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ON THE ALGEBRAIC EQUATIONS IN IMPLICIT 
RUNGE-KUITA METHODS* 

W. H. HUNDSDORFERt AND M. N. SPIJKERi 

Abstract. This paper is concerned with the system of (nonlinear) algebraic equations which arise in 

the application of implicit Runge-Kutta methods to stiff initial value problems. Without making the classical 

assumption that the stepsize h > 0 is small, we derive transparent conditions on the method that guarantee 

existence and uniqueness of solutions to the equations. Besides, we discuss the sensitivity of the Runge-Kutta 

procedure with respect to perturbations in the algebraic equations. 
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1. Introduction. We shall deal with the numerical solution of the system of n 

ordinary differential equations 

(1.1) 
d 
dt U(t) == f(t, U(t)) ( t ;;;:; t0 ), 

under an initial condition U(t0 ) == u0 • Here t0 E IR, u0 E IK" andf:IR x Kn~ !Kn is a given 

continuous function. To cope simultaneously with real and with complex differential 

equations, the set IK will stand consistently for either IR or C. Further, ( ·, ·) is an 

arbitrary inner product on IK", and lgl == (g, g)112 (for~ E IK"). 

In order to introduce the problem treated in this article we assume 

(1.2) Re <f( t, {) - f( t, g), [- g) ;:2 0 (for all t E IR and i, g E !Kn). 

This condition implies (cf. e.g. [9]) that for any two solutions U, U to (1.1) the norm 

IU(t)- U(t)I does not increase when t increases. 
Let h > 0 denote a stepsize and tk == tk-i + h (k = 1, 2, 3, · · · ). Using an implicit 

Runge-Kutta method, approximations uk to U(td are computed (for k;s; 1) by 

(1.3a) 

( 1.3b) 

m 

Uk== Uk-I+ h L bJ(tk-l + C;h, yJ, 
i=l 

m 

y; == uk-1 + h L a;J(tk-1 + cjh, yj) 
j=I 

Herem~ 1 and aiJ, b1 are real parameters, C; = a;1 + a;2+ ···+aim· We define them x m 

matrices A= (aij), B = diag (b1, b2, .. . 'bm) and the vector b ==(bi> b1, . .. 'bm) TE or. 
During these last years algebraically stable Runge-Kutta methods have gained 

much interest. These methods can be characterized by the property that B is positive 
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definite while (BA+ A TB - bb T) is positive semi definite. In [1], [ 4] this property was 
shown to imply the important contractivity relation 

luk-ukl:;;iluk-1-uk-d (ksl), 

for any two sequences { uk}, { ud computed from (l .3) with the same arbitrary stepsize 
h > 0. However, algebraic stability does not guarantee that the system of algebraic 
equations ( l.3b) has a solution for arbitrary h > 0 (see [5]). 

It was proved by Crouzeix (cf. [6], [5], (10]) that, whenever (1.2) is fulfilled and 

(1.4) there is a positive definite diagonal matrix D such that DA +A TD 
is positive definite, 

then the system (l.3b) does have a unique solution (for arbitrary h > 0). Some well
known algebraically stable methods satisfy (1.4) (the Gauss methods, the Radau IA 
and IIA methods, the 2-stage Lobatto IIIC method-see [13]). But, e.g., the 3-stage 
Lobatto IIIC method is known to violate (1.4) (see [13], [10], [11], [12]). 

The theory in the present paper provides a simple condition on A which is less 
restrictive than (1.4) and which still implies the existence of a unique solution to (1.3b) 
(for arbitrary h > 0). The 3-stage Lobatto IIIC method fulfills this new condition. 

In [2], [8], [3] contractivity (and stability) relations were derived under assump
tions on f that are more general than assumption (1.2). Our main theorem on the 
existence of solutions to ( l.3b) will also cope with f satisfying such generalized 
assumptions. 

An important tool in obtaining our existence and unicity results consists in a study 
of the sensitivity of the solution of the algebraic equations with respect to (so-called 
internal) perturbations. As a by-product we thus shall obtain generalizations of results 
on this sensitivity already given in [13], [10], [12]. 

