
Process Algebra: Specification and Verification

in Bisimulation Semantics

J.A. Bergstra
University of Amsterdam, Department of Computer Science

P.O. Box 19268, 1000 GG Amsterdam, The Netherlands
and

State University of Utrecht, Department of Philosophy

P.O. Box 80010, 3508 TA Utrecht, The Netherlands

J.W. Klop
Centre for Mathematics and Computer Science

P.O. Box 4079, 1009 AB Amsterdam, The Netherlands

This paper addresses itself primarily to readers who have not had much expo
sure to algebraic approaches to concurrency, or as we will call it, process alge
bra. We will describe an algebraic framework called ACP;t (Algebra of Com
municating Processes with abstraction and additional features), which is suit
able for both specification and verification of communicating processes. Except
in two instances we give no proofs; but there are many references to the places
where these can be found. One instance where we do give a proof is the
verification of the Alternating Bit Protocol. Here the point is that an algebraic
proof can be given. The formal system ACP;t is, at least theoretically, very
close to a universal system for process specification: every finitely branching
computable process, can be finitely specified. In practice one needs additional
operators for specifications; some of these are briefly discussed in a final sec
tion.

Our presentation will concentrate on process algebra as it has been
developed since 1982 at the Centre for Mathematics and Computer Science,
since 1985 in cooperation with the University of Amsterdam and the Univer
sity of Utrecht. This means that we make no attempt to give a survey of
related approaches though there will be references to some of the main ones.

This paper is not intended to give a survey of the whole area of activities in
process algebra. Specifically, we will restrict ourselves to that side of the spec
trum of process semantics which was initiated by MILNER [30] and which is

I. This research was partially sponsored by ESPRIT project nr. 432, Meteor.

62 J.A. Bergstra, J. W. Klop

called 'bisimulation semantics'. Thus, the important aspect of process algebra
in which a unification and classification is sought for various algebraical
approaches to process semantics ('comparative concurrency semantics') is not
represented here. From the point of view of process specification and
verification this restriction is justified: at present the specification and
verification facilities are, at least in the setting of ACP, most highly developed
in bisimulation semantics, in any case more than in the ACP treatment of e.g.
failure semantics.

ACKNOWLEDGEMENT. We thank J. Heering and J.C.M. Baeten for suggesting
many improvements.

1. THE BASIC CONSTRUCTORS
The processes that we will consider are capable of performing atomic steps or
actions a,b,c, ... , with the idealization that these actions are events without
positive duration in time; it takes only one moment to execute an action. The
actions are combined into composite processes by the operations + and ·, with
the interpretation that (a+ b)·c is the process that first chooses between execut
ing a or b and, second, performs the action c after which it is finished. (We
will often suppress the dot and write (a+ b)c.) These operations, 'alternative
composition' and 'sequential composition' (or just sum and product), are the
basic constructors of processes. Since time has a direction, multiplication is not
commutative; but addition is, and in fact it is stipulated that the options (sum
mands) possible at some stage of the process form a set. Formally, we will
require that processes x,y, ... satisfy the following axioms:

BPA

x+y=y +x
(x +y)+z =x +(Y +z)

x+x=x
(x +y)z =xz +yz

(xy)z =x(yz)

TABLE 1

Thus far we used 'process algebra' in the generic sense of denoting the area
of algebraic approaches to concurrency, but we will also adopt the following
technical meaning for it: any model of these axioms will be a process algebra.
The simplest process algebra, then, is the term model of BPA (Basic Process
Algebra), whose elements are BPA-expressions (built from the atoms a,b,c, ...
by means of the basic constructors) modulo the equality generated by the
axioms. This process algebra contains only finite processes; things get more
lively if we admit recursion enabling us to define infinite processes. Even at
this stage one can define, recursively, interesting processes:

Process Algebra: Specification and Verification

COUNTER

X =(zero+ up. Y).X
Y =down+up. Y. Y

TABLE 2

63

where 'zero' is the action that asserts that the counter has value O, and 'up'

and 'down' are the actions of incrementing resp. decrementing the counter by

one unit. The process COUNTER is now represented by X; Y is an auxiliary

process. COUNTER is a 'perpetual' process, that is, all its execution traces are

infinite. Such a trace is e.g. zero-zero-up-down-zero-up-up-up-.... A question

of mathematical interest only is: can COUNTER be defined in a single equa

tion, without auxiliary processes? The negative answer is an immediate conse

quence of the following fact:

THEOREM I. Let a system {X;=T(X1> ... ,Xn)I i=l, ... ,n} of guarded

fixed point equations over BPA be given. Suppose the solutions X, are all per

petual. Then they are regular.

Two concepts in this statement need explanation: a fixed point equation, like

X =(zero+ up. Y).X is guarded if every occurrence of a recursion variable in the

right hand side is preceded ('guarded') by an occurrence of an action. For

instance, the occurrence of X in the RHS of X =(zero +up. Y).X is guarded

since, when this X is accessed, one has to pass either the guard zero or the

guard up. A non-example: the equation X=X +a.X is not guarded. Further

more, a process is regular if it has only finitely many 'states'; clearly,

COUNTER is not regular since it has just as many states as there are natural

numbers. Let us mention one other property of processes which have a finite

recursive specification (by means of guarded recursion equations) in BPA: such

processes are uniformly finitely branching. A process is finitely branching if in

each of its states it can take steps (and thereby transform itself) to only finitely

many subprocesses; for instance, the process defined by X=(a +b +c)X has in

each state branching degree 3. 'Uniformly' means that there is uniform bound

on the branching degrees throughout the process.

In fact, a more careful treatment is necessary to define concepts like

'branching degree' rigorously. For, clearly, the branching degree of a +a ought

to be the same as that of the process 'a', since a +a =a. And the process

X = aX will be the same as the process X = aaX; in turn these will be

identified with the process X =aX +aaX. In the sequel we will discuss the

semantic criterion by means of which these processes are identified ('bisimilar

ity'). MILNER [31] has found a simple axiom system (extending BPA) which is

able to deal with recursion and which is complete for regular processes with

respect to 'bisirnilari ty'.
Before proceeding to the next section, let us assure the reader that the

64 J.A. Bergstra, J. W. Klop

omission of the other distributive law, z(x +y)=zx +zy, is intentional. The
reason will become clear after the introduction of 'deadlock'.

2. DEADLOCK
A vital element in the present set-up of process algebra is the process 8, signi
fying 'deadlock'. The process ah performs its two steps and then stops, silently
and happily; but the process ab8 deadlocks (with a crunching sound, one may
imagine) after the a- and h-action: it wants to do a proper action but it can
not. So 8 is the acknowledgement of stagnation. With this in mind, the axioms
to which 8 is subject, should be clear:

DEADLOCK

S+x=x
8.x=S

TABLE 3

(In fact, it can be argued that 'deadlock' is not the most appropriate name for
the process constant 8. In the sequel we will encounter a process which can
more rightfully claim this name: TS, where T is the silent step. We will stick to
the present terminology, however.)

The axiom system of BPA (Table l) together with the present axioms for 8
is called BPAa. Now suppose that the distributive law z(x +y)=zx +zy is
added to BPA,,. Then: ah =a(h +8)=ah +a8. This means that a process
without deadlock possibility is equal to one without; and that conflicts with
our intention to model also deadlock behaviour of processes.

3. INTERLEAVING, OR FREE MERGE

If x, y are processes, their 'parallel composition' x l[y is the process that first
chooses whether to do a step in x or in y, and proceeds as the parallel compo
sition of the remainders of x,y. In other words, the steps of x,y are inter
leaved. Using an auxiliary operator lL (with the interpretation that x [Ly is
like xl[y but with the commitment of choosing the initial step from x) the
operation II can be succintly defined by the axioms:

FREE MERGE

xl[y =xlly +yllx
ax[Ly =a(x l[y)

ally=ay
(x + y)[Lz =x lLz +y llz

TABLE 4

Process Algebra: Specification and Verification 65

One can show that an equivalent axiomatization of II without an auxiliary
operator like lL would require infinitely many axioms.

The system of nine axioms consisting of BPA and the four axioms for free
merge will be called PA. Moreover, if the axioms for o are added, the result
will be PA,<i. The operators II and lL will also be called merge and left-merge
respectively.

An example of a process recursively defined in PA, is: X=a(bllX). It turns
out that this process can already be defined in BPA, by the two fixed point
equations X =a YX, Y = b +a YY. (This is a simplified version of the counter
in Table 2, without the action zero.) To see that both ways of defining X yield
the same process, one may 'unwind' according to the given equations:
X =a(bllX) =a(blLX + Xllb) =a(bX +a(bllX)lLb) =a(bX +a((bl\X)\lb))
=a(bX+a ...), while on the other hand X=aYX =a(b+aYY)X
=a(bX +aYYX) =a(bX +a ...); so at least up to level 2 the processes are
equal. In fact they can be proved equal up to each finite level. Later on, we
will introduce an infinitary proof rule enabling us to infer that, therefore, the
processes are equal.

