
SIAM J. NUMER. ANAL. 

Vol. 24, No. 3, June 1987 
© 1987 Society for Industrial and Applied Mathematics 

007 

EXPLICIT RUNGE-KUTIA (-NYSTROM) METHODS WITH REDUCED 
PHASE ERRORS FOR COMPUTING 

OSCILLATING SOLUTIONS* 

P. J. VAN DER HOUWENt AND B. P. SOMMEIJERt 

Abstract. We construct explicit Runge-Kutta (-Nystrom) methods for the integration of first (and 
second) order differential equations having an oscillatory solution. Special attention is paid to the phase 
errors (or dispersion) of the dominant components in the numerical oscillations when these methods are 
applied to a linear, homogeneous test model. RK(N) methods are constructed which are dispersive of orders 
up to 10, whereas the (algebraic) order of accuracy is only 2 or 3. Application of these methods to equations 
describing free and weakly forced oscillations and to semidiscretized hyperbolic equations reveals that the 
phase errors can significantly be reduced. 

Key words. numerical analysis, ordinary differential equations, periodic solutions, Runge-Kutta method 

AMS(MOS) subject classification. 65L05 

1982 CR Categories. G.1.7, G.1.8 

1. Introduction. We shall discuss the construction of special Runge-Kutta 
(-Nystrom) methods (RK(N) methods) for integrating systems of ODEs of the form 

dky 
(1.1) dtk=f(t,y), k=l,2. 

The methods are designed in such a way that for linear systems withf(t, y) = Ay + g(t), 
where A is skew symmetric if k = 1 and symmetric if k = 2, the phase error of the free 
oscillations in the numerical solution is small. Methods possessing this property are 
suitable for long interval integration of equations describing free oscillations because 
the integration step can be chosen much larger than the step size conventional RK(N) 
methods need for the accurate representation of these components (see the numerical 
results for Problem 4.3). A second class of problems which can efficiently be integrated 
by these methods, have solutions that consist of free oscillations of high frequency and 
forced oscillations of low frequency (see Problem 4.4). Since the step size needs only to 
be tuned to the forced oscillation, the method can again be applied with relatively 
large steps. In all other cases, the efficiency of the methods depends on the magnitude 
of the phase error due to the forced oscillations. If these contributions are small, for 
example, if Jg( t)I « JAy( t)J, then the methods derived in this paper are still more efficient 
than conventional RK(N) methods (see Problem 4.5). Because the classes of problems 
described above are usually not stiff, we shall confine our considerations to explicit 
methods (although the process of reducing the phase error of the method could be 
extended to implicit RK(N) methods). Finally, we mention another class of problems 
for which these explicit methods may prove to be suitable, namely the class of 
semidiscrete hyperbolic equations with smooth solutions. The introduction of vector 
computers stimulated a reconsideration of explicit time-stepping methods for solving 
hyperbolic equations (see, e.g., Jameson [14]) because on this new generation of 
computers, explicit methods can be implemented with great efficiency, partly com
pensating for the limited step size inherent to explicit methods. 
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. d !"cation in mind we have constructed the RK(N) methods 
With this secon _a~p I of intermedi~te storage is required, so that large systems 

in such a way that a m1mmum 
· . . h b lie equations can be handled. 

of sem1-d1screte ydper tod t the phase lag analysis of numerical methods start with Most papers evo e o 
the inhomogeneous test equation 

1.2} 
dk 

y c· )k +ceiw/ -k == IW y , 
dt 

The exact solution of this equation is given by 

iwt -iwt c eiwpt 
)'(t)=c+e +c_ e +(. )k c· )k ' lWp - IW 11.3) 

where C+ and c_ are constants with c_ = O for k = 1. By. a~plying a n~merical me:~od 
to the test equation ( 1.2) and assuming that the charactenstlc polynomial charactenzmg 
the method has d distinct zeros {aj} (so-called amplification factors), we find for the 
numerical approximation at tn = nh an expression of the form 

( 1.4) Yn =I s(aj(wh)r+chkO(wh, wph) einwPh, 
j=J 

where the constants C. are determined by the initial conditions, and where the functions 
1i and n are independent of n and are completely determined by the numerical method 
applied. The functions (ajt and n are discrete analogue~ of the ~unctions_ exp (±iwt) 
and n:""l/[(iwph)k-(iwh)k]. Accordingly, the funct10ns eh Oexp(mwph) and 
eh k fi exp ( inwPh) will be called the inhomogeneous solution components of the exact 
and of the numerical solution, respectively. 

For example, if Euler's method is applied to (1.2) with k == 1, we obtain 

1 

In the phase analysis of the homogeneous components of the exact solution ( 1.3) 
and the numerical solution (1.4), one compares the phase(s) (or argument(s)) of 
exp I ±iwh) with the phase(s) of the principal characteristic root(s) occurring in the set 

Likewise, the phase analysis of inhomogeneous solution components is based on 
the phases of the functions n and 0. In this connection it should be observed that the 
"inhomogeneous" phase error (due to differing phases of n and n) is constant in time, 
whereas the "homogeneous" phase errors are time-dependent and must accumulate 
as n increases. 

In the case of first-order equations (k = 1), a complete phase analysis has been 
carried out by Brusa and Nigro [2] for a special third-order implicit one-step method, 
and for second-order equations (k == 2), a phase-lag analysis may be found in Gladwell 
and Thomas [8] for linear multistep methods and in Thomas [20] for certain hybrid 
families related to the multistep Runge-Kutta methods of Cash [3] and Chawla [4]. 
The papers mentioned above treat both the homogeneous and inhomogeneous com
ponents in the phase error. In Strehmel [19] and Strehmel and Weiner [18], 
inhomogeneous phase errors are investigated for Rosenbrock-type methods (adaptive 
Rung:_-Kutta-Nystrom methods). This analysis is extended to explicit Runge-Kutta
~ystrom methods and to predictor-corrector methods in van der Houwen, Sommeijer, 
Strehmel and Weiner [13); an analysis of the homogeneous phase errors for Numerov
type methods is given by Chawla et al. [5], [6], for multiderivative methods by Twizell 
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[22] and Twizell and Khaliq [21] and for predictor-corrector-type methods in van der 
Houwen and Sommeijer [12]. 

Since we shall confine our considerations to homogeneous phase errors we will 
use the test equation 

(1.5) 
dk 

y (. )k 
dtk = lW y, w real. 

By comparing the exact and numerical solution for this equation, and by requiring 
that these solutions are in phase with maximal possible order in the step size h, we 
derive the so-called dispersion relations, from which the Runge-Kutta (-Nystrom) 
methods can be constructed. Methods of (algebraic) order 2 and 3, and of dispersion 
order up to 10 will be derived. We emphasize that, whereas the algebraic order applies 
to ODEs of the general form (1.1), the order of dispersion only applies to equations 
of the homogeneous form:f(t, y) = Ay, where A has eigenvalues (iw )\ w real. However, 
as outlined above, in the case of inhomogeneous problems, an increased order of 
(homogeneous) dispersion may improve the overall accuracy considerably, although 
numerical results will show the algebraic order and not the dispersion order. 

