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Ray J. Solomonoff died on December 7, 2009, in Cambridge, Massachusetts, of complications of a 

stroke caused by an aneurism in his  head.  Ray was the first  inventor  of Algorithmic  Information 

Theory  which  deals  with  the  shortest  effective  description  length  of  objects  and  is  commonly 

designated by the term “Kolmogorov complexity.”

In the 1950s Solomonoff was one of the first researchers to treat probabilistic grammars and the 

associated languages.  He treated probabilistic  Artificial  Intelligence  (AI)  when “probabilistic”  was 

unfashionable, and treated questions of machine learning early on. But his greatest contribution is the 

creation of Algorithmic Information Theory.

Already in November 1960, Solomonoff published [1] that presented the basic ideas of Algorithmic 

Information  Theory  as  a  means  to  overcome serious  problems  associated  with  the  application  of 

Bayes’s rule in statistics. 

Ray Solomonoff was born on July 25, 1926, in Cleveland, Ohio, United States. He studied physics 

during 1946–1950 at the University of Chicago (he recalls the lectures of E. Fermi and R. Carnap) and 

obtained an M.Sc. from that university. From 1951–1958 he worked in the electronics industry doing 

math and physics and designing analog computers, working half-time. His scientific autobiography up 

to 1997 is published as [2].

Solomonoff’s objective was to formulate a completely general theory of inductive reasoning that 

would  overcome shortcomings  in  Carnap’s  [3].  Following some more technical  reports,  in  a long 

journal paper in two parts he introduced ‘Kolmogorov’ complexity as an auxiliary concept to obtain a 

universal a priori probability and proved the invariance theorem governing Algorithmic Information 

Theory [4]. The mathematical setting of these ideas is described in some detail below.

Solomonoff’s  work has led to a novel  approach in statistics  [5] leading to  applicable  inference 

procedures such as the minimal description length principle. J.J. Rissanen, credited with the latter, 

explicitly relates that  his  invention is  based on Solomonoff’s work with the idea of applying it  to 

classical statistical inference [6].
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Since Solomonoff is the first inventor of Algorithmic Information Theory one can raise the question 

whether  we  ought  to  talk  about  ‘Solomonoff  complexity.’  However,  the  name  ‘Kolmogorov 

complexity’ for shortest effective description length has become well  entrenched and is commonly 

understood.  Solomonoff’s  publications  apparently  received  little  attention  until  the  great  Soviet 

mathematician  A.N.  Kolmogorov started to  refer  to  them from 1968 onward.  Says  Kolmogorov,  

“I came to similar conclusions [as Solomonoff],  before becoming aware of Solomonoff’s work, in 

1963–1964”  and  “The  basic  discovery,  which  I  have  accomplished  independently  from  and 

simultaneously  with  R.  Solomonoff,  lies  in  the  fact  that  the  theory  of  algorithms  enables  us  to 

eliminate  this  arbitrariness  by  the  determination  of  a  ‘complexity’  which  is  almost  invariant  (the 

replacement of one method by another leads only to the supplement of the bounded term).”

Solomonoff’s early papers contain in veiled form suggestions about randomness of finite strings, 

incomputability  of  Kolmogorov  complexity,  computability  of  approximations  to  the  Kolmogorov 

complexity, and resource-bounded Kolmogorov complexity. Marvin Minsky referred to Solomonoff’s 

work already in the early 1960s.  To our knowledge,  these are the earliest  documents outlining an 

algorithmic theory of descriptions.

A.N.  Kolmogorov’s  later  introduction  of  complexity  was  motivated  by  information  theory  and 

problems of randomness. Solomonoff introduced algorithmic complexity independently and earlier and 

for a different reason: inductive reasoning. Universal a priori probability, in the sense of a single prior 

probability that can be substituted for each actual prior probability in Bayes’s rule was invented by 

Solomonoff with Kolmogorov complexity as a side product, several years before anybody else did.

R.J. Solomonoff obtained a Ph.B. (bachelor of philosophy) and M.Sc. in physics. He was already 

interested in problems of inductive inference and exchanged viewpoints with the resident philosopher 

of science at the University of Chicago, Rudolf Carnap, who taught an influential course in probability 

theory. In 1956, Solomonoff was one of the 10 or so attendees of the Dartmouth Summer Study Group 

on  Artificial  Intelligence,  at  Dartmouth  College  in  Hanover,  New  Hampshire,  organized  by  M. 