So, is the defining power (or expressibility) of PA greater than that of BPA?
Indeed it is, as is shown by the following process:

BAG
X =in (O)(out(O)llX)+ in (l)(out(l)llX)

TABLE 5

This equation describes the process behaviour of a 'bag' or 'multiset' that may
contain finitely many instances of data 0, 1. The actions in (0), out (0) are: put
ting a 0 in the bag resp. getting a 0 from the bag, and likewise for l. This pro
cess does not have a finite specification in BPA, that is, a finite specification
without merge (II). We conclude this section about PA by mentioning the fol
lowing fact:

THEOREM 2. Every process which is recursively defined in PA and has an infinite
trace, has an eventually periodic trace.

4. FIXED POINTS

We have already alluded to the existence of infinite processes; this raises the
question how one can actually construct process algebras (for BPA or PA)
containing infinite processes in addition to finite ones. Such models can be
obtained as:
(1) projective limits ([14, 15]);
(2) complete metrical spaces, as in the work of DE BAKKER and ZUCKER [6,7];
(3) quotients of graph domains (a graph domain is a set of process graphs or

transition diagrams), as in MILNER [30];

66 J.A. Bergstra, J. W. Klop

(4) the 'explicit' models of HOARE {25];
(5) ultraproducts of finite models (KRANAKIS {28]).

In Section 13 we will discuss a model as in (3). As to (5), these models are
only of theoretical interest: models thus obtained contain 'weird' processes
such as x= #,a process satisfying x 2 =a"' =a.a.a ... while x¥:x2.

Here, we look at (2). First, define the projection operators '1T n(n ;;;..1), cutting
off a process at level n:

E.g., for X defining BAG:

PROJECTION
'1T1(ax)=a

'1Tn + 1 (ax)=a'1Tn(X)
'1Tn(a)=a

'trn(X +y)=wn(x)+wn(y)

TABLE 6

'1T2(X) = in(O)(out(O) + in(O) + in(l)) + in(l)(out(l) + in(O) + in(l)).

By means of these projections a distance between processes x, y can be
defined: d(x,y)=i-n where n is the least natural number such that
'1Tn(x):;af='1Tn(y), and d(x,y)=O if there is no such n. If the term model of BPA
(or PA) as in Section 1 is equipped with this distance function, the result is an
ultrametrical space. By metrical completion we obtain a model of BPA (resp.
PA) in which all systems of guarded recursion equations have a unique solu
tion. Call this model the standard model. In fact, the guardedness condition is
exactly what is needed to associate a contracting operator on the complete
metrical space with a guarded recursion equation. (E.g. to the recursion equa
tion X=aX the contracting function f (x)=ax is associated; indeed
d(j(x),f (y))~d(x,y)/2.) The contraction theorem of Banach then proves the
existence of a unique fixed point. This model construction has been employed
in various settings by DE BAKKER and ZUCKER [6,7], who posed the question
whether unguarded fixed point equations, such as X = aX + X or
Y =(a Yll Y) + b, always have a solution in the standard model as well. This
turns out to be the case:

THEOREM 3 ([10]). Let q be an arbitrary process in the standard model, and let
X=s(X) be a recursion equation in the signature of PA. Then the sequence q,
s(q), s(s(q)), s(s(s(q))), ... converges to a solution q* =s(q*).

In general, the fixed points q 0 =s(q*) are not unique. The proof in [10] is
combinatorial in nature; it is not at all clear whether this convergence result
can be obtained by the 'usual' convergence proof methods, such as invoking

Process Algebra: Specification and Verification 67

Banach's fixed point theorem or (in a complete partial order setting) the
Knaster-Tarski fixed point theorem. In KRANAKIS (29) the present theorem is
extended to the case where s (X) may contain parameters.

5. COMMUNICATION

So far, the parallel composition or merge (II) did not involve communication in
the process xl[y: x and y are 'freely' merged. However, some actions in one
process may need an action in another process for an actual execution, like the
act of shaking hands requires simultaneous acts of two persons. In fact, 'hand
shaking' is the paradigm for the type of communication which we will intro
duce now. If A ={a,b,c, ... ,8} is the action alphabet, let us adopt a binary
communication function l:A XA_.,A satisfying

COMMUNICATION FUNCTION

alb=bla
(alb)ic=al(blc)
81a=8

TABLE 7

(Here a,b vary over A, including 8.) We can now specify merge with communi
cation; we use the same notation II as for the free merge, since in fact free
merge is an instance of merge with communication (by choosing the communi
cation function trivial, i.e. alb =8 for all a,b). There are now two auxiliary
operators, allowing a finite axiomatisation: left-merge (IL) as before and I
(communication merge or 'bar'), which is an extension of the communication
function to all processes, not only the atoms. The axioms for II and its auxili
ary operators are:

MERGE WITH COMMUNICATION
xl[y =xlly +yllx +xiY
ax[Ly =a(xl[y)
a!Ly=ay
(x +y)[Lz =xllz +yllz
axlb =(alb)x
albx=(alb)x
ax lby =(a lb)(x l[y)
(x +y)lz =xlz +yjz
xj(y +z)=xlY + xlz

TABLE 8

We also need the so-called encapsulation operators a H(H <;;;A) for removing

68 J.A. Bergstra, J. W. Klop

unsuccessful attempts at communication:

ENCAPSULATION
aH(a)=a if a r;;H
aH(a)=8 if a EH
aH(x +y)=aH(x)+aH(y)
aH(xy)= aH(x).oH(y)

TABLE 9

The axioms for BPA, DEADLOCK together with the present ones constitute
the axiom system ACP (Algebra of Communicating Processes). Typically, a
system of communicating processes x 1, ••• , Xn is now represented in ACP by
the expression aH(X1 \\ ... \\xn)· Prefixing the encapsulation operator says that the
system XJ. •.• ,xn is to be perceived as a separate unit w.r.t. the communica
tion actions mentioned in H; no communications between actions in H with
an environment are expected or intended. A useful theorem to break down
such expressions is the Expansion Theorem which holds under the assumption
of the handshaking axiom x [y lz = 8. This axiom says that all communications
are binary. (In fact we have to require associativity of 'I' first - see Table 10.)

THEOREM 4 (Expansion Theorem).

x111 ... \\xk = ~;x;lLX'k + ~;~j(x;lx1)lLX1/
Here~ denotes the merge of xi. ... ,xk except x;, and X'1/ denotes the same
merge except X; ,x1(1:;;;::. 3). In order to prove the expansion theorem, one first
proves by simultaneous induction on term complexity that for all closed ACP
terms (i.e. ACP-terms without free variables) the following holds:

AXIOMS OF STANDARD CONCURRENCY
(xlly)llz =x ll(y \lz)
(x[y)llz =xi(yllz)
x[y=ylx
x\ty=y\\x
xl(Yiz)=(x[y)lz
x \l(Y\\z)=(x l\y)\lz

TABLE 10

(As in Section 4 we can construct the 'standard' model for ACP; in this model
the above axioms are valid. We will return to the existence and construction of
models later.)

What about the defining power of ACP? The following is an example of a

Process Algebra: Specification and Verification 69

process p, recursively defined in ACP, but not definable in PA: let the alphabet
be {a,b,c,d,8} and let the communication function be given by clc=a, dld=b,
and all other communications equal to 8. Let H = { c,d}.

X=cXc+d
Y=dXY
Z=dXcZ
p=aH(dcYllZ)

Then p =ba(ba2)2(ba 3)2(ba4)2 Indeed, using the axioms in ACP and put
ting pn =aH(dcn YllZ) for n;;:;;.I, one proves thatpn=banba"+ 1p,,+ 1 (see (11]).
By Theorem 2 in Section 3, p is not definable in PA, since the one infinite
trace of p is not eventually periodic.

We will often adopt the following special format for the communication
function, called read-write communication. Let a finite set D of data d and a
set {1, ... ,p} of ports be given. Then the alphabet consists of read actions
ri(d) and write actions wi(d), for i =I, ... ,p and dED. The interpretation is:
read datum d at port i, resp. write datum d at port i. Furthermore, the alpha
bet contains actions ci(d) for i = l, ... ,p and deD, with interpretation: com
municate d at i. These actions will be called transactions. The only non-trivial
communications (i.e. not resulting in 8) are: wi(d)lri(d)=ci(d). Instead of
wi (d) we will also use the notation si (d) (send d along i). Note that read-write
communication satisfies the hand-shaking axiom: all communications are
binary.

In order to illustrate the defining power of ACP, we will now give an infinite
specification of the process behaviour of a queue with input port I and output
port 2. Here D is a finite set of data (finite since otherwise the sums in the
specification below would be infinite, and we do not consider infinite expres
sions), D • is the set of finite sequences o of elements from D; the empty
sequence is A. The sequence a.o' is the concatenation of sequences o,a'.