In addition to RK(N) methods with fixed coefficients, we shall shortly discuss a 
simple modification in which the coefficients can be tuned to exploit possible extra 
information available on the dominant frequencies in the exact solution. These modified 
methods are related to the oscillatory RK methods proposed by Bettis [l], but they 
have the advantage of being less sensitive to errors in the estimation of the dominant 
frequencies (see § 2.5 and Problem 4.3). 

Finally, a few comments on the actual implementation of the RK(N) methods. 
The implementation of such a method itself is extremely simple, because of its explicit 
structure. However, to run these methods efficiently on a computer, a step size strategy 
is required, not only to monitor the (local) accuracy of the numerical solution, but 
also to avoid the development of instabilities due to step sizes violating the stability 
condition inherent to explicit methods (when a fixed step implementation is used, an 
estimate of the spectral radius of the Jacobian matrix af / ay of ( 1.1) should be provided 
in order to satisfy the stability condition h < f3 /spectral radius, where f3 is the imaginary 
stability boundary (see § 3)). Usually, step size control for RK(N) methods is based 
on embedded pairs of methods, providing both a numerical solution and a reference 
solution. As the referees of this paper observed, the order properties of the main 
formula and of the reference formula would have to be carefully matched to obtain a 
good local error estimate. The systematic construction of such reference formulas for 
our RK(N) methods is not discussed in this paper. However, in § 3.1 an illustration 
of the construction of a reference formula is given. 

2. Dispersion and dissipation in Runge-Kutta (-Nystrom) methods. 
2.1. The order of dispersion and dissipation. For first-order equations (k = 1 m 

(1.1)) we write the m-stage, explicit Runge-Kutta method in the form 

Y~O) = Yn-1• 

(2.1) 
j-1 

y<j> = Yn-1 + h L Aj,J(tn-1 + µ1h, Y~)), j= 1, · · ·, m, 
1=0 

Yn := Y~m). 

Here, µ 0 = 0 and Yn, Yn-i denote approximations to y(tn) and y(tn - h), respectively. 
Application of (2.1) to (1.5) with k= 1 yields the numercial solution 

(2.2) Yn=any0 , a:=Am(v2 )+ivBm(v2 ), v:=wh, 
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where Am and Bm are polynomials in 112, completely defined by the Runge-Kutta 
parameters Ai.1; a= i:i(11) will be called the amplification factor. A comparison of (2.2) 
with the solution of (1.5), i.e. y(tn) = y0 exp (in11), leads us to the following definition: 

DEFINITION 2.1. In the Runge-Kutta method (2.1) the quantities 

it>( 11) := v - arg [a( 11 )], a( 11) := 1-Jti( 11 >I 

are respectively called the dispersion (or phase error or phase lag) and the amplification 
error. If if>(v) == O(vq+i) and a(v) = O(v'+1) then the method is said to be dispersive 
of order q and dissipative of order r. D 

It follows from (2.2) that 

(2.3) ( 
Bm(112)) 

<f>(v)=v-arctan v Am( 112), 

Next we consider the m·stage, explicit Runge-Kutta-Nystrom method for (1.1) 
with k = 2; we write this method in the form 

Y~O) = Yn-1• 

(2.4) 
j-1 

YW) = Yn-1 + µ.jhJn-1 + h2 L Aj,J(tn-1 + µ.1h, y~\ j == 1, · · · , m, 
1=0 

m-1 

Yn := Yn-1 + h L A;f(tn-1 + µ,,h, y~>), 
l=O 

where µ,0 = 0 and µ.m = 1. For the test equation ( 1.2) with k = 2 we obtain the numerical 
solution 

(2.5) (:;J =M"(:;J. M:=(~;~::~ !;~::o. v:= =wh, 

where Am, A;';,, Bm and B;';, are again polynomials in v2, determined by the parameters 
in (2.4). The eigenvalues of M will be called the amplification factors of the Runge
Kutta-Nystrom method and are denoted by i:i+ and a_; the corresponding eigenvectors 
are given by 

In terms of i:i± and e± the numerical solution Yn is given by 

(2.5') --(-)"+-(-)" - ._ e_yo-hYo _ ._e+yo-hYo Yn - C+ a+ c_ a_ , C+ .- , c_ .- . 
e+-e- e+-e-

We compare this discrete solution with the continuous solution 

(2.6) 

Assuming that the amplification factors a± are complex conjugate we may write 

- 1-1 ±i,P c±= c e , 

and similarly 

c± =lei e±iifi, a±= e±iv. 

On substitution into (2.5') and (2.6) we find 

(2.5") Yn=2lcl lal" cos (tfe+nii), 
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(2.6') y(tn) = 2lcl cos (tf;+ n11). 

These expressions lead us to the following definition. 
DEFINITION 2.2. In the Runge-Kutta:..Nystrom method (2.4) the quantities 

<f>o:=tj;-ifr, </>(11):=11-v, ao:=lcJ-lcl, a(v):=l-Jal 
are respectively called: initial dispersion, (propagated) dispersion, initial amplification 
error and (propagated) amplification error. D 

The initial dispersion and the initial amplification error are introduced by the 
differences c± - c± determined by the initial values Yo and Yo· If these differences are 
O( v5 ) then the initial dispersion and initial amplification error are both 0 ( 11 5 ) as 11 ~ 0. 
These errors are not propagated in the numerical computations. In the following, p, 
q, r, s denote the orders of accuracy, of dispersion, of amplification error, and of initial 
dispersion, respectively. 

The errors ef> ( 11) and a ( 11) accumulate in the numerical process and are therefore 
a cause of inaccuracies if many integration steps are performed. (This assertion also 
applies to the errors </>(11) and a(v) defined in Definition 2.1.) It follows from (2.5) that 

(2.7) ( S( 112) ) <f> ( v) = 11 - arc cos .J , 
2 P( 112 ) 

a(11) = 1-.J P(112 ), 

where 

S( 112 ) :=Am ( 11 2) + B'!( 112), 

P(112) := Am(112 )B'!(112 )-A'!(112 )Bm(112). 

In this paper we will concentrate on increasing the order of dispersion q (defined 
by </>(11) = 0(11q+ 1 )). In the case of second-order equations we will maximize q under 
the additional requirement of zero dissipation (i.e. P( 112) = 1 in (2.7) ). 

2.2. Runge-Kutta methods. In the following we will write 

(2.8) Am(z)=1-{32 z+/34z 2 ···, Bm(z)=l-f33z+f3sz2 ···, 

where f3j = 0 for j > m. We want to express the conditions for dispersion of order q in 
terms of the parameters f3h j = 2, · · · , m (in the Appendix, we give a few of these 
/3rcoefficients explicitly expressed in terms of the parameters of the RK scheme (2.1)). 

THEOREM 2.1. The Runge-Kutta method is dispersive of order q = 2q0 if the par
ameters f3j, j = 2, · · · , m, satisfy the relations 

(2.9) Y2j - Y2j-2f32 + Y2j-4f34 - · · · + ( -l)jrof32j + ( -l)j+i /32j+1 = 0 

for j = 1, · · · , q0 - 1; here the coefficients y21 are defined by the Taylor expansion 

and 

then 

00 

tan ( z) = z I: y 21z21, 
1=0 

/3j = 0 for j > m. 

