
IMA Journal of Mathematics Applied in Medicine & Biology (1986) 3, 191-210 

Hopf Bifurcation in Host-Parasitoid Models 

H. A. LAUWERIER 

Centre for Mathematics and Computer Science, 
P.O. Box 4079, 1009 AB Amsterdam, The Netherlands 

_AND 

J. A. J. METZ 

Institute of Theoretical Biology, Groenhovenstraat 5, 2311 BT Leiden, 
The Netherlands 

[Received 2 January 1986 and in revised form 25 June 1986] 

For a wide class of host-parasitoid models, a reduction to Arnold's normal form 
can be carried out in an explicit way. In the case of Hopf bifurcation, the shape 
and size of the elliptic limit curve can be derived in terms of the parameters of the 
model. Some models have a rich bifurcation behaviour with both supercritical and 
subcritical Hopf bifurcation, and with a transition zone in the parameter plane for 
which there exists a pair of limit curves, one stable and one unstable. The theory 
is confirmed and illustrated by numerical experiments. 

1. Introduction 

OVER the past years, the second author did a number of intriguing computer 
experiments in connection with host-parasitoid models of the kind 

Yn+l = axn -Xn+1' a> 1, (1.1) 

where xn and Yn are the numbers of hosts and parasitoids of generation n. The 
function <f>(y) is assumed to be differentiable with <f> '(y) < 0, <P(O) =a, and 
<P(oo) < l. The function <f>(y) contains a second parameter b >0, which enables us 
to study bifurcation phenomena with respect to the non-trivial equilibrium for 
various combinations of a and b in the parameter plane. It is perhaps of interest 
to note that the iterative process (1.1) is invertible with 

Xn = (Xn+l + Yn+i)/a, Yn = </J- 1(axn+1/(Xn+l + Yn+1)). 

We considered in particular the so-called Hassell-Varley (HV) model and a new 
model in which interaction between parasitoids was taken into account, the 
so-called parasitoid-parasitoid interaction (PP) model (Vaz Nunez, 1977; 
Lubberhuizen, 1983). The HY-model showed the usual characteristics of Hopf 
bifurcation in the unstable part of the parameter plane. However, the bifurcation 
behaviour of the PP model appeared to be much more complicated. Instead of a 
single invariant curve-the Hopf circle-two such curves could be present, one 
attracting and the other repelling. For some parameter values there was no such 
curve. The second author succeeded in giving a qualitative explanation of his 

191 
© Oxford University Press 1986 



192 H. A. LAUWERIER AND J. A. J. METZ 

findings, based upon the theory of normal forms. In this paper, these ideas are 
worked out in a quantitative way. Our results can also be applied to a recent 
model proposed by Hassell (1984). This model appears to have the same 
complicated bifurcation behaviour as the PP model. 

Leaving aside the trivial equilibrium x = y = 0, there exists a single non-trivial 
equilibrium 

c x=--, 
a-1 

y=c, 

with c as the unique root of <J>(c) = 1. For a certain line in the parameter plane, 
the eigenvalues ;., and 5. are complex and of modulus one. Across this line, the 
so-called Hopf line, we may expect Hopf bifurcation. Close to the Hopf line we 
may write 

O<ir<n, 

where µ is a small quantity, the bifurcation parameter. In the special cases 
considered in this paper, the parameters µ.and a are in a 1-1 correspondence 
with the model parameters a and b. Thus the Hopf line corresponds to a part of 
the unit circle in the complex A plane. The eigenvalue equation of the non-trivial 
equilibrium is of the form 

Ji.2- A(l +Lia)+ L = 0, (1.2) 

where L = -accf>'(c)/(a -1). At the line we have L = 1 so that ;., + 5. = 1 + l/a. 
This gives cos a= ~(1+1/a). Since 1 <a< oo, the value of a is restricted to the 
interval (0, in). Thus a periodic solution of (1.1) would imply a period larger 
than 6. We state this as a theorem. 

THEOREM For any periodic solution of a model of the class (1.1), the period is 
larger than six. 

