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1. Introduction

In this paper we develop a theory for normalizing constrained Hamiltonian
systems. We make use of some ideas of Moser [6] concerning constrained Hamil-
tonian systems (see also [2]). The idea of constrained normalization is the follow-
ing. Consider a2 Hamiltonian system with Hamiltonian function H on (R?", @),
where o is the standard symplectic form. Denote such a system by (H, R*", w).
For a symplectic submanifold M < R?" define the constrained system corre-
sponding to (H, R*", w) by (H| M, M, w | M). Here | M means restriction to M.
We give a normalization algorithm for the system (H, R?", w) which on M
restricts to a normalization of the constrained system. The advantage is that the
necessary computations are performed in the ambient space R?", where they are
easier to do.

The paper is organized as follows. In the second section we give the facts
about constrained Hamiltonian systems needed for the development of the
constrained normalization algorithm in section three. In the fourth section we
introduce the Kepler system on R?". As is well known (see [5]) the Kepler system,
after regularization, can be considered as a system on R2"*? constrained to
T* 8", the cotangent bundle to the n-sphere minus its zero section. The same
techniques enable us to consider perturbed Kepler systems as constrained
systems, as is shown in section five. The facts proved in section four show
that we may apply the constrained normalization algorithm to perturbed
Keplerian systems. We illustrate this with two examples: (i) the lunar problem
(section six), and (ii) the main problem of artificial satellite theory (section seven).
The treatment of the main problem takes as its starting point the results of
Deprit [3] concerning the elimination of the parallax. The normalization up to
second order of the lunar problem provides a straightforward alternative for the
quite different approach of Kummer [4].
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2. Constrained Hamiltonian systems

Consider R?" with coordinates (X145 -vs Xps V15 ---» ¥n) and standard sym-
plectic form o(x, y) = Z dx; A dy,, For m<n let F,...,F,,eC”(R*)

be such that dF1 , . sz,,, are independent on M = {(x,y)e R?"| F,(x, )
=Fx,y)="= FZm (x, y) = 0}, that is, M is a smoothly embedded submani-
fold of R2", Furthermore suppose that the matrix C = (c;;) = ({F;, F}}) is non-
singular at every point of M. Then M is a symplectic manifold thh symplectlc
form w| M, the restriction of the symplectic form @ to M.

For H € C* (R?" the restriction of the Hamiltonian vector field X to M
need not be tangential to M. However we can construct a vector field tangential
to M by considering X,y on (M, | M), where H | M is the restriction of H to
M. We call Xy, the constrained Hamiltonian vector field corresponding to H.
Another way to describe the constrained vector field is that Xy, is the image
of the projection of X, on TM with respect to the splitting of TIR?"into TM and
its w-orthogonal complement.

Let .# be the ideal of C* (R?") generated by F,, ..., F,,,, that s, .# is the ideal
of functions vanishing on M. Furthermore let Ly denote the derivative defined
by Ly = {., H}, where {.,.} is the Poisson bracket on R*" with respect to the
symplectic form w.

Lemma 1. The following statements are equivalent:

() Xgu=Xgon M.
(@) {H,F}eSf, forj=1,....2m
(iii) (exp Lg)(f) € 4.
(iv) M is an invariant manifold of X .
(v) Xy is tangent to M at each point of M.

Proof. The proof is easy and left to the reader. [

Let H € C* (R?"). When X is not tangent to M we can construct a function
H such that H|M = H|M, Xy is tangent to M, and Xg|M = Xp),. The
construction of H is given in Lemma 2. Note that H need not be a smooth
function on all of R?*", In fact H is first constructed on M and then extended to
some open neighborhood of M in R?". Let C~! = (c¥) be the inverse of the
matrix C.

Lemma 2. IfH=H + Z‘, o F;, with «; Z ¢ {H, F}}, then Xg\ = Xy
on M. = =1
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Proof. In order for Xy to be tangential to M we must have 0 = {H, F}}
2m

={H,F;} — ¥ o {F;, F;} on M for j = 1, ..., 2m. This holds for «; as given in
i=1

the statement of the lemma. By Lemma 1 we have Xy = Xy, Because
H|{M = H|M we have Xy = Xg,yon M. [

The Poisson bracket {.,.}* on (M, | M) can be computed in terms of the
Poisson bracket on IR?" by the following

2m
Lemma 3. {H|M, G|M}™ ={H,G} — 3. {H,F}c¥{F, G} on M, where
Li=1
the right hand side is calculated for any smooth extension of H | M and G| M to
an open neighborhood of M in R?”,

Proof. (see [2]). {H |M, G| M}¥ = (0| M) (Xgp, Xo5)
= (@|M) (Xyjy> X¢p) = ©(Xu, Xg)={H,G} on M. Computing {H, G},
omitting terms in £, proves the lemma. (O

As a direct consequence of Lemma 3 we have,

Lemma 4. If X ,, = X on M then {H| M, G|M} = {H,G} on M for all
Ge C*(R?).

Proof. If Xy = Xy then {H, F} € # for all i = 1, ..., 2m. Consequently
Zm
Y. {H,F}c"{F,,G} vanishes on M. In other words {H|M,G|M}M
i,j=1

={H,G}|M. O

3. Constrained normalization

Consider a Hamiltonian system on R?" with Hamiltonian function
Ha:]RZn - R;(X, Y) - Ho(xs y) + Sﬁ(x’ Vs 8)
which satisfies the following conditions:

(C1) Hye C*(IR?") and X}, has only periodic orbits.

