is "partitioned" so as to obtain a hierarchical TRS L'.'-'• the
reduction relation given by Rh(I:.,,) may yield a congruence which is strictly coarser
than the congruence of the initial algebra semantics. A simple example to show this
is:

2.6.2. EXAMPLE. E 0 =({P,Q,0}, r, {P(Qx)-+0}),

L' 1 = ({P, Q, 0, A, B, C}, "Y, {P(Qx)-+ 0, C-+ C,

P(x) ~ 0=> A(x)-+ B})

Now the chain L'0 £1: 1 determines a hierarchical TRS in the sense of [18], which

CONDITIONAL REWRITE RULES 339

is "forward complete." According to our Definition2.4.1, R(E1) contains
A(QC)-+ B, since also P(QC)-+ 0 E R(E 1).

For the hierarchical TRS, P(QC)-+ 0 tf: Rh(,E0), since C rt Terc(E0). Hence
A (QC) -+ B rt Rh(E i).

Probably it will be possible to extend the definition of hierarchical TRS in a sim­
ple way so as to obtain coincidence of the congruence thus determined and the con­
gruence of the initial algebra semantics.

3. CONFLUENCE

Let us for the moment consider conditional TRSs, where the condition Q in a
conditional reduction rule scheme

Q(x, y) = t(x)-+ s(x)

is an arbitrary predicate. Here the variables y do not occur in the RHS of the
implication. (Note that the intended meaning of the quantification of the variables
x, y is as follows:

Vx, y[Q(x, y)= t(x)-+ s(x)]

which is by predicate logic equivalent to Vx[(:ly Q(x, y) = t(x)-+ s(x)].)

Let E be a conditional TRS, where the conditional rule schemes have the form
Q(x, y) = t(x)-+ s(x), and such that the unconditional part E" is of type 0. Note
that if p is an instantiation such that Q(px, py) holds (whence A= p(t(x))-+
p(s(x)) = B is a rule of E) and Cs; A is a proper subredex, then because E u is of
type 0, Cs::::p(x;) for some X;EX (=x1'···,xnl·

Now suppose that we have two diverging reduction steps as in Fig. 6.
Then the construction of the corresponding elementary diagram needs the

validity of the condition

Q(p(x 1), ... , p(x;)', .. ., p(xn), p(y)),

where p(x;)' results from p(x;) by contracting C.

~ (µ~' oy)
A ~ B

contraction Dl
of C :

_________ ;
A' -?IQ D

FIGURE 6

340 BERGSTRA AND KLOP

3.1. DEFINITION. If in the above situation for every p the validity of Q is preser­
ved, then Q is called a stable condition.

3.2. THEOREM (O'Donnell [16]). Let Ebe a conditional TRS with conditional
rule schemes Q(x, y) = t(x) --> s(x) such that E u is of type 0 and all conditions Q are
stable. Then E-reductions are confluent, and common reducts can be found by the
canonical reduction diagram construction as in 1.4.

Proof The stability of the conditions ensures that elementary diagrams can be
constructed, as if we were working in E u. I

3.3. COROLLARY. Type I reductions are confluent.

Proof Consider a type I conditional rule scheme:

Then the condition Q(x, y) defined by the LHS of this implication is obviously
stable, since if t;(px, py) = s;(px, py) then reduction in one of the p(x1) does not dis­
turb the equality (as it is the transitive reflexive symmetric closure of reduction). I

a

c

T'.
1

T.
1

FIGURE 7

1

s.
1

s.
1

s:
1

s:
1

CONDITIONAL REWRITE RULES 341

A B
r

n

m v m

c n D

FIGURE 8

3.4. Remark. Intuitively, confluence for type III reductions 1s not plausible,
since if

T; = t;(p(x, y))-++ s;(p(x, y)) = S;

(cf. the proof of Corollary 3.3) then reduction in one of the p(xj) may very well dis­
turb the condition, as suggested in Fig. 7a. Then T; -++ s; will in general not be the
case; even if CR would hold we have only the situation as in Fig. 7b. For IIIn­
reductions however, S; is a closed normal form and hence we may hope to have
stability (see Fig. 7c). Likewise, for II-reductions, stability is not a priori impossible;
see Fig. 7d. Somewhat surprisingly, it will turn out that in the case of II-reductions,
CR fails. First we establish the confluency of type IIIn reductions.

3.5. THEOREM. Let I: be a type IIIn TRS. Then I:-reductions are confluent, and
common reducts can be found by the canonical reduction diagram construction as in
1.4.

Proof We recall the definition of the intermediate reduction relations -4

(n E w) in Definition 2.4.1.

CLAIM. Let A -4 nB and A -4 m c. So A ->Band A ->c. Let <?2 he the elementary

B '
C [S '] .=1
'---v--'

P' (x)

------ --- -?
n?

FIGURE 9

342 BERGSTRA AND KLOP

LJ I m m

~
n-1

FIGURE 10

diagram determined by these two reduction steps. Then for the common reduct D (see
fig. 8) we have not only B -tt D and C -+? D, but even B -tt ,,, D and C -+? n D.

Clearly, the result in the theorem follows at once from the claim, since we already
know that diagram constructions (as in 1.4) by repeatedly adjoining elementary
diagrams, must terminate in a completed diagram.

Proof of the Claim. By induction to n + m. Basis: n = m = 0. In this case the
claim is vacuously true, since -+ 0 is the empty relation.

Induction step. Suppose the claim is true for all n, m such that n + m::::;; k. Con­
sider n, m with n + m = k + l. Say n > 0. The only interesting case is that where A is
a redex, A = p(t), containing a proper subredex S which is contracted in the step
A-+ me (see Fig. 9).

In the reduction B -tt D, where copies of Sare contracted, there is no problem:
B-+? mD.

The question is, however, whether the step C--+ D is an n-step. Let the step
A-+ B be generated by the conditional rule scheme /'l:\;,;;;,.k t;-+? n; => t-+ s, via
instantiation p. This means, by definition of ~ n• that p(t;)-+? 11 _ 1n; for i<k.
Because Lu is of the type 0, we have Sc;; p(x) for some x in t. Say p(x) = C[S] for
some context C [].