QUEUE

Q = Qh ="2,dEDr l(d).Qd
Q.,•d=s2(d).Q.,+"2.eEDrl(e).Qe•a•d (for all deD and oeD*)

TABLE 11

Note that this infinite specification uses only the signature of BPA. We have
the following remarkable fact:

THEOREM 5. Using read-write communication, the process Queue cannot be
specified in A CP by finitely many recursion equations.

70 J.A. Bergstra, J. W K!op

For the lengthy proof see [2, 19]. It should be mentioned that the process
Queue can be finitely specified in ACP if the read-write restriction is dropped
and n-ary communications are allowed; in the next section it is shown how
this can be done. In the sequel we will present some other finite specifications
of Queue using features to be introduced later.

6. RENAMING

A useful 'add-on' feature is formed by the renaming operators p1, where
J :A ~A is a function keeping 8 fixed. A renaming PJ replaces each action 'a'
in a process by f (a). In fact, the encapsulation operators a8 are renaming
operators; f maps H c;;;;A to 8 and fixes A - H point wise. The following axioms,
where 'id is the identity function, are obvious:

RENAMING

pfa)=f(a)
pJx+y)=pj(x)+pj(Y)
pJxy)=pfx).pj(Y)
P;ix)=x
(pjp8)(x)=Pjog(x)

TABLE 12

Again the defining power is enhanced by adding this feature. While Queue as
in the previous section could not yet be finitely specified, it can now.

The actions are the rl(d), s2(d) as before; there are moreover 'auxiliary'
actions r3(d), s3(d), c3(d) for each datum d. Communication is given by
r3(d)ls3(d)=c3(d) and there are no other communications. If we let Pc3-sl

be the renaming c3(d)-1>s2(d) and p52_.s 3 :s2(d)-1>s 3(d), then for
H={s3(d),r3(d)ldED} the following two guarded recursion equations give a
finite specification of Queue:

QUEUE, FINITE SPECIFICATION

Q = "2,deDr l(d)(Pc3->s2° aH)(Ps2-.s3(Q)Jis 2(d).Z)
Z ='2.deDr3(d).Z

TABLE 13

(This little gem was inspired by a similar specification in HOARE [24]. The
present formulation is from BAETEN and BERGSTRA [2].) The explanation that
this is really Queue is as follows. We intend that Q processes data d in a
queue-like manner, by performing 'input' actions r l(d) and 'output' actions
s2(d). So Ps2-.s3(Q) processes data in queue-like manner by performing input
actions r l(d), output actions s 3(d). First consider the parallel system

Process Algebra: Specification and Verification 71

Q'=oH(Ps2-+s3(Q)llZ): since Z universally accepts s3(d) and transforms these
into c 3(d), this is just the queue with input r l(d), output c 3(d). Now the pro
cess Q• =on(Ps2-+s3(Q)lls2(d).Z) appearing in the recursion equation, is just
like Q' but with the obligation to perform output action s2(d) before all output
actions c 3(d); this obligation is enforced since s 2(d) must be passed before
Ps2-+s3(Q) and Z can communicate and thereby create the output actions
c3(d). So Pe3-+s 2(Q*)=Qd, the queue loaded with d, in the earlier notation
used for the infinite specification of Queue (Table 11). But then
Q = '}:.deDr 1(d).Qd and this is exactly what we want.

In fact, the renamings used in this specification can be removed in favour of
a more complicated communication format, as follows. Replace in the
specification above Ps 2 s3(Q) by asi(Ql\V) where V=~ds2.(d).V and
S2={s2(d),s2*(d)ideD} with communications s2(d)ls2*(d)=s3(d) for all d.
To remove the other renaming operator, put P =o8 (as 2(QllV)lls2(d).Z), and
replace Pc3 ... s2(P) by OCJ(PllW) where W=~dc3.(d).W and
c3(d)jc3°(d)=s2(d) for all d. However, though the renamings are removed in
this way, the communication is no longer of the read-write format, or even in
the hand shaking format, since we have ternary nontrivial communications
s2(d)=c3(d)jc3.(d) =r3(d)js3(d)jc3.(d). As we already stated in the last
theorem, this is unavoidable.

7. ABSTRACTION

A fundamental issue in the design and specification of hierarchical (or modu
larized) systems of communicating processes is abstraction. Without having an
abstraction mechanism enabling us to abstract from the inner workings of
modules to be composed to larger systems, specification of all but very small
systems would be virtually impossible. We will now extend the axiom system
ACP, obtained thus far, with such an abstraction mechanism. Consider two
bags B 12 , B23 (cf. Section 3) with action alphabets {rl(d),s2(d)jdED} resp.
{r2(d),s 3(d)ld ED}. That is, B 12 is a bag-like channel reading data d at port 1,
sending them at port 2; B 23 reads data at 2 and sends them to 3. (That the
channels are bags means that, unlike the case of a queue, the order of incom
ing data is lost in the transmission.) Suppose the bags are connected at 2; that
is, we adopt communications s2(d)jr2(d)= c2(d) where c2(d) is the transac
tion of d at 2.

1 2 3

FIGURE 1

The composite system B13 =3n(Bu!IB23) where H={s2(d), r2(d)ldeD},
should, intuitively, be again a bag between locations 2, 3. However, some
(rather involved) calculations learn that B13 =~devrl(d).((c2(d)s3(d))llBn); so
B13 is a 'transparant' bag: the passage of d through 2 is visible as the

72 J.A. Bergstra, J. W. Klop

transaction event c2(d).
How can we abstract from such internal details, if we are only interested in

the external behaviour at 1, 3? The first step to obtain such an abstraction is to
remove the distinctive identity of the actions to be abstracted, that is, to
rename them all into one designated action which we call, after Milner, 'T: the
silent action (this is called 'pre-abstraction' in [2]). This special renaming is the
abstraction operator ""I, parameterized by a set of actions I CA and subject to
the following axioms:

ABSTRACTION

'T1('T)='T
T1(a)=a if a r:tl
T1(a)='T if a El
'T1(X +y)='T1(x)+T1(y)
'T1(xy) = 'T1(X). 'T/(y)

TABLE 14

The second step is to attempt to devise axioms for the silent step ,,. by means
of which ,,. can be removed from expressions, as e.g. in the equation aTb =ab.
However, it is not possible (nor desirable) to remove all T's in an expression if
one is interested in a faithful description of deadlock behaviour of processes.
For, consider the process (expression) a+ To; this process can deadlock, namely
if it chooses to perform the silent action. Now, if one would propose naively
the equations 'TX =xT=x, then a +To=a +o=a, and the latter process has no
deadlock possibility. It turns out that one of the proposed equations, xT=x,
can safely be adopted, but the other one is wrong. Fortunately, MILNER [31]
has devised some simple axioms which give a complete description of the pro
perties of the silent step (complete w.r.t a certain semantical notion of process
equivalence called bisimulation, which does respect deadlock behaviour; this
notion is discussed in the sequel), as follows.

SILENT STEP
X'T=X
'TX ='TX + X
a(Tx +y)=a (Tx +y)+ax

TABLE 15

To return to our example of the transparant bag B13 , after abstraction of the
set of transactions I= { c 2(d)jd ED} the result is indeed an 'ordinary' bag:

T1(B13) = T1(~r l(d)(c2(d).s 3(d)llB13)) = (*l~r l(d)(r.s 3(d)ll'T1(B13))

Process Algebra: Specification and Verification

= 2:(r l(d).T.s 3(d))lL7"J(B13) = 2:(r I(d).s 3(d))lLr1(B13)

= 2:r l(d)(s 3(d)llT1(B13))

from which it follows that r 1(B13)=<**ls 13 , the bag defined by

B 13 = ~r l(d)(s 3(d)llB 13).

73

Here we were able to eliminate all silent actions, but this will not always be
the case. In fact, this computation is not as straightforward as was maybe sug
gested: to justify the equations marked with (*) and(**) we need more power
ful principles, which we will discuss now. (Specifically, in (*) an appeal to the
'alphabet calculus' below is needed and (**) requires the principle RSP, also
below.)

8. PROOF RULES FOR RECURSIVE SPECIFICATIONS

We have now presented a survey of ACPT; we refer to [12] for an analysis of
this proof system as well as a proof that (when the hand shaking axiom is
adopted) the Expansion Theorem carries over from ACP to ACPT unchanged.
Note that ACP,. (displayed in full in Section 11) is entirely equational. Without
further proof rules it is not possible to deal (in an algebraical way) with
infinite processes, obtained by recursive specifications, such as Bag; in the
derivation above we tacitly used such proof rules which will be made explicit
now.
(i) RDP, the Recursive Definition Principle: Every guarded and abstraction

free recursive specification has a solution.
(ii) RSP, the Recursive Specification Principle: Every guarded and abstraction

free recursive specification has at most one solution.
(iii) AIP, the Approximation Induction Principle: A process is determined by its

finite projections.
In a more formal notation, AIP can be rendered as the infinitary rule

Yn '1Tn(x)='1Tn(y)

x=y

As to (i), the restriction to guarded specifications is not very important (for the
definition of 'guarded' see Section l); in the process algebras that we have
encountered and that satisfy RDP, also the same principle without the guard
edness condition is true. More delicate is the situation in principle (ii): first, 'T

steps may not act as guards: e.g. the recursion equation X = r X +a has
infinitely many solutions, namely 'T(a +q) is a solution for arbitrary q; and
second, the recursion equations must not contain occurrences of abstraction
operators r 1 . That is, they are 'abstraction-free' (but there may be occurrences
of,. in the equations). The latter restriction is in view of the fact that, surpris
ingly, the recursion equation X =a. r {al (X) possesses infinite! y many solut~ons,
even though it looks very guarded. (The solutions are: a.q where q satisfies
T(a l (q) = q.) That the presence of abstraction operators in recursive
specifications causes trouble, was first noticed by HOARE [24,25].

