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Abstract 

Two maintenance models (a warm and a cold stand-by model) consisting of m parallel groups of identical 
components are considered. Components have exponentially distributed times to failure. There is a single repairman 
who can be assigned to one of the failed components. It is shown for both models that the repairman should be 
assigned to an item of the group with the smallest number of functioning components. The optimality results are 
obtained by adapting an iterative method which proved to be successful in the study of routing models. 

Keywords: Parallel components; Repairman scheduling; Smallest group policy; Dynamic programming; Delayed 
information 

1. Introduction 

In this paper we consider the assignment of a repairman for two different models. In both models 
there are m groups of components, each consisting in perfect state of B functioning components. In 
Section 3 we look at a warm stand-by model, in which each functioning component has an, equally 
distributed, exponential time to failure. This system is up if at least k groups have one or more 
functioning components, or, alternatively, if each group has at least k' components. It is shown that the 
repairman should always be assigned to the group with the smallest number of components at the 
beginning of each repair period. This policy is called the Smallest Group Policy (SOP). 

In Section 4 we look at a cold stand-by model. Here the system is up if each group has at least one 
functioning component. Only those components necessary for the system to be up can fail, all with equal 
rates, and all other functioning components stay as good as new. Thus, as long as the system is up, one 
component in each group has an exponentially distributed time to failure. If the system is down (meaning 
that at least one group has no functioning components), no components can fail. Again, the SGP 
maximizes the expected time that the system is up. 

Of special interest is the operation of the repairman. The times at which the repairman completes 
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service are generated by a Markov decision arrival process (MDAP). This process is introduced and 
discussed in Section 2. With the MDAP we can model each sequence of completion times which does not 
depend on the numbers of functioning components. But also if the repair times. depend o~ th~ state of 
the groups of components, an MDAP can sometimes be used to model the repair completion times. An 
example of such a repairman process is one in which the times at which the repairman goes on vacation 
can be controlled, depending on the numbers of failed components. 

Our models are strongly related to routing models (which are queueing models with multiple queues 
in which customers on arrival have to be assigned to one of the queues). Indeed, if we let the completion 
of a repair in group j correspond to an arrival of a customer in queue j, we get a routing model, which is 
equivalent to the maintenance model in the sense that a repair completion and an arrival both increase 
the j-th component of the state vector by 1. However, in the resulting routing model the decision on 
where to route an arriving customer to is not taken at the arrival instant, as in standard routing models. 
Because the repairman is assigned to a group at the beginning of a repair period, modeling the repair 
taking place on the spot, the decision on where to route the corresponding arrival is taken just after the 
previous arrival. Thus our maintenance model is equivalent to a routing model where the decisions have 
to be taken some time in advance. Note that, if the decision is to route a customer to the shortest queue 
(at the time of the previous arrival), this queue need not be the shortest any more at the moment of 
arrival, due to the possible departures from the queues. 

This routing model with early decisions can also be seen as a model in which the information on the 
state of the system is delayed. Usually, models with delayed information are discrete time models in 
which the decisions have to be taken a fixed number of epochs in advance. See Kuri and Kumar [6] and 
Altman and Koole [1] for recent results on routing models with delayed information. Our model differs 
from their type of model in that the length of the delay is not fixed (and not known to the controller). 

The equivalence of routing models and repairman assignment models was first observed by Smith [8] 
for a routing model consisting of m heterogeneous exponential servers, without waiting places. Derman 
et al. [3] show for this model that sending each arriving customer to the fastest (slowest) free server 
minimizes (maximizes) the probability that an arriving customer finds all servers busy. For the routing 
model, minimizing the probability that the system is full is of interest. For the equivalent repairman 
assignment problem (without early decisions) the objective is to maximize the number of functioning 
components (which is equivalent to maximizing the number of busy servers). 

To prove the results of Sections 3 and 4 we use dynamic programming on an embedded discrete time 
model, which proved to be a successful method for routing models without delay. We generalize this 
method to include the early decisions, by adding an extra variable to the state space denoting the 
assignment of the repairman. 

The warm stand-by model of Section 3, without the early decisions, has already been studied by 
Katehakis and Melolidakis [5]. 

2. The repairman process 

In this s~cti~n we start with introducing the MDAP, which generates the repairman completion times. 
Then we will give several examples of repairman processes which can be modeled with an MDAP. The 
results.of the next secti?n.s will be shown to hold for each MDAP. Thus a repairman should be assigned 
accor~mg t~ t?e SGP _if its repair completion times can be modeled as an MDAP (and if the reward 
function satisfies the given conditions). 