Proof. From the definition of <f>( 11) it follows that, if 

c bounded as v ~ 0, 
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so that the method is dispersive of order q. Substitution of (2.8) and expanding tan (v) 
in a Taylor series leads to (2.9). D 

COROLLARY 2.1. The maximal attainable order of dispersion of an m-stage, pth 
order, explicit Runge-Kutta method is q ==" 2(m - p + l(p + 1)/2J ); here, lxJ denotes the 
integer part of x. 

Proof. From (2.2) and (2.8) it follows that a pth order method necessarily satisfies 
the order conditions 

(2.1 O) 
1 

(3j =;, 
]· 

j=2, ... ,p. 

Hence, an m-stage, pth order method has m - p free parameters f3j. If these parameters 
satisfy (2.9), the order of dispersion is increased by 2(m - p). It can be shown that 
any pth order method has already an order of dispersion 2 l ( p + 1) / 2 J, whatever the 
parameters /3p+i, • • • , f3m are. Thus, the total order of dispersion can be increased to 
2L(p+1)/2J + 2(m - p ). This completes the proof of Corollary 2.1. D 

In Table 2.la the dispersion relations (2.9) are listed for a few values of p and q; 
in Table 2.1 b the corresponding error constants are given. 

2.3. Runge-Kutta-Nystrom methods with zero dissipation. We shall say that a 
Runge-Kutta-Nystri:im method has zero dissipation at a point v if a ( v) = 0 where a ( v) 

q 

4 
6 
8 

10 
12 

Order 

p = 1 

p=2,3 

p=4,5 

TABLE 2.la 
Dispersion relations in terms of the parameters f3j· 

4 /32 - {33 = 1/ 3 
6 /32-3/34 +3/35 =2/5 
8 2/32-5/34 +15/36-15/37= 17/21 

10 17 /32-42{34+105/36 - 315J3g + 315/39 = 62/9 
12 62/32 -153{34 + 378/36 -945{3g + 2835(/310 - /311) = 1382/55 

4 /32=1/2,/33=1/6 
6 /34-/35 = 1/30 
8 {34-3{36+3/31=4/105 

10 2{34-5{36+15/38 -15/39 = 29/378 
12 17 /3. -42/36 + 105{38 - 315/310 + 315/3 11 = 323/ 495 

6 /32=1/2, {33=1/6, {34=1/24, {35 = 1/120 
8 /36-/37 = 1/840 

10 /36-3/38 +3/39= 1/756 
12 6/36-15/38 +45{310 -45/3 11 =221/27720 

TABLE 2.lb 
Error constants c in the dispersion c,b( v) = cvq+I + O( vq+3 ). 

c 

-{35 + {34 -!/32+2/15 
/31 - /30 +tf3. -2/32/ 15+17 /315 
-/39 + /3s -~{36 + 2{34/15 -17 /32/315 +62/2835 
/311 - .B10+!/3s- 2/36/ 15+17 /34/315-62/32/2835+1382/155925 
-/313 + /312 -!/310+2{3g/15 -17/36/315+ 62{34/2835-1382/32/ 155925 + 21844/6081075 
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is defined in Definition 2.2; thus, the numerical solution of our test equation, specified 
in (2.5"), assumes the form Yn =2lcl cos (J+nv). This means that, except for some 
initial amplification due to lei, there is no dissipation (negative or positive) during the 
numerical calculation of the solution of {(1.5), k = 2}. The interval O ;;;,_ v 2 ~ {3 2 where 
I a I = I a< v) I = i and a+ ( v) ;:e a_ ( v), is caned the interval of periodicity or the interval of 
zero dissipation. 

A necessary condition for a nonempty interval of periodicity is P(z) = 1 (cf. (2.7)). 
In this section we consider methods with P(z) = 1, thereby simplifying the analysis 
considerably. 

Let us write the polynomial S(z), introduced in (2.7), in the form 

(2.11) uj = 0 for j > m. 

The analogue of Theorem 2.1 becomes the following. 
THEOREM 2.2. Let the Runge-Kutta-Nystrom method be such that 

(2.12) 

Then the method is dispersive of order q = 2q0 if the parameters Gj are given by 

(2.13) 
2 

U·=--
1 (2j) !' 

j = 1, ... 'qo. 

Proof From (2.11) and (2.13) it follows that 

Hence, 

( ) ( 2 cos ( v) + 0( z,2%+2)) 
</> v = v - arc cos J 

2 P(v 2) 

= v -arc cos (cos (v)+ O(vq+2)) = O( vq+ 1). D 

Since S(z) is at most of degree m, it follows from Theorem 2.2 that the maximal 
attainable order of dispersion is q = 2m. We observe that the consistency conditions 
will not conflict with the dispersion relations (2.13 ). In fact, part of the consistency 
conditions coincides with the dispersion relations ( cf. (2.9) ). 

2.4. Dissipative Runge-Kutta-Nystrom methods. By dropping the condition of 
periodicity intervals, the order of dispersion can be increased. Writing 

(2.14) 1Tj = 0 for j > m 

and proceeding as in § 2.2, we arrive at the dispersion relations listed in Table 2.2a 
(the expressions for a few aj and 7Tj coefficients in terms of the parameters of the RKN 
scheme, can be found in the Appendix). We observe that in a pth order method the 
amplification factors a± satisfy the relation 

a±=exp (±iv)+O(vp+I) 

so that 

this has been used in the dispersion relations of Table 2.2a. In Table 2.2b we have 
listed the corresponding error constants. 
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Order 

p=1 

p = 2, 3 

p=4,5 

q 

2 
4 

6 
8 

10 

P. J_ VAN DER HOUWEN AND B- P. SOMMEIJER 

TABLE 2.2a 
Dispersion relations in terms of the parameters CT; and 1TJ • 

2 CT1 - 1T1 =I 
4 cri+4cr2 -41T1-41T2 =4/3 
6 6a1cr2 + 12a3 -41T1 - 121T2 -121T3=8/15 
8 45a~ +90cr1a 3 + l80cr4 - 87T1 -607T2 -1801T3 -1807T4 = 4/7 

10 45u2CT3 +45CT1CT4 +90CT5 - 21Ti/7 -41T2 -307T3 -901T4 -901Ts = 4/315 
12 315cr~ + !260cr6 + 630CT1CT5+630CT2IT4 -81T1/ 45 -41T2 - 561T3 

-420174 -12607T5 -12601T6=8/1485 

2 cr1=i,7T1=0 
4 (T,- 7T,= 1/12 
6 cr:+2;3-21T2 -27T3=4/45 
8 3u~+61T3 +12cr4 -41T2 -127T3 - 121T4 =4/105 

IQ 45;2cr3 + 45cr4 + 901T5 -41T2 - 307T3 -901T4 -901T5 = 4/315 
12 3151Ti + 12600-6 + 6301T5 + 6300"zCT4 -41T2 - 561T3 -4201T4 