As to (iii), we still have to define projections 'TTn in the presence of the r-

74

action. The extra clauses are:

PROJECTION, CONTINUED
'ITn(T)=T
'1Tn(Tx)=T.'1Tn(X)

TABLE 16

J.A. Bergstra, J. W. Klop

So, T-steps do not add to the depth; this is enforced by the T-laws (since, e.g.,
aTb =ab and Ta =Ta +a). Remarkably, there are infinitely many different
terms tn (that is, different in the term model of ACPT), built from T and a sin
gle atom a, such that tn has depth 1, i.e. t ='1T1 (t). The tn are inductively
defined as follows:
t 0 =a, t 1 =Ta, t 2 =T, t 3 ='T(a +T), t4 =a +Ta, t41c +; =T.t41c +; -1 for i = 1,3,
t41c +; = t4k +i-3 +t41c +i-S for i =0,2.

The unrestricted form of AIP as in (iii) will turn out to be too strong in
some circumstances; it does not hold in one of the main models of ACP n

namely the graph model which is introduced in Section 13. Therefore we also
introduce the following weaker form.
(iv) AIP- (Weak Approximation Induction Principle): Every process which has

an abstractionfree guarded specification is determined by its finite projec
tions.

Roughly, a process which can be specified without abstraction operators is
one in which there are no infinite T-traces (and which is definable). E.g. the
process X0 defined by the infinite specification {Xo =bXi.
Xn+I =bXn+2+an}, where an is a.a a (n times), contains an infinite trace of
b-actions; after abstraction w.r.t. b, the resulting process, Y =T(b}(X0), has an
infinite trace of T-steps; and (at least in the main model of ACPT of Section
13) this Y is not definable without abstraction operators.

Even the Weak Approximation Induction Principle is rather strong. In fact
a short argument shows the following:

THEOREM 6. AIP- =*RSP.

As a rule, we will be very careful in admitting abstraction operators in recur
sive specifications. Yet there are processes which can be elegantly specified by
using abstraction inside recursion. The following curious specification of Queue
is obtained in this manner. We want to specify Q12 , the queue from port 1 to ·
2, using an auxiliary port 3 and concatenating auxiliary queues Q 13 , Q 32 ; then
we abstract from the internal transaction at port 3. Write, in an ad hoe nota
tion, Q12 =Q13*Q32. Now Q 13 can be similarly split up: Q13 =Q 12 *Q32. This
gives rise to six similar equations: Qab=Qac*Qcb where {a,b,c}={l,2,3}. (See
Figure 2.)

Process Algebra: Specification and Verification 75

FIGURE 2

These six queues, which are merely renamings of each other, can now be
specified in ~erms of ~eh other as in the following table. One can prove that
these recursion equations, though not abstraction-free, indeed have a unique
solution.

QUEUE, FINITE SPECIFICATION WITH ABSTRACTION
Qab=~deDra(d).Tc00c (Qacllsb(d).Qcb) for {a,b,c}={l,2,3}

TABLE 17

Here the usual read-write notation is used: ri (d) means read d at i, si (d): send
d at i, communications are ri(d)lsi(d)=ci(d); further T;=T{ci(d~deD) and
a;= O(ri(d),si(d)\deD). This example shows that even with the restriction to read
write communication, ACPT is stronger than ACP.

9. ALPHABET CALCULUS
In computations with infinite processes one often needs information about the
alphabet a(x) of a process x. E.g. if x is the process uniquely defined by the
recursion equation X=aX, we have a(x)={a}. An example of the use of this
alphabet information is given by the implication a(x)nH= 0 ~aH(x)=x. For
finite closed process expressions this fact can be proved with induction to the
structure, but for infinite processes we have to require such a property
axiomatically. In fact, the example will be one of the 'conditional axioms'
below (conditional, in contrast with the purely equational axioms we have
introduced thus far). First we have to define the alphabet:

76

ALPHABET

a(B)= 0
a(T)= 0
a(a)={a}
a(TX)=a(x)
a(ax)= {a} Ua(x)
a(x +y)=a(x)Ua(y)
a(x)= Un>1a('11'n(x))
a(T1(x))=a(x)- I

TABLE 18

J.A. Bergstra, J. W. Klop

To appreciate the non-triviality of the concept a(x), let us mention that a finite
specification can be given of a process for which the alphabet is uncomputable
(see [3] for an example).

Now the following conditional axioms will be adopted:

CONDITIONAL AXIOMS

a(x)j(a(y) n H) c. H =>a H(X l!.Y) =a n(x II a H(y))
a(x)j(a(y) n /)= 0 =>T1(X J[y)='TJ(X JJT1(y))
a(x)nH= 0=:>aH(x)=x
a(x)n/= 0=:>T1(x)=x

TABLE 19

Using these axioms, one can derive for instance the following fact: if commun
ication is of the read-write format and I is disjoint from the set of transactions
(communication results) as well as disjoint from the set of communication
actions, then the abstraction T1 distributes over merges x l[y.

10. KOOMEN'S FAIR ABSTRACTION RULE

Suppose the following statistical experiment is performed: somebody flips a
coin, repeatedly, until head comes up. This process is described by the recur
sion equation X = jlip.(tail.X +head). Suppose further that the experiment
takes place in a closed room, and all information to be obtained about the
process in the room is that we can hear the experimenter shout joyfully:
'Head!'. That is, we observe the process T1(X) where I= {flip, tail}. Now, if the
coin is 'fair', it is to be expected that sooner or later (i.e., after a T-step) the
action 'head' will be perceived. Hence, intuitively, T1(X)=T.head. (This vivid
example is from V AANDRAGER (33].)

Koomen's Fair Abstraction Rule (KF AR) is an algebraic rule enabling us to
arrive at such a conclusion formally. (For an extensive analysis of this rule see
[5].) The simplest form is

Process Algebra: Specification and Verification 77

x =ix +y (i E/) KFAR
r1(x)=r.r1(y) 1

So, KF~R1 expresses th~ fa~t that the 'r-loop' (originating from the i-loop)
in r1(x) will not be taken mfirutely often. In case this 'r-loop' is of length 2,
the same conclusion is expressed in the rule

X1 =i1x2+yi.x2=i2x 1 +y2 Ui.i2EJ)
KFAR2

r1(xi)=r.1)(y1 +]2)

and it is not hard to guess what the general formulation (KFARn, n;;;::.:I) will
be (see Table 22 in Section ll). In fact, as observed by VAANDRAGER in [33],
KFARn can already be derived from KFAR1 (at least in the framework of
ACP:, to be discussed below).

KF AR is of great help in protocol verifications. An example is given in Sec
tion 14, where KFAR is used to abstract from a cycle of internal steps which
is due to a defective communication channel; the underlying fairness assump
tion is that this channel is not defective forever, but will function properly
after an undetermined period of time. (Just as in the coin flipping experiment
the wrong option, tail, is not chosen infinitely often.)

An interesting peculiarity of the present framework is the following. Call
the process r"'(=r.r.r) livelock. Formally, this is the process rui(x) where
x is uniquely defined by the recursion equation X =i.X. Noting that

x =i.x =i.x +8 and applying KFAR1 we obtain rw =rui(x)=r8. In words:
livelock = deadlock. There are other semantical frameworks for processes, also
in the scope of process algebra but not in the scope of this paper, where this
equality does not hold (see [17]).

11. ACP:, A FRAMEWORK FOR PROCESS SPECIFICATION AND VERlFICATION

We have now arrived at a framework which will be called ACP;*, and which
contains all the axioms and proof rules introduced so far. In Table 20 the list
of all components of ACP;* is given; Table 21 contains the equational system
ACPT and Table 22 contains the extra features leading first to, as we will call
it, ACP: and furthermore containing the proof principles which were just
introduced, leading to ACP;*. Note that for specification purposes one only
needs ACPT or ACP:; for verification one will need ACP;* (an extensive
example is given in Section 12). Also, it is important to notice that this frame
work resides entirely on the level of syntax and formal specifications and
verification using that syntax - even though some proof rules are infinitary. No
semantics for ACP: has been provided yet; this will be done in Section 13.
The idea is that 'users' can stay in the realm of this formal system and execute
algebraical manipulations, without the need for an excursion into the seman
tics. That this can be done is demonstrated by the verification of a simple pro
tocol in the next section; at that point the semantics of ACP;* (in the form of
some model) has, on purpose, not yet been provided. This does not mean that
the semantics is unimportant; it does mean that the user needs only be con
cerned with formula manipulation. The underlying semantics is of great

78 J.A. Bergstra, J. W. Klop

interest for the theory, if only to guarantee the consistency of the formal sys
tem; but applications should not be burdened with it, in our intention.