In § 2 we shall state and discuss our main result (Theorem 2.1) on the existence 
and uniqueness of solutions to (l.3b ). In § 3 we derive the material that is basic for 
the proof of Theorem 2.1. We also apply this material in a study of the sensitivity of 
uk (see ( 1.3)) with respect to internal perturbations. The final § 4 contains the proof 
of Theorem 2.1. 

Remark 1.1. The Runge-Kutta step (1.3) is often written in the form 

m 
(l.Sa) Uk= Uk-I+ L b;Xj, 

i=l 

(1.5b) X; = hf(tk-i + c;h, uk-i +.I aijxj) (i~ i:;;i m). 
;~I 

Our results on the existence of solutions to ( 1.3b) are also relevant to ( 1.Sb ), since 
(l.Sb) has a unique solution iff (1.3b) has such a solution (see Lemma 4.1). 

Remark 1.2. The results of this paper are also applicable to general linear methods 
( cf. [2]). The systems of algebraic equations arising in such methods are essentially of 
type (l.3b) (or (I.Sb)). 

2. Existence and uniqueness. 
2.1. Formulation of the main theorem. Let a, {3 be given real constants. We consider 

the following three conditions on f, A and h. 

(2.1) The functionf:!Rx!fC,IKn is continuous, and 
Re (f(t, f)-f(t, f,), f-f,)~ ajf(t, t)-f(t, f,)j 2 + ,Bjt-f,j2 

(for all tEIR and f,, fEW). 

(2.2) There are real diagonal matrices D = diag (8i. 82 , • • ·, 8m). 
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S = diag (ui. cr2 , • • • , um) and T = diag (Ti, T 2 , • • • , Tm) such that the 
matrix DA +A TD- S-A TTA is positive semidefinite 

(2.3) .Adi and .Ait, 2 are disjoint index sets with At 1 U.Jti2 ={1,2, · · ·, rn}; 
oi ~ o, ui -2h- 1aoi?:::; o, Tj -2hf3oi?:::; o (if l ~ i ~ rn); 
CT; -2h-l ao; > 0 if either i E .;Ul or (i E .Jt12 and aoi ¥=- O); 
Tj - 2hf3oi > 0 if either i E .Jt12 or ( i E .4t1 and f3oi ¥=- O). 
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THEOREM 2.1. Assume (2.1), (2.2), (2.3). Then the system (l.3b) has a unique 
solution y 1 , Yz, · · ·, Ym E !Kn. 

We note that the index sets occurring in condition (2.3) are allowed to be empty. 
Condition (2.1) onf is a generalization of the well-known one-sided Lipschitz condition 
(where a= 0, see e.g. [l], [7], [13]) and of the circle condition in [9] (where f3 = O). 
It was also used in [17], [8]. 

If a ?:::; 0, then there exist functions f satisfying (2.1) with arbitrarily large Lipschitz 
constants. It follows that initial value problems ( 1.1) are covered that can be arbitrarily 
stiff. 

We conclude this section with a lemma which gives some more insight into 
condition (2.1) and which simplifies the application of the main Theorem 2.1. For 
given a, f3 E IR we denote the class of functions f satisfying (2.1) by f!f(a, {3). 

LEMMA 2.2. Let a, f3 E IR. 
(a) Suppose {3 1 E IR, {31 > f3 and a~ 0. Then there exists a number a 1 <a such that 

f!f(a,{3)c f!f(a 1 ,/31). 

(b) Suppose a 1 E IR, a 1 >aandf3~0. Then there exists a number /3 1 </3 such that 
f!f(a, /3) c f!f(ai, /3 1). 

Proof. We shall only prove part (a) of this lemma. A proof of part (b) can be 
given along the same lines. Suppose first a<O and /31>/3. LetfE:!f(a,{3), and let 
t E IR, lg E W be arbitrary. Put 11 = l-t, w = f(t, f)- f(t, g).We have 

Re (v, w) ~al wl 2 + ,Blvl2• 

Using the Schwarz inequality it follows that 

a lwl 2 + ,Blvl 2 + lwl lvl?:::; 0. 