We have to prove that also p'(t;)-tt 11 __ 1n; for i<k, where p'(x)=:C[S'], S' is
the contractum of S, and p'(y) ::p(y) for y;i!=x. For, then C=p'(t)-+ nD will be a
consequence.

Now the induction hypothesis states that we have (see Fig. 10) (i.e., the claim
holds for n - 1, m). Say t; contains three occurrences of x: t; = ... x ... x ... x ... and let, as
before, p(x) be C[S]. Then p(t;) =---C[S]---C[S]---C[S]---. Let
q' =---C[S']---C[S]---C[S]--- and q" =---C[S']---C[S']---C[S]----,
and p'(t;) =---C[S']---C[S']---C[S']---. Now we can construct a diagram,
e.g., as in Fig. 11. Hence p' (t;) -tt n _ 1 n; (i < k). This proves the claim and thereby
the theorem. I

We will now show that type II and type III reductions are not confluent.

3.6. EXAMPLE. Consider the type II TRS I:, where

IR = {x ! C(x) => C(x)--+ E
B-+ C(B).

CONDITIONAL REWRITE RULES

n-1 n-1
m m

n-1 n-1
m m m

n-1 n-1

m

1,

n-1 n-1

Then I: 6 is a type O' TRS with

IRi; =

n-1
m m

n-1
m

m

n-1

FIGURE 11

C(x)--+ c5(x, C(x))E

b(x, x)--+ I

Ix-+x

B-+ C(B).

n-1
I
I
I
I
I
I

I
I

I
I

I
I

I
I

n.
1

0, empty
reduction

343

(Note that we use ranked and applicative notation simultaneously; cf. 1.2.) Cf.
Example 1.5.1.0. As in Example 1.5.1.0, I: i; ~ CR:

B--+ C(B)-+ c5(B, C(B))E--+ <5(C(B), C(B))E--+ IE--+ E

1
C(E)

and now C(E) l E as is easily seen. By analogy, we have also I: ~ CR:

B-+ C(B) (since Bi C(B)) E

!

C(C(B))

!

C(E)

and now C(E) l E, as can easily be proved.

344 BERGSTRA AND KLOP

3.6.l. A variant of this counterexample, the type III TRS J;' with

{
x->-> C(x) => C(x)-+ E

IR=
B-r C(B)

shows that type III reductions are in general not confluent.

3.6.2. EXAMPLE. Consider the type II TRS as in Example 2.3 (iii): I:=
CL+ { x 1 y => Dx y -+ E}. Then, intuitively, the CR-problem for I: is the same as for
J;0 =CL+ { Dxy-+ b(x, y)E, b(x, x)-+ I}. Again, it is intuitively clear that I:6 has
the same CR-problem as 'Lb=CL+ {Dxy-+b'(x, y), b'(x,x)-+E}.

But this is nothing else than z;, =CL+ { Dxx-+ E} for which J;~ ~ CR by a
counterexample analogous to the one in Example 1.5.1.0. (Cf. also Remark 1.5.2.2.)
Hence J; ~CR.

4. THE COMPLEXITY OF NORMAL FORMS

Given an unconditional TRS I:, the set NF(I) of normal forms is clearly
decidable. This is no longer true when I: is of type I or III,,, in which cases the
complexity of NF(I:) can even be complete TI?- (By the nonconfluence result of the
last section we will no longer consider type II TRSs and type III TRSs in general.)

We will give some conditions for J; in order to have a decidable set of normal
forms, which is important if one wants to use terminating reduction strategies (see
Sect. 5).

4.1. DEFINITION. Let J; be a TRS (of type 0, I, III,,):

(i) Then the set of normal forms of E, NF(J;), is the set of I-terms M such
that 13N, M-+ N (i.e., admits no reduction step from M).

(ii) Let J;u be the unconditional TRS (so of type 0) associated with I. Then
NF(J;u) s; NF(E) is called the set of unconditional normal forms of I:.

(iii) Let J; have the conditional rule schemes r1 ,. •• , r,,. Then METer(J;) is a
r;-preredex if Mis a(r;) 11 -redex of I: 11 • (Recall that (r;)u is the unconditional part of
r;.)

In the case of III,,-TRSs, which are our main interest, the normal forms are
naturally partitioned in a hierarchy, as follows.

4.2. DEFINITION. Let J; be a III,,-TRS:

(i) By induction on n we will define the set NF ,,(I) s; NF(I:) of normal forms
of order n.

Basis. NF 0 (I:) = NF(Eu), the set of unconditional normal forms.

CONDITIONAL REWRITE RULES 345

Induction step. Suppose the set of normal forms of order n, NF n(.E), is defined.
Then NF n + 1 (.E) is defined by:

ME NFn + 1 (E) ifT whenever M' <;;, M is an r-preredex (where r is a conditional rule scheme of
E and r is t 1 _,... n 1 I\ .. • I\ tk -++ nk =>I-> s, so M' is an instance of t, say M' = p(I)), then
for some je { !, ... , k }:

We will call a normal form of order n also a n-normal form.

(ii) NFA.E), the set of normal forms of finite order, is Unew NFn(.E).

4.2.1. PROPOSITION. (i) NF0 £NF1 £NF2 £

(ii) NFl £ NF.

Proof (i) Obvious; (ii) Follows by a simple induction from the CR property for
lIIn TRSs (Theorem 3.5), noting that CR implies unicity of normal forms. I

So we have a "spectrum" of irreducibility as in Fig. 12.

4.3. EXAMPLE. Consider TCL as in Example 2.3(ii). Then Sii is a 0-normal
form, Q =SI/ (SI!) is a I-normal form, SQ Q Q is a 2-normal form. In fact, every
non-reducible term will be in this case a normal form of finite order (by
Proposition 4.6 below).

4.4. PROPOSITION. Let .E = (!F, "f/, iRl) be of type Illn. Suppose IR is finite. Then:

(i) The set NFA.E) of normal forms of finite order is semi-decidable.

(ii) The set NF(.E) of normal forms may be undecidable.

Proof (i) is apparent from the definition. (ii). Consider the TRS CL, as in 1.2. It
is well known that the natural numbers can be represented by CL-terms n, which
are in normal form; furthermore, there exists a CL-term E, also in normal form,
which acts as an enumerator in the sense that, if I l Ter(CL) ~ N is a recursive
coding of CL-terms:

El Ml-++ M

for all ME Ter (CL). For a proof, see [1, Theorem 8.1.6].

normal forms (NF) reducible terms

FIGURE 12

346 BERGSTRA AND KLOP

Now consider I= CL extended by a new operator T and the conditional rule

Ex --+-+ 0 => Tx --+ 1.