~MD~ can be seen as an_ Markov decision process (without yet specifying the reward structure) 
which add1:1onally ge~erates amvals at the transition times. We will use arrivals in 2 classes, one to 
model repair completions, the other to model possible rescheduling of the repairman. 
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Definition 2.1 (Markov decision arrival process). Let A be the finite state space of a Markov decision 
process with transition intensities A xay with x, y EA and a E A(x ), the set of actions in x. When this 
process moves from x to y, while action a was chosen, then with probability qk an arrival in class 
1 ::;; k s 2 occurs. xay 

The arrivals in class 1 represent repairman completion times (after which the repairman can be 
rescheduled). At the arrival of a class 2 customer the repairman is just allowed to go to another group. 
The choice to which group to send the repairman is not part of the MDAP. Thus, in the models of 
Sections 3 and 4 there are 2 actions; one in the MDAP, controlling the repair completion times, and one 
at the groups, modeling the assignment of the repairman to a failed item in one of the groups. In the 
next sections the optimal assignment is obtained, given that the MDAP is operated optimally. 

In case there is a single action in each state, the MDAP simplifies to the well known Markov arrival 
process (for a practical introduction, see Lucantoni [7]). Then the repair completion times do not depend 
on the numbers of functioning components. It can be shown that with this type of arrival process any 
independent arrival process can be approximated arbitrarily close (Asmussen and Koole (2)). 

In general, the actions chosen in the MDAP are allowed to depend both on the state of the MDAP 
and on the numbers of functioning components, thereby making the MDAP depend on the state of the 
groups. We will give two examples of repairman processes modeled by MDAP's. 

Example 1 (Repairman with interrupts). Suppose each repair time is distributed according to a phase 
type distribution with starting state a and ending state {3. During the repair, the repairman can be 
interrupted and restarted at a possibly different group. This can be modeled by taking as state space the 
states of the PH-distribution, and 2 actions in each state. Normally (if action 1 is chosen) the transitions 
are according to the PH-distribution, with state a and f3 identified. A class 1 customer is generated once 
the repairman enters state {3. So far we modeled general independent repair times. However, if action 2 
is chosen, the repair man goes to state a (say with rate y ), and a class 2 customer is generated. 

The results in the next sections do not state anything on when to interrupt the repairman; they just 
state that when the repair completion times are controlled optimally, the repairman should always be 
assigned according to the SGP. 

Example 2 (Repairman with controllable vacations). Again assume that each repair time is a phase type 
distribution, but that after each repair completion the repairman can be sent on a vacation, depending 
on the number of functioning components. This can be modeled by two PH-distributions, one represent­
ing only one repair time, one a vacation plus a repair time. Now, after each successful repair (i.e., after 
the generation of a class 1 arrival), one chooses between the two PH-distributions. 

Intuitively, one expects that, for an appropriate reward function, the repairman can go on vacation 
when there are few failed components. 

3. Warm stand-by model 

In this section we study the model in which each functioning component has an exponential lifetime, 
independent of the state of the other components. The repairman completion times are generated by an 
MDAP. Without restricting generality we can assume that l:yArny = 'Y for all x and a. 

Also assume that B, the maximum number of functioning components in each group, is finite. The 
state is denoted with (l, x, i), where 0 s l s m is the group the repairman is working on, x is the state of 
the arrival process and i = (i 1, ••• , i m) denotes the number of functioning components in each group. If 
/ = O, the repairman is idling. Because we can only assign the repairman to a group in which not all 
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components arc functioning. v.:c have i 1 < B for I> 0. We use the following notation: e = (1, ... , 1), 
ei = (0, ... , o. l, o .... , 0) with the I in j-th position, e0 = (0, ... , 0). Let µ., be the rate at which each 
functioning component fails. lJniformize the model such that y + mBµ., ::;:; 1. Let vti.x.il be the expected 
maximum reward in /1 steps of the uniformized discrete time model, starting in state (/, x, i). The 
dynamic programming recursion for c" is 

"~' .. I'\' ('.i . {·n }.J- 2 {·" }+(1- 1 -q 2 )v" ·)} 1·\!,t.<) = IlldX \ L.,A,,,, qrin max lu.r.i+ti) • q_rn.-mjaX t(},J«i) q_rny xay (l.y,1) 

\ ' J 

m 

'\' • . • 11 ' ( 1 - - ( i + • · • + i ) 11) l' 11 • + µ L.. l/\l,\,1-e1) -r- Y l m r- (/,x,1)' (3.1) 
J ! 

The maximization ranges over all j with i, <B. Action 0 is only allowed if i =Be, thus the repairman 
idles for a whole repair period if he finds at the beginning of that period B components functioning in 
each group. Note that there are no direct rewards; the rewards are only earned at the end of the 
planning horizon, that is. 1' 0 is the reward function. This is done to be able to get results on the system 
for a fixed time T. 