(C2) The flow of X, leaves invariant a symplectic manifold M < R>",
where M is defined as in §2.

(C3) He & where ¥ is the algebra of formal power series in ¢ with
coefficients in C® (IR*").

Following Cushman [1] we can transform H* into normal form with respect
to H, by invertible w-symplectic formal power series transformations. That is,
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there exists a transformation of the form expLg, Re £, such that for
H® = H?oexp Ly we have {#,, H,} =0 for every me N, where J#, is the
coefficient of e™ in J#°. We say that #° is a normal form for H® with respect to
H,. As a consequence of Lemma 4 we have,

Theorem 5. If H® is in normal form up to order k with respect to Hy, then
H*| M is in normal form up to order k with respect to H,| M.

Proof T H* = Hy, + ¢ H, + ¢ H, + -- - is in normal form up to order k then
{Hy, H} =0 for 0<I<k Because H'\M=H M +eH,|M+--- by
Lemma4 {Ho|M, H|M™=0for0<I<konM. O

A normal form for H® is obtained by transformations of the form
exp Lz, R € #. In general these transformations do not restrict to transforma-
tions of M into itself. We will show that one can modify the transformations
exp Ly in such a way that they restrict to transformations of M into M, and such
that the restriction of the transformed power series to M gives a normal form for
H?| M. This procedure is called constrained normalization or normalization
modulo #. Note that, because we will make use of the construction of Lemma
2, the procedure of constrained normalization is performed on some open
neighborhood of M in IR?",

Definition 6. Hj exp L, R € &, is in normal form up to order k with respect
to H, modulo the ideal .# if

(ND){R,F}eFforallj=1,...,2m.
(N2) All terms in H® o exp Ly of order < k are in (ker Ly ) + .

Here M and # are as defined in §2.

We will now perform the first step in the constrained normalized of H®
Write H® = H, + ¢ H; + O (¢?). Following [1] we have

C* (R*™) = ker L, ® im Ly, (1)

because H, satisfies (C1). This splitting is obtained by averaging over the flow
(ef"’ of Xy,. In more detail, for F € C* (R?") we have F = F + (F — F), where
F e ker Ly is the average of F over the flow of X , that is,
_ 1
F(p)=
P=75 |
Here T(p) is the period of the integral curve of X u, through p and
(pEey*F(p) = F(p¥°p). Thus H,=H, +H,, with H, ekerLy, and

H1 H, — H, eim Ly,. Now choose R, € C*(R*") such that Ly R, = H,.
ThenH”oexpLER = Hy + ¢H, + ¢H, + &Ly, Hy + O(e*) = Hy + eH; + O (%),

f (905"’)* F(p)dz. @
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Consequently H*oexp L., is in normal form with respect to H, to first order.
The generating function R, for the transformation exp L.z, can be obtained
from the following

Lemma 7. [1]. Let F e C* (R*"). If F =0, then Ly, R = F is solved by
RO) =7 | (e o)t 6

The above is the usual procedure for normalization of H* on R?". However,
exp L,g, will in general not be a transformation leaving M invariant. Therefore
we consider exp L., where R, is defined as in Lemma 2. By Lemma 1, exp L g,
leaves M invariant. We have

HeoexpL,g = Hy + ¢H; + ¢Lg, Hy + O(¢%),

2m 2m
where Lg H, = {H,, R} + {HO, h oc.F} with «; = Z ¢/ {R,, F}. Write

=—H, +I Ie s WrmngH = (A, + )+ (A, — I) we have

2m
{Ho, > a; F} Because Z o, F, € #, by Lemma 1, € .# too. Thus {H,, R,}

HeoexpLyg, = Hy + ¢(H, + 1) + 0 (%),

where H, + I € (ker Ly )+ #. Thus H®cexpL,g, is in normal form modulo 4
up to order one. By repeating the above argument we can bring H* into normal
form modulo .# up to arbitrary order.

Theorem 8. Suppose H* satisfies conditions (C1), (C2), and (C3), then for
each k € N, k > 0, there exists an R € & such that H® oexp L is in normal form
with respect to H, modulo £.

Remarks. Note that R is defined on some open neighborhood of M in R*".
The fact that w is chosen to be the standard symplectic form on R?" is not really
necessary. In fact @ can be any symplectic form. The above normalization
procedure still works if one takes the Poisson bracket corresponding to the
chosen symplectic form.

In some cases the function I € # in the constrained normalization construc-
tion takes a special form. This is shown in the following theorem.

Theorem 9. Suppose that the manifold M is defined by F, (x, y) = F,(x, y)
= 0. Furthermore suppose that {H, F} = ¢;F, + §; F,, i = 1,2, where a; and
B, are constants. Then for every G e C® (R?") we have {H, G} = E, where
E={H,G}
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Proof. Using Lemma 2 we have
{H,F} {(F,,G}  {H,{F,G}}F

(H, G} = {H,G} +

{F1, B} {Fi, By}
_{H AR B F,, GHF, | {H, K} {F,, G}
{F, K,}? {F,, Fi}
{Ha {FDG}}FZ _ {H: {Fstl}} {Fl’ G}F2
{F, Fi} {F,, K}

1
={H,G} + m[{ﬂ, F} {F, G} — {H, F} {F,, G}

+{{H,F},G}F, + {{G,H},F,} F, — {{H,F;},G} F,
—{{G, H}, F;} F,— {{H, F\}, F,} (G- G)—{{F,, H}, F,} (G—-G)]
By hypothesis we may write {H,F} =o; F, + ,;F,,i = 1,2, where o, §; are
constants. Substitution then gives
{F,{H,G}} F, {F,,{H,G}} F
{F,,F} {F2, F1}
{FZ’E}FI_ {FI’E}FZ=E D
{FlaFZ} {FZsF].}

