
Using RSCRIPTfor Software Analysis

Paul Klint

Centrum voor Wiskunde en Informatica

P.O. Box 94079, 1090 AB Amsterdam, The Netherlands

http://www.cwi.nl/˜paulk

Abstract

RSCRIPT is a concept language that explores the design
space of relation-based languages for software analysis.
We briefly sketch theRSCRIPT language by way of a stan-
dard example, summarize our experience, and point at fu-
ture developments.

1. Introduction

Car designers make concept cars to illustrate the direc-
tion in which their designs are evolving and to provoke
responses from future customers. In this same sense,
RSCRIPT [4, 5] is a concept language that explores the de-
sign space of relation-based languages for software anal-
ysis. In this short paper we will sketch the RSCRIPT lan-
guage by way of a standard example (Section 2), summa-
rize our experience (Section 3), and point at future devel-
opments (Section 4). Before embarking on this, we sketch
the context of this research (Section 1.1) and give a quick
introduction to RSCRIPT (Section 1.2). For related work,
we refer the reader to [4, 5].

1.1. Context

The overall context of our design is software refactoring
and transformation as occurs during software improvement
and renovation processes, see for instance [9]. We focus
here on the following steps in such a process:

1. Extract facts from the source code. Examples are call
relations, control flow, and use/def relations of vari-
ables. RSCRIPTdoes not consider fact extractionper
seso we assume that facts have been extracted from
the software by some other tool.

2. After the extraction phase, we try to understand the
extracted facts by writing queries to explore their
properties. For instance, we may want to knowhow
many callsthere are, orhow many procedures. We
may also want to enrich these facts, for instance,

by computing who calls who in more than one step.
Computing dominator trees, dataflow properties or
program slices are other examples.

3. Finally, we produce a simple textual report giving an-
swers to the questions we are interested in or sufficient
relational data to drive a visualisation tool.

Steps 2 is the primary domain of RSCRIPT.

1.2. RSCRIPTat a glance

RSCRIPT is a typed language based on relational calculus.
It has some standard elementary datatypes (booleans, in-
tegers, strings) and a non-standard one: source code lo-
cations that contain a file name and text coordinates to
uniquely describe a source text fragment. As compos-
ite datatypes RSCRIPT provides sets, tuples (with option-
ally named elements), and relations. Functions may have
type parameters to make them more generic and reusable.
A comprehensive set of operators and library functions is
available on the built-in datatypes ranging from the stan-
dard set operations and subset generation to the manipu-
lation of relations by taking transitive closure, inversion,
domain and range restrictions and the like. The library
also provide various functions (e.g., conditional reachabil-
ity) that enable the manipulation of relations as graphs.

Suppose the following facts have been extracted from
given source code and are represented by the relation
Calls :

type proc = str
rel[proc , proc] Calls = {<"a", "b">,

<"b", "c">, <"b", "d">, <"d", "c">,
<"d","e">, <"f", "e">, <"f", "g">,
<"g", "e">}.

The user-defined typeproc is an abbreviation for strings
and improves both readability and modifiability of the
RSCRIPT code. Each tuple represents a call between two
procedures.

The top of a relation contains those left-hand sides of
tuples in a relation that do not occur in any right-hand side.

1



When a relation is viewed as a graph, its top corresponds
to the root nodes of that graph. Using this knowledge, the
entry points can be computed by determining the top of the
Calls relation:

set[proc] entryPoints = top(Calls)

In this case,entryPoints is equal to{"a", "f"} . In
other words, procedures"a" and"f" are the entry points
of this application.

We can also determine theindirect callsbetween proce-
dures, by taking the transitive closure of theCalls rela-
tion:

rel[proc, proc] closureCalls = Calls+

We know now the entry points for this application ("a"
and"f" ) and the indirect call relations. Combining this in-
formation, we can determine which procedures are called
from each entry point. This is done by taking theright im-
ageof closureCalls . The right image operator deter-
mines all right-hand sides of tuples that have a given value
as left-hand side:

set[proc] calledFromA = closureCalls["a"]

yields{"b", "c", "d", "e"} and

set[proc] calledFromF = closureCalls["f"]

yields {"e", "g"} . Applying this simple computation
to a realistic call graph makes a good case for the expressive
power and conciseness achieved in this description.

2. Reaching definitions

We illustrate the calculation of reaching definitions using
the text book example in Figure 1 which was inspired by
[1, Example 10.15].