ACP:
BASIC PROCESS ALGEBRA Al-5

DEADLOCK A6,7
COMMUNICATION FUNCTION Cl-3
MERGE WITH COMMUNICATION CMl-9
ENCAPSULATION Dl-4

SILENT STEP Tl-3
SILENT STEP: AUXILIARY AXIOMS TMl,2; TCl-4
ABSTRACTION DT; Tll-5

RENAMING RN
PROJECTION PRl-4
HAND SHAKING HA
STANDARD CONCURRENCY SC
EXPANSION THEOREM ET

ALPHABET CALCULUS CA
RECURSIVE DEFINITION PRINCIPLE RDP
RECURSIVE SPECIFICATION PRINCIPLE RSP
WEAK APPROXIMATION INDUCTION PRINCIPLE AIP
KOOMEN'S FAIR ABSTRACTION RULE KFAR

TABLE 20

The system up to the first double bar is ACP; up to the second double bar we
have ACP.,., and up to the third double bar, ACP:.

process Algebra: Specification and Verification 79

ACP,

x+y-y+x Al x-r=x TI
x +(y +z)=(x +y)+z A2 -rx +x =-rx T2
x+x=x A3 a(-rx +y)=a(-rx +y)+ax T3
(x +y)z =xz +yz A4
(xy)z =x (yz) A5
x+S=x A6
Sx=S A7

alb =bJa Cl
(alb)lc =al(bjc) C2
l>la=S C3

xl[y =xll_y +yll_x +xl,v CMI
allx =ax CM2 -rllx =-rx TMl

axlly =a(xl\y) CM3 TX [L_y = -r(x J[y) TM2

(x +y)ILz =xll_z +yllz CM4 -rlx =S TCl

axlb =(ajb)x CMS xJ-r=S TC2

albx =(alb)x CM6 -rxlY =x[y TC3

axlby =(alb)(xlly) CM7 xJry =x[y TC4

(x +y)lz =xJz +yJz CM8

xJ(y +z)=x[y +xlz CM9 an(-r)=T DT
T1(-r)=T Tll

an(a)=a if afl.H Dl T1(a)=a if ael TI2

an(a)=l> if a EH D2 T1(a)=T if a El TB

aH(X +y)=aH(x)+oH(y) D3 T1 (x + y)=T1 (x)+-r1 (y) TI4

aH(xy)=oH(x)·3H(y) D4 -r1 (xy)=-r(x)·-r1 (y) TI5

TABLE 21

80 J.A. Bergstra, J. W. Klop

TABLE 22

REMAINING AXIOMS AND RULES FOR ACP!

pj(a)=f(a)
pj(x +y)=pj(x)+pj(Y)
pj(xy) = pj(x).pj(Y)
P;Ax)=x
(Pf'PgXx) = PJ•g(x)
P/T)=T

x[ylz =8

xl.v =ylx
xllY =yllx
xl(ylz)=(x[y)lz
(xlly)llz =xlL(yllz)
(xlay)llz =xl(ayllz)
x ll(yllz)=(xlry)llz

a(8)= 0
a(T)= 0
a(a)={a} (if a¥:8)
a(Tx)=a(x)
a(ax)= {a} U a(x) (if a¥:l3)
a(x +y)=a(x)Ua(y)
a(x)= Un;;.1a('1Tn(x))
a(T1(x))=a(x)-/

RNI
RN2
RN3
RN4
RN5
RN6

'1T1(ax)=a
'11'n + 1 (ax)=a. 'ITn(x)
'ITn(a)=a
'11'n(X +y)='1Tn(x)+'1Tn(y)
'11'n(T)=T
'11'n(Tx)=T.'1Tn(x)

a(x)i(a(y) n H) c;;,.H ~on(xilY)= oH(x ilon(y))
a(x)l(a(y)n/)= 0 ~T1(xl[y)=T1(xlh(y))
a(x)nH= 0~38(x)=x
a(x)n/= 0~T1(x)=x

RDP Every guarded and abstraction free specification has a solution

PRI
PR2
PR3
PR4
PR5
PR6
HA
SCI
SC2
SC3
SC4
SC5
SC6

ET

ABI
AB2
AB3
AB4
AB5
AB6
AB7
ABS

CAI
CA2
CA3
CA4

RSP Every guarded and abstraction free specification has at most one solution
AIP- Every process which has an abstraction free specification is determined

by its finite projections

Process Algebra: Specification and Verification 81

It should be noted that there is redundancy in this presentation; as we already
stated, AIP- implies RSP and there are other instances where we can save
some axioms or rules (for instance, the projection axioms PRI-6 tum out to be
definable from the other operators). This would however not enhance clarity.
Also note that one of the standard concurrency axioms, SC5, is different
(namely more restrictive) than the corresponding one for the situation without
r in Table 9 (the second axiom).

So ACP: is a medium for formal process specifications and verifications; let
us note that we also admit infinite specifications. As the system is meant to
have practical applications, we will only encounter computable specifications.
A finite specification (of which an expression is a particular case) is trivially
computable; an infinite specification {Enln~O} where En is the recursion
equation Xn=T(X 1, ••• ,XJ<n» is computable if after some coding, in which
En is coded as a natural number en, the sequence {en In ~O} is computable.
Here an important question arises: is every computable specification provably
equal to a finite specification ? At present we are unable to answer this ques
tion; but we can state that the answer is affirmative relative to certain models of
ACP;*. Before we elaborate this, a verification of a simple protocol is demon
strated.

12. AN ALGEBRAIC VERIFICATION OF THE ALTERNATING BIT PROTOCOL

In this section we will demonstrate a verification of a simple communication
protocol, the Alternating Bit Protocol, in the framework of ACP,;*. (In fact,
not all of ACP.;* is needed.) This verification is from (13]; the present stream
lined treatment was kindly made available to us by F.W. VAANDRAGER (CWI
Amsterdam).

Let D be a finite set of data. Elements of D are to be transmitted by the
ABP from port 1 to port 2. The ABP can be visualized as follows:

K

1 2

L

FIGURE 3

There are four components:
A: Reads a Message (RM) at l. Thereafter it Sends a Frame (SF), consisting
of the message and a control bit, into channel K until a correct

82 J.A. Bergstra, J. W. Klop

Acknowledgement has been Received (RA) via channel L. The equations for A
are as follows. We will always use the notations: datum d ED, bit b E {O, 1 },
frame /ED X {O, 1} (so a frame /is of the form db).

A=RMU
RMb ="2.d r l(d).SFdb
SFdb =s 3(db).RA db
RAdb =(r5(1-b)+r5(e)).SFdb +r5(b).RM1-b

K: data transmission channel K communicates elements of DX {O, 1 }, and may
communicate these correctly or communicate an error value e. K is supposed
to be fair in the sense that it will not produce an infinite consecutive sequence
of error outputs.

K =2.1 r3(j).K
Kl =('r.s4(e)+T.S4(j)).K

The T's in the second equation express that the choice whether or not a frame f
is to be communicated correctly, cannot be influenced by one of the other
components.
B: Receives a Frame (RF) via channel K. If the control bit of the frame is OK,
then the Message is Sent (SM) at 2. B Sends back Acknowledgement (SA) via
L.

B =RF"
RFb=(2.d r4(d(l-b))+r4(e)).SA l-b+"2.d r4(db).SMdb
SA b =s 6(b).RF1-b

SMdb =s 2(d).SA b

L: the task of acknowledgement transmission channel L is to communicate
boolean values from B to A. The channel L may yield error outputs but is also
supposed to be fair.

L ="2.b r6(b).L
Lb =(T.S 5(e)+T.S 5(b)).L

Define D=DU(DX{O,l})U{O,l}U{e}. Dis the set of 'generalized' data (i.e.
plain data, frames, bits, error) that occur as parameter of atomic actions. We
use the notation: gED. For tE{l,2, ... ,6} there are send, read, and com
munication actions:

A= {st(g),rt(g),ct(g)lgED, tE{l,2, ... ,6} }.

We define communication by st(g)!rt(g)=ct(g) for geD, tE{l,2, ... ,6} and
all other communications give 8. Define the following two subsets of A:

H = {st(g),rt(g)ltE{3,4,5,6},geD}

I= {ct(g)!te{3,4,5,6},gED}.

Now the ABP is described by ABP =T1°a8 (A llKllBllL). The fact that this is a

Process Algebra: Specification and Verification 83

correct protocol is asserted by

THEOREM 7. ACP:~ ABP ==2:d r l(d).s2(d).ABP.