Of course this theorem only applies at the Hopf line. Numerically it turns out 
that, further away from the Hopf line, the period only increases. The reason is 
that when the Hopf circle enlarges it comes nearer to the saddle point at the 
origin, and in this region the system takes only small steps. Also, the theorem 
holds more generally for models handling time effects, characterized by 

. 01/J ot/J 
with-;;:O and-<O. ax ay 

According to the theory of normal forms, the two-dimensional map (1.1) can 
be written in the form 

(1.3) 

where z and i are local complex coordinates at the equilibrium and where ~n 
denotes terms of higher order. The constant A21 , taken atµ= 0, is an essential 
parameter of the model. In the plane determined by the conjugate complex 
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variables z and z, we have an invariant circle, the Hopf circle, with its radius R 
given by 

For the original variables (x, y), this corresponds to an invariant curve of 
elliptical shape surrounding the equilibrium point. Ifµ/ R 2 > 0 we have supercriti­
cal Hopf bifurcation, with an attracting invariant curve around an unstable 
equilibrium (µ > 0). If µ/ R2 < 0 we have subcritical Hopf bifurcation, with a 
repelling invariant curve around a stable equilibrium (µ < 0). In some models 
there exists a critical value a 0 for which Re (e-i"'oA21) = 0. Close to this critical 
value there is a bifurcation of a more complicated kind, which we called 'crater 
bifurcation'. It is characterized by the simultaneous occurrence of a stable and of 
an unstable invariant curve. A sketch of the mathematical theory will be given in 
the Appendix. 

In this paper, the reduction of (1.1) to its normal form (1.3) is carried out in an 
explicit way. If <f>(y) has, at the equilibrium value, the Taylor expansion 

<t>( c(l + t)) = 1 - At+ ABt2 -ACt3 + ... , (1.4) 

with (at the Hopf line) A= 1- 1/a, then the following results have been 
obtained. The radius R of the Hopf circle in the (z, i) plane is given by 

~=A- (A+ l)B + 4B2 -3C. 

The corresponding ellipse in the original (x, y) plane is given by 

a(a - 1) dx2 - (a - 1) dx dy + dy2 = (3a + l)c2R2/a, 

(1.5) 

where (dx, dy) are local coordinates at the equilibrium x = c/(a -1), y =c. This 
theory will be applied to the following few special cases. 

S: 

HV: 

PP: 

H: 

a 
<j>(y) = 1 + yb' 

<j>(y)=aexp(-yb) (Hassell & Varley, 1969), 

<j>(y) =a exp ( - (l + y t- 1) (Metz, Vaz Nunez, 1977), 

<j>(y) = a[8e-y + (1- B)e-by] (Hassell, 1984). 

The main results are as follows. 
S-model: Unstable for b > 1; Hamiltonian for b = 1 on a logarithmic scale; no 

Hopf bifurcation; formally, R = oo for all values of a. 
HV model: Supercritical Hopf bifurcation for all a. 
PP model: Supercritical Hopf bifurcation for a > 3·85 and subcritical Hopf 

bifurcation for a< 3·85. 
H model: As in the previous model; if 8 = 1 there is supercritical Hopf 

bifurcation for a> 2·29 and subcritical Hopf bifurcation for a< 2·29. 
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2. Reduction to the normal form 

In this section, the reduction of (1.1) to the normal form (1.3) will be carried 
out explicitly. The first step is the use of a new variable 

w =x<J>(y). (2.1) 

Then (1.1) can be replaced by 

Xn+l = Wn, Wn+l = Wn</>(axn - Wn)• (2.2) 

Let).. and I be the eigenvalues of the equilibrium as determined by (1.2). Then, 
by a linear transformation, (x, w) can be replaced by complex coordinates (z, z), 
where z is an eigenvector associated to A. Explicitly, 

cz = aa(Xx - w) - c0, ci = au(.Ax - w) - c0 , (2.3) 

where a is a scaling factor and where c0 is determined by the condition 

z = 0 for x = w = c/(a - 1). 

The factor a is chosen in such a way that 

ax - w = c(l + z + z). 

In the eigenvector coordinates (z, z), the map (2.2) takes the form 

Zn+l = AZn + a20z~ + auZnZn + a02i~ +An, 

(2.4) 

(2.5) 

and a similar relation with conjugate complex quantities. From (2.3) we obtain 

CZn+1 = aa(Xxn+I - Wn+1) - Co= aawn[f.- <j>(axn - Wn)] - Co, 

so that, in view of (2.4), 

CZn+l = aawn[f.- <J>(c(l + Zn + Zn))) - Co. 