We assume the following basic relationsPRED(the pre-
decessor relation between program points),DEFS (pro-
gram points where the value of a variable is defined) and
USES(uses of variables) about the program:

type stat = int
type var = str
rel[stat,stat] PRED = { <1,2>, <2,3>,

<3,4>, <4,5>, <5,6>, <5,7>, <6,7>,<7,4>}
rel[stat, var] DEFS = { <1, "i">, <2, "j">,

<3, "a">, <4, "i">, <5, "j">, <6, "a">,
<7, "i">}

rel[stat, var] USES = { <1, "m">, <2, "n">,
<3, "u1">,<4, "i">, <5, "j">, <6, "u2">,
<7, "u3">}

For convenience, we introduce a notiondef that de-
scribes that a certain statement defines some variable and
we revamp the basic relations into a more convenient for-
mat using this new type:

Figure 1. Flow graph for reaching definitions

Figure 2. Reaching definitions for example

type def = <stat theStat, var theVar>

rel[stat, def] DEF =
{<S, <S, V>> | <stat S, var V> : DEFS}

rel[stat, def] USE =
{<S, <S, V>> | <stat S, var V> : USES}

The newDEFrelation gets as value:

{<1, <1, "i">>, <2, <2, "j">>,
<3, <3, "a">>, <4, <4, "i">>,
<5, <5, "j">>, <6, <6, "a">>,
<7, <7, "i">>}

andUSEgets as value:

{<1, <1, "m">>, <2, <2, "n">>,
<3, <3, "u1">>, <4, <4, "i">>,
<5, <5, "j">>, <6, <6, "u2">>,
<7, <7, "u3">>}



Now we are ready to define a new relationKILL that de-
fines which variable definitions are undone (killed) at each
statement and is defined as follows:

rel[stat, def] KILL =
{<S1, <S2, V>> | <stat S1, var V> : DEFS,

<stat S2, V> : DEFS,
S1 != S2}

In this definition, all variable definitions are compared with
each other, and for each variable definition allotherdefini-
tions of the same variable are placed in its kill set. In the
example,KILL gets the value

{<1, <4, "i">>, <1, <7, "i">>,
<2, <5, "j">>, <3, <6, "a">>,
<4, <1, "i">>, <4, <7, "i">>,
<5, <2, "j">>, <6, <3, "a">>,
<7, <1, "i">>, <7, <4, "i">>}

and, for instance, the definition of variablei in statement
1 kills the definitions ofi in statements4 and7. Next, we
introduce the collection of statements

set[stat] STATEMENTS = carrier(PRED)

which gets as value{1, 2, 3, 4, 5, 6, 7} and
two convenience functions to obtain the predecessor, re-
spectively, the successor of a statement:

set[stat] predecessor(stat S) = PRED[-,S]
set[stat] successor(stat S) = PRED[S,-]

After these preparations, we are ready to formulate the
reaching definitions problem in terms of two relationsIN
andOUT. IN captures all the variable definitions that are
valid at the entry of each statement andOUTcaptures the
definitions that are still valid after execution of each state-
ment. Intuitively, for each statementS, IN[S] is equal to
the union of theOUTof all the predecessors ofS. OUT[S] ,
on the other hand, is equal to the definitions generated by
S to which we addIN[S] minus the definitions that are
killed in S. Mathematically, the following set of equations
captures this idea for each statement:

IN[S] =
[

P∈predecessoro f S

OUT[P]

OUT[S] = DEF[S]∪ (IN[S]−KILL[S])

This idea can be expressed in RSCRIPTquite literally:

equations
initial

rel[stat,def] IN init {}
rel[stat,def] OUT init DEF

satisfy
IN = {<S, D> | stat S : STATEMENTS,

stat P : predecessor(S),
def D : OUT[P]}

OUT = {<S, D> | stat S : STATEMENTS,
def D : DEF[S] union

(IN[S]\KILL[S])}
end equations

First, the relationsIN andOUTare declared and initialized.
Next, two equations are given that very much resemble the
ones given above. They are solved by repeatedly comput-
ing the values ofIN and OUTuntil their values become
stable. For our running example (Figure 2) the results are
as follows. RelationIN has as value:

{<2, <1, "i">>, <3, <2, "j">>,
<3, <1, "i">>, <4, <3, "a">>,
<4, <2, "j">>, <4, <1, "i">>,
<4, <7, "i">>, <4, <5, "j">>,
<4, <6, "a">>, <5, <4, "i">>,
<5, <3, "a">>, <5, <2, "j">>,
<5, <5, "j">>, <5, <6, "a">>,
<6, <5, "j">>, <6, <4, "i">>,
<6, <3, "a">>, <6, <6, "a">>,
<7, <5, "j">>, <7, <4, "i">>,
<7, <3, "a">>, <7, <6, "a">>}

If we consider statement3, then the definitions ofi andj
from the preceding two statements are still valid. A more
interesting case are the definitions that can reach statement
4:

• The definitions of variablesa, j and i from, respec-
tively, statements3, 2 and1.