Hence there is a Yo> 0 (only depending on a and ,B) such that 

lwl 2 ~ Yolvl2• 

Take a1 <a such that (,B1-/3)/(a-a1) ~Yo· We then have 

alwl 2 + f3lvl 2 ~ a1lwl 2 + .B1lvl 2, 

from which it is easily seen that f E f!f( a i. .81 ). 
We now consider the case where a> 0, ,8 1 >,B. For any a1 Eda, a) and v, w E DC 

satisfying 

we have 

lvl lwl > !alwl2 + .B1lvl2• 

It follows that there is a constant y1 >0 (only depending on a and /3 1) such that 

lwl 2 ~ Y1lvl2• 

Take a1E{!a,a) such that (,B 1 -,B)/(a-:a 1)~'Y1·Assume fE:!f(a,/3) but f~ 
f!f(ai. ,8 1). Then we know there are t E IR and?, g EllC such that 

a1lwl 2+ f3dvl 2 <Re (v, w) ~a lwl 2 + .BI 11! 2, 
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and 

lwl 2 ;;:;; [(,8 1 - ,8)/(a - a1)]1vl 2 

with v = l- t, w = f( t, g) - f( t, t). This yields a contradiction. D 

2.2. Application of the main theorem. From Theorem 2.1 one easily obtains 
COROLLARY 2.3. Assume f: IR x !Kn-;. !JC is continuous and satisfies (1.2). Suppose 

(2.2) holds with 

8; ~ 0, u; ~ 0, r; ~ 0, <r; + r; > 0 (for 1;;:;; i;;:;; m ). 

Then ( l.3b) has a unique solution. 
When r; = O (1;;:;; i;;:;; m ), the corollary is proved by applying Theorem 2.1 with 

,;14, 1={1,2,···,m}, ,;14, 2=0, and when <r;=O (l;;;i;;;m) it is proved with ,;14, 1=0, 
,;14, 2 = {1, 2, · · ·, m}. In the general case one can choose ,;14,1 = {i I a;> O}, ,;14,2 = {i I u; = 0 
and r; > O}. 

The above corollary is a generalization of[6, Thm. 5.4], [5, Thm. l] and [10, Lem. 
4.2], where (1.4) was required. Condition (1.4) implies that the assumption on (2.2) 
in the corollary is fulfilled (with r; = O). On the other hand, (2.2) can be fulfilled with 
8; ~ O, <r; ~ 0, r; ~ 0, u; + r; > 0 while ( 1.4) is violated. An example of this situation is 
provided by the 3-stage Lobatto IIIC method referred to in the Introduction (see also 
§ 2.3 ). 

COROLLARY 2.4. Let h > 0 and a, f3 E IR be given. Suppose K, A E IR and D = 
diag ( 81 , 82 , • • • , Om) are such that the matrix 

DA+ ATD-KD-AATDA 

is positive semidefinite. Assume further 8; > 0 ( 1;;:;; i;;:;; m ), 2ah- 1 ;;:;; K, 2{3h ;;:;; A and 2ah-' + 
2,Bh < K +A. Then ( l.3b) has a unique solution whenever f satisfies ( 2.1). 

Proof. For the cases [2ah- 1 ;;:;; K, 2,Bh <A, a 7"' 0) and [2ah -l < K, 2f3h;;:;; A, f3 7"' O] 
the proof easily follows by combining Theorem 2.1 and Lemma 2.2. If [2o:h- 1 ~ K, 

2,Bh <A, a =OJ, Theorem 2.1 can be applied directly with .l,f, 1 = 0, and if [2ah- 1 < K, 
2,Bh -;;2 A, f3 = 0), we take Jd2 = 0 in Theorem 2.1. D 

We note that if a= K = 0, the content of the above corollary reduces to a theorem 
formulated in (15, Thm. 4.3.1]. The latter theorem in its turn generalizes results on the 
system (l.3b) formulated in [12, Thms. 5.3.9, 5.3.12]. 