{Ha G} = {H> G} +

=E+

If Hy and M satisfy the hypothesis of Theorem 9 we may slightly adjust
our normalization modulo .# to obtain a somewhat nicer normal form. We
again will perform the normalization process up to first order. Instead of
H®*= H, + ¢H, + O(¢*) we consider H, + ¢H, + O (¢*). By Lemma 1 (iii) this
will not change the restriction to M of the normalized function. Now if
Lg,Hy = — H,, then by Theorem 9, Ly, Hy = — H,. Because H, = H, + H,
the constrained normal form up to first order is H, + e H, + O (¢%). Applying
the same procedure up to order k gives a normal form which can be written
as H'=H,+e¢H, +&H, +---+&H, +0(*"*"), where HekerLy,
O0<IZLk

4. The Kepler system as a constrained oscillator

Consider the Kepler system (K,, M, w,,| M), where M = (R" — {0}) x R”,

Kot = 5 Inf — £ @

and w,, = Y d¢; A dn; is the standard symplectic form on IR*". Here |.| is the
i=1

norm associated to the euclidean inner product {.,.>.
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In this section we will show how constraining the oscillator system
(Ho, N, @3, 42| N)to (T 8", 0,,4,] T 8" gives the Kepler system on the punc-
tured cotangent bundle

T*S"={(g,p) e R¥”*"?||q|* =1,{q,p> = 0,p * 0},

of ™. Here the Hamiltonian of the oscillator is

Hy(g, p) = (1qP1p)* — <q, p>H'?, ©)
and the phase space is

N=]R2n+2—‘C2"+2, (6)

where Cy, 4, = {(g. P) e R*™ 2| |g]?|p|* = g, p)*}.

Converting (K,, M, @,,| M)into (H,, N, ®,,, ,| N) is based upon the regu-
larization given in Moser [S]. The regularization of the Kepler system consists
of a pre-regularization followed by a sympletic map. We start with the pre-
regularization.

The pre-regularized Kepler Hamiltonian is given by

l—Q(Ko+1k2>+%=i|fl(lﬂ|2+k2)~ 7

It

K°k 2 k

On the energy surface K,=" = L(which corresponds to the level set

K, = —1k?) the Hamiltonian vector field of the pre-regularized Kepler Hamil-
tonian K, is given by

de ok, 1 8K, d |.5|] 1 . 8K,

% = 1E 0 4 (K + LR ) e e

ds 3 |ge=-ie [km on Ko+ 3 )611 k {lko= k2 kI lan

dn ok, oK,

G - Ze, 8

s 1 P klfl 3¢ (8)
In other words on K, = L, Xy, is just the Kepler vector field X,

d¢_ 9K, _

dt oy ’

dn 0K,  ué

a2 g ©)

. . . ds k
in a new time scale s given by Friaiys
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Let T*8;, ={(g.p)eT*S"|q*(0,...,0,1)}. Following Moser [5] the
system (K,, M, w,,| M) is symplectically diffeomorphic to the system
(Go» T* 8%, w4, T S7,), where

Gola,p) = Ip!. (10)
The desired diffecomorphism m: T* S — M is given by

kg
1- Qn+s
We call m Moser’s regularization map. The inverse map m™*: M - T* S} is
given by

2/1 -t 1 “1/4
qﬁ;(ﬁnlzﬂ) Nis qn+1=(pln|2+l) (plnlz—l)

2(1 1 .
P;="‘E(F|7ﬂz+1)5;+E<’7,5>"1n Pn+1=_<7’,5>, l=1"">n'(12)

1 .
fi=~E(Pi(1“qn+1)+4iPn+1)a = , i=1,...n (11)

Since G, does not depend on g it extends to a smooth function Gy
on (T*S"w,,+,|T*S"), which is the Hamiltonian for the geodesic
vector field on T*S" Note that the set B=T"'S"— TS,
={0,....,0,1,py,...,p)eR*™ 2|5 = (p,, ..., p,) + 0} corresponds to colli-
sions in the Kepler system. B is called the collision set. The system
(Go, T 8", s, 2| T™ S is called the regularized Kepler system. In the regular-
ized Kepler system a collision orbit can be treated like any other orbit.

Next we show that the system (G,, T+ S", w,,+,| T+ S™ can be considered
as a constrained oscillator. On the symplectic manifold (N, ©,, ., , | N), where N
is given by (6), consider the Hamiltonian H{q, p) given by (5). Since

lg?lpl? —<g.p>* = X (qp;—4;p)s (13)

1Si<jEn+1

H, is defined and is a smooth positive function on N. Since C,, ., " T* 5" = §,
H, restricted to T* S” is defined and Hy|T™* 5" = G,,.

Lemma 10. (T* 8" ®,,,,|T*S") is a symplectic submanifold of
(N, @3,4, | N).