• The definition of variablei from statement7 (via the
backward control flow path from7 to 4).

• The definition of variablej from statement5 (via the
path5, 7, 4).

• The definition of variablea from statement6 (via the
path6, 7, 4).

For relationOUTa similar analysis can be given. The
above definitions can be easily used to formulate a function
reaching-definitions that can be used to define,
for instance, other dataflow functions and program slicers.

3. Experience

RSCRIPT has been used in various case studies, including
static analysis of syntax definitions [2], identification of
dead code in Java [7], generic program slicing [5, 8], and
prototyping of configuration integration of software com-
ponents [6]. In addition to this, RSCRIPT turns out to be a
very nice didactic tool to explain source code analysis.

The RSCRIPT implementation is written in ASF+SDF

and does not address efficiency issues, although a prelimi-
nary study of implementation issues has been made in [3].



For instance, sets and relations are represented as linear
lists. Nonetheless, the above applications could be assessed
with ease. In addition to this a comprehensive framework
of visualisations has been added to the ASF+SDF Meta-
Environment1 to visualize relational data.

The overall conclusions of these projects are:

• Extracting facts from source code is cumbersome and
very language-dependant. Language-parametric fact
extraction forms a major research challenge.

• Once, the facts are available, writing the RSCRIPTso-
lution is easy.

• Generic visualizations for relations help writing the
script and understanding the results. Tailoring these
visualisations towards source code analysis tasks is an
interesting and rewarding challenge.

• The completely unoptimized implementation be-
comes, not unexpectedly, a bottleneck when projects
are larger (say over 100 KLOC).

4. Future developments

In addition to the observations made above, there are other
concerns of interest:

• In many cases, it is convenient to include syntax tree
fragments in sets and relations. We want to provide
a type-safe framework and this implies including all
types generated by a grammar in the RSCRIPT type
system.

• The inclusion of syntax trees also implies the need to
traverse (and transform, see next point) them in a type-
safe manner.

• A more fundamental question is how to integrate the
functionality provided by RSCRIPT with rewriting-
based transformations. It is desirable that the facts
that come available through a relational computation
can drive the transformations.

• An even more fundamental question is how incremen-
tality can be achieved when relational analysis and
transformation interact. Since a transformation may
invalidate relational facts, in the worst case, the trans-
formed program should be the subject of a completely
new fact extraction phase and subsequent relational
analysis.

1See http://www.meta-environment.org for downloads
and documentation.

Clearly, these and other questions will further influence
the choice of implementation techniques. Together with Ju-
rgen Vinju and Tijs van der Storm we are now exploring the
design of a language that addresses most of the issues men-
tioned above: a completely new design that reuses the best
features of ASF+SDF and RSCRIPTand supports them in a
modern IDE. This will turn the concept language RSCRIPT

into a versatile and efficient language for software analysis
and transformation.

References

[1] A.V. Aho, R. Sethi, and J.D. Ullman.Compilers. Prin-
ciples, Techniques and Tools. Addison-Wesley, 1986.

[2] J. Arnoldus. Grammaticacontrole met behulp van
Rscript (in Dutch). Master’s thesis, University of Am-
sterdam, 2005.

[3] M. Bredenoord. How to optimize Rscript compre-
hensions? Master’s thesis, University of Amsterdam,
2006.

[4] P. Klint. How understanding and restructuring differ
from compiling—a rewriting perspective. InProceed-
ings of the 11th International Workshop on Program
Comprehension (IWPC03), pages 2–12. IEEE Com-
puter Society, 2003.

[5] P. Klint. Rscript—A Relational Approach to Software
Analysis, 2007.

[6] T. van der Storm. Continuous release and upgrade
of component-based software. In Jim Whitehead and
Annita Persson Dahlqvist, editors,Proceedings of the
12th International Workshop on Software Configura-
tion Management (SCM-12), 2005.

[7] J. van Willegen. Extractie van dode code in een het-
erogeen systeem: statische analyse in combinatie met
dynamische analyse (in Dutch). Master’s thesis, Uni-
versity of Amsterdam, 2006.

[8] I. Vankov. Relational approach to program slicing.
Master’s thesis, University of Amsterdam, 2005.

[9] J.J. Vinju. Analysis and Transformation of Source
Code by Parsing and Rewriting. PhD thesis, Univer-
sity of Amsterdam, 2005.

Note

References [2, 3, 7, 8] are directly available from the au-
thor’s home page at http://www.cwi.nl/˜paulk .
Reference [5] is part of the documentation of the
ASF+SDF Meta-Environment and can be found athttp:

//homepages.cwi.nl/˜daybuild/daily-books/

analysis/rscript/rscript.pdf .