2.3. Examples. 
Example 2.5. The algebraically stable, 3-stage Lobatto II IC method is given by 

(
1/6 -1/3 1/6 ) 

A= 1/6 5/12 -1/12 , 

1/6 2/3 1/6 
(

1/6) 
b = 2/3 . 

1/6 

Condition (1.4) is not fulfilled (see e.g. [ 13 )). However, with the choice 81 = 1, 82 = 4, 
83 = 1, r1=2, u 2 = 2, r 3 = 2 and the other r;, a; equal to zero, condition (2.2) is fulfilled. 
From Corollary 2.3 we thus see that ( l.3b) always has a unique solution when f is 
continuous and satisfies (1.2). 

We note that this Runge-Kutta method does not satisfy (2.2) with any 8; ~ 0, 
<r;>O, r;=0(1-;;2i;:;;m) or with 8;~0, <r;=O, r;>O(l:;;;;i;;;;m). 

Example 2.6. Consider an arbitrary method that is algebraically stable. Applying 
Corollary 2.4 with K =A = 0, it follows that ( l .3b) has a unique solution whenever f 
satisfies (2.1) with some a;;;O, ,8~0, a+{3<0 (which is a bit stronger than (1.2)). 
This result provides an extension of [6, Remark 5.7], (5, Cor. and Remark 3, p. 90]. 
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Example 2.7. Consider a method satisfying (1.4). From Corollary 2.4 it can be 
seen that there exist Ko, A0 > 0 such that (l.3b) has a unique solution for any h > 0 
and f satisfying (2.1) with ah-1 :;i Ko and f3h :;i A0 • This generalizes a related result on 
the system (1.3b) formulated in [12, Thms. 5.3.9, 5.3.12] where a =0 is assumed. 

3. Stability with respect to internal perturbations. 
3.1. Notation. For given column vectors Xi, x2 , • • • , Xm E !Kn we denote the column 

vector (x'[,xJ, · · · ,x~)T E!Knm by [x;]. On the space !Knm we deal with the norm 

llxll = (lx11 2 + lx2l 2 + · · · + lxml 2) 112 
for x = [X;] E IK nm, where I· I denotes the norm of § 1. For any linear mapping L from 
IKnm into IK"m we define llLll =sup {llLxll: XE!Knm with llxll = l} . 

.;f;f, 1 and .;f;f,2 are disjoint sets with .;f;f, 1 U Ad 2 ={I, 2, · · ·, m}, and the projections 
1j: ll·Cm--'> [)(nm (for j = 1, 2) are defined by ljx = y for x = [x;] with y = [y;] given by 

Yi= X; (when i E .;f;f,j), y; = 0 (when i e Adj). 

Let Uk-I E IK n, h > 0 and tk-1 be given. We define the functions f;: IK n--'> IK n ( 1 ~ j ~ 
m) and F : IK nm '"" IK nm by 

J;(g) = hf(tk-1 + cih, uk-1 + g) (for g E !Kn), 

Fx = [f;(x;)] (for x = [x;] E [}(nm). 

Further we define H: IKnm--'> IKnm by Hz= [h;(z)] (for z = [z;] E IK"'") with 

h;(z) = Z; - L aijfj(zj)- I aijzj (if i E Ad 1), 

jEJ(,11 jEofl2 

The n x n identity matrix is denoted by J(n) and the Kronecker product by®· We 
define 

Here b, A are as in § 1, and aT denotes the ith row of the matrix A (for 1 ~ i ~ m ). 
We define the mappings (from IK"m to IKnm) 

~= ljH, 

Remark that, with I= / 1 +12 denoting the nm x nm identity mapping, we have 

(3.1) 

3.2. Runge-Kutta methods with internal perturbations. The main purpose of this 
subsection is a discussion of the following four equalities and of their relations to the 
Runge-Kutta method (1.3). 