Note that the I-reduction -4, thus obtained, satisfies

Ex --+-+ 0 <=> Tx --+ I.

Hence, if NF(J:) were decidable, the set

{METer(CL) I EM--+-+ O}

and in particular

{nETer(CL) I En--+-+ O}

would be decidable. Since I: f= CR (Theorem 3.5) and noting that, hence, En --+-+ M
and En -Ho 0 implies M --+-+ 0, this would mean that

{ME Ter(CL) IM--+-+ O}

is a decidable set, which is not true. (This follows, e.g., from a theorem of Scott, see
[1, Theorem 6.6.2], as follows:

{(0~q·~Ter(CL) and PE is closed under equality, then PE is not recursive.)
So NF(E) is not decidable. I
4.4.1. Remark. If NF(E) is not decidable, it is clearly also not semi-decidable,

since the complement Ter (I:) - NF(J:) is semi-decidable. Being the complement of
a semi-decidable set (i.e., of complexity I?), NF(E) has always compexity f]?. For
I: as in the proof of Proposition 4.4 (ii), it is not hard to show that NF(E) is com­
plete f1?.

Next we will state some conditions for Illn-TRSs which ensure the decidability of
the set of normal forms.

4.5. DEFINITION. (i) Let I: be a Illn-TRS. Then I "has subterm conditions" iff for
every instance of a conditional rule scheme

we have

p(t;)Sf.p{t) (i.e., p(t;) is a proper subterm of p(t)) for all i= 1,. .. , k.

(ii) As a special case of (i), we say that I "has variable conditions" iff every
conditional rule scheme is of the form

where x 1,. • ., xk are variables occurring in t.

CONDITIONAL REWRITE RULES

4.6. PROPOSITION. If 1: is a 111 11 -TRS having subterm conditions, then:

(i) NF(l:) = NF1 (1:)

(ii) NF(l:) is decidable.

347

Proof (i) Let M be a term which is not reducible, and suppose that Mis not a
normal form of finite order. Choose M minimal so, w.r.t. £. Hence all proper sub­
terms of Mare normal forms of finite order. Let m be the maximum of their orders.
Then clearly Mis a normal form of order m + 1, since E has subterm conditions.

(ii) The set of reducible terms is semi-decidable Uust generate all possible
finite reductions, as in Definition2.4.l). By Proposition4.4(i) and (i) of this
proposition, its complement NF is also semi-decidable. Hence both the set of
reducible terms and NF are decidable. I

4.6.1. EXAMPLE. TCL, in Example 2.3 (ii), has variable conditions. Hence NF is
decidable.

4.7. DEFINITION. Let l: be a TRS:

(i) Then EI= SN ("E has the strong normalization property") iff there are no
infinite I-reductions. Equivalently, iff every E-reduction terminates eventually (in
NF(E)).

(ii) EI= WN ("weak normalization") iff every ME Ter(E) has a normal form,
i.e., there exists an fJ,f = M-. · · · -. N with NE NF(l:).

4.8. DEFINITION. Let l: be a IIIl!-TRS. Then:

(i) El= SN0 iff every reduction terminates eventually in a 0-normal form;

(ii) EI= SN1 iff every reduction terminates eventually in a normal form of
finite order.

4.9. THEOREM. (Criteria for NF-decidability in III 11 -reductions). Let Ebe a III,,­
TRS. Then the following implications hold. (see Fig.13).

Proof (v)=(vii)=(viii) is Proposition 4.6. (iii)=(vi), (i)=(iv)=(vi), and
(iv)= (vii) follow trivially from the definitions. To prove (ii)= (iv), assume
E 6 I= SN. By Proposition 2.5.4, I I= SN. Hence it suffices to prove NF1 (I) =
NF(E). For a proof by contradiction, suppose there is a normal form M without
finite order. Say M=C[p(t)] for some conditional rule scheme
t 1 -++n 1 " ••• "tk -++nk=t-s and some context C[]. By SN, all p(t;)
(i = 1, ... , k) have a normal form n;. One of the n; must be wrong (n; =I= n;) and
without finite order. Say n;0 is such a wrong normal form without finite order. Write
M'::n;0 •

Since M' is a normal form without finite order, the same reasoning as for M

348 BERGSTRA AND KLOP

J

I (iii)
tu F SN

I (iv)
i: F SNf

<vT ~ L has subte
conditions

[rriv. ~
/

iv.
il triv. ~op. 4.6

l(vi) I
Z F SN

(viii)
NF (/:)is dee id able

fIGlJRE 13

applies to M'. Continuing in this way we find an infinite sequence M, M', M",
This sequence is reflected in an infinite reduction in E 6 as follows (here we use
Proposition 2.5.4 which says that reductions in I can be simulated in E,5):

and so on. I

M = C[p(t)]--> C[o(p(ti), ... , p(t;0), ... , p(td) p(s)]

j Prnpo•ition 2.5.4

C[o(p(t1), ... , M', ... , p(td) p(s)J

4.9.1. Remark. Most of the valid implications between (i),. . ., (viii) are displayed
in the diagram of implications in Theorem 4.9. Several of the non-implications
follow by considering the next example. A positive answer to the following question
would yield a useful criterion for NF-decidability: does (iii)=> (viii) hold?
((iii)-=/;. (vii) as the next example shows.)

4.10. EXAMPLE. (i) Let E have as operators: A, B, C, D, E, F, 0, all of arity 0,
and conditional rule schemes:

c--O=A.....,B

Then NF(E) ={A, B, D, E, 0} and NFr(E) = { B, E, 0 }. Since NF(E) # NF1 (.E), we
must have E0 ~ SN. Indeed this is the case; I 0 has rule schemes:

CONDITIONAL REWRITE RULES

A-+ fJCB

60-+ I

lx-+x

D-+ fJ'FE

6'0-+ I

C-+D

F-+A

349

and now A-+bCB-+bDB-+b(lJ'FE)B-+b(fJ'AE)B-+ ···yields an infinite reduc­
tion.