-12601T5-!2607T6=8/1485 

4 CT1 =I, <72 = 1/12, 1T1=1T2=0 
6 a 3 - 7T3 = 1/360 
8 CT3+21T4-21T3-27T4=29/10080 

JO 5cr3 +60cr4 + !201T5-407T3 - }201T4 -1201T5 = 16/945 
12 6300"~ + 2520cr6 + 1260cr5 + J05cr4 -1!27T3 -8401T4 -25207T5 - 25201T6 = 16/ 1485 

TABLE 2.2b 
Error constants c in the dispersion </>( v) = cvq+t + 0( v"+ 3 ). 

c 

[o-i + 4cr2 -47T1 -47T2 -4/3]/8 
-[61T1 CTz + 120"3 -47T1 -127T2 -127T3 - 8/ 15)/24 
[ 45a~+901T1 cr3 + 180a4 -87T1 - 607T2 -1807T3 -1807T4 -4/7]/360 
-[ 450"zU3 + 45CT1 IT4 +900-5 -27T,/7 -47Tz -301T3 -901T4 -901T5-4/315)/180 
[315ui+ 1260cr6 +630u,cr5 +6301T21T4 - 87T1/ 45-47r2 - 561T3 

-4207T4 -12607T5-12607T6-8/1485]/2520 

2.5. Reduction of phase errors of known frequencies. Suppose that it is known in 
advance that Fourier components exp (iwt) with w E [g>, w] are dominating in the exact 
solution. Then, it follows from Definition 2.1 that we can reduce the corresponding 
phase errors in the numerical solution by minimizing the dispersion function </> ( 1.1) on 
the interval [ !:', ii]:= [ {!>h, wh ]. If <f> ( 11) were a polynomial, then this minimax problem 
could be solved by resorting to the celebrated Chebyshev theorem: "Of all monic 
polynomials of degree m on the interval [!', ii], the shifted and (scaled) Chebyshev 
polynomial Tm (x) has the smallest maximum norm." Since </> ( 11) / 1.1 is an even function, 
this theorem suggests the identification of </> ( 11) / 11 with a Chebyshev polynomial in 11 2 

shifted to the interval [!', ii]. Such an identification is accomplished by assigning to 
</>( v) the same zeros as this shifted Chebyshev polynomial possesses, Le. the zeros 

( 2.15) 
j=I,···,qo, 
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where qo is the number of free parameters in </>( v ). We now assume that the location 
of the zeros of </> ( v) at zj is also an appropriate choice in the case where </> ( v) is given 
by the nonpolynomial expression specified in Definition 2.1. This assumption leads us 
to the system of equations [11]: 

(2.16) <f>(z) = 0, j = 1, ... 'qo. 

For the Runge-Kutta methods we obtain a linear system for the free parameters 
/3p+1' • • • ' /3m: 

j=1,···,qo. 

For the Runge-Kutta-Nystrom methods a nonlinear system for the free a-j and 7Tj 

is obtained: 

(2.18) 
[2 - o-1zJ+ a2zJ- a3zJ+ · · ·] 

.~~~~~~~~~~-

= 2 cos (zj)~ 1- 1T1zJ+ 1T2zJ- 7T3zJ+ · · · , }=1,···,qo. 

Here, we have o-1 = 1, 7T1 =0 for p ~ 2 and a 2 =1/12, 7T2 = 0 for p ~ 4, etc. If we choose 
P(z) == 1, i.e., 7Tj = 0, we have a linear system for the free aj. 

In cases where it is known in advance that given frequencies w 1 , w2 , • • • are 
dominating in the exact solution, we can directly put zj = wjh. The resulting method 
integrates the corresponding oscillations exactly and is, when only one frequency w 1 

is involved, identical to the oscillatory RK methods proposed by Bettis [1]. This 
approach can be compared with an analogous technique proposed by Gautschi [7] to 
increase the so-called trigonometric order of linear multistep methods. A disadvantage 
of both the Gautschi and Bettis methods is the sensitivity to an inaccurate estimate of 
the frequencies wj (compare the discussion in Neta and Ford [ 15] and in van der 
Houwen and Sommeijer [11]). 

Finally, we remark that for zr-?0,j= 1, · · ·, q0, the solution of the systems (2.17) 
and (2.18) converge to the values given in the Tables 2.la and 2.2a, respectively. 

3. Construction of the numerical methods. In this section the parameters Ajt. µ.j 

and Ai occurring in (2.1) and (2.4) will be determined taking into account the consistency 
conditions and the dispersion relations listed in Table 2.la and Table 2.2a. 

3.1. Runge-Kutta methods. The various examples presented in this subsection will 
be given by means of the generating Butcher array 

(3.1) , ( )m-1 L' (' )m-1 µ. .= µ.j j=I, .= llj,l j,1+1=1' 

In the examples we give the order p, the dispersion order q, with its error constant c, 
and the order of dissipation r. Furthermore, we compute the imaginary stability interval 
(0, /3), i.e., the interval where lii(v)I < 1. 

We have restricted our considerations to methods with m ~ 6 and p = 2, 3, 4. For 
p = 4 and q > 4 the methods derived turned out to be unstable (/3 = 0) and are therefore 
omitted. 
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Example 3.1. A family of second order methods. In [9, p. 114] it was shown that 
the method generated by 

(3.2) 

f3m/ f3m-I f3m/ f3m-I 

f3m-1/ f3m-2 0 f3m-i/ /3m-2 

0 

0 

0 

2(33 

0 1/2 

0 0 0 1 

is second order accurate for all values of /33, {34, · · ·, f3m· Solving the dispersion 
relations in Table 2.la for p = 2 and m = 4, 5 and 6 yields the methods 

1/5 1/5 p=2, q=6, r=3, 

1/3 0 1/3 c=-1/630, 

1/2 0 0 1/2 (0, /3) ""'(0, 2.66), 
(3.3) 

0 0 0 

1/8 1/8 

8/35 0 8/35 p=2, q=8, r=3, 

(3.4) 
1/3 0 0 1/3 c = -1/28350, 

1/2 0 0 0 1/2 (0, (3) = (O, 3.38), 

0 0 0 0 

1/12 1/12 

4/25 0 4/25 p=2, q = 10, r=3, 

5/21 0 0 5/21 c = -1/2182950, 
(3.5) 1/3 0 0 0 1/3 (0, /3)""' (0, 3.99). 

1/2 0 0 0 0 1/2 

0 0 0 0 0 

These methods are easily implemented and require only a few arrays for storage. 
Notice the relatively large (imaginary) stability intervals. 