Proof. Let

FI(Q7P)=|QI2—13 Fz(‘-]»P)=<q,P>- (14)
The matrix C = ({F,, F}), i,j = 1,2, is nonsingular on N because {F,, F,} (g, p)
=2(F(g.p)+1)=2[g*>0. O

Consequently (Go, T* 8", w,,+,| T " S is the constrained system on T+ S
corresponding to (Hy, N, w,, 45| N).
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Lemma 11. T* $” is an invariant manifold for X, .
Proof. As is easily checked {H,, F;} =0 and {H,, F,} = 0, which, using
Lemma 1, completes the proof. O

We can write down the Hamiltonian vector field on (N, w,, ;| N) corre-
sponding to H,(q, p). Explicitly, we have

- 2 "‘<‘1:P>In+1 quZIrH-l )(i)z (Z)
Suien =g i ) (o) =40 (3) 09

where [, , is the (n + 1) x (n + 1) identity matrix. From the proof of Lemma 11
it follows that [q|* and {g, p) are integrals of X 5 . Since H3 is also an integral,
|p{* is an integral of X 5 . Consequently the matrix A (g, p) is constant along the
orbits of X, that is, the flow of X is a linear flow. For convenience let
Hylg,p)=h, |q)> = a, |p|* = b, {q,p)> = d, where h*> = ab — d* > 0, then the
flow pffo of Xy is given by the matrix

(c0s 20) 15y, +%(sin2t)A

which is equal to

d .
(—~ﬁsi112t+cos2t)f,‘+l (%stt)I,,+1

b d .
(~-—};sin2t)l,,+1 (Esm2t+c032t)l,,+1 .

Consequently,

(16)

Lemma 12. On (N, @,, ,, | N) the flow of X is periodic, all integral curves
having period =.

Recall that the vector space C®(R?"*?) of smooth functions on
(R?"*2, (0,,4,) is 2 Lie algebra under Poisson bracket. A straight forward
calculation shows that the smooth functions 3 |q/*, |pl’, {¢,p)> span a Lie
subalgebra & of (C® (R?"*2), {.,.}), which is isomorphic to s, (IR). As is easily
checked, every smooth function of the quadratic polynomials

Sy=aqipj—qpp 15i<jsn+l1, an

lies in the centralizer of &. Consequently every smooth function in the quadratic
polynomials S;; commutes with every smooth function on #. Thus we have
proved

Lemma 13. S;;|N,1 i <jZ£n + 1, are integrals of Xg,.
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By Lemma 4 and Lemma 10 it follows that the §;;| T * §" are integrals of X ¢
on T* S" In fact the S;;| T* S* are the components of an SO (n + 1, R) momen-
tum mapping arising from the linear action of SO (n + 1,R) on R"*! restricted
to S™ (see [1]). Using (12) a short calculation shows that

Jy= ;I T " SYom™ t=¢&m, — &y, 1Si<jEn, (18)

correspond to the components of an SO (n, R) momentum mapping for the
Kepler Hamiltonian K. Since K, is invariant under the SO (n, R)-action, the J;;
correspond to the integrals of Ky . The functions

A;=Sps [ TTSNem™, i=1,..,n, (19)

on the L-level set of H, correspond to the components of the Laplace vector,
which also are integrals for Xy .

Finally we will determine the orbits of the regularized Kepler system
(Go, T* 8", w,,4,| T+ 8" which correspond to collision orbits of the Kepler
system (K,, M, @,,| M). These are the orbits which pass through the collision
set B={(0,...,0,1,p,,..., 0, 00 e R**2|(p,....,p) £ 0} Let § = (qy,---. 4,)
and p = (p,, ..., p,) be the n-vectors consisting of the first n components of the
vectors g and p respectively.

Define G (g, p) = |§1* 151> — <g, p>* and Cy, = {(g, p) e R***?| G (¢, p) = O}.
Because G(g,p) = X (4:p;— q;p)% G| T* S*is an integral of X . Conse-

<

15i<j
quently C,, »n T S" is a union of orbits of X, .

Lemma 14. C,, n T* §" is the set of all integral curves of X, passing
through B.

Proof. We have to show that {¢f°(B),0<t<n}=C,,nT*S" Let w
denote the n-vector obtained by taking the first n components of weR"*1.

Consider the point (0,1,5,0)e B. Then ¢F°(©,1,5,0)= (—E} sin2t,...,

: p
P:“—sinZz, cos2t, p,cos2t,...,p,cos2t, —{p|sin2t). It is now easy to check

Pl
that ¢7°(0,1,5,0)e C,, n T* S".

Finally we will show that each point in C,, » T'* §” is the image of ¢° of
some point in B. Note that G(q, p) = 0 is equivalent to the least one of the
following three conditions: (1) § =0, (i) =0, (i) = A5, e R, 1 = 0.

~

(i) Suppose (u,v)eC,, " T*S",d=0. From |u)> =g +u2, =1 we
obtain u,,, ==+ 1, and from <{u,v) =0 we obtain v,,, = 0. Consequently
(u,v) = (0, +1,5,0). We have (0,1, 0) e B and ©, —1, 3, 0) = ¢ (0, 1, 5, 0).

(ii) Suppose (u,v)eC,, " T*S", ¢ =0 Because (u,v)e T*S" we must
bave v,,; *+ 0. Consequently u,,, = 0 because of {u,v) = 0. Thus we have
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1) =(%0,0,v,.,). If v,,, >0 then (4,0,0,v,,,) = p3° ©,1,u, Sv,015--.
3

Uy /Vys1,0), and if v,,, <O then (% 0,0,v,.,) =0, 1,u; /— 0,11,

Uy / _Un+130)'

(ili) Suppose (4,v)€C,, " T*S", @ =A0 From |ul®>=|d4]> +u?, =
2

A%19)2 + u2,, =1 we have A? =.1_.|_:"_‘2ni_1_

v

cos 2t (This can always be done because |u|> = 1. Thus u,, ; < 1. There are two

. If we choose ¢, such that u,,; =

choices depending on the sign of A) then (/1 D, U, 4 1,15,-1;[u,,+1> =
cpg"(ﬁ,l, v ,0). O

Uyt

Since G is an integral of Xy, V = N — C,, with symplectic form w,,,,|V
is an invariant symplectic manifold for X 5 . From Lemma 12 it follows that all
the integral curves of Xy | V are periodic with period 7. Constraining the system
Ho, V,05,4,1V) to T*S"=T*S$"—(C,,nT*S") gives the system
(Go, T* S", 5,4, | T* S") whose integral curves, when projected on S”, are geo-
desics which do not pass through the pole (0,..., 0, 1).