(Actually, we need only the part of ACP;,* consisting of
ACPT+SC+RDP+RSP+CA+KFAR- see Tables 21, 22.)

PROOF. Let J'=={ct(g)jtE{3,4,5}, /ED}. We will use [x] as a notation for
7)' 0 3H(x). Consider the following system of recursion equations:

(0) X=~
(1) xY =2:d r l(d).Xt
(2) xqb =-r.X~b +r.X'J,b
(3) X~b =c6(1-b).Xqb
(4) x~b =s2(d).Xtb
(5) X~b =c6(b).X~b
(6) X'/," =-r.X~b +r.xl-b

We claim that ACP;~x==[A llKllBllL]. We prove this by showing that
[A llKllB llL] satisfies the same recursion equations (0)-(6) as X does. In the
computations below, the bold-face part denotes the part of the expression
currently being 'rewritten'.

[A llKllBllL] = [RM0 1!KllRF°llL] (0)

[RMb llKllRFbllL] = '2..d r l(d).[SF'b llKllRFbllL] (l)

= '2..d r l(d).T.[RA db llKdb llRFb llL]

= '2..dED r l(d).[RAdbllKdbllRFbllL]

[RAdbllKdbllRFbllLJ = r.[RAdblls4(e).KllRF"llLJ (2)

+ T.[RAdblls4(db).KllRF'>llL] = T.[RAdbllKllSA l-bllL]

+ r.[RAdbllKllSMdbllL]

[RAdbllKllSA1-bllL] = c6(1-b).[RAdbllKllRFbllL1-b] (3)

= c6(1-b).(r.[RAdbllKllRFblls5(e).L]

+ -r.[RAdbllKllRFblls5(1-b).L])

= c6(1-b).r.[SF'bllKllRFbllL]

= c6(1-b).T.T.[RAdbllKdbllRFbllLJ

= c6(1-b).[RAdbllKdbllRFbllLJ.

[RA dbllKllSMdbllL] = s2(d).[RA dbllKllSA bllL]. (4)

[RAdbllKllSAbllL] == c6(b).[RAdbllKllRF1-bllLb]. (5)

[RAdbllKllRF1-bllLb] == -r.[RAdbllKllRF1-blls5(e).L] (6)

84 J.A. Bergstra, J. W. Klop

+ T.[RAdbllKllRF1-blls5(b).L]

= 'T.[SFdbllKllRF1-bllLJ

+ 'T.[RM 1-bllKllRF1-bllL].

[SF°>llKllRF1-bllL] = 'T.[RAdbllKdbllRF1-bllL]

= 'T.('T[RA db lls4(e).KllRF1 -b llL]

+ 'T.[RA db lls4(db).KllRF1-b llL])

= T.[RAdbllKllSAbllL].

(7)

Now substitute (7) in (6) and apply RSP + RDP. Using the conditional
axioms (see Table 22, Section 11) we have ABP =T1(X)= T1(.xfi). Further, an
application of KFAR2 gives 'T1(X~b)= 'T.'T1(xf) and T1(X~b)= 'T.'T1(XJ-b).
Hence,

and thus

'T1(X1) = kd r l(d).T1(~} = kd r l(d).'T1(Xt)

= kd r l(d}.s2(d).T1(X'f) = kd r l(d).s2(d).'T1(Xj-b)

'T1(x'f) = kd r l(d).s2(d).kd·r l(d').s 2(d').'T1(x'f)

1AXI) = kd r l(d).s2(d).~d.r I(d').s2(d').'T1(XI).

Applying RDP + RSP gives T1(x'/)= 'T1(XI) and therefore T1(_xf/)=
'"2.dr l(d).s2(d}.1"J(x'f), which finishes the proof of the theorem. 0

More complicated communication protocols have been verified in ACP;t
recently by V AANDRAGER [33): a Positive Acknowledgement with Retransmis
sion protocol and a One Bit Sliding Window protocol. There the notion of
redundancy in a context is used as a tool which facilitates the verifications. A
related method, using a modular approach, is employed in KoYMANS and
MULDER (26), where a version of the Alternating Bit Protocol called the Con
current Alternating Bit Protocol is verified in ACP;t. (In fact, also in the
verifications in (26), [33) one only needs the part of ACP: mentioned after
Theorem 7.)

13. THE GRAPH MODEL FOR ACPf
We will give a quick introduction to what we consider to be the 'main' model
of ACP:. The basic building material consists of the domain of countably
branching, labeled, rooted, connected, directed mu/tigraphs. Such a graph, also
called a process graph, consists of a possibly infinite set of nodes s with one
distinguished node s0, the root. The edges, also called transitions or steps,
between the nodes are labeled with an element from the action alphabet; also
8 and r may be edge labels. We use the notation s-0 t for an a-transition from
nodes to node t; likewise s--+Tt is a T-transition and s....+8t is a 8-step. That the
graph is connected means that every node must be accessible by finitely many

Process Algebra: Specification and Verification 85

steps from the root node.
Corresponding to the operations +,.,ll.IL.1.oH,'TJ,'11'n,a in Acr: we define

operations in this domain of process graphs. Precise definitions can be found
in [1,5]; we will sketch some of them here. The sum g+h of two process
graphs g,h is obtained by glueing together the roots of g and h (see Figure
4(i)); there is one caveat: if a root is cyclic (i.e. lying on a cycle of transitions
leading back to the root), then the initial part of the graph has to be
'unwound' first so as to make the root acyclic (see Figure 4(ii)). The product
g.h is obtained by appending copies of h to each terminal node of g; alterna
tively, one may first identify all terminal nodes of g and then append one copy
of h to the unique terminal node if it exists (see Figure 4 (iii)). The merge gllh
is obtained as a cartesian product of both graphs, with 'diagonal' edges for
communications (see Figure 4(v) for an example without communication, and
Figure 4(vi) for an example with communication action alb. Definitions of the
auxiliary operators are somewhat more complicated and not discussed here.
The encapsulation and abstraction operators are simply renamings, that
replace the edge labels in H resp. in I by 8 resp. T. Definitions of the projec
tion operators .,, n and a should be clear from the axioms by which they are
specified. As to the projection operators, it should be emphasized that -r-steps
are 'transparent': they do not increase the depth.

86 J.A. Bergstra, J. w. Klop

FIGURE 4

OPERATIONS ON PROCESS GRAPHS

(iii) aAb ·
cl \ b

(v)

h

(vi)

Process Algebra: Specification and Verification 87

'This domain of process graphs equipped with the operations just introduced, is
not yet a model of ACP.,.: for instance the axiom x + x = x does not hold. In
order to obtain a model, we define an equivalence on the process graphs which
is moreover a congruence w.r.t. the operations. 'This equivalence is called
bisimulation congruence or bisimilarity. (The original notion is due to PARK

(32); it was anticipated by Milner's observational equivalence, see (30).) In
order to define this notion, let us first introduce the notation s=>0 t for nodes s,
t of graph g, indicating that from node s to node t there is a finite path con
sisting of zero or more T-steps and one a-step followed by zero or more '!"-steps.
Let us say that in this situation there is a 'generalized a-step' from s to t. Like
wise with 'a' replaced by 'T'. Next, let a coloring of process graph g be a surjec
tive mapping from a set of 'colors' C to the node set of g, such that the color
assigned to the root of g is different from all other colors, and furthermore,
such that all end nodes are assigned the same color which is different from
other colors. Now two process graphs g, h are bisimilar if there are colorings of
g, h such that (I) the roots of g, h have the same color and (2) whenever some
where in the two graphs a generalized a-step is possible from a node with color
c to a node with color c', then every c-colored node admits a generalized a-step
to a c'-colored node (be it in g or in h). We use the notation gtih to indicate
that g, h are bisimilar. One can prove that e is a congruence and, if G is the
original domain of countably branching process graphs:

THEOREM 8 ((5]). G/ti is a model of ACP;*.

Remarkably, this graph model (as we will call it henceforth) does not satisfy
the unrestricted Approximation Induction Principle. A counterexample is
given (in a self-explaining notation) by the two graphs g =In;;.1an and
h =~,,.., 1 a"+a"'; while g and h have the same finite projections 'IT"(g)=
'TT"(h)= a+a 2 +a 3 + ... +an, they are not bisimilar due to the presence of the
infinite trace of a-steps in h. It might be thought that it would be helpful to
restrict the domain of process graphs to finitely branching graphs, in order to
obtain a model which does satisfy AIP, but there are two reasons why this is
not the case: (I) the finitely branching graph domain would not be closed
under the operations, in particular the communication merge (!); (2) a similar
counterexample can be obtained by considering the finitely branching graphs
g'=T{t)(g") where g" is the graph defined by (X,,= a"+tX,,+ 11n;;;ol} and
h'=g'+a"'.