Example 3.2. Construction of reference methods. In order to illustrate the construc
tion of a reference method for use in step size control, we derive an RK method which 
can be used in combination with (3.3) for computing an estimate of the local error. 
Consider the method generated by the Butcher array 

1/ 5 1/ 5 

1/3 0 1/3 

1/2 0 0 1/2 
1 0 0 0 

Ao A 1 A1 A3 A4 , 

where the parameters A0 , • • • , A4 are to be determined in such a way that this method 
is more accurate than (3.3). Since only one additional right-hand side evaluation is 
required when used together with (3.3), it is a good starting point for deriving a 
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relatively cheap reference formula. Notice that (3.3) is embedded in the reference 
formula. This formula should at least have order p = 2, i.e., we require 

/31 :=Ao+ A1 + A2 + A3 + ,\4 = 1, 

1 1 1 l 
/32 := -~/1 +3 A2 +l ,\3 + A4 = 2· 

Suppose that we want the method to have dispersion order q = 8. It then follows from 
Table 2.la that, in addition, we should require 

1 1 4 
f3 ·--A +-A --

4.- 30 3 6 4 -105' 

Solving these equations together with the (p = 2)-order conditions yields 

The resulting method has the same (algebraic) order pas (3.3), but an increased order 
of dispersion q. Alternatively, we may require that p = 3 and q = 6. This is achieved 
by replacing the equation {3 4 =4/105 by the equation 

to obtain the solution 

5 
A - -

0 - - 56' 

1 1 1 1 
-A 1 +-Az +-A3 + ,\4 = -, 
25 9 4 3 

Example 3.3. A family of third order methods. It was shown in [9, p. 116] that the 
method 

,\ 1 A1 

A. 2 +1/4 1/4 A2 

(3.6) Am-3+1/4 1/4 Am-3 

Am-2+ 1/4 1/4 0 0 Am-2 
2/3 1/4 0 0 0 5/12 

1/4 0 0 0 0 3/4 

is third order accurate for all A.1,j = 1, · · · , m -3, provided that Am-2 = 17 /60+ O(h). 
In terms of the parameters f3J we have 

f3m ( 1 ) A. 1=-- 1+-, 
f3m-1 4A2 

,\_.=f3m-J+1(1+-1-)-!, j=2,3,· · ·,m-2, 
1 f3m-J 4A.1+1 4 

where {3 3 should satisfy the relation {3 3 = 1/ 6 + 0 ( h) as h-'> 0. 
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By means of the dispersion relations the parameters {3j can be found and on 
substitution the following three methods were constructed: 

32/85 32/85 p=3, q=6, r=3, 

(3.7) 
8/15 1/4 17/60 c = -1/630, 

2/3 1/4 0 5/12 (0, (3) ""'(0, 2.66), 

1/4 0 0 3/4 

128/429 128/429 

256/495 1/4 429/2380 p=3, q=8, r=3, 

(3.8) 8/15 1/4 0 17/60 c = -1/28350, 

2/3 1/4 0 0 5/12 (O, (3) = (O, 3.38), 

1/4 0 0 0 3/4 

512/1899 512/1899 

512/1415 1/4 633/5660 p = 3, q = 10, r = 3, 

160/357 1/4 0 283/1428 c = -1/2182950, 

(3.9) 8/15 1/4 0 0 17/60 (0, (3) = (O, 3.99). 

2/3 1/4 0 0 0 5/12 

1/4 0 0 0 0 3/4 

Alternatively, we could have derived the parameters {3j by solving the minimax 
relations (2.17). For instance, for m = 4 we find the method 

64/34/ ( 64(33 - 5) 64(34/ ( 64(33 - 5) 

16(33/5 1/4 (64(33-5)/20 
(3.lOa) 

2/3 1/4 0 5/12 

1/4 0 0 3/4 ' 

where {3 3 and {34 are defined by 

(3. lOb) zj +!zJ tan (zj)- zj{33 - zJ tan (z)f34 =tan (zi ), j = 1, 2; 

here, the zi are given by (2.15) for q0 = 2. 
It should be observed that, since the zeros zj depend on h (recall that J! := wh, ii:= 

wh), the parameters {33 and f34 in (3.lOa) will also depend on h; hence the RK method 
(3.10) changes if h changes. For small h, it is easily shown that 

1 1 
(33=6- 630 ziz~+O(h6), 

Substitution into (2.3) yields 

</J(v) = v3 [{33 _!+ (/34 _J_) v2 +!({34-~)] + O(h 9 ) 
6 30 3 105 

3 

= ~0 [ -ziz~+ v2(zi+ z~)- v4]+ O(h9 ), 

showing that (3.10) has the same orders p = 2 and q = 6 as (3.7) for a fixed interval of 
frequencies [ w, w]. 
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From a yractical point of view it is of interest to consider the dispersion <f> for 
fixed ( h, w, w) and varying w (recall that ( iw )k in ( 1.2) may be interpreted as an 
eigenvalue of the Jacobian matrix of the ODE to be integrated). Thus, we consider 
<P = </> ( v) with fixed p and ii. Choosing p = 0.5 and ii= 1.0, we find that ,83 = .16610021 
and {34 = .03530415. The corresponding dispersion function <f>( v) is plotted in Fig. 3.1. 

00 0.20 0. 40 

' ' ' ' ' ' ' ' ' ' ' ' 
' ' ' 

.60 ' 0 80 I~ 0 't--Q.O 
,' / • • ------~~ 20 NU 1 • 40 1. so 1 • eo ..... 2. 20 2 • 4o 

1' i ----.__ -~- ................. ........ 
! I --------------------------------------------------~=:-

I 
i 
I 
' 
I 

FIG. 3.1. Behaviour ofrfJ(v)/v7 for the methods (3.7) (-), (3.10) (---)and Bettis' method(---). 

In addition, we have plotted the dispersion of (3.7) (,83 = l/ 6, ,84 = 1/30) and of the 
four-stage method of Bettis with the coefficients chosen to integrate v = 0.75 exactly, 
resulting in ,83 = .16204146 and {3 4 = .04089322. This picture clearly shows that the 
"minimax" version (3.10) has a small phase lag if v lies in the interval [0.5, 1.0]. 
Furthermore, it is obvious that Bettis' method is rather sensitive to a correct estimate 
of the frequency of the solution. Finally, method (3.7) shows the expected order 
behavior and its error constant -1/ 630 is easily recognized. 

3.2. Runge-Kutta-Nystrom methods. The examples constructed below will be rep
resented by the array 

(3.11) 
µ, := (µ,j)i=--.,1, 

A := (Am,1) ;"=(/, 
L:= (A.j,1)}J:;:\=i. 

A.':= (A.1)7'=01 · 

As before we give the orders p, q and r, the error constant c in the dispersion expansion, 
and the stability or periodicity intervals (0, f3) and [O, {3 2]. We restrict our considerations 
to m ;;2 4, p = 2, 3 and zero-dissipative methods, that is P(z) = 1. Additionally, we 
constructed several dissipative RKN schemes (i.e. P(z) < 1 for z E (O, (3)). These 
schemes can be found in the Appendix. 
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Example 3.4. A family of second order methods with zero-dissipation. Following 

(10], we consider methods generated by an array of the form 

µ! 0 

µ2 0 A2,1 

(3.12) µm-2 0 Am-2,m-3 

1/2 0 0 Am--1,m-2 

0 0 1/2 

0 0 

This family of methods is second order accurate. If we set P( z) = 1, then it can be 
shown that 

O' m-;+l 1 
A ---- }=2, · · ·, m-1. 
J,;-i- u,,._1 -(2m-2j+l)(2m-2j+2)' 

It may be of interest to remark that the family (3.12) turns out to have zero 
inhomogeneous dispersion [ 13]. 