(ii) I: has as only scheme the conditional rule scheme

L(L(x))-+-> 0:=;.L(x)-+-> 1.

Then L(O) is a normal form without finite order. In fact,

Ter(J:) = NF(J:); NF1(J:) = { 0, I}.

4.11. Remark. Also in the approach with hierarchical conditional TRSs
(Sect. 2.6), the problem of decidability of the set of redexes, RED(J:), and of the set
of normal forms, NF(J:), arises. (The example in the proof of Proposition 4.4(ii),
where NF(J:) was complete fl?, applies also in the hierarchical case.)

5. TERMINATION

In this section we will mention some criteria, given in [14], for termination, i.e.,
properties implying J; f= SN, which hold for I: of type 0 and which generalize to
types I, IIIfl" The proofs are verbatim the same as those for type 0 in [14] and will
not be repeated here.

We will suppose that some "oracle" is given telling us what the redexes of I: are
(i.e., the LHSs of the rules in R(J:) as defined in 2.4.1). Let RED(J:) be the set of J:­
redexes. In this connection, let us mention the

Question. Are the following equivalent?

(i) NF(J:) is decidable.

(ii) RED(J:) is decidable.
(ii)= (i) is trivial. Furthermore, it is easy to show that

I: f= SN and NF(J:) decidable:=;. RED(J:) decidable.

350 BERGSTRA AND KLOP

However, since we are concerned with termination criteria and, in the next section,
with terminating reduction strategies, this concern would trivialize when SN is
already assumed.)

5.1. DEFINITION. (i) A rule scheme t-+ s is non-erasing when t, s have the same
variables (e.g., Kx y -+ x is an erasing rule scheme).

(ii) A type 0 TRS J; is non-erasing when all its rule schemes are.

(iii) A type I or III,, TRS J: is non-erasing when J:" is non-erasing.

Notation. J: F= NE.

5.2. THEOREM. Let J: be of type I or III,,. Then: J: f= NE=> (J: f= WN <=>
J: f= SN). (For WN, SN see Definition 4.7.)

So in order to prove strong normalization for a non-erasing TRS of types I, III,,
it is sufficient to prove weak normalization.

5.3. DEFINITION. Let J: be of type I or III,,. J: f= WIN (weak innermost nor­
malization) iff every I-term has a normal form which can be found by reducing
innermost E-redexes.

5.4. THEOREM (O'Donnell [16]). Let J: be of types I or Ill,,. Then

J: f= WIN<=> J: f= SN.

5.5. DEFINITION. Let J; be of type I or III,,. J: f= DR (decreasing redexes) iff
there is a map d: RED(E)-+ N, such that

(i) if R' is a residual of R in some reduction step, then d(R)?: d(R');

(ii) if R' is created by contraction of R in some reduction step, then
d(R) > d(R').

5.6. THEOREM. Let J: be of type I or IIIn- Then

5.7. Terminating Reduction Strategies

Analogous to the previous section, also the main results about terminating reduc­
tion strategies for type 0 TRSs carry over to the case of I or III,, TRSs. In order to
execute strategies, we assume again an oracle deciding for us whether a J: u-redex is
also a E-redex.

For the definitions of the following strategies we refer to [14, 16, 18].

CONDITIONAL REWRITE RULES 351

5.7.1. THEOREM. Let 1: be a type I or Illn TRS. Then the following are ter­
minating reduction strategies (i.e., find the normal form when it exists):

(i) the "full substitution" strategy (or ''.full computation" strategy)

(ii) the "parallel outermost" strategy.

Proof (i) As for the type 0 case, see [14].

(ii) As for the type 0 case, see [14]; or see the Appendix. I

6. POSSIBLE EXTENSIONS

In this section we will mention some directions in which the preceding results can
be generalized, and a direction in which such a generalization fails.

6.1. Disjunctions. It is not hard to prove that also disjunctions may be allowed
in the LHS of a type I or Illn conditional reduction rule scheme, while retaining the
confluence results. E.g.,

x -tt 0 v (x -tt 1 /\ y -tt 0) => P(x, y)-> Q

is such a type Illn conditional rule scheme. The "effect" of this conditional rule
scheme is the same as that of the pair of conditional rule schemes

r0 : x -tt O=>P(x, y)-> Q

r1 :x-tt 1 Ay-ttO=>P(x,y)->Q.

(If I: contains such a pair r0 , r1 , where (r0)u = (ri)u, Lu will be ambiguous; but this
ambiguity is entirely harmless.)

6.2. Infinite disjunctions. In the same way we may admit infinite disjunctions in
the LHS of a type I or Illn conditional rule scheme. Thus we obtain rules like

W x-ttN=>P(x)->Q.
NeNF(Eul

(If x has an unconditional normal form, then P(x)-+ Q.)

6.3. Bound Variables. It is also possible to derive the preceding results (except
the one about WIN, in Theorem 5.4) for CRSs as in [14], i.e., TRSs with bound
variables, having reduction rule schemes like, e.g.,

(A.x. A(x))B-> A(B)

µx. A(x)-> A(µx. A(x))

C(A.x. M(x), A.y. N(y))-> A.y. M(N(y))

In the Appendix we generalize a result of O'Donnell to this case.

352 BERGSTRA AND KLOP

6.4. Ambiguous TRSs. In [9] a confluence theorem is proved for (uncon­
ditional) TRSs that are left-linear, but may be ambiguous (i.e., have critical pairs,
see [9]):

6.4.1. THEOREM (Huet [9]). If T is a left-linear TRS and for every critical pair
< P, Q) we have P if+ Q, then T is confluent.

(Here if+ denotes parallel reduction at disjoint occurrences.) We remark that the
confluence of TRSs as in Huet's theorem is immediately disturbed when conditions
are added of types I, or III 11 • The following TRS I: provides a simple counterexam­
ple to the CR property:

I:

P(Q(x))-+ P(R(x))

Q(H(x))-+ R(x)

S(x)-+> 0 = R(x)-+ R(H(x))

S(x)-+ 1.

The only critical pair of I:,, is <A, B) as in the diagram:

P(Q(H(x)))----> P(R(H(x))) = B

j I
I
I

A= P(R(x))--#--> P(R(H(x))) = B

Indeed A if+ B in I:"' hence I:" f= CR by Huet's theorem. However in E the terms
A, B have no common reduct, since the condition S(x) -+> 0 is never true.