From (2.3) we obtain by inversion a relation of the kind 

Using also the expansion (1.4), we obtain 

+AC(zn + Zn)3 + · · ·]-(f.-1)}, 

which is identical with (2.5). Although .A= (1 + µ )e;"' we need the coefficients a20 , 

a11 , a02 , etc. only at the Hopf line where µ = 0. Then the calculation may be 
simplified somewhat. We have 

A=l-l/a=2(1-cosa), c1 =1-X, c2 =1-A., 

1.,2 1 
a=-1 , = 2 1 exp (~ia). 

+"' cos 2a 
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Thus the nonlinear terms of (2.5) can be derived from 

Zn+t = a[l + (1-X)zn + (1-.A.)in)][zn +in - B(zn + Zn)2 + C(zn + zn)3 +···]+.en, 

(2.6) 

where en denotes linear terms. Without difficulty we read off the following 
expressions: 

a20 = a(l - X - B), a 11 = a(2 - .A. - X - 2B), a02 = a(l - A - B), 

and also a21 = a(.A. + 2.X - 3)B + 3aC. From the theory of normal forms the 
following formula can be derived: 

µ ii 12 I 12 (2 - X)a11a20 -
R2 = 2 an + aoz - Re .A.(l _.A.) Re A.a21 • 

Substitution of the expressions for the coefficients obtained above gives the 
surprisingly simple result 

~=A - (A+ l)B + 4B2 - 3C, (2.7) 

where R is the radius of the Hopf circle in the coordinates (z, z) of (2.3) and 
(2.5). However, in the original (x, y) coordinates, the Hopf circle is transformed 
into an invariant curve of elliptical shape. From (2.1) and (2.3) we obtain the 
local linear transformation 

c dz = a[ a(X - 1) dx + dy] (2.8) 

written in local infinitesimal coordinates. The Hopf circle, small by nature, is 
given by 

dz di =R 2 , 

where R 2 is determined by (2.7). Substitution of (2.8) gives an ellipse described in 
local infinitesimal coordinates (dx, dy) by 

a(a - 1) dx2 - (a - 1) dx dy + dy2 = (3a + l)c2R 2/a. 

Its position, semi-axes, etc. can be derived from this equation by standard 
analysis. However, no simple expressions can be obtained for the general case. Its 
area is given by 

2n:c2R2 (3a + 1)~, 
a a - l 

perhaps the simplest formula of this kind. 
It should be noted that a Hopf circle--or better-a Hopf ellipse, is merely an 

invariant curve in the (x, y) plane. For a starting point (x0 , y0 ) on the Hopf curve, 
the two-dimensional dynamic behaviour of the model is reduced to one­
dimensional dynamic behaviour. The motion can be aperiodic with a dense 
covering of the Hopf curve by successive points. However, if A= (1 +µ)exp ia is 
close to a point of the unit circle with a low-order rational rotation number, i.e. if 
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b 

Stable 

1:7 

Unstable 

a 

FIG. 1 

a= m/n, we may have periodic orbits. This is a case of weak resonance. The 
simplest cases are here 1: 7, 1: 8, 2: 15, etc. According to Arnold, the regions in 
the parameter plane, for which a case of weak resonance occurs, have the shape 
of thin tongues or horns, with their pointed end at the Hopf line, and fanning well 
out in the unstable region. Tongues with a different rotation may even intersect 
each other. The general situation is sketched in Fig. 1. 

We conclude this section by giving an alternative expression for the Hopf 
radius when the given model is of the form 

Yn+l = axn - Xn+l• 

where 

f(c(l + t)) =At+ AB1t 2 + AC1t3 + .... 

Then we have B =!A - 8 1 , C = M2 -AB1 + C1 , and (2.7) passes into 

2µ 1 2 
R2 = 2A + B1+481 -3C1. 

3. A simple model 

In this section we consider the model 

axn 
Xn+l = l + b' 

Yn 

axny~ 
Yn+1 =l+b, 

Yn 
b>O. 