5. Normalization of perturbed Kepler systems

Consider a perturbed Keplerian system on (M = (R" — {0}) xR", w,, | M)
with Hamiltonian given by

K* (‘f: 77) = KO (fa ”) +é Kl (é’ n, 5) > (20)

where K, is the Kepler Hamiltonian given by (1), and K, € &, that is, K, is a
formal power series in ¢ with coefficients which are smooth on M. K* is said to
be in normal form if {K,, K} = 0. In this section we will show how the formal
Hamiltonian (20) can be transformed into normal form using the theory of
constrained normalization developed in §3. Towards this end we first have
to describe (K%, M, w,, | M) as a constrained system. We do this by following the
regularization process for the Kepler system of §4. We start by applying the
pre-regularization to K*®. This gives

Ka(é: ’7)=K0(5= ’7)+ 8K1 (éa f, 8)7 (21)

where K, is the function given by (13),and K, = 4] K, with K, as in (20). Next

k
apply Moser’s regularization map m to K* to obtain a system (G%, T+ S"

np>
Wan+2| TT S7p) with

Ge(Q7p)=GO(q: q) +5G1(11,P,8), (22)
where G, is given by (10).
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Now we have to distinguish two cases: (i) G can be extended to a power
series with smooth coefficients on T* 8. (ii) G* can not be extended to such a
power series.

We are in case (i) when K, is at most linear in the coordinates #. This

follows easily from the fact that under m™*

_ka

= Gn+1 . A
can be extended to a smooth function on all of T* S". Extending G, to
T S" gives us the system on (T * §", w,,,,| T+ S") with Hamiltonian

. 1¢| turns into ilpl(l —gyar)

while # turns into . It is now clear that under this hypothesis G,

GC(CLP) = GO (%P) + 6G"l (%Pa 8)‘ (23)

Because (g, p) are in fact coordinates on R?"*? there is a natural extension
H*(q, p) of G*(g, p) to (N, w,,,,|N) given by

H®(q,p)=Hy(q,p) + eH (g, p, ¢), (24)

where H, is given by (5), and N 1is given by (6). The system
(G5, T* S, wy,.,|TT 8" is now obtained by constraining the system
(H:, N, w,,4+,IN) to T*S" By Lemma’s 10, 11, and 12 we may apply the
constrained normalization algorithm of §3.

When we are in case (ii) G* is singular at the collision set B given in §4.
Because normalization involves averaging over the orbits of X5 , we have to
omit all the collision orbits of X4 , i.e. the orbits passing through B. Therefore
we consider (G°, T+ S", w,, ., , | T* S") (notation as in §4). This system is obtained
by constraining to T* S the system (H*, V, w,, ., | V), where H® is given in (24)
and V=N — C,,. Again we may apply the constrained normalization algo-
rithm to H®.

Now suppose that we have obtained a normal form ##* for H* defined
on W, where W is either N or V, using the constrained normalization
algorithm. Then #*° = H, + ¢ #,. If ¢ is the normalizing symplectic trans-
formation then s, = H, o ¢. Because of the normalization algorithm, the re-
strictions of #, and Hy to T+ S” n W commute under the Poisson bracket on
(T*S" "W, w,,,,| T* S" n W). Because m is a symplectic diffeomorphism we
obtain a normal form 4 ° = 3#*om™? for K*. More precisely 5% = K, + ¢ 4,
where #; = K, emo>¢@om™". Notice that /£ is defined on m(T* S, n W).
Going backwards through the pre-regularization process now gives a normal
form for K*.

We will illustrate the constrained normalization algorithm with two
examples: (a) the lunar problem which belongs to case (i); (b) the main problem
of artificial satellite theory which belongs to case (ii).
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6. Normalization of the lunar problem

The name lunar problem stands for the three dimensional restricted three
body problem (sun, earth, moon) when the value of the Jacobi constant is large.
The primaries (sun, earth) have masses 1 — v and v, and the massless body (the
moon) is assumed to be confined to move in the Hill’s region of the body with
mass v (the earth).

Following Kummer [4] this system can be formulated as a perturbated
Kepler system on (M = (R® — {0}) x R3, w4| M) with Hamiltonian

K(x,y)= ly]2 - m — (12 — X)) — (1 =) B x2 — x| + O (|x[?)
(25)
restricted to the energy surface K = — 1 k2 ¢72, where ¢ < k. Stretching variables

according to
x=verl¢, y=¢ty, K=¢2K, t=2At,y,,

where 1 = vé?, gives

1
K*(¢, ﬂ)“’lﬂlz-m AGyn, — &am)
—5(1 L EIS T I B N (R (26)

on K* = —1k2,
Going through the pre-regularization process we obtain

, 1
K*¢m) = 2—1‘:‘Ifl(lfll2 + k) = A1E1¢Ema — Eamy)
—3 =R IEEE ~ 1+ 067 4. @)
Applying the map m given by (11) gives

H*(¢,p) = |pl — 4 G lpl(1 — q4) (g1 P2 — qlpz))

11—=v) 31—V

31 —v
+ A% (ig"k’i'“)}ﬂ(‘hpz ‘121’1)+2 k2 +'2' i lplpy
3(1 — 31 —v)
2( 3 )l I*q —~5——~2—1p|(qlp4—q4p1)q4
3(1 —v) 34 30 -v =9 s
+§“““‘123—“|P| Ty |plgap, — 2k 2I”q

+0( 1%, (28)
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We consider this as a formal power series in A, writing
H*(g,p) = Ho(q,p) + A H; (g, p) + A* H, (g, p) + O (v 1 2%,

replacing |p| by Ho (g, p) = (191%|p1* — (g, p>*)'/*. Notice that H* is smooth on
N =R® — Cg (see (6). The original system corresponds to the system
(H?*, N, wg| N) constrained to T+ S3.