Minsky, J. McCarthy, and C.E. Shannon, and in fact stayed on to spend the whole summer there. (This 

meeting gave AI its name.) There Solomonoff wrote a memo on inductive inference. McCarthy had the 

idea that given every mathematical problem, it could be brought into the form of “given a machine and 

a desired output, find an input from which the machine computes that output”. Solomonoff suggested 

that there was a class of problems that was not of that form: “given an initial segment of a sequence, 

predict  its  continuation.”  McCarthy  then  thought  that  if  one  saw a machine  producing  the  initial 

segment,  and  then  continuing  past  that  point,  would  one  not  think  that  the  continuation  was  a 

reasonable extrapolation? With that the idea got stuck, and the participants left it at that.

Later, Solomonoff presented the paper “An Inductive Inference Machine” at the IEEE Symposium 

on Information Theory, 1956, describing a program to unsupervisedly learn arithmetic formulas from 

examples. At the same meeting, there was a talk by N. Chomsky based on his paper [7]. The latter talk 

started Solomonoff  thinking anew about  formal  machines in  induction.  In about  1958 he left  his  

half-time position in industry and joined Zator Company full time, a small research outfit located in 

some rooms at 140 1/2 Mount Auburn Street, Cambridge, Massachusetts, which had been founded by 

Calvin Mooers around 1954 for the purpose of developing information retrieval technology. Floating 

mainly  on  military  funding,  Zator  Co.  was  a  research  front  organization,  employing  Mooers, 

Solomonoff,  Mooers’s  wife,  and  a  secretary,  as  well  as  at  various  times  visitors  such  as  Marvin 

Minsky. It changed its name to the more martial sounding Rockford Research (Rockford, Illinois, was 



a place where Mooers had lived) around 1962. In 1968 the US Government reacted to public pressure 

(related to the Vietnam War) by abolishing defense funding of civil research, and Rockford floundered. 

Being out of a job, Solomonoff left and founded his own (one-man) company, Oxbridge Research, in 

Cambridge  in  1970,  and has  been  there ever  since,  apart  from spending nine  months  as  research 

associate  at  MIT’s  Artificial  Intelligence  Laboratory,  1990–1991  at  the  University  of  Saarland, 

Saarbruecken, Germany, and a more recent sabbatical at IDSIA, Lugano, Switzerland.

In 1960 Solomonoff published [1] in which he gave an outline of the notion of universal a priori 

probability and how to use it in inductive reasoning (rather, prediction) according to Bayes’s rule. This 

was sent out to all contractors of the Air Force who were even vaguely interested in this subject. In [4] 

Solomonoff  developed  these  ideas  further  and  defined  the  notion  of  enumeration  of  monotone 

machines and a notion of universal a priori probability based on the universal monotone machine. In 

this  way, it  came about  that  the original  incentive to  develop a theory of algorithmic  information 

content of individual objects was Solomonoff’s invention of a universal a priori probability that can be 

used instead of the actual a priori probability in applying Bayes’s rule.

In Solomonoff’s original approach he used Turing machines with markers that delimit the input. In 

this model, the a priori probability of a string x is the sum of the uniform probabilities of inputs from 

which the Turing machine computes output x. To obtain the universal a priori probability one uses a 

universal Turing machine. But this is improper since the universal probabilities do not converge, and 

the universal probability is not a proper probability at all. For prediction one uses not the universal a 

priori probability which is a probability mass function, but a semimeasure which is a weak form of a 

measure. Even using the mathematical framework developed by L.A. Levin [8] the problem remains 

that  the  universal  a  priori  probability  for  prediction  is  a  semimeasure  but  not  a  measure.  

(the  probability  concentrated  on  all  extensions  of  the  empty  string  is  less  or  equal  to  1,  and  the 

probability concentrated on all extensions of a nonempty string x is less or equal to the probability 

concentrated on x.) To solve this problem Solomonoff in 1964 suggested, and in 1978 exhibited, a 

normalization. However, the resulting measure is not even lower semicomputable like the original a 

priori probability. According to Solomonoff this is a small price to pay. In fact, in some applications 

we may like  the measure property and do not  care  about  semicomputability  at  all.  The universal 

measure or semimeasure has remarkable properties and applications which we will not go into here.