14. THE EXPRESSIVE POWER OF ACP.,.
ACP.,. is a powerful specification mechanism; in a sense it is a universal
specification mechanism: every finitely branching, computable process can be
finitely specified in ACP.,.. We have to be more precise about the notion of
'computable process'. First, an intuitive explanation: suppose a finitely
branching process graph g is actually given; the labels may include T, and
there may be even infinite '!"-traces. That g is 'actually' given means that the
process graph g must be 'computable': a finite recipe describes the graph, in

88 J.A. Bergstra, J. W. Klop

the form of a coding of the nodes in natural numbers and recursive functions
giving in-degree, out-degree, edge-labels. This notion of a computable process
graph is rather obvious, and we will not give details of the definition here
(these can be found in [5]).

Now even if g is an infinite process graph, it can be specified by an infinite
computable specification, as follows. First rename all T-edges in g to t-edges,
for a 'fresh' atom t. Call the resulting process graph: g1. Next assign to each
nodes of g1 a recursion variable Xs and write down the recursion equation for
Xs according to the outgoing edges of node s. Let Xso be the variable
corresponding to the root s 0 of g1• As g is computable, g1 is computable and
the resulting 'direct' specification E = { Xs = Ts(X)ls EN ODES (g1)} is evidently
also computable (i.e.: the nodes can be numbered as sn(n ~0) and after coding
the sequence en of codes of equations En :Xsn = Tsn(X) is a computable
sequence). Now the specification which uniquely determines g is simply:
{Y=T{IJ(Xso)}UE. In fact all specifications below will have the form
{X=T1(X0),Xn=Tn(X)ln~O} where the guarded expressions
Tn(XX= Tn(X;1> ... ,X;n)) contain no abstraction operators TJ. They may con
tain all other process operators. We will say that such specifications have res
tricted abstraction.

However, we want more than a computable specification with restricted
abstraction: to describe process graph g we would like to find a finite
specification with restricted abstraction for g. Indeed this is possible:

THEOREM 9. Let the finitely branching and computable process graph g determine
gin the graph model of ACP.,.. Then there is a finite specification with restricted
abstraction E in ACP.,. such that [E] =g.

Here[£] is the semantics of E in the graph model. The proof in [5] is by con
structing a Turing machine in ACP.,.; the 'tape' is obtained by glueing together
two stacks. A stack has a simple finite specification, already in BPA; see [15].
A stronger fact would be the assertion that every computable specification with
restricted abstraction in ACP.,. is provably equivalent (in ACP;t) to a finite
specification with restricted abstraction. At present we do not know whether
this is true.

It should be noted that abstraction plays an essential role in this finite
specification theorem. If f :1\1-+{ a,b} is a sequence of a,b, let PJ be the process
f (O).j(l).f (2)..... (more precisely: the unique solution of the specification
{Xn=f(n).Xn+1ln~O}). Now:

THEOREM 10. There is a computable function f such that process PJ is not
definable by a finite specification without abstraction operator.

A fortiori, PJ is not finitely definable in ACP. The proof in [5] is via a simple
diagonalization argument.

The finite specification theorem, which is relative to the graph model of
ACP;t, in fact generalizes to the class of 'extensional' models. In order to

Process Algebra: Specification and Verification 89

define this concept we first define the notion of 'canonical process graph' of a
process in an arbitrary process algebra.

Let et be a process algebra (i.e. a model of the axiom system under con
sideration, in casu ACPT). Let p,qEr£. We define transition relations -+a, for
every atomic action a, and -+n as follows: p-+0 q iff p = a.q + r for some r.
Moreover, if p =a +r for some r, then p-+0 0 where o is an auxiliary element
not in the domain of&.. The same with T instead of 'a'. Now the canonical pro
cess graph of p (notation: G(p)) is the labeled and directed graph with root: p
and with nodes all elements accessible from p via the transitions -+0 ,-+T. The
edges of the canonical process graph are given by the transitions. Note that
every element in every process algebra thus has a canonical process graph. In
analogy with the situation in set theory, we will call a process algebra exten
sional if whenever p,q have the same process graph, they are equal. (Cf. the
'observable' process spaces in HESSELINK [22).) In an extensional model an ele
ment is fully determined by its transition relations to other elements. The
models that we have introduced are all extensional. A process is finitely
branching when its canonical graph is. Now we can define that a process is
computable when its canonical graph is. The finite specification theorem above
generalizes to:

THEOREM 11. Let p be a finitely branching, computable process in an extensional
process algebra (a model of ACP.,.). Then p can, in ACPT, be specified by a finite
specification with restricted abstraction.

It should be possible to remove the assumption 'finitely branching' in favour of
'countably branching', but we will not attempt to do so here.

15. A FUNDAMENTAL INCOMPATIBILITY

As we have seen, the graph model of ACP: (Section 13) does not satisfy the
unrestricted Approximation Induction Principle which states that every process
is uniquely determined by its finite projections. It is natural to search for a
model in which this principle does hold. However, R.J. VAN GLABBEEK (CWI
Amsterdam) recently noticed that such a model does not exist, if one wishes to
adhere to the very natural assumption that composition of abstraction opera
tors is commutative. As always, we refer here to models which are trace con
sistent. We will consider the following consequence of RN5 in Table 22:
T{a} 0 T(b}= T(b}oT{a} which we will denote by CA (commutativity of abstrac
tion). Now we have:

THEOREM 12 ([21)). ACPT+ KFAR1 + RDP + RSP +CA+ AIP ~T=T+TS.

By way of exception we include the interesting proof. Consider the
specifications E={Xn=aXn+i+bnJn;;;i.O}, F={Y=bY} and G=
{Z =aZ +T}. By RDP+ RSP we have unique solutions for these
specifications; they will be denoted by Xn(n;;;;i.O), _!:.~. By KFAR1 we have
immediately: T(bJ(Y)=TS and T(aiT~)=T:r=T. Further, T(bJ(~n)=

90 J.A. Bergstra, J. W. Klop

a.T{b)(Xn+1)+'1"= a.T{b)(Xn+d+T, so the sequence {T{b)(Xn)ln;;;o.O} is a solu
tion orthe infinite specification G'={Zn =aZn+t+Tin;;;;.O}. Cleru;:ly this last
specification is also satisfied by the sequence { Z,Z, ... }. Hence, by RSP,
T{bJ(~n)=~. It follows that T{h)(a!o)=aZ; whence- -

'T(a) 0 'T(b)(a!o) = 'T(a)(aZ) = T.T(aj(Z) = T.T = T. (1)

Now, using the T-law T2 and in particular its consequence
T(x +y)=T(x +y)+x, one proves easily that for all k:

T(aj(a!1) = 1"(a}(a!1) +bk.

(E.g. for k =O: T{a)(aXo)= T.'T(a)(Xo)= T.T{aj(a!1 +b)= T(T{a)(aX1)+b)=
T(T(a)(aX1)+b)+b = T{0 1(aXo)+b)-:-

- - k So 'ITk(T{a)(aXo))= 'ITk(T{a)(aXo))+b = wk('T(a)(aXo)+ Y), for all k. There-
fore by AIP: T~j(aXo)= T{a}(a!0)+ _!". Hence, using (I) and CA:

T{bj 0 T{aj(a!o) = T(b)°'T(a)(aXo) + T{b}(I) = T(aj 0 1"(b}(a!o) + 'T(b}(Y)

= 'T + T/3, (2)

and again by (I) and CA: T=T+T8. 0

So, in every theory extending ACPn the combination of features AIP, KFAR,
CA, RDP + RSP is impossible. Among such theories are also theories where
the equivalence on processes is much coarser, such as in Hoare's well-known
failure model (25]; this semantics is not discussed in the present paper. VAN

GLABBEEK (21] moreover notices that there is quite a subtle trade-off between
these four features. In the graph model of ACP! we have AIP-, KFAR, CA,
RDP + RSP. There is also a failure model satisfying AIP, KF AR - , CA,
RDP + RSP, where KF AR- is a restricted form of KF AR (see [17]). In fact it
seems that models can be found by weakening any of the four features that
make up the impossible combination.

16. ADDITIONAL FEATURES

As we have seen in Section 14, ACP.,. is a universal specification system for
(finitely branching) computable processes. Yet this does not preclude the
search for additional operators on processes, in order to make finite
specifications of computable processes not only theoretically possible, but also
practically feasible. The two main additional operators which have been
defined and studied in process algebra are the priority operator and the state
operator.

By means of the priority operator 0 one can enforce that certain actions are
privileged and have priority over others. Thus (} is parameterized by a partial
order > on the set of atomic actions; the constant l> (deadlock) will always be
the least element in this partiaj ordering. As an example, let atomic actions
a,b,c be ordered by: a,b<c. Then O(a+b+c)=c, O(a+b)=a+b,
O(ax +01)=c8(y). Using an auxiliary operator <J ('unless') we can axiomatize
(} in finitely many equations:

Process Algebra: Specification and Verification

PRIORITY OPERA TOR
a<]b =a if-,(a <b)
a<]b =o ifa <b
x<Jyz=x<Jy
x<](y +z)=(x<Jy)<]z
xy<]z =(x<]z)y
(x +y)<]z =x<]z +y<]z

{}(a)=a
O(xy) = O(x)-(}(y)
O(x + y) = {}(x)<Jy + (}(y)<]x

TABLE 23

91

The priority operator 0 (with its axioms) can be joined with ACP (see Section
11); the result is called ACP8 . Note that we do not join (} and ACP'T; at
present the interaction between T and e is not clear. In [4] an elimination
theorem is proved stating that every closed ACP8-term is (in ACP8) provably
equal to a BPA,s-term, that is a term without occurrences of other operators
than · and +. Using 0, one can model interrupts (see [4]). Another application
is given in [9]: there a put and get mechanism has been modeled using ACP8 .