The following lemma gives relations between the rewards in different states. 

Lemma 3.1. If 

and 

rt) .x ·' 1 = 1·(! .. x .1• 1 for i * a permutation of i, i ;. = i 1, i + e 1 :o; Be, 

hold j(Jr the reward function 1· 0, then they hold for all n. 

(3.2) 

(3.3) 

(3.4) 

Proof. By induction. Assume the lemma holds up to n. We prove each inequality by considering the 
terms concerning repair completions and the terms concerning failures separately. The inequality for the 
dummy term (i.e .. the term concerning the transition from a state to itself) always follows immediately. 
We start with (3.2). Assume i1, < i 12 . The case i1, = i 12 can be done with (3.4). Then, no matter which 
component fails, group 11 has less working components than group /2, and the failure terms follow easily 
using induction. This leaves the repair completion terms. First consider the outer maximization. Let a' 
be the maximizing action in (l,, x, i). It is easily seen that it is sufficient to prove the inequality for a', 
i.e., for fixed a. Let l be th~ optimal action in state (y, i + e1). If l =I= ! 1, then l is also optimal in 
( y. i + e1) and the repair completion terms follow by induction, -using (3.3) with j 1 = l 1 and j 2 =12• If 
l = !1• and there is no other queue with the same length (which would give the previous case), then /1 is 
also optimal in ( ~· i + e1). Note that i 11 + 1 < B (because i 11 < i12 and i 12 + 1 :o; B), giving that / 1 is indeed 
an allowable action. Again (3.3) can be used. 

For proving (3.3) we can also assume that i. <i .. The case i. =i. can be done again with (3.4). The 
f 'J f }J J2 h 12 
at ure terms ollow easily using induction (the terms for the extra customers in group j 1 and j 2 should be 
combine~). ~s for ~3.2) ~e can choose the optimal actions in(!, x, i + e1) and(/, x, i + e1) such that the 
same action 1s optimal m both states. Then the terms concerning repair completion follow using (3.3). 

Eq. (3.4) follows easily. O 

From (3.2) it follows that the repairman should be assigned to the group with the smallest number of 
functioning components if u0 yields more reward to states obtained by such actions. Thus the lemma 
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gives conditions on u0 , the reward function, for the SGP to be optimal. Note that there are no 
inequalities relating states like (/, x, i) and(/, y, i). This means that the rewards can depend arbitrarily 
on the state of the MDAP; on the other hand it means that nothing can be said on the optimal action in 
the MDAP. It is necessary however for the optimality result that the actions taken in the MDAP are the 
optimal ones. 

Remark 1. It is easily seen that the inequalities give no conditions on vt'o.x.BeJ· This means that we can 
change v['o.x.Be> as we like, getting rid of the unnatural assumption that the repairman idles for a whole · 
repair period if all components are functioning. 

An obvious choice is freezing the arrival process until the next failure, at which time the repairman 
starts working on that component, i.e., 

m 

ut//Be) = µB L vtl.x.Be-ej) + (1- mµB)vt'o.x.Be)• 
j=l 

Remark 2. It is interesting to note that for the model without delay in the assignment the buffer size can 
depend on the group. Observe that in the current model there is no equation relating states like i + ej 

and i, like in the standard routing model with one server for each queue (e.g., Eq. (4.4) in Hordijk and 
Koole [4]). We do not need such an equation here: the total number of functioning components remains 
stochastically the same under each policy, due to the structure of the model and the fact that idleness is 
not allowed (unless all components are functioning). In fact, if we add such an equation, we cannot prove 
our results any more. 

By uniformization (see, e.g. [4]) we have the following result at T, for the original continuous time 
model. The result from 0 to T is obtained by integrating the rewards over the time horizon. 

Theorem 3.2. The SGP maximizes the rewards at T, or alternatively, the (discounted) rewards from 0 to T, 
for all reward ftmctions satisfying (3.2)-(3.4). 

Thus it remains to consider the allowable reward functions. First take u<~.x,i) = 1 if there are more than 
k non-empty groups in i, and 0 otherwise. This function indeed satisfies the inequalities in the lemma, 
thus the SGP maximizes the probability that there are k or more groups with one or more functioning 
components, i.e. it maximizes the number of groups with at least one working component stochastically. 
A related reward function is l{i·~k.V·J· This is also an allowable choice, corresponding to a system in 
which each group must have at least' k functioning components. This reward function is equivalent to 
l{min~;.i~k)• thus also minj{i) is maximized stochastically by the SGP. These reward functions can be 
usef~I for systems with groups of parallel components in series, where the chain of groups performs as its 
worst part. 