(2.9) 

(2.10) 

(2.11) 

This is perhaps the simplest possible model, as we soon shall see. So we call it the 
S model (S =simple). The non-trivial equilibrium is given by 

(a -1)11b-l, c =(a - 1)11b. (3.1) 

The eigenvalue equation is J...2- (1 + b I a)}..+ b = 0. Thus, in the (a, b) parameter 
plane, the regions of stability and instability are separated by the Hopf line b = 1. 
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The expansion 
a et c2t2 c3t3 

<P(c(l+t))= a+ct=l-;+ az - a3 + ... , 

with c =a -1 on the Hopf line, gives A= c/a, B = c/a, C = c2/a. 
Substitution of these values in (1.5) gives 2µ/ R2 = 0, for all values of a. Thus we 
have no Hopf bifurcation in this case. Computer experiments suggest that, for 
b < 1, all orbits converge to the equilibrium (3.1) and that, for b > 1, all orbits 
disappear into infinity. For b = 1, we have the very simple model: 

axn 
Xn+l = 1 +yn' 

Its inverse is even simpler: 

OX Jn 
Yn+1=i+· 

Yn 
(3.2) 

Xn = (Xn+l + Yn+i)/a, Yn = Yn+lfxn+l• (3.3) 

Computer experiments show that, for a> 1, the map (3.2) is very much like a 
Hamiltonian map. A few typical orbits are shown in Fig. 2. There are periodic 
cycles of any order from 9 upwards. In particular, the point (x0 , y0) = (0·713, 
2·090) is an element of a 9-cycle, and (0·469, 3·796) is an element of a 10-cycle. It 
is perhaps a surprise that on a logarithmic scale the map (3.3) is indeed 
Hamiltonian, i.e. area-preserving. With the variables u and v defined by 

u =logx, 

the map (3.3) takes the form 

v =log [y/(a -1)], 

0 

eu +(a - l)ev 
u~log , 

! . /.----......... \ ru L ...... 

a 

Flo. 2 

v~v-u. 

8 
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::·:~;4 

-}~ . ·• 

FIG. 3 

In Fig. 3 an illustration is given, again for a = 2. An orbit consisting of an island 
chain is clearly visible. The parameter a is a sort of degree of stochasticity. As a 
increases, more and more orbits disintegrate into stochastic rings. An extreme 
case is shown in Fig. 4 for a= 8, where a single orbit is shown, starting from 
(x0 , y0) = (0, -20). Of course, such extreme situations have hardly any biological 
meaning. 

·.: ~ 
. .··~/ . ·-:~·:. : ....... ·, : "·=~. 

'·:. 

·~ : .:. . . 
... · .. •:: .. ·. 

. : ·' . 

-40 . · .. : .· · .. : ,. . '. 
-15 15 

FIG. 4 
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4. The Hassel-Varley model 

The HV model 

Xn+l = axn exp (-y~), 

199 

proposed by Hassell & Varley (1969), is a generalization of the Nicholson-Bailey 
model, to which it reduces for b = 1. The non-trivial equilibrium is here 

(log a) 11b /(a -1), c =(log a) 11b. 

The eigenvalue equation (a - l)A.2 - (a· - 1 + b log a)A. + ab log a= 0 shows stabi­
lity for ab log a < a - L The corresponding regions of stability and instability are 
sketched in Fig. 5. On the Hopf line the Taylor expansion of 

f(c(l + t)) = [(1 + t)b -1) log a 

gives, in the notation of (2.9, 2.10), the coefficients 

A= b log a, B1 = Hb - 1), C1 = ~(b - l)(b - 2). 

Then from (2.11) we obtain at once the simple result 

4µ 
R2 = b2 + b log a - l, 

that is, expressed in terms of a alone, 

µ (a - 1 )2 - a log2 a 
R2 = 4a2 log2 a 

Elementary calculus shows that, for a> 1, this expression is always positive. In 
Table 1 we have collected a few values of a, a, and b on the Hopf line, together 
with the equilibrium (x0 , y0) and the quantity µ/R 2 determining the size of the 
Hopf curve. A typical orbit is given in Fig. 6. 

b 

Unstable 

Stable 

a 
0 10 

FIG. 5 
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TABLE 1 

a a b Xeq Yeq µ/R2 

30° 1·366 0·859 0·704 0·258 0·0015 
400 1·879 0·742 0·611 0·537 0·0045 
45° 2·414 0·664 0·585 0·827 0·0069 
50° 3·502 0·570 0·594 1·486 0·0098 
53° 4·911 0·500 0·647 2·531 0·0117 
56° 8·447 0·413 0·841 6·261 0·0131 
59° 33-25 0·277 2·876 92·76 0·0117 

7.2 

0 1.8 

FIG. 6 

5. The parasitoid-parasitoid interaction model 

The PP model was specifically constructed to correct the unbiological property 
of the HV model, that at low parasitoid densities the pro capita search rate grows 
beyond bounds. We do not claim any realism in detail. The search rate of the PP 
model is finite at low parasitoid densities while at high parasitoid densities it 
behaves as the HV search rate with exponent!. The interesting point is that this 
added realism in the search-rate function leads to a behaviour which is, in certain 
respects, qualitatively different. 