(3.2) 

(3.3) 

(3.4) 

(3.5) 

LEMMA 3.1. 

y-AFy=p, 

x-FAx=q, 

Hz= r, 

y-Ax=s, 

(a) (3.2) implies (3.4) with 

z = U1 + F2)Y, 

x-Fy= t. 
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(3.4) implies (3.2) with 

y =[I,+ A2(F1 + I2)]z, 

(b) (3.3) implies (3.4) with 

(3.4) implies (3.3) with 

x = (F1 + J2)z, 

(c) (3.5) implies (3.4) with 

(3.4) implies (3.5) with 

x=(F1+I2 )z, y=I1z+A2x, s=I1r, t=I2 r. 

Using (3.1) the proof of this lemma is straightforward, and we omit it. 
With the notation of§ 3.1 we can rewrite the Runge-Kutta step (1.3) as 

(3.6) y-AFy=O, 

and (1.5) can be written in the form 

(3.7) x-FAx=O. 

Applying Lemma 3.1 (with p = q = r = 0), we see that both (3.6) and (3.7) are equivalent 
to the following formulation of the Runge-Kutta method, 

(3.8) Hz=O. 

If any numerical procedure is applied to solve the equation Hz= 0, we obtain, in 
general, only an approximation, say z, to the true z. Denoting the corresponding 
numerical approximation to uk by uk we thus have 

(3.9a) uk = uk-i + b T (F1 + I2) z, 
(3.9b) Hz=r 

with a residual vector rE !Knm, r=O. We note that the relations (3.9) with (.;ff, 1 = 
{ 1, 2, · · · , m}) and a different interpretation of the vector r also occur in the interesting 
investigations of B-consistencyby Frank, Schneid and Ueberhuber (cf. [13], (14]). We 
call the components r; E IK" of r = [r;] E ll·Cm internal perturbations in the Runge-Kutta 
step (3.8). 

A question of great practical and theoretical importance is whether llz -zll and 
luk-ukl are small (uniformly forallf satisfying (2.1)) whenever llrJJ is small (cf. (3.8), 
(3.9) ). The results of§ 3.3 are relevant to this question for II z - z II, and those of§ 3.4 
for juk-ukl· 

In practice one usually computes uk from (3.6) or from (3.7). These cases are 
covered by our considerations since (3.8), (3.9) reduce to (3.6), (3.16) when .;U 1 = 
{1,2, · · ·, m}, while (3.8), (3.9) reduce to (3.7), (3.17) when .;ff,2 = {1, 2, · · ·, m}. 

3.3. Internal stability. We shall investigate, for arbitrary z, i E IK nm, the sensitivity 
of z - z with respect to Hz - Hz, where the latter difference can be interpreted as the 
difference between two (different) internal perturbations ( cf. (3.9b )). The results we 
obtain are basic for the proof in § 4 of Theorem 2.1. 
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Let z, z be arbitrary vectors in IKnm. In view of Lemma 3.l(c) we define 

x = (F1 + I2)z, y = l 1z+ A2x, 
(3.10) 

x = (F1 + I2)z, y = I1z + A1X. 

LEMMA 3.2. Assume (2.1), (2.2), (2.3). Then there is a constant 'Yo (only depending 
on D, S, T, h -i a, h{3) such that 

llI1(.X-x)ll + llI2(y-y)il ~Yo II Hz- Hzll 
whenever z, z E IKnm and x, x, y, y are defined by (3.10). 

Proof. We define u=[u;], v=[v;], w=[w;], p=[p;], q=[q;]EIKnm by 

u = x - x, v = ji - y, w = Fy - Fy, 

p=I1(Hz-Hz), q=I2(Hz-Hz). 

By the last part of Lemma 3.1 we thus have 

(3.11) v-Au=p, u-w=q. 

From (2.1) it follows that 

Re(v;, w;)~alwd2 +/3hl2 

where ii. = h- 1 a, /3 = h{3. Substituting v; = aT u + p;, w; = u; - q; ( cf. (3.11)) in this 
inequality and using (p;, q;) = 0, we obtain 

Re <aT u, U;)- alu;l 2 -/ilaT ul2 ~Re (u;, -pi -2ii.q;)+ Re <aT u, q;+2/3p;)+ /3IPil2 + ii.[q;J2. 