We start our normalization process by computing the average H, of H,.
Because |p|(g, p, — 4, p,) is an integral of X we only have to compute the
average g, of q,. According to formula (2),

1= d a
da ;£<~}—181n2t+cos2t)q4 (Engt)p‘tdt 0.
Consequently
_ 1
Hy(q,p)=— 1 |P1(@172 — 42P1)- (29)

The generating function R (g, p) of the normalizing transformation exp L, (up
to first order) is computed using (3). We have

1=1 d . a
R(g,p)=—{7tIpl(q1 P2 =2, p))| | —7sin2t-+c0s2¢)qs+| 7-sin2t ) p, |dt
ok h h
1 1 271 d . 1
2/P1@ip: — 421 5 (j) 5\ —usinu + Sucosu)q,
1fa |
+5 pusinu Dadu

lpl(qip2 — szl)zh(dq4 apy,)

a-:»

{4, P> 44— |91’ Dy
(gl |p1* — <q, pp*)'"*

1 Ipl(q1ps — q201) 3
= — : D4 - 30
% H.@.p) Z (@:pa~qap)a (30)

i=1

1
=57 lpl(a, P2 — a2 p1)

Let F, (g, p) = |q|> — 1 and F, (g, p) = <q, p). Then we find that

R} =—> k[‘i%o—@%f—’ 3 @ q4pi)] (111}

{qp>
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{5Jﬂ=—i{9ﬂLﬁﬁﬁzouu %Eﬂ«%mﬂm
2 k HO (qs P) i=1

1(q:p>— q2p1)Ip|
T2k H, (g, p) ; [(9i24 — 94p) {4, P>, a:}]

= R(q,p) — R(g,p) = 0. (32)

Since {F,,R}|T*S*={F,,R}|T*S®=0 the normalizing transformation
exp L, leaves T* S* invariant. Thus we need not compute R.

After the first order normalization the new second order term in the Hamil-
tonian is

H, = H,(q,p)+ {H,, R} + {{{Ho, R}, R}

=H2(q,P)+{H1:R}+%{H1aR}, (33)

where H, = H, — H,. To compute the average H, of H,, we compute H,,
{H,, R},and {H,, R}. We start with H, which is given in (28). The computation
of H, comes down to finding the average of py, 4a, 941,93, and q3. As in the
computatlon of H,, one has p, = g, = q3 = 0. It remains to compute q4, and
44 P1. To simplify the somewhat long formulas recall that

Sij = q;p; — 4; ;-
Furthermore let

{a,p>q;—1q91*p

%= "Han
—_— 2 .
P = @.r)p—Iplg; (34)
HO(qap)
and
=|q| = a'?

B =|p| = b'2.
In addition write

D=<q,p>=4d.

Using (2) and (16) we have

qu} }[(—~sm2t+cosZt)q, (hsinZt)pi]
o
a . a .
. -—];sm2t+cos2t)qj+ Estt p; {dt

1 1
=§Qin+§‘1i‘1j- (35)
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Similarly

%P =—3%P+34p- (36)

From (35) and (36) we obtain r_ﬁ and q, p, - Consequently H, is given by

31 -v) 1(1—v)

31— 3(1 —
D g o, 30— =%,

3
2 K2 4k3BQ“4k3 “a

H,(q.p) =

3(1 —v) 31—

e BQ, P 3 —5—Bqup;. (37

The next term to be computed is {H,, R}. We find that

7 1 (1 — )Zl IZ
{HL,R}=;‘—,C—5‘“’2HO‘(I;£’;) P 5 @pe—ap)(lph gl

= 4k2 SlzBP4

3 3
Since P4 = 2 Si4pi and ﬁi = O, P“ = Z Si4¢.ﬁi = 0- Thus
i=1 i=1

{H,,R} =0. 38)
Finally we have to compute £ {H,, R}. Since H, = — H, q, we obtain

N 1
{H,,R} = E{HUR}qaf"_{q“R}H

1
SszLzBP4Q4 4k2S%2Q4P4
1 1 1
"mmsﬁBzQi 4k2H — 8%, B? Z q7.
(¢}

To compute ; {H,, R} we have to determinc};z. As in the calculation of (35) and
(36), we obtain

P2 +

[N

pi.