7. APPENDIX: PARALLEL OUTERMOST AND LEFTMOST REDUCTIONS

In this Appendix we will give an account of O'Donnell's ingenious proof that
parallel outermost reductions are terminating whenever possible, and likewise for
leftmost reductions if an additional assumption is made. Our version of the proof
will illustrate our terminology of reduction diagrams, which, we feel, exhibits the
structure of the proof more clearly. Moreover, we will prove a strengthened version,
applying also to the case of term rewriting systems with bound variables (e.g., a
TRS containing Jc-calculus). This answers a suggestion in O'Donnell [16 (Further
Research, p. I 02]), namely to generalize his Theorem I 0 to "SRSs with pseudo­
residual maps." In fact, our generalization goes further than that; it applies also to
the class of "combinatory reduction systems" as in [14].

7.1. PROPOSITION. Let .'2! be an elementary reduction diagram as in Fig. 14 and let
R;£.M; (i=0,2,3) be redexes such that R 0 -·-· -+R 2 -·-· -+R 3 . (See

CONDITIONAL REWRITE RULES

MO ' Ml
~------~-

Ro-·-·-·-> R1
!

v
I
i
i

..., lb"

,i- Rr-·-·-·* RJ~,

FIGURE 14

M3

353

Definition 1.4.1.1.) Then there is a unique redex R 1 £ M 1 such that R 0 - • - • -+

Ri-·-· -+R3.

Proof Routine. I

7.2. DEFINITION. Let n be a predicate on pairs of terms M, R such that R £ M
and R is a redex. (If it is clear what Mis meant, we will call R such that n(M, R) a
"n:-redex.")

(i) n has property I if, in the situation of Proposition 7.1: (n(M0 , R 0) and
rc(M2, R2) and n:(M3 , R3))~rc(M 1 , Ri).

(ii) n has property II if in every reduction step M-+ RM' such that
1n(M,R), every redex S'£M' such that n(M',S') has an ancestor redex S£M
with n(M, S) (1 n:-steps cannot create new rc-redexes).

7.3. PROPOSITION (Separability of developments). Let re have property II. Then
every development .rJi = M 0 -+ · · · -+Mn can be separated into a "n-part" followed by
a "in-part"; i.e., there are reductions ~": M 0 =.N0 -+ Ro ••• -+ R<- 1Nk such that
rc(N;,R;) (i<k) and~, 11 : Nk-+R0 ···Nk+t=Mn such that -in(Nj,Rj) (k~
j < k + /). Moreover, f!ll is equivalent to f!ll" * f!ll...," ("*" denotes concatenation).

Proof Let f!ll be a development of some set IR of redexes in M 0 • Let these be
characterized by underlining their head symbol. Contracting each step an arbitrary
underlined n:-redex, must lead to a term in which all remaining underlined redexes
are 1 rc-redexes. (This is so by the "Finite Developments" Lemma 1.4.3.)

Then we start contracting the underlined 1 n-redexes. By property II, this
process will not create new underlined n:-redexes. Also this 1 n-part of the develop­
ment stops eventually.

The equivalence follows because all developments of the same IR are equivalent
(Proposition 1.4.3.l). I

7.3.1. Remark. For TRSs we do not need this proposition in the proof of
Theorem 7.8. When bound varables are present, we do.

354 BERGSTRA AND KLOP

7.4. EXAMPLE. (i) rr(M, R)-= R is a redex. Then properties I, II hold (I is
Proposition 7 .1 and II is vacuously true.)

(ii) n(M, R)-= R is an outermost redex in M. That property I holds can be
seen as follows: consider the situation as in the hypothesis of Proposition 7.1, where
moreover R0 , R 2 , R 3 are outermost. Let S; be the redex contracted in M 0 -+ M;,
i= 1, 2. Suppose R 1 (as in the Proposition) is not outermost. This can only be the
case if in M 1 a redex P is created which covers R;. However, in M 1 -+-> M 3 redex
R 1 becomes outermost again, which can only be the case if P is contracted. But this
is not so since in M 1 -H M 3 residuals of S2 are contracted (and P is not a residual
of S2 , being created).

Property II is easily verified; it follows by what in [16] is called the "outer"
property, which holds for every regular TRS.

(iii) n(m, R) ~ R is the leftmost redex of M. Without additional assumptions,
property II does not hold. Example (of [10]): I:= { F(x, B)-+ D, C-+ C, A-+ B}.
Then the step F(C, A)-+ F(C, B) is a counterexample.

7.5. DEFINITION. (i) Let f!Jl = M 0 -+ M 1 -+ · · · be a (finite or infinite) reduction.
Let Mj be some fixed term in f!Jl (j = 0, 1, 2, ...). Let L; s. M; for all i ~ j as far as M;
is defined, such that Lr · - · > Lk + 1 - · - • > · · ·. Then this sequence is called a trace
(of descendants) in f!Jl.

(ii) Let the L; as in (i) be redexes, and suppose n is a predicate as in
Definition 7.2. Then the trace ff' is a n-trace iff Vi~ j, n(M;, L;).

(iii) Let f!Jl be a reduction and n be a predicate. Then f!Jl is n-fair iff f!Jl con­
tains no infinite n-traces.

7.5.1. EXAMPLE. Let n be as in Example 7.4(i), (ii), (iii), respectively. Then n-fair
reductions are called in [16]: complete, respectively eventually outermost, respec­
tively leftmost reductions.

7.6. PROPOSITION. Let n be a predicate as in Definition 7.2 having property I. Let
f7iJ be an arbitrary reduction diagram as in the figure, where R; s. M; (i = 0, 2, 3) are
redexes such that R 0 - · - · -- R 2 - · - · -+-> R 3 is a n-trace. Then the unique trace
R0 -·-·-+-> R 1-·-· -H R 3 leading via M 1 , is also an-trace. (See Fig. 15.)

Proof Consider the completed reduction diagram E0. Then the trace of descen­
dants R0 - · - · -- R 2 - · - • -- R 3 can be pushed upwards in stages, each stage one
elementary diagram further. Result: a trace R 0 - · - • -++ R 1 - • - • -++ R 3 • (See
Fig. 16.) Moreover, since the initial trace was a n-trace the resulting trace is by
property I also a n-trace. I

7.7. PROPOSITION (n-traceability is invariant under equivalence of reductions). Let n
have property I. Let f!Jl and f!Jl' be equivalent finite reductions from M 0 to Mn- Let

CONDITIONAL REWRITE RULES 355

Ro--·- -·•R1
I I

I
'i) !