From (2.2) and Lemma 2.2 in [7] it can be seen that 

I 28; Re (aT u, u;) ~ I er;ju;l 2 + I r;laT ul 2• 
i=I i=1 i=l 

A combination of the last two inequalities yields 

(3.12) 

m (1 ) 12 m (1 - ) 1 T 12 I -er;-ii.8; lu; +I -7;-{38; a; u 
i=l 2 i=l 2 

i=l 

Let g, T/, A,µ E !Rm be column-vectors with components g; = Ger; - a8;) 112 lu;I, 
TJ; =Gr; - ,88;) 112/aT u/, A;= (!er; - ii.8;)- 1128;/p; + 2ii.q;/, µ;=Gr; - ,88;)-112 8;/q; +2,Bp;/ 
(1 ~ i ~ m) (we use the convention 0- 112 = 0). Putting 

i=l 

we see from (2.3) that (3.12) is equivalent to 

g T f + TJ TT/ ~ f T ,\ + T/ T µ + E. 

After an application of Schwarz's inequality a little calculation shows that 

(gTg + T/ TT] )1/2~1(A T,\ + µ T µ)1/2+!(,\ T,\ + µ T µ +4s )1/2. 

Hence 
m m m 

(3.13) I (u;-2ii.8;)lu;/2 + I (r;-2/38;)laTul 2 ~y, I /h;(z)-h;(z)/ 2 

i=I i=l i=l 

with a constant y 1 only depending on the parameters 8;, er;, r;, ii., ,8. 
The proof is completed by applying (2.3) and substituting aT u = V; (for i E .J,1,2; 

see (3.11)) into (3.13). D 
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Using the above lemma we shall prove the following theorem, which is the main 
result of this section. 

THEOREM 3.3. Assume (2.1), (2.2), (2.3). Then there exists a function <f> :!Knm x 
[O, oo )--? [O, oo) with the properties 

(i) <f>(z; ·) is isotone on [O, oo) (for each z E IKnm), 
(ii) cp(z; p )--? cp(z; O) = 0 (asp--? O+; for each z E IKnm), 

(iii) llz - zll ~ cp(z; llH.i- Hzll) (for all z, .i E IKnm ). 
Moreover, if .JA,2 = 0, then (i), (ii) and (iii) hold with <f>(z, p) = yp where y is a constant 
only depending on A, h - 1 a, h/3 (and not on z, for the dimension n). 

Proof. Let z, .i E IKnm be given. Defining u, v, w, p, q as in the proof of Lemma 3.2, 
we have the representation 

From (3.11) and Lemma 3.2 we obtain 

where 

(3.14) 

y = I1z + A1(F1 + I2)z. 

Using (3.11) and Lemma 3.2 once more, we thus obtain 

llJ1vll ~ llPll + llA1I1ll · llI1ull + llA1I2ll · llI2ull 
~llPll+llA1I1ll ·'Yo· llHz-Hzll+llA1I2ll{/lqll+l/l(z; Yol/Hz-Hzl/)}. 

It follows that property (iii) holds with 

The remaining properties stated in the theorem follow from the continuity off (see 
(2.1)) and from the fact that for any m x m matrix M the norm I/ M (8) J( n> II is indepen
dent of n (which can be proved e.g. by using Lemma 2.2 in [7]). D 

If .lA,2 ,e. 0 the function <f; defined by (3.15) depends through ijJ on the (local) 
Lipschitz constant of f. If a~ 0 this Lipschitz constant can be arbitrarily large. In this 
case the upper bound on 11 z - z II provided by the theorem thus only holds for the 
particular function funder consideration, and not uniformly for all f satisfying (2.1 ). 

We note that when .lA, 2 = 0 and a = 0, the content of Theorem 3.3 is similar to 
the (so-called BSI-stability) results formulated in [13, Thm. 4.1, Cor. 4.1], [12, Thm. 
5.3.7]. 