N
N
(ST
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A calculation gives

1— 1 1 1 1
E{HnR} = WEBDS%Z (— ‘2‘Q4P4 + 5'141’4)

1 1 1 1
- s sh (30 + 34

1 1 202 (152 12
+4k2HoA 812(2P4+'2"p4

1 1 1 1
_WEDS%Z(_§Q4P“+§Q4P"’)

1 1 1 1
TICH A*B*S, (51’3 + Epi)

1 1 1 1
+ 2_,;5‘};3—"12 BZDsz (““2‘Q4 P, + 5‘14}74)

1 1 1 1
- z‘k—zEsz DSty (‘2‘Qi + 543)

1 1 1 1 11
—ZF—I};stfz(fQi +§qﬁ> +WEAZBZsz- (40)

Taking the average of (33) yields
A,(q,p) = A,(¢,p) + 1 {H,, R}

where H, and {H,, R} are given by (37) and (40). Notice that on T * §* we have
the following equalities

QT*s*=—E  p|T*s3=—pg,

lpl°
Thus
— (3 —v) 31—V 11 =)
Hz(q,p)lT*S3‘=(-2- ot )Pl @p — )+ 55 Pl
31 —v
2 1pp 63 + 52
1
- W(‘hf’z —q,p,)* (p1* 4 + p3)
1 2
+Z‘k_2(41172"‘12pl) r2
11 241,12 42 2
I(‘th —q,p1)* (pl* g5 + p3). (41)

T 8k2p|
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Using the fact that on T* S* we have the relations

pPITTS= % (@p—qp) +0, (42)
and =TE
3
(plPaz+p)IT*S* = 5:1 (9xpa — qap)®, (see[1], page 137) (43)
k=

we find that the normal form H, + H, on T* S? is equal to a smooth function
in the quadratic functions S;; defined in (17). On T * §? consider the H, level set

corresponding to |p| =L = ;—c Applying the inverse of Moser’s regularization

map and the inverse of the pre-regularization process gives the normal form for
the lunar problem to second order on the K, = — 3 k* level set.

7. The main problem of artificial satellite theory

In this section we discuss the main problem of artificial satellite theory. This
is the problem in which a point mass moves subject to the gravitational forces
of an oblate sphere. In the perturbation term of the potential due to the ob-
lateness only the dominant term is taken into account.

According to Deprit ([3], page 114, 130) the Hamiltonian of the main prob-
lem of artificial satellite theory in Whittaker coordinates (r, 8, v, R, @, N) is

2 2
M=1(R2+Qz—)—*neN—-H—[1—e(g> (1-—§szcos20>]. (44)
2 r ¥ r 4

Assuming @ + 0 we may eliminate the parallax. In mixed Whittaker and Delau-
nay variables, the latter given by (I, g, b, L, G, H), (44) becomes

@2 8" o 2n 2 . a2k
M=M0,0+72— > —1- 2, e ¥ My (s9)s*cos2kyg,

nz1nl 0sjEzn  0sks) @)
where M} ; ,(s*) are the inclination polynomials ([3], page 137, 138), and
1 oY\ nu
MO,O = E(RZ + ‘;‘i‘) ""; - neN = Mo - neN

is the Kepler Hamiltonian M, with added constant —n, N. After using the

oy e G? . P

identities @ = G and p = — and rearranging the terms, the Hamiltonian (45)
7

takes the form

G2 n 2n )
M=M,+— ¥ f—(f"—“) Y. B, (€% 5% (essing)¥, (46)
0<j

" nzo n'\ G Jg-;-n

where the eccentricity-inclination polynomials P, ;are given in Table Iforn < 4.
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Table I
Eccentricity-inclination polynomials.
Po= M’x',o‘o(sz)
Pyo= M3 o o)+ e* (M, 0(s%) + s M5, , (s7)
Ppi=—M3;,, %
Pyo=M3,0(%) + € (M}, o(s5) + s M% | | (s7)
Pyy=~— 2M§,1.1(32)
Pio =M} 00+ e* (M}, (%) +s°ME | (%)

+ 34(M:.2,0(32) + s? Mz, %) +s* Mi.z.z(sz))
P, =—-2M}%,, (sH) —2¢€ (M3,2,1(52) +4s? Mz.z,z(sz))
Pya=8Mj, ,(s%

Let J = (J,,J,,J5) and 4 = (A, 4,, A;) be the angular momentum and
Laplace vectors for the Kepler problem when n = 3. We have the following
relations

2
My=—30, G =J+Ji+J5 G'&=Ji+J}
H=1J, essing=dA, DPe=I—(J+J2+J2) @7

Using (47) we may express the Delaunay variables in (46) in terms of L, and the
components of J and A. Thus the Hamiltonian of the main problem after
elimination of the parallax has the form

K (¢ me)
T -
where K, (¢, ) is the Kepler Hamiltonian (4) and {K,, K,} = 0, because K, is

a smooth formal power series in J;, A;,i = 1,2, 3, and L which are integrals of
Xk

K& m=Ko(&m+e (48)

o

Recall that for ¢ = 0 we consider only those orbits whose total energy is
negative. Because after regularization the perturbation term in (48) can not be
extended to a smooth function on T* S® we must consider those orbits of the
unperturbed Kepler system with nonzero angular momentum. After pre-
regularization (48) becomes

kKl (é: 'LS)
g

Applying Moser’s diffeomorphism m to K*® yields a Hamiltonian system
(G5, T+ 83, w,,4,]T* S3). Here

ét (q7 P) = GO (qa P) + Bﬁ(qa P) Gl (q’Pa 8)’ (50)

R ) = o El(nf +KD) + e )

. . k
- where G, (q,p) = Ipl, F(g.p) = (1 —¢*)*, and G, (g, p,8) = I_IKI om(g, p, £).
¥4
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Consider the polynomials S;; = g;p; — ¢;p; on R®. On G5 * (L) € R®, where

L= E, we have

k

J1°m=S23, JZ °m=S13, J30m=312. (51-1)
1 1 1

A1°m=-—ES14> A29m=——zsz4, A3°m=—ZS34. (512)

We consider these as smooth functions on T+ S instead of G5 ' (L). Because
K, is a smooth function of L,J, A, i=1,2,3, it follows that G, is a
smooth function of S;[T*S3 1<i<j=<4 Because Moser’s map m is a
symplectic diffeomorphism from (T* S3, wg|T* S?) onto (R® — {0})xR?)
—m(Cy4 N T 5% with symplectic form equal to the restriction of wg, G, is a
formal power series integral of X | T S>.