I I

'<if ~
R - -- -·-·-·» R

11 2 3~~

M2 M3

FIGURE 15

S s. M 0 , S' s. Mn be redexes such that there is a n-trace S- · - · --++ S' via ~. Then
there is also such a n-trace via ~', which is moreover unique.

Proof See Fig. 17. By Proposition 7.6, the n-trace from S to S' via Mn as dis­
played in Fig. 17 can be pushed down to a n-trace via M~. Since the right and bot­
tom side of~(~, ,?,f') consist of trivial steps, the result follows. I

7.8. THEOREM (O'Donnell [16]). Let n be a predicate satisfying properties I, II
of Definition 7.2. Then the class of n-fair reductions is closed under projections.

Proof See Fig. 18. Let 9f = M 0 -+ M 1 -+ .. · and S s. M 0 be a redex. Let 9f/ { S}
be a projection of 9f. Suppose ~ is n-fair.

Let Mk --++ Ak --++ Nk be a rearrangement of M 0 --++ Mk/{S} into a n-part
followed by a 1 n-part, according to Proposition 7.3. Since the rearranged reduc­
tion is equivalent with the original one, the lower side of ~(Mk --++ Ak --++ Nk>
Mk-+ Mk+ i) (the "curved" reduction Nk --++ Nk + 1 in Fig. 18) is equivalent to the
original ("straight") reduction Nk --++ Nk+ 1 • By Proposition 7.7, the trace
Re· - · --++ Rk + 1 via the curved reduction N k --++ N k + 1 is also n-fair.

Next we rearrange Mk+l -++Bk+I• given as Mk -++Ak/Mk-+Mk+I• into a

D

FIGURE 16

356

R'

M' :,, M
k n

M R
I

BERGSTRA AND KLOP

FtGURE 17

M
n

M
n

n-part followed by a -, n-part. Iteration of this procedure leads to the "staircase"
Ak -Bk+i -Ak+i -Bk+z - ···. (See Fig.18.) This staircase reaches .O/l after
finitely many steps, for otherwise git would contain an infinite trace of descendants
of S with property n, in contradiction with the n-fairness of !3£.

Now suppose that Pit' is not n-fair. Say git' contains an infinite n-trace
Rk,. . ., Rk + 1 , ... starting in Nk.

By property II for n, we find an-ancestor Pk s Ak of the n-redex Rk s Nk. (I.e.,
n(Ak> Pk) holds.)

By Proposition 7.6 the n-trace Pk-· - · --+-> Re· - · Rk + 1 can be pushed up to go
via Bk+i; result an-trace Pk-·-·--+-> Qk+ 1-·-·--+-> Rk+t·

Then Q k + 1 can be traced upward to Pk+ 1 in A k+ 1 , while retaining property n
and the history repeats itself. After finitely many steps we have found an ancestor P,
of R 1 such that n(M,, P 1). Continuing to apply Proposition 7.6, the remainder of the
infinite n-trace R 1- • - • --+-> R 1+ 1- • - • --+-> • · · is transferred to an infinite n-trace
P,- · - · -++ P1+ 1 - · - · --+-> through .O/l. Hence git is not n-fair, contradicting our
assumption. I

R'

l\+1

··- - -·-
ln '

~+l ,- ____ :_ __ ·-·-· .:,
!TI Ip

Bk+l : k+l

Ak ,__,---_·-------.. _-< :, Qk+ 1

: Pk

ln I

I ' :1\ !~+] :
L ---·--- .. -··- - .L----·-·-·------ __,,...;:...-:·------·-

Nk Nk+ I

FIGURE 18

r--------

1 p f.+]

:

'
I '
1R.e. I R.e.+1 L ___________ .L. ___________ L1 __ _

CONDITIONAL REWRITE RULES 357

7.9. PROPOSITION. Let f!ll = M 0 -> · · · be a reduction containing infinitely many
steps in which an outermost redex is contracted. Let Ss.M0 he a redex. Then f!ll/{S}
is again infinite.

Proof The proof for TRSs with bound varables (CRSs) is considerably more
complicated than that for ordinary TRSs. Therefore we separate the proofs, even
though the one for CRSs entails that for TRSs.

I. For TRSs (see Fig. 19). Let f!ll be as in Proposition 7.9 and suppose f!ll' =

24!/{S} is the empty reduction after some M~. Consider l~k. If R 1, the redex con­
tracted in M,--> M 1+ 1 , is outermost, then the reduction M; --» M;+ 1 can only be
empty if R, is one of the residuals of S contracted in f!lt1• In that case 24!1+ 1 has one
step less than .'!41•

Otherwise, R, is properly contained in some residual of S contracted in f!ll1• (Here
the proof for the case with bound variables would break down.) Hence since f!lt con­
tains infinitely many outermost steps, after some q, f!ltq is empty. So ;'!-f' coincides
after M 4 with a! and is therefore also infinite. I

II. For CRSs (see again Fig. 19). The complication is now due to the fact
that the residuals Si of S which are contracted in the development f!lln, n;;:,: 1, may
be nested. Therefore R,,, even when it is a proper subredex in one of the Si contrac­
ted in f!ll,,, may contain some residuals Si and so may multiply them. Hence f!ltn+ 1

could have more steps than .'!-fn.

The idea of the following proof is that this does not matter: if R,, is a proper sub­
redex of an Si, and R,, is not itself a residual of S, then M~ --» M;,+ 1 can only be
empty because Rn is erased by f!lt,,. That means that [Jf,,, and the Si contained by R,,
are in a "dark spot" of Mn where it does not matter what happens.

We will keep track of the residuals of Sin [Jf, by underlining their headsymbol. So
each .'!4,, (n ~ 0) is a development of the underlined redexes in M,,.

Let k be as before, in I. In the terms M 1 (l ~ k) we will distinguish (or rather,
obscure) some subterms by surrounding them by a box, as follows. Boxes may be
nested, e.g., as in

H(I F(A, G([]])) I)
We will call a subterm in a box "obscured."