The PP model assumes that the parasitoids can be divided into two groups. The 
first group consists of single individuals looking for a host. The second group 
consists of pairs of parasitoids more interested in fighting each other. It is like a 
chemical reaction of the kind 
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If u is the number of single parasitoids, v the number of competing pairs, so that 
P = u + 2v, then reaction kinetics requires an equation of the form 

Equilibrium, on a small time scale, requires that a 1u2 - 2a2v = 0, i.e. 

Solving this for u we have 

If this expression is used in combination with the Nicholson-Bailey model 

x' = ax exp (-u), y' = ax-x', 

we obtain, after some scaling, the following so-called parasitoid-parasitoid 
interaction (PP) model 

x'=axexp(-(l+y;~- 1), y'=ax-x', b>O. 

For a small value of b, also x and y are small and then (1 + y)! -1 =h. This 
shows that, in that case, the model is very close to the Nicholson-Bailey model. 
If bis large, then also y is large, and then (1 + y)! = yl In that case the model is 
an approximation of the Hassell-Varley model with exponent!. 

The non-trivial equilibrium is (c/(a -1), c) with 

c=(l+bloga)2-1. (5.1) 

The eigenvalues follow from 

/\. _ aloga(2+bloga) 
11.i 2 - 2(a -1)(1 + b log a)' 

The stability condition 1\.1}.2 < 1 can be written as 

a 1 
b> --, 

2(a-1)-aloga loga 

with a< 4·92155, the value for which 2(a - 1) =a log a. The corresponding 
regions of stability and instability are illustrated in Fig. 7. The vertical asymptote 
of the stability boundary corresponds to the stability switch of the HV model with 
exponent~- On the Hopf line, the Taylor expansion of 

/(c(l + t)) = [(1 + c +et)~ - (1 + c)!]/b 

leads to the following expansion for the Hopf radius: 

µ c 3c2 +2c 
R2 = Bb(l + c)~ -16(1 + c)2 • 

(5.2) 
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b 

Unstable 

Fro. 7 

On the Hopf line, the relations (5.1) and the relation 

b= a 
2(a-l)-aloga 

1 
log a 

a 

enable us to express µI R2 as a function of a only. Table 2 lists the results for 
some selected numerical values of a. 

TABLE 2 

a a b Xeq Yeq µ/R2 

240 1·209 1-144 2·302 0·481 -0·00399 
30° 1·366 1·258 2·565 0·939 -0·00820 
400 1·879 1·695 3·733 3·283 -0·01556 
45° 2·414 2·311 5·815 8·224 -0·01469 
50° 3·502 4·897 19·96 49·94 -0·00401 
51° 3·866 6·929 37·17 106·5 0·00016 
52° 4·323 12·938 119·4 396-6 0·00530 
53° 4·911 774·88 3·895E5 M23E6 0·01159 

It appears that here (5.2) changes sign at the critical value a= a-0 = 50·96°. This 
means that, for a> a0 , we have supercritical Hopf bifurcation and, for a< a0 , 

subcritical Hopf bifurcation. According to the theory, for a> a0 and a close to 
a0 , we may expect two invariant Hopf curves. The inner Hopf curve is attracting, 
and it is either densely filled by successive iteration points, or it contains a 
periodic cycle with a rotation number close to 1: 7. The outer Hopf curve is 
repelling and separates the bounded orbits from the unbounded ones. A typical 
case is illustrated in Fig. 8 for a= 4·2 and b = 10 corresponding to a= 51 ·8° and 
µ = 0·00156. The equilibrium is at (x, y) = (73·3, 234·6). The start (125, 929) 
gives the stable Hopf curve. The start (125, 1284) gives the separatrix, the 
unstable Hopf curve. 
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In his paper on parasitism in patchy environments Hassell considers the model 

where f(P) = ae-rxf3P + (1- cr)e-grxfJP, with g = (( l - ~ )". Realistic values are 
n0 - la 

n0 = 10, F=2, -3 o;;; µ''$; 3. 