Katehakis and Melolidakis [5] obtained the same results for the model where the group to which the 
repaired component is added is selected at the repair completion time. 

4. Cold stand-by model 

In this section we consider the cold stand-by model. Again there are m groups of components of size 
B. The system is up whenever there is at least one functioning component in each group. When the 
system is down, that is, when there is a group without functioning components, no functioning 
components can fail. When the system is up only the m components required for the system to be up, 
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one in each group, can fail, all with the same rate. Thus the working components have equally distributed 
exponential times to failure. Again the repairman process is governed by an MDAP. 

If we want to maximize the probability that the system is up at T, the SOP might not be optimal, even 
in the model without early decisions, as the following example shows. Take m = 2, B large, assume that 
the repairman finishes repairs at times 1, 2, .... Further assume that in the starting state group 2 has no 
functioning components and that T is integer. If we assign the repairman according to the SOP there is a 
positive probability that the system is not functioning at T. However, if we assign the repairman to the 
first group up to T- 2 and only to the second group at T - 1, it is clear the system is up at T (but not 
between 0 and n. Thus the SGP is not optimal. However, if we take as objective the expected time the 
system is up between 0 to T, then the SGP is again optimal. To show this, we have to introduce 
immediate rewards. As we prefer to collect all rewards together at T, we will add an extra component to 
the state space, which is raised by 1 each time a component fails. 

Assume, by uniformization, that y + mµ ~ 1. The state is denoted by (l, x, i, k), which is the same as 
for the previous model, with one component added to count the number of failed components. The 
dynamic programming equation is: 

maax {LA xay { q;ay max { v/}.y,i+e1,k)} + q;ay m~ { v/],y,i,k)} + ( 1 - q;ay - q;ay) v/{,y,i,k >)} 
.I' } } 

c'i+ i -
(l,x,i.k) -

m 

+ µ L v(i,x,i-e,,k+ 1) + ( 1 - 'Y - mµ) v{!,x,i,k) if ij > 0 for all j, 
j~l 

maax { ~Axay( q;ay mr { u/},y,i+e,,ki} + q;ay mr { v<}.y,i,d + ( i - q_!ay - q;ay )vtL.i,k))} 

+ ( 1 - Y) vti,x,; ,kl if i j = 0 for some j. 

( 4.1) 

H.ere we !et the m~ximization over j range over all j with ij > 0 and over 0, meaning that idleness is a 
possible action. even 1f not all components are functioning. 

Lemma 4.1. If 

L'{1,x,i.k> ;o: u/Q....i,k) for i + e1 :S: Be, 

l'n > n fi . 
(l,x,i +eh,k) - v(l,x,1,k) or z +eh+ e1 :o; Be, 

en . . > un fi . + B 
(0,.1,1+e11 ,k)- (j1,x,i,k) Or! eh:$; e, 

l •" > n (l,x,i,k+I> _ v(l,x,i.k) 

and 

l'" - .n f. ·• <l.x,i,k> - L (I '.x,i ".kl 1ori a permutation of i, it'· = i 1, i + e1 -::;, Be, 

hold for the reward function v 0 , then they hold for all v". 

( 4.2) 

( 4.3) 

( 4.4) 

( 4.5) 

( 4.6) 

( 4.7) 

( 4.8) 

( 4.9) 
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Proof. The proof is similar to that of Lemma 3.1. For the proof of (4.2) we refer to that of (3.2). (Note 

that the SGP is optimal not only because of (4.2), but also because of (4.5).) Also (4.3) follows easily 

unless i 1· = 0 and i1. > 0. Then, for the failure terms, (4.4) should be used first with i +e. instead of i. 
I 2 !1 

Concerning (4.4), note that the optimal action in(!, x, i, k) is allowed in all left hand states (even in case 

that action is idling). Then the repair term follows easily. Also the failure terms follow easily, as i ~Be. 
Eq. (4.5) gives that idling is suboptimal and was needed in the proof of (4.4), in case i =Be. Its proof is 

easy, using (4.6) in the repair terms. In the proof of (4.6) we need (4.7) (which proof also follows easily) in 

case i +eh= Be. Eqs. (4.8) (which is needed to prove (4.6) and (4.7)) and (4.9) follow directly. D 

Now we can take v3.x.i,k) = k, giving that the SGP maximizes the expected number of components that 

failed in any number of jumps of the embedded chain. However, we are interested in the time that the 

system is up. But, components only fail if the system is up, with rate mµ.,. Thus the policy that maximizes 

the number of components that failed, also maximizes the time the system is up. Note that (4.5) gives 
that idling is suboptimal. 

Theorem 4.2. The SCP maximizes the expected time the system is up between 0 and T. 
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