Rf { s) = R'

M'
0

RI

,,

Rk Rk+I

, " - - -- -

Mk " Mk+1
FIGURE 19

~

M' t M'
£+ l

358 BERGSTRA AND KLOP

Basis Step. In Mk- 1 none of the subterms is obscured.

Induction step. Suppose for M 1 we have defined the obscured subterms. Then:

(i) the quasi-descendants (see Definition in 1.4. l.1) in M 1+ i of those
obscured subterms will be again obscured, and

(ii) if R, is a proper subredex of an underlined redex, and R, is itself not
underlined, then R1 is obscured.

Furthermore, a reduction step in Bit is called obscured if it takes place inside a
box.

CLAIM 1. There are only finitely many non-obscured steps in 8'.

Proof of Claim 1. Consider the reduction Mk--.. Mk+ 1 --.. · • • plus boxes and
underlining. Replace every outermost box in this reduction by the new symbol D.
Result: &t0 . (So now the obscured subterms are really obscure.) Then some of the
steps in ~0 become empty, namely those in which an obscured redex was contrac­
ted. In fact only finitely many steps in &t0 will be non-trivial. This is evident from
the finite developments theorem 1.4.3; for, ~0 is nothing else than a development of
underlined redexes in which sometimes subterms are replaced by D. (Note that
redexes not covered by an underlined redex cannot be contracted since otherwise
the projection of such a contraction would not be empty.) This ends the proof of
Claim 1.

CLAIM 2. Every obscured underlined redex in Bit is properly contained in a not
obscured underlined redex.

Proof of Claim 2. Suppose not. (See Fig. 20.) Let MP for some p ;:i: k be a term
in ~ containing an underlined, obscured redex which is not covered by a non­
obscured underlined redex. Choose S; to be maximal. Note that S; is a maximal
underlined redex.

Now let M, be the first term in ~ where the ancestor of S; (call it s;) was
obscured. So s; Sf R1, and R1 is not underlined. We will devise a development 8'/ of
the underlined redexes in M 1 such that R[::::::: ~, and s; is not contracted in .9';, as
follows.

In Bit/ we contract only (in an arbitrary way) underlined redexes which are not
contained by R,. By the finite developments theorem 1.4.3, this procedure must stop
eventually, say in M(. In M't there can be no residual of Rk. For, if there was, this
residual would not be covered by an underlined redex; and hence M[-+-+ M;+ 1

would not be empty. (In fact, the reduction M/-M;+ 1 (see Fig. 20), defined as
M,--.. M 1+ ii~/ would not be empty; since ~,:::Bit/ we have M[-+-+ M;+ 1 :::::::

M;-M;+ 1 and an empty reduction cannot be equivalent to a non-empty one.)
Therefore Rk must be erased in M(. But then s;, properly contained by R,, must
also be erased. Hence Bit[ends in fact in M[, i.e., M 1* = M[. Since all complete
developments are equivalent (1.4.3.1), ~/:::::::8'1 . Now 8'P=~i/M1 -+-+MP; and
putting~~= ~l/M1 --++ MP we have, by ~, ~ 8'/, the equivalence~ ::::::: ~~- Because

CONDITIONAL REWRITE RULES

R'
R. R

p

11
p

R'
p

----------- --- ------------- ----

FIGURE 20

M'
p

359

B?; does not contract s; by the parallel moves lemma 1.4.1, Et~ does not contain
steps in which S; is contracted. But clearly, since S; was a maximal underlined
redex, every complete development of the underlined redexes in MP must contract
S;. Contradiction. This proves Claim 2. Now let q be such that all steps in fJll
beyond M q are obscured (by Claim 1 such a q exists).

CLAIM 3. In every step Mq +; ""'Mq + ;+ 1 (j ~ 0) the contracted redex .rJ£q +;is not
an outermost redex.

Proof of Claim 3. Since all steps beyond M q are obscured, B?q +; is in a box. If
Rq +; is an underlined redex, it is not outermost by Claim 2.

If Rq +; is not underlined and is an outermost redex, a contraction of Rq + 1 results
in a non-empty projection M~+;-++ M~+Hl• contrary to the assumption for fJll'.
This proves Claim 3.

Claim 3 contradicts the hypothesis of the proposition for fJll. Hence our
assumption that fJll' is finite, is false. In

The following corollary is due to O'Donnell [16] for TRSs. (Type I* or m,;
refers to type I or Illn + bound variables, see Introduction.)

7.10. COROLLARY. For every type I* or III,; rewriting system: (i) Define n(M, R)
by "R is an outermost redex of M." Then the class of n-fair reductions is terminating.

(ii) Parallel outermost reductions are terminating.

Proof (i) Suppose M 0 has normal form N. (If M 0 has no normal form, there
is nothing to prove: by definition, the statement in (i) of the corollary means that
the class of n-fair reductions is terminating whenever possible.) Let fJll =
M 0 ""'M 1 ""' • • • be an infinite n-fair ("eventually outermost" in [16]) reduction.
Obviously fJll contains infinitely many outermost steps. Hence fJll' (see Fig. 21) is
infinite by Proposition 7.9; and n-fair by Theorem 7.8. But continuing in this
fashion we find that fJll(kl = 9£/ M 0 -++ N must be finite, contradicting the fact that N
is a normal form.

(ii) Immediately by (i), since evidently a parallel outermost reduction is
n-fair. I

360 BERGSTRA AND KLOP

MO Ml R

M'
R'

I -----

M'
R"

2 ----------

R(k)

Mk oN ---------

FIGURE 21

7.11. Leftmost Reductions

For leftmost reductions, in which each time the leftmost redex (that is, the redex
whose head symbol is leftmost) is contracted, the analogous corollary fails.

EXAMPLE. (from [10]). Let J; be a TRS having as rule schemes:

F(x, B) ---+ D, A ---+ B, c---+ c.
Then F(C, A)---+ F(C, A)---+ · · · (each step a contraction of redex C) is a coun­
terexample.

However, if J; is a "left-normal" system, one can prove that (eventually) leftmost
reductions are normalizing. This was done in [14] via a standardization method;
the proof we will give below is more perspicuous and is, for TRSs, given in [16].
We will again derive the result for TRSs where bound variables may be present, in
fact for type I* or m: systems.