With the following scaling and change of notation, 

N= Fx/af3c, p = y/af3, F=a, g=b, a= e, 
we obtain in our notation the model (1.1) with 

cp(y) = a[ee-y + (1- O)e-by], b > 0, 0 < e < l. 

In view of the symmetry relations 

x-x/b, y-y/b, e-1- e, b-1/b, 

it is sufficient to consider only the case b > l. The equilibrium of the model is 
determined by 

aee-c + a(l - 8)e-bc = 1. 

The product L of its eigenvalues is given by 
2 

L =~ [ee-c + (1- 8)be-bc]. 
a-1 

(6.1) 

(6.2) 
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For given values of e, a, and µ the corresponding values of a, b, and c can be 
determined by solving (6.1, 6.2), where 

a= L/[2(1 +µ)cos ex -1], L = (1 + µ) 2. 

Perhaps the simplest way of solving (6.1, 6.2) is as follows. We write 

v = a(l - e)e-bc, 

and replace (6.1, 6.2) by 

u + v = 1, 
u v a -1 

u loge+ v log l _ e = log a - -a- L, 

with u,v E (0, 1). Then we have to solve 

u 1-u a-1 
f(u) ==- u log 0 + (1- u) log l - e - log a+ L-a- = 0. (6.3) 

A possible root off ( u) = 0 should result in a positive value of c and in b > 1. This 
imposes the conditions e < u <ea. Since df /du> 0 for e < u ~ 1, the equation 
(6.3) yields a single root, provided 

f(e)<O, f(l) >0 if ea> 1, f (ea) > 0 if ea < 1. 

By these conditions in the (a, 8) plane a region of admissible values is 
determined. For µ = 0 this region is sketched in Fig. 9. Its boundaries are 
determined by 

( a-1) a-1 alog 1+-- =--. 
1- ea 1- ea 

In particular, for 8 = ~ we have 1 <a< 4·3111. The Hopf line in the (a,b )-

a 

5 

4 

3 

2 

0 0.5 

(} -
FIG. 9 
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1 
b 

Unstable 1 

4.31 a ---4> 

FIG.10 

parameter plane is determined by (6.3) with L = 1, i.e. by 

u 1-u a-1 
u log 0+ (1- u) log 1 _ 8 =log a - -a-· 

The corresponding illustration for the special case 8 = ! is given in Fig. 10. The 
expansion of the Hopf radius is determined by the Taylor expansion of 

</>(c(l + t)) = ue-ct + ve-bct, 

from which 

A= c(u + bv) = 1-1/a, 

Thus the same numerical procedure enables us to calculate (1.5). A few results 
are collected in Table 3 for this case 0 = !. 

The expression of the Hopf radius changes sign at a= 44·05° (a= 2·286) and 
at a=51·79° (a=4·220) close to the boundary a=51·977° (a=4·311). This 
means that close to the Hopf line we have two regions of supercritical Hopf 
bifurcation and subcritical Hopf bifurcation for 44·05° < a< 51·79°. Close to the 
boundaries a= 2·29 and a= 4·22 we have anomalous Hopf bifurcation with two 

TABLE 3 

a' a b Xeq Yeq µ/R2 

24° 1·209 18·373 0·102 0·021 0·01035 
30° 1·366 12·247 0·147 0·054 0·02376 
400 1·879 7·600 0·216 0·190 0·03931 
45° 2·414 6·531 0·236 0·334 -0·02068 
480 2·956 6·282 0·241 0·471 -0·12926 
50° 3·502 6·521 0·238 0·597 -0·21569 
51° 3·866 7·096 0·236 0·675 -0·19912 

51.9° 4·272 10·285 0·232 0·760 0·08046 

I' 
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o.s.------------------, 

0 0.5 

FI0.11 

Hopf curves. A typical case is given in Fig. 11 for 8 = 0·5, a= 2, b = 7· l. In this 
case there is an attracting Hopf curve and a second unstable Hopf curve 
separating the bounded and the unbounded orbits. The corresponding position on 
the Hopf line is a = 2 with b = 7 · 231. For a = 2 and b = 7 ·06, the two Hopf curves 
coalesce, annihilating each other. Thus, for a= 2 and b < 7·06, all orbits are 
unbounded. 