Below we give methods that are, respectively, dispersive of order q = 4, 6 and 8, 
together with their intervals of periodicity (0, f3 2]. 

1/2 0 (0, ,8 2] = [O, 12] = [O, (3.46) 2], 

1/2 0 1/2 c = 1/720, 

(3.13) p=2, q=4, r = oo, 
0 0 1/2 

0 0 

1/2 0 [O, ,8 2] = [O, (2.75) 2], 

1/2 0 1/30 c = -1/ 40320, 

(3.14) 1/2 0 0 1/12 p=2, q=6, r = oo, 

0 0 0 1/2 

0 0 0 

1/2 0 

1/2 0 1/56 (0, ,8 2] = [O, (4.63) 2], 

(3.15) 
1/2 0 0 1/30 c = 1/3628800, 
1/2 0 0 0 1/ 12 p=2, q =8, r = oo. 

0 0 0 0 1/2 
0 0 0 0 

As a last member of this family, we mention the method 

1/2 0 

1/2 0 cr 3/ O'z 

(3.16a) 1/2 0 0 O'z 

0 0 0 1/2 
0 0 0 
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In this scheme, which is based on the "parent" method (3.14), a 2 and a 3 are now 

determined by the minimax conditions (2.18), viz. 

(3.16b) }= 1, 2, 

where the zj are defined in (2.15). In a similar way as done for the RK method (3.10), 

the method (3.16) can be shown to be of algebraic order p = 2 and of dispersion order 
q = 6 as h-'> 0 and ~ and w fixed. 

Example 3.5. A third-order method with zero dissipation. By solving numerically 

the consistency conditions for third order accuracy under the by-conditions of sixth 

order dispersion and P(z) = 1, we found the following method: 

.926590210660 .429284709246 

(3.17) 
.421787206165 .048227503064 .040724720578 

.233566863436 .107544087262 .1588890449302' 

.127854313973 .261765691855 .610379994172 

where 

p=3, q=6, 
1 

and [O, ,8 2] = [O, (2.75) 2]. r=oo, c=---
40320 

4. Numerical experiments. In this section we show that the methods derived in 

the preceding section on the basis of the test equation (1.5), may also be superior to 

conventional methods in nonmodel problems. 

4.1. First order equations. 
Problem 4.1. Hyperbolic equation: 

au au 
at ax' 

O;;;x~ 1, t~O, 

( 4.1) 
u(t,0)=0, 

Discretization of a/ ax by symmetric differences at internal grid points and one

sided differences at the boundary point x = 1 yields the system 

0 -1 

1 0 -1 

(4.2) dy/dt=l/26..x y. 

0 -1 

-1 4 -3 

In order to test the capability of the various methods to stay in phase with the 

exact solution, we have concentrated on approximating the zeros of the solution y. By 

choosing 6..x = 1/50, we found that the 20th component of the exact solution vector y 

reaches its 500th zero at the point 

(4.3) Z 500 = 33.509996948 · · · . 

Its numerical approximation z500 was obtained by integrating with fixed step size and 

by applying cubic spline interpolation based on 10 neighbouring step points t" = to+ nh, 

where h is the step size in the experiment under consideration. The accuracy of this 

approximation, relative to the distribution of the successive zeros on the t-axis, was 
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measured by the value of 

(4.4) I Zsoo - Zsoo I 
sd := -log10 z -z , 

501 500 

l . (20) 
where Z 501 denotes the 50lst zero of the so ut1on y . . 

In Table 4.1 the sd-values obtained by the various methods constructed m § 3.1 
are listed, together with the results produced by the conventional standard ~ourt~-order 
method RK4. The integration steps were chosen such that all results hsted m one 
column require the same number of right-hand side evaluations. 

The results in Table 4.1 clearly demonstrate that the accuracy is mainly determined 
by the order of dispersion q and is independent of the algebraic order p. 

TABLE 4.1 
Relative errors in computing (4.3). 

Method p/q h sd h sd h sd 

RK4 4/4 1/90 -.37 1/180 1.61 1/270 2.31 

(3.3) 2/6 1/90 -.33 1/180 3.30 1/270 4.12 
(3.4) 2/8 1/72 -.33 1/144 3.98 1/216 4.41 
(3.5) 2/10 1/60 -.33 1/120 3.99 1/180 4.65 

(3.7) 3/6 1/90 -.33 1/180 3.30 1/270 4.12 
(3.8) 3/8 1/72 -.33 1/144 3.98 1/216 4.41 
(3.9) 3/10 1/60 -.33 1/120 3.99 1/180 4.65 

4.2. Second order equations. 
Problem 4.2. Wave equation: 

a2 u a2u 1 
-=gd(x)-+-A2(x u)u 
at2 ax2 4 ' ' 

O~x~b, t~O, 

(4.5) 
au au 
-(t O) =-(t b) =0 
ax ' ax ' ' 

u(O, x) =sin ( 7), -(0 x) =--Jg([ cos - . au 1T ( 7TX) 
at ' b b 

Here, d(x) is the depth function given by d=d0[2+cos(21Tx/b)], g denotes the 
acceleration of gravity, and A(x, u) is the coefficient of bottom friction defined by 
A= glul/ C2d with Chezy coefficient C. 

By using second-order symmetric differences, this problem was converted into a 
system of ODEs and integrated by method (3.13) and, for reasons of comparison, by 
the second-order Stormer method (see e.g. (16, p. 260]), a well-known explicit scheme 
for the integration of hyperbolic equations. 

For the parameters in problem (4.5) we choose 

6.x = 10, b = 100, g = 9.81, d0 = 10, C = 50. 
Figure 4.1 shows the results for the ninth component of the system of OD Es (i.e. 

the one which approximates u(t, x) at x = 86.x = 80) in the interval 3567 ~ t ~ 3600. 
Scheme (3.13) was applied with h = 2/3 and Stormer's method used h = 1/3; hence, 
both methods required the same number of right-hand side evaluations on the whole 
range of integration. Moreover, we determined a reference solution using scheme (3.14) 
with h = 1/30. 
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FIG. 4.1. Reference solution (-) of problem (4.5) and the solutions obtained by the Runge-Kutta
Nystrom method (3.13) (---)and by the Stormer method (---). 

( 4.6) 

Again, the superiority of the high-order dispersive method (3.13) is clear. 
Problem 4.3. Bessel equation: 

d 2y ( 1 ) dt2 = - 100+ 4t2 y, t~ 1, 

y(t) =vtJ0(10t). 

In order to show that high-order dispersive methods are suitable for long interval 
integration, we have applied both the conventional fourth-order Nystrom method, 
given by 

1/2 1/8 
1 0 1/2 

1/6 1/3 0 

1/6 2/3 1/6 

as well as the methods constructed in § 3.2 on relatively large integration intervals. As 
before, all experiments required the same computational effort. The accuracy was 
measured by 

(4.7) sd(T):=-log10( max ly(tn)-Ynl) 
tri = 1 +nh 

n=l,· .. ,(T-1)/h 

and its value, produced by the various methods, is listed in Table 4.2. 
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TABLE 4.2 
The maximal absolute error (4.7) for (4.6). 