We may now apply the constrained normalization process on the Hamil-
tonian system (H®, V, wg | V), where ¥V = R® — Cy n Cq, and HE is given by

H*(q,p) = Hy (g, p) + e F(q) H, (g, p, &), (52)

with Ho (¢, p) = (1q1? |p* — <q,p>*)'*, F (@) = (19| — )", and H, the smooth
extension of G, to V defined by H, = G, (S| V; €). Note that H, is a smooth
formal power series integral of X, and that H® is a smooth extension of G'.

To compute the constrained normal form for H* we have to compute

F-H, = F - H,. Using (2) and (16) we obtain

LY d . a.. -t
F==[(a'~|{—;sin2t +cos2t)q, —{Tsin2t|p, de
mTo h h

{ 2= d ali? ) A -1
=5—m g (1+<a—m—hq4—7p4>smv~;mcosv) dv. (53)

If we let

) d all? 2 4 1/2

€= {(m qs — Tlh) + ;‘Zf} 5 (54)
and choose y so that

y q . d a1/2

ECOSX=ZIT75, esmx=mq4—7p4, (55)

then (53) becomes

a1/2F=j—2k ! dv
2n o 1 —é&cos(v+yx)

(36)
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Before we compute (56) we digress to show that & is a smooth extension
of eom, where e is the eccentricity defined in (47). On Q = Gg ' (L)
—(CenT*S% < T*S3 the integrals |g]> =a, |p|> = b, {g,p)> =d, Hy = h of
Xy, on V take the values 1, I?, 0, and L respectively. Therefore

N a 1 1
&0 =(;lzpi+;q%)IQ=E(Iplzqi+p§)lQ
= (A} + A3+ 4 emlQ=ctom|Q. (57)

Here we have used (43). The following argument shows that on V the function
¢ takes values in [0, 1). Since

4 (v) Ho*‘h
lq (v)] =l )ll

it follows that & = 1 if and only if for some # € [0, 2 %] g, (7) = |q ()}, that is, if and

only if g, (8) = g, (%) = g5 (8) = 0 and ¢, () > 0. But then (q(9), p (7)) lies on Cg
and consequently it does not lie in V. Therefore the integrand of (56) is defined.
We have

écos(v+y)

1 1 2=Fx 1

- 12
V2 = dy = — S —
F 2ng1—e“cos(v+x) "= y 1 —écosu
1 2= 1 1
= du = . 58
Zn({l—é‘cosu v /1 — 82 (58)

By Lemma 7 we obtain the normalizing transformation expL.g(see also
Lemma 2 and Theorem 8) where

Q=

ft(oHoy(F-H, — F-H)dt = H, - F
0

and

T

== [ t(pfo)*(F — F)dt. (59)

?:H'-*
c

It remains to calculate F. Using (58) and (59) we find that

2r 1 1
a'?F = t - de
27 i [1 —écos(t + x) /1..52]
Zj. t+x § 2 1 7
T o

]

—_—r - dt —
1 —é&cos(t+y) 2n 5 1 —Ecos(t+ %) 1 — &2

i

“I“ l"I'-‘

u Xx+mn

atx
;i 1 —écosudu_ /1 — &>

I
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but
1 2zt+x u 1 0 2n 2r+y u
— ——du=—1{{+ | + ——du
2n g 1 —écosu “ Zn(i g i‘,,)l—écosu
1 (4] 2n u
=ﬂ<£+ j<;)1—e005u
1 v+27
N -
2np1 —é&cos(v+ 2n)
1 2z X
‘Ti —-ecosu i —ecosu

n 2 S+ x
= + tan - tan = |.
J1-& J1-& 1-¢ 2

. 2 1+e\'? g X
2 F tan~ | | ——= = - —. 60
¢ Sioe [(1—€> 3 J1-& 0

This completes the computations.

Therefore on V

1
Note that because &2 = _I_?(S%“ + 82, + S2,) on T*S* we find that the

restriction of our normal form to T* 8? is a smooth function in the S;;|T* S>.
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Summary

Consider a Hamiltonian system (H, R?", ). Let M be a symplectic submanifold of (R*", w).
The system (H, R?", ) constrained to M is (H| M, M, w|M). In this paper we give an algorithm
which normalizes the system on IR?" in such a way that restricted to M we have normalized the
constrained system. This procedure is then applied to perturbed Kepler systems such as the lunar
problem and the main problem of artificial satellite theory.

Zusammenfassung

Wir betrachten ein Hamiltonisches System (H, R?", w). Sei M ein symplectisches Submanifold
von (R?", w). Das System (&, R?", ), auf M beschrinkt, ist (H| M, M, o] M). In der vorliegenden
Arbeit wird ein Algorithmus vorgeschlagen, der dieses System so auf IR?" normalisiert, daB das auf
M beschrinkte System auch normalisiert ist. Dieser Algorithmus wird dann auf gestorte Kepler-
systerne, wie z. B. das Hill-sche Mondproblem und das Hauptproblem der Theorie der kiinstlichen
Satelliten, angewendet.
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