7. Discussion 

Mathematically, it is surprising that a seemingly rather complicated class of 
iterative processes yields such pleasingly simple formulae for its Hopf bifurca­
tions. So-called transcritical Hopf bifurcations, i.e. Hopf bifurcations which 
switch from being supercritical to being subcritical, or vice versa, have recently 
attracted a great deal of attention (e.g. Chenciner, 1983). The main interest is 
the complicated interactions of the Arnold tongues with the 'crater rim'. We hope 
soon to present a more detailed account of our numerical explorations of these 
phenomena for the PP model. 

Biologically, the two most interesting results are the period-larger-than-six 
theorem from the introduction, and the gross phenomena accompanying the 
transcritical Hopf bifurcation. 

Some care is needed in interpreting the period-larger-than-six result. 'Period'­
in the strict mathematical sense-entails returning to exactly the same point after 
so many iterations. In the 2 : 15 Arnold tongue we may encounter period-fifteen 
oscillations, but these go round the Hopf circle twice. Biologically we are seeing 
'period 7~'. Moreover, it is only this biological period which remains visible when 
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slightly more than the tiniest amount of noise is added. We specifically 

formulated the theorem such that it applies to both concepts of period. 

The presence of transcritical Hopf bifurcation has consequences for the 

domains of attraction of either the equilibrium or the stable Hopf circle. For 

example, in the PP model both the stable equilibrium and the stable Hopf circle 

are always surrounded by an unstable Hopf circle bounding their domains of 

attraction. If we start too far away from the equilibrium we see ever increasing 

oscillations just as in the Nicholson-Baily model. When we let b go to infinity so 

that the PP model goes to the HV model, the area inside the unstable circle grows 

larger and larger and it appears as if, in the limit, the circle disappears by moving 

off towards infinity or merging with the axes_ However, the fact that the circle is 

clearly there for smaller values of b should instill a little caution in dealing with 

the HV model: it is apparently only the unrealistic behaviour, of the search-rate 

function near zero parasitoid density, assumed in the HV model, which makes for 
the simple character of its Hopf bifurcation. 
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Appendix 

In this appendix, a theory is given of normal and anomalous Hopf bifurcation. 

Our starting-point is the following normal form in complex coordinates (z, z) 

where z = x + iy or z = r exp i8 in polar coordinates 

z' = A.z - Qz 2z +Ii, (A.1) 

with A. = (1 + µ )e;,,. and Ii, generically denoting higher-order terms. By suitable 

scaling it can be arranged that IQI = 1. Accordingly, we write 

Q = expiy. 
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From (A.1) we obtain, for the square modulus s = r2 = zz, the transformation 

s' = (1+2µ)s -2 cos (a- y)s2 +it, 

where it contains all terms of order µ 3 and higher, assuming that s = 0(µ). For 
s' = s, we obtain the well-known relation for the radius of the Hopf circle: 

s =µ/cos (a - y), 

i.e. 

µ/R 2 =cos (a - y). 

If cos (a - y) is not small, we obtain either supercritical or subcritical Hopf 
bifurcation depending·on the sign of cos (a - y). However, if cos (a - y) is small, 
the analysis breaks down. It becomes necessary to extend the normal form (A.l) 
by taking 

z' = }.,z - Qz2z + Q1z 3z2 + O(z6). 

This normal form holds when lower resonances up to the order 6 are excluded. 
Fortunately, this is no restriction in the host-parasitoid models. Proceeding as 
before, we have for s = r 2 the transformation 

s' = (1+2µ)s -2 cos (a -y)s2 + Cs3 +it, 

where C = 1 + ei""Q 1 + e-i""Q1. For an invariant circle we should haves'= s. This 
gives, at the lowest order of approximation, the quadratic equation 

Cs2 - 2s cos (a - y) + 2µ = 0, (A.2) 

giving Cs= cos (a - y) ± [cos2 (a - y) - 2µC]~. Depending on the signs ofµ, C, 

t 

µ-

FIG. 12 
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and cos (a - y), there may be two roots, giving two Hopf circles. One of the 
possibilities is sketched in the bifurcation diagram of Fig. 12. The bifurcation line 
is determined by (A.2) with s = r2• If µ, > O and sufficiently small, we have two 
Hopf circles. It can be shown that the inner circle is stable and that the outer one 
is unstable. If µ increases gradually, the two circles approach each other, 
coalesce, and disappear. 