Leonid A. Levin [8] in 1970 gave a mathematical expression of the universal a priori probability as a 

universal  (that  is,  maximal)  lower semicomputable  semimeasure M, and showed that  the negative 

logarithm of M(x) coincides with the Kolmogorov complexity of x up to an additive logarithmic term. 

Solomonoff's version of a machine which by L.A. Levin's work was transformed in the mathematically 

sound version we now call "monotonic", which name we will use henceforth.

One  of  Solomonoff’s  striking  contributions  is  the  simple-looking  inductive  inference  formula 

M(xy)/M(x) (of course, with the caveat of incomputability). Here M(z) stands for the universal a priori 

probability concentrated on z. An example is as folows. Suppose we have an infinite binary sequence 

every odd bit of which is uniformly random and every even bit is a bit of pi = 3.1415... written in 

binary.  If x is  a growing initial  segment  of this  sequence and y is  the next bit,  then M(xy)/M(x) 

eventually predicts the even bits (those of pi) almost certainly and the odd bits with probability going 

to 1/2.

In 1978, Solomonoff [9] proved the one major result justifying the use of the universal a priori 

probability: If we predict the next elements of an infinite binary sequence drawn from any computable 



measure using the single  universal  lower semicomputable  semimeasure M, then the total  expected 

squared error (of predicting 0 instead of 1 or vice versa) over all infinitely many predictions is bounded 

by a constant related to the Kolmogorov complexity of the computable measure. The expectation is 

taken over the computable measure. This means that if the expected squared error in the n-th prediction 

is a monotonic nonincreasing function of n, then it goes down faster than 1/n. This is better than any 

classical predictive strategy can do. Since the universal a priori distribution is a weighted sum of all 

lower semicomputable distributions, and is itself one, this theorem in effect states a convergence result 

about "expert learning" now fashionable in computational machine learning.

The  topic  has  spawned  an  elaborate  theory  of  prediction  in  both  static  and  reactive  unknown 

environments,  based  on  universal  distributions  with  arbitrary  loss  bounds  (rather  than  just  the 

logarithmic loss) using extensions and variations of the proof method, inspiring information theorists 

such as T.M. Cover. An example is the textbook of M. Hutter [10]. Computable approximations are 

investigated by V. Vovk among others.

In his later years Solomonoff tried to find a practical learning algorithm. He experimented much 

with "training sequences" using "conceptual jump size" (now called "chunking" in AI). He continued 

to believe in the existence of a learning algorithm that one should find and found the approach used for 

example in practical speech recognition misguided, since there the algorithm may have 2000 tuneable 

real number parameters. In the 1990s Ray Solomonoff started a company to predict stock performance 

on  a  scientific  basis  provided  by  his  theories.  Eventually,  he  dropped  the  venture  claiming  that 

“convergence was not fast enough.”

It is unusual to find a productive major scientist that is not regularly employed at all. But from all 

the elder people (not only scientists) I know, Ray Solomonoff was the happiest, the most inquisitive, 

and the most satisfied. He continued publishing papers right up to his death at 83.

The question of normalization of the universal a priori semimeasure continued to haunt Solomonoff. 

In about 1992 R.M. Solovay proved that every normalization of the universal a priori semimeasure to a 

measure  would  change  the  relative  probabilities  of  extensions  by  more  than  a  constant  (even 

incomputably  large) factor.  In a recent  paper with a  clever  and appealing  proof,  Solomonoff  [11] 

proved that if we predict a computable measure with a the universal a priori semimeasure normalized 

according to his prescription, then the bad changes a la Solovay happen only with expectation going 

fast  to 0 with growing length of the predicted sequence, the expectation taken with respect to the 

computable measure.

In 2003 he was the first recipient of the Kolmogorov Award by The Computer Learning Research 

Center  at  the  Royal  Holloway,  University  of  London,  where  he  gave  the  inaugural  Kolmogorov 

Lecture. Solomonoff was a visiting Professor at the CLRC. A list of his publications (published and 

unpublished) is at http://world.std.com/~rjs/pubs.html.

Ray Solomonoff is survived by his wife, Grace Morton, 72 Winter Street, Arlington, MA 02474, 

and by his nephews, Alex Solomonoff, of Somerville, and David Solomonoff.
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