Communication by means of put and get mechanism differs from the synchro
nous hand shaking mechanism: even if the 'receiving' process is not enabled to
receive the message, the 'sending' process can perform a put action, and
proceed with its execution. Likewise, a receiving process can perform a get
action even when there is nothing to get, and continue in that case. Using the
put mechanism, it is shown in [9] how a broadcasting mechanism for arbitrarily
many receivers can be modeled.

Another very useful operator is the state operator i\, where s is some state
from a state space S. The essential equation is A5 (ax)=a'.A..-(x). Here s' and a'
are the state and action respectively resulting from executing a in state s. The
state operator is useful in designing an algebraic semantics for programming
languages; when dealing with object-oriented programming languages or
specification languages, it is useful to provide the state operator with a name m
of the object in question. Thus ;\.'.;'(x) can intuitively be perceived as the pro
cess resulting from input x (the 'program') in m (the 'machine') in s (the state
of m). Writing a'=a(m,s) (the action function) and s'=s(m,a) (the effect func
tion) the state operator is axiomatized by:

92

STATE OPERATOR
')o..;'(8)=8
')o..;'(a)=a(m,s)
A;'(a.x)= a (m,s)·A:{m,a)(x)
')o..;'(x +y)=A:'(x)+')o..;'(y)

TABLE 24

J.A. Bergstra, J. W. Klop

In fact, this state operator is a generalization of the renaming operator in Sec
tion 6. In [l] asynchronous communication is modeled using the state opera
tor: here a message from sender to receiver may have some delay.

Another mechanism which is of interest for specifications is process creation.
In [8] axioms for a process creation operator have been given; for some exam
ples of its use see also [I]. A typical example is the modeling of the sieve of
Eratosthenes.

Finally, we mention the work of VRANCKEN (34] where the empty process t:
has been axiomatized. The basic axioms for this process are t:x =x and xt:=x.
It should be pointed out that addition of such a process requires careful con
sideration in order to preserve the consistency of the whole axiomatization.
Using this process several short-cuts in process specifications can be obtained.

REFERENCES

1. J.C.M. BAETEN (1986). Procesalgebra, course notes (in Dutch), Depart
ment of Computer Science, University of Amsterdam.

2. J.C.M. BAETEN, J.A. BERGSTRA (1985). Global Renaming Operators in
Concrete Process Algebra, CWI Report CS-R8521, Amsterdam.

3. J.C.M. BAETEN, J.A. BERGSTRA, J.W. KLoP (1985). Conditional Axioms
and al /3 Calculus in Process Algebra, CWI Report CS-R8502, Amsterdam.

4. J.C.M. BAETEN, J.A. BERGSTRA, J.W. KLOP (1985). Syntax and Defining
Equations for an Interrupt Mechanism in Process Algebra, CWI Report
CS-R8503, Amsterdam.

5. J.C.M. BAETEN, J.A. BERGSTRA, J.W. KLOP (1985). On the Consistency of
Koomen's Fair Abstraction Rule, CWI Rep~rt CS-R85 l l, Amsterdam.

6. J.W. DE BAKKER, J.l. ZUCKER (1982). Denotational semantics of con
currency. Proc. 14th ACM Symp. Theory of Comp., 153-158.

7. J.W. DE BAKKER, J.l. ZUCKER (1982). Processes and the denotational
semantics of concurrency. Information and Control 54 (1I2), 70-120.

8. J.A. BERGSTRA (1985). A Process Creation Mechanism in Process Algebra,
Logic Group Preprint Series Nr. 2, Dept. of Philosophy, State University
of Utrecht.

9. J.A. BERGSTRA (1985). Put and Get, Primitives for Synchronous Unreliable
Message Passing, Logic Group Preprint Series Nr. 3, Dept. of Philosophy,
State University of Utrecht.

10. J.A. BERGSTRA, J.W. KLoP (1982). Fixed Point Semantics in Process

Process Algebra: Specification and Verification 93

Algebras, MC Report IW 206, Amsterdam.
11. J.A. BERGSTRA, J.W. KLoP (1984). The algebra of recursively defined

processes and the algebra of regular processes. J. PAREDAENS (ed.).
Proceedings llth ICALP, Antwerpen 1984, Springer LNCS 172, 82-95.

12. J.A. BERGSTRA, J.W. KLoP (1985). Algebra of communicating processes
with abstraction. TCS 37 (1), 77-121.

13. J.A. BERGSTRA, J.W. KLoP (1984). Verification of an alternating bit pro
tocol by means of process algebra. W. BIBEL, K.P. JANTKE (EDS.). Proc.
of the International Spring School, Wendisch.-Rietz (GDR), April 1985,
Math. Methods of Spee. and Synthesis of Software Systems '85, Akademie
Verlag Berlin 1986.

14. J.A. BERGSTRA, J.W. KLoP (1984). Process algebra for synchronous com
munication. Information and Control 60 (113), 109-137.

15. J.A. BERGSTRA, J.W. KLoP (1986). Algebra of communicating processes.
J.W. DE BAK.KER, M. HAZEWINKEL, J.K. LENSTRA (eds.). Mathematics and
Computer Science, CW/ Monograph 1, North-Holland, Amsterdam.

16. J.A. BERGSTRA, J.W. KLoP, E.-R. 0LDEROG (1985). Readies and Failures
in the Algebra of Communicating Processes, CWI Report CS-R8523,
Amsterdam.

17. J.A. BERGSTRA, J.W. KLoP, E.-R. 0LDEROG (1986). Failure Semantics
with Fair Abstraction, CWI Report CS-R8609, Amsterdam.

18. J.A. BERGSTRA, J.W. KLOP, J.V. TuCKER (1983). Algebraic tools for sys
tem construction. E. CLARKE, D. KozEN (eds.). Logics of Programs,
Proceedings '83, Springer LNCS 164, 34-45.

19. J.A. BERGSTRA, J. TIURYN (1983). Process Algebra Semantics for Queues,
MC Report IW 241, Amsterdam.

20. J.A. BERGSTRA, J.V. TuCKER (1984). Top Down Design and the Algebra of
Communicating Processes, Sci. of Comp. Progr. 5 (2), p. 171-199.

21. R.J. VAN GLABBEEK (1986). Bounded Nondeterminism and the Approxima
tion Induction Principle in Process Algebra, to appear as CWI Report,
Amsterdam.

22. W. HESSELINK (1986). Morfismen van Procesruimten, Universele Domeinen,
Formele Implementaties en Fairness, manuscript, Univ. of Groningen.

23. C.A.R. HOARE (1978). Communicating sequential processes. Comm.
ACM 21, 666-677.

24. C.A.R. HOARE (1984). Notes on Communicating Sequential Processes,
International Summer School in Marktoberdorf: Control Flow and Data
Flow, Munich.

25. C.A.R. HOARE (1985). Communicating Sequential Processes, Prentice Hall.
26. C.P.J. KOYMANS, J.C. MULDER (1986). A Modular Approach to Protocol

Verification using Process Algebra, Logic Group Preprint Series Nr. 6,
Dept. of Philosophy, State University of Utrecht.

27. C.P.J. KoYMANS, J.L.M. VRANCKEN (1985). Extending Process Algebra
with the Empty Process t", Logic Group Preprint Series Nr. 1, Dept. of Phi
losophy, State University of Utrecht.

28. E. KRANAKIS (1986). Approximating the Projective Model, CWI Report

94 J.A. Bergstra, J. W. Klop

CS-R8607, Amsterdam.
29. E. K.RANAKIS (1986). Fixed Point Equations with Parameters in the Pro

jective Model, CWI Report CS-R8606, Amsterdam.
30. R. MILNER (1980). A Calculus of Communicating Systems, Springer LNCS

92.
31. R. MILNER (1984). A complete inference system for a class of regular

behaviours. Journal of Computer and System Sciences 28, 3, 439-466.
32. D.M.R. PARK (1981). Concurrency and automata on infinite sequences.

Proc. 5th GI Conference, Springer LNCS 104.
33. F.W. VAANDRAGER (1986). Verification of Two Communication Protocols

by Means of Process Algebra, CWI Report CS-R8608, Amsterdam.
34. J.L.M. VRANCKEN (1986). The Algebra of Communicating Processes with

Empty Process, Report FVI 86-01, Computer Science Department, Univer
sity of Amsterdam.