3.4. External stability. We deal with the effect of the internal perturbation r on 
the difference iik - uk where uk. iik satisfy (3.8), (3.9). The following theorem provides 
a condition under which a bound for /iik - ukl in terms of II rl/ holds uniformly for all 
f satisfying (2.1). This condition can be fulfilled in cases where no analogous uniform 
bound holds for 11 z - z II· 

THEOREM 3.4. Assume (2.1), (2.2), (2.3). Suppose there exist real dj (for jE.iA,2) 
such that 

b; = I djaj; (for all i E .lA,2). 
jEAl.z 
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Then there is a constant 'Y only depending on A, b, h-1 a, hf3 (and not on uk-i. z, for the 
dimension n) such that 

luk- ukl ~ 'Yllrll 
whenever Uk. Uk, r satisfy (3.8), (3.9). 

Proof We define 

and 

di= bj - I djaji (for all i E .Jf1), 
je.J.1.2 

One easily verifies that, with these definitions, 

bT =dTI1 +dT A1. 

From (3.8), (3.9) it follows that 

Uk - Uk= [dTI1 +dT A1][(F1z - F1z) + I2(z - z)]. 

Defining x, x, y, y by (3.10) we have 

F1i- F1z = I 1(x-x), A2[(F1z-F1z) + 12(.Z-z)] =Ai(.i-x) = Ii(y-y). 

Consequently 
Uk -uk = dT[I,(x-x)+ I2(ji-y)]. 

An application of Lemma 3.2 completes the proof. D 
In order to formulate some interesting corollaries to the above theorem, we define 

for any index set .)(c. {1, 2, · · ·, m} them x m matrix A(.JV) by 

A(JV) = (cij), cij = aij (if i E JV,j E .JV), cij =Su (otherwise), 

where oij denotes the Kronecker delta. 
COROLLARY 3.5. Suppose (2.2) holds with 

8;~0, a;~O, T;~O. a;+T;>O (forl~i~m). 

Let J,l" .if2 be disjoint, .if1 U .J,l2 = { 1, 2, · · · , m}, with 

{ilu; = O}c .if2 c {ii T; > O}, 

and Rank [A(.M2 ) r, b] =Rank [A(.if2) r]. Then there is a constant 'Y (only depending on 
A, b) such that 

I uk - uk I ~ 'Y II r II, 
whenever uk. uk. r satisfy (3.8), (3.9) and the continuous f: IR x !Kn _,!Kn Jui.fills (1.2). 

This corollary completes some results on external stability for .M 1 = {1, 2, · · · , m} 
derived under assumptions (1.4), (1.2) in [10, Cor. 4.3]. 

COROLLARY 3.6. Let h > 0 and a, /3, K, A E IR be given numbers, D = 
diag ( 8i. 82 , • • • , Bm), and let J,li. .M2 be disjoint index sets with .M1 U .M2 = {1, 2, · · · , m}. 
Assume the following four conditions hold. 

(i) DA +A TD- KD - AA rDA is positive semidefinite; 
(ii) Si> 0 (1 ~ i ~ m), 2ah-1 ~ K, 2{3h :I;. A, 2ah- 1 +2{3h < K +A; 

(iii) Rank [A(.M2) r, b] =Rank [A(.M2) r]; 
(iv) if a= K = 0 then either .At1 =0 or A is regular. 

Then there is a constant y (only depending on A, b, ah- 1 and f3h) such that 

luk-ukl~'Yllrll 

whenever uk. uk, r satisfy (3.8), (3.9) andf Jui.fills (2.1). 
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Proof By applying Lemma 2.2 to the function hf, the proof follows from Theorem 
3.4 for the case [2ah- 1 ~ K, 2f3h <A, a ;t. O]. 

If [a= K = 0, 2{3h <A, Ji1 =0], Theorem 3.4 may be applied directly. 
In case [a=K=0,2[3h<A, A regular] we take S=K1D, T=A1D in (2.2) with 

A 1 E (2{3h, ,\ ), Ki > K and Ki - K sufficiently small. The assumptions of