7.12. DEFINITION. (i) Let z· be a regular CRS, and let r be a rule in E; r =
H---+ H'. Then r is left-normal if in H all operator symbols (including the 0-ary
operators, i.e., the constants) precede the variables. E.g., the rule F(x, B)-> D above
is not left-normal; the rule F(B, x)---+ D is left-normal.

(ii) J; is left-normal iff all its rules are left-normal.

(iii) If J; is a type I* or III,~ system, J; is left-normal iff J;u is.

7.13. COROLLARY. Let J; be of type I* or III: and left-normal. Then for I-reduc­
tions:

(i) eventually leftmost reductions are terminating

(ii) the leftmost reduction is terminating.

Proof Let TC(M, R) be: R is the leftmost redex in M. Then property I and II
(Definition 7.2) are easily verified for TC (for II we need the left-normality). Hence by
Theorem 7.8, TC-fair reductions (i.e., eventually leftmost reductions) are closed under
projections. Furthermore, Proposition 7.9 is valid for "leftmost" instead of "outer­
most" because the leftmost redex is outermost. Hence the result follows. I

CONDITIONAL REWRITE RULES 361

7.14. EXAMPLE. (i) For A.-calculus + "recursor" R having the rule schemes
RxyO - x, 9f!xy(Sz) - xz(Rxyz) we have termination of parallel outermost reduc­
tions-but not of the leftmost reduction strategy.

(ii) For A.-calculus + alternative recursor R', such that R'Oxy- x,
R'(Sz) xy- xz(R'xyz) also the leftmost reduction strategy is terminating.

(iii) For the system in (i) one can obtain a slightly better result than ter­
mination of parallel outer most reductions, by introducing O'Donnell's "dominance
ordering," an extension of the subterm ordering (s;), which would in this case
cause the redexes in the third argument of R to be priviliged above those in the first
two arguments.

7.15. EXAMPLE. If Eis the type IIIn reduction system corresponding to BOUN­
DED-STACK (see Example 2.l(i)) then Eis left-normal. Hence the results above
yield that both parallel outermost reduction and leftmost reduction terminate
whenever possible. (In this case that is trivial since all reductions terminate, as one
easily proves.)

AcKNOWLEDGMENT

We thank Klaus Drosten for detecting an error in a previous version of Definition 4.2 and suggesting
a correction. Also, we thank a referee for many suggestions for improvements, including a rearrangement
of the paper in an earlier version.

REFERENCES

I. H.P. BARENDREGT, "The Lambda Calculus, Its Syntax and Semantics," 2nd rev. ed., North-Holland,
Amsterdam, 1984.

2. J. A. BERGSTRA AND J. V. TUCKER, A characterisation of computable data types by means of a finite,
equational specification method, in "Proc. of 7th ICALP, Noordwijkerhout 1980" (J. W. de Bakker
and J. van Leeuwen, Eds.), Lecture Notes in Comput. Sci. Vol. 85, pp. 76-90, Springer, New York,
1980.

3. G. BERRY AND J. J. LEVY, Minimal and optimal computations of recursive programs, J. Assoc. Com­
put. Mach. 26 (1979), !.

4. P. CHEW, Unique normal forms in term rewriting systems with repeated variables, in "Proc. of 13th
Annual ACM Symposium on the Theory of Computing," pp. 7-18, 1981.

5. H. B. CURRY AND R. FEYS, "Combinatory Logic," Vol. I, North-Holland, Amsterdam, 1958.
6. K. DROSTEN, "Toward Executable Specifications Using Conditional Axioms," Report 83-01, T. U.

Braunschweig, 1983.
7. H. E. EHRIG, H.-J. KREOWSKI, J. w. THATCHER, E. G. WAGNER, AND J.B. WRIGHT, Parameterized

data types in algebraic specification languages, in "Proc. 7th ICALP, Noordwijkerhout 1980" (J. W.
de Bakker and J. van Leeuwen, Eds.), Lecture Notes in Comput. Sci. Vol. 85, Springer, New York,
1980.

8. J. A. GOGUEN, J. W. THATCHER, AND E. G. WAGNER, An initial algebra approach to the
specification, correctness and implementation of abstract data types, in "Current Trends in Program­
ming Methodology. IV, Data Structuring," (R. T. Yeh, Ed.), Prentice-Hall, Engelwood Cliffs, N.J.,
1978.

362 BERGSTRA AND KLOP

9. G. HuET, Confluent reductions: abstract properties and applications to term rewriting systems, in
"18th IEEE Symposium on Foundations of Computer Science, 1977," pp .. 30-45; rev. version: IRIA
Report, Jan. 1978.

10. G. HuET AND J. J. LEvv, "Call by Need Computations in Non-ambiguous Linear Term Rewriting
Systems," Rapport Laboria 359, !RIA, 1979.

11. G. HuET AND D. C. OPPEN, Equations and rewrite rules: A survey, in "Formal Languages: Perspec­
tive and Open Problems" (R. Book, Ed.), Academic Press, New York/London, 1980.

12. S. KAPLAN, Conditional rewrite rules, Theor. Comput. Sci., in press.
13. S. KAPLAN, "Fair Conditional Term Rewriting Systems: Unification, Termination and Confluence,

Rapport de Recherche No. 194, Univ. de Paris-Sud, LRI Orsay, 1984.
14. J. W. KLOP, "Combinatory Reduction Systems," Mathematical Centre Tracts Vol. 127, Centre for

Mathematics and Computer Science, Amsterdam, 1980.
15. J. J. LEvv, "Reductions correctes et optimales dans le lambda-calcul," These d'Etat, Univ. de Paris

VII, 1978.
16. M. O'DONNELL, "Computing in Systems Described by Equations," Lecture Notes in Comput. Sci.

Vol. 58, Springer, New York, 1977.
17. M. O'DONNELL, "Equational Logic as a Programming Language," MIT Press, Cambridge, Mass.,

1985.
18. U. PLETAT, G. ENGELS, AND H.-D. EHRICH, Operational semantics of algebraic specifications with

conditional equations, in "Proc. 7th CAAP," Lille 1981, Lecture Notes in Comput. Sci. Vol. 112,
Springer, New York, 1981; extended version: Forschungsbericht 118/81, Univ. Dortmund, 1981.