Method [w,wl h m p q r s sd(lOO) sd(SOO) sd(IOOO) sd(4000) 

Nystrom 1/20 3 4 4 5 4 1.3 .7 .5 .4 
(3.13) 1/30 2 2 4 CXl 2 2.4 1.7 1.4 .8 
(3.14) 1/20 3 2 6 CXl 2 2.9 2.8 2.7 2.3 
(3.15) 1/15 4 2 8 CXl 2 2.7 2.7 2.7 2.7 
(3.16) [10, 10.1] 1/20 3 2 6 CXl 2 2.9 2.9 2.9 2.9 
(3.16) [9, 11] 1/20 3 2 6 CXl 2 2.9 2.9 2.9 2.9 
(3.17) 1/20 3 3 6 CXl 3 3.2 3.2 3.2 2.5 

It turned out that the Nystrom method missed a few zeros when applied on the 
intervals [1, 1000] and [l, 4000], whereas the high-order dispersion methods found the 
correct number of zeros in all experiments. Moreover, this table clearly shows that the 
methods with a relatively low order of dispersion gradually lose accuracy, whereas for 
method (3.15), having q = 8, and for the minimax method (3.16) the accumulation of 
phase errors is not yet visible on these time-intervals. 

(4.8) 

Problem 4.4. Inhomogeneous equation: 

d2y 2 ( 2 ) • ( ) d[i=-wy+w-l sm t, t~O, 

y(t)=cos (wt)+sin (wt)+sin (t), w » l. 

We continue with an experiment on the inhomogeneous equation (4.8), whose 
exact solution consists of a rapidly and a slowly oscillating function; the slowly varying 
function is due to the inhomogeneous term. The purpose is to show that high-order 
dispersive methods are able to integrate this problem with relatively large integration 
steps (i.e., wh not small), because the high-order dispersion will take care of the rapidly 
oscillating component and the algebraic order, although modest, will take care of the 
slowly varying component. 

Table 4.3 presents the analogue of Table 4.2 for (4.8). 
Again the Nystrom method did not find the correct number of zeros on the intervals 

[O, 1000] and [O, 4000]: it missed about 10% and 50% of the zeros on these intervals. 
The other methods did find them all. The sd-values as given in Table 4.3, show the 
same tendency as was mentioned in the previous example. 

Problem 4.5. Orbit equation. Finally, we give an example of a weakly forced 
oscillation. In [ 17], Stiefel and Bettis study a slightly perturbed circular orbit in the 

TABLE 4.3 
The maximal absolute error (4.7) for (4.8) with w =JO. 

Method [w,w] h m p q r s sd(IOO) sd(500) sd(IOO) sd(4000) 

Nystrom 1/20 3 4 4 5 4 .6 -·.1 -.3 -.3 
(3.13) 1/30 2 2 4 CXl 2 1.7 .9 .6 .0 
(3.14) 1/20 3 2 6 CXl 2 1.7 1.6 1.6 1.4 
(3.15) 1/15 4 2 8 CXl 2 1.4 1.4 1.4 1.4 
(3.16) [9.9, 10.1] 1/20 3 2 6 CXl 2 1.7 1.7 1.7 1.7 
(3.16) (9, 11] 1/20 3 2 6 CXl 2 1.7 1.7 1.7 1.7 
(3.17) 1/20 3 6 CXl 3 2.7 2.7 2.4 1.7 



TABLE 4.4 
sd-values and Perr-values for the orbit equation (4.9). 

(3.16) 

Nystrom (3.13) (3.14) (3.15) [w, w] = [.9, 1.1) (3 .17) 

m 3 2 3 4 3 3 

p 4 2 2 2 2 3 

q 4 4 6 8 6 6 tTl 
>< 

5 co co co co co .,, 
4 2 2 2 2 3 

r 
s n 
h 'TT/4 'TT/6 'TT/4 'TT/3 'TT/4 'TT/4 :::; 

~ 

e=O sdu(h) 
1.1>53 4.0>8 3 6.5 8.7>13 9.9 5.1 c:: 

sdu(h/2) 10.2 > 123 12.7> 9-3 7.9> 9.3 z 
2.7 . 6.5 . 12.6 Cl 

tTl 
sdv(h) 0.9 3 7 1.9>4 3.1 >6 4.3>8 4.8>6 3.1 >6 

I 
:;-:: 

sdv(h/2) 2.0> . 3.1 4.9 6.7 6.6 4.9 c:: 
~ 

sdz(h) 0.8>4 1.9>4 3.1 6 4.3> 8 4.8>6 3.1 6 ,,. 
sdz(h/2) 2.0 3.1 4.9> 6.7 6.6 4.9> I 

z 
e=l0-6 sdu(h) 

-< 
1.1 5 3 4.0 8 6.5 10 8.4 9.2 5.2>6 7 Ul 

6.4> 9.5> 11.2>9.3 11.l > 6.3 -l 
sdu(h/2) 2.7> . 7.2 . ~ 

0, 

sdv(h) 0.9 3 7 1.9>4 3.1 >6 43 6 7 4.9>6 3 3.1>6 
3:: 

sdv(h/2) 2.0> . 3.1 4.9 6.3 > . 6.8 . 4.9 3:: 
trl 

sdz(h) 0.8 4 1.9 4 3.1 6 4.3 4.9 3 3.1 6 -l 

sdz(h/2) 2.0> 3.1 > 4.9> 6.3>6.7 6.8> 6. 4.9> :r: 
0 
0 
Ul 

e=I0-3 sdu(h) 1.1>5 3.3 4.6>6 5.7 > 8 3 6.3>6 33 2 7 
sdu(h/2) 2.6 4.6>4.3 6.4 8.2 . 8.1 4.1> . 

sdv(h) 0.9 3 7 1.9 >4 3 2.6>2 7 2.6>2 2.8>2 3.1> 6 
sdv(h/2) 2.0> . 3.2 . 3.4 . 3.2 3.4 4.9 

sdz(h) 0.8>4 t.9 >4 3 2.6> 2 7 2.6>2 2.8>2 3.0>3 7 
sdz(h/2) 2.0 3.2 . 3.4 . 3.2 3.4 4.1 . 

°' -\.;J 
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complex plane, described by 

(4.9) z(t)+z(t)=ee;1, zEC, z(O)=l, i(O)=(l-h:)i, 

whose exact solution is given by 

(4.10) z(t) = u(t)+ iv(t) =[cos (t)+!st sin (t)]+ i[sin (t)-!st cos (t)]. 

As this example is intended to illustrate the influence of a small inhomogeneous 
solution component, rather than to show the long term behaviour, we now integrate 
on a fixed time interval (O ;a; t ;a 407T) and we list, for a few values of s, the accuracies 
of u, v and z, respectively, defined by 

(4.11) 

sdu(h) := -log10 lun - u(tn)I, 

sdv(h) := -log10 lvn -v(tn)I, 

sdz(h) := -log10 lzn - z(tn)I, 

with tn = 407T. In Table 4.4 the accuracies obtained are given for two values of h, 
together with the effective orders of accuracy defined by 

( 4.12) 
sd(h/2)-sd(h) sd(h/2)- sd(h) 

Pelf:= log10 (2) .3 

Fore =0, (4.9) reduces to the model problem so that the analysis should rigorously 
apply. Since the point tn = 407T is a zero of the component v(t) we expect that sdv 
presents a reasonable estimate of the phase error of v and should therefore be governed 
by the homogeneous dispersion orders q and s. In Table 4.4 the sdv values show the 
order q of propagated dispersion reasonably well; apparently, the initial dispersion 
does not affect the order of accuracy of v. The accuracy of the u-component is relatively 
high, so that the total solution z = u + iv exhibits the homogeneous propagated order 
of dispersion. 

For s = 10-6, (4.9) becomes a slightly perturbed model problem. The results in 
Table 4.4 show hardly any difference from the case e = 0. Thus, we conclude that the 
behaviour of the numerical solution is still mainly determined by the homogeneous 
components. 

For e = 10-3, Table 4.4 indicates a considerable loss of accuracy for methods 
(3.14)-(3.17). The inhomogeneous perturbation now introduces a significant 
inhomogeneous solution component, so that the numerical error does not only consist 
of errors of homogeneous origin, but also of errors of inhomogeneous origin, i.e., 
inhomogeneous dispersion and dissipation errors. Therefore, for all methods, except 
for Nystrom's method, a drop in accuracy is to be expected because they are designed 
to damp homogeneous errors in the first place (recall, however, that methods (3.13)
(3.16) which belong to the family (3.12), introduce inhomogeneous dissipation, but 
no inhomogeneous dispersion). 

Finally, we conclude from Table 4.4 that the high-order dispersion methods are 
superior to the conventional Nystrom method irrespective of whether they show their 
(homogeneous) dispersion order or not. 

Appendix. 
Al. Additional methods. In the course of this investigation of Runge-Kutta 

(-Nystrom) methods, we constructed many other methods. A few of them are listed 
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in this appendix, because they might become of interest in our future research in this 
area. They are all of Runge-Kutta-Nystrom type, they are dissipative, and they have 
an increased order of dispersion. 

A family of second-order, dissipative methods. We again consider methods gener
ated by an array of the form (3.11), but now we exploit the polynomial P(z) in order 
to increase the order of dispersion. By solving the dispersion relations listed in Table 
2.2a we find the optimal parameters aj and 1Tj. The Runge-Kutta-Nystrom parameters, 
expressed in terms of aj, are then given by (cf. [10]) 

j = 1, · · ·, m - l, 

where a 1 =1 and am= 1T1 =1Tm =O. 
In the special cases given below we have added the stability interval (0, f3 ), that 

is, the interval 0 < v < f3 where la±( v )I< 1. 

(Al.I) 

(Al.2) 

Here, 

13/30 0 

1/2 0 1/12 

0 0 
0 0 

.266830712 

.065635306 

1/2 

0 

0 

0 

0 

0 

p = 2, q = 6, r = 3, 

1/2 (O, /3) = (0, M) = (0, 3.46), 

-.183849014 p=2, q = 10, 

0 1/12 (O, /3) = (0, 2.40). 

0 0 1/2 

0 0 

a 1 =1, a 2 =.04713627554, cr3 =-.01174842249, 

1T1=0, 7T2 = -.03619705780, 1T3 = .00357232863. 

r=3, 

Some higher order methods. Our starting point for the construction of third- and 
fourth-order methods is a full parameter matrix with m = 3 and 4, respectively. In 
order to achieve an order of dispersion as high as possible we only consider the case 
where P(z) 7" 1. We no longer follow the analytical approach, as was possible in§ 3.2, 
but we formulate a minimization problem for a nonlinear least-squares problem of the 
form 

in which A denotes the vector of all RKN parameters and gi stands for the consistency 
and dispersion relations. Moreover, we added to this system an extra g-function of 
the form g(A) = W //3 (A), where {3 denotes the stability boundary and W is some 
weight. For the minimization of G(A) we used the NAG-routine E04FCF. We found 
the following three-stage third-order RKN schemes: 

(Al.3) 

.4969003529 .1234549803 

.7337223214 .1504173630 .1187568.595 

.2260389606 .1450231299 .1289379095' 

.2265821428 .2849142164 .4885036408 
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which is of dispersion order q = 8, of dissipation order r = 3 and has /3 = 4.56, and 

.4955018983 .1227610656 

(Al.4) 
.7166211542 .1493614124 .1074115269 

.2280103951 .1277448126 .1442447923' 

.2319401058 .2279673366 .5400925576 

which has q=lO, r=3 and /3=3.12. 
The least-squares approach allows us to impose more (dispersion) relations than 

the number of free parameters. In this way we found a scheme which is effectively of 
order q = 12, r = 3, that is the "residuals" g; are sufficiently small. This scheme reads 

(Al.5) 

.4940895709 .1220622521 

.7075002625 .1489112009 .1013671098 
.2296630303 .1152557560 .1550812137" 

.2348807666 .1936269363 .5714922971 

The interval of stability is given by (0, 3.07). 
Proceeding in the same way, fourth-order schemes were constructed. As an 

example, we give a scheme which has q = 10 and r = 5: 

(Al.6) 

.0551594317 

.6683701446 

.3632109628 

.0015212815 
-1.1732016116 1.3965609367 

1.5887403855 -1.7263289145 

.4046440250 
-1.8067389251 

- .3464696799 
2.6410990864 

.2035496308 

.0829134999 

.9639436971 
.3589121550 

- .7983038584 

Its stability interval is (O, 3.59). 

A2. Coefficients of the stability polynomials. As it may be convenient for the reader 
to have available the coefficients of the stability polynomials in terms of the parameters 
of the RK(N) method, we give some of these coefficients. 

Runge-Kutta methods. The first few parameters f3i as defined in (2.8) are given by 

(A2.1) 

m-1 j-1 

/32 = L Am,j L Aj,l• 
j=l l=O 

m-1 j-1 1-1 

{33 = L Am,j L Aj,I L A1,;, 
}=2 l=I i=O 

m-1 J-1 1-1 i-1 

f34 = I Am,j I A1,1 I A~; I A~k, etc. 
j=3 1=2 i=I k=O 

Runge-Kutta-Nystrom methods. The coefficients ui and 7T1, occurring in the 
polynomials S(z) and P(z) (cf. (2.11) and (2.14)), can easily be deduced from the 
coefficients of the polynomials Am(z), Bm(z), A:':,(z) and B:':,(z) (see also (2.7)). We 
calculated a few terms of these polynomials: 

m-1 m-1 1-1 

Am(z)=l+z L Am,1+z2 L Am,1 L A1,k+· · ·, 
l=O I=! k=O 

(A2.2) 

m-1 m-1 1-1 

Bm(z) = 1 + z I Am,l/LI + Z 2 I Am,1 I A1,kµk + ... ' 
l=I 1=2 k=I 

m-1 m-1 1-1 

A!,(z)=z I A;+z2 I A; I A~k+···, 
l=O l=I k=O 
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m-1 m-1 1-1 

B;\'..(z)=l+z I: A.iµ.1+z2 I: A.; I; A.1,kJLk+···. 
l=l 1=2 k=I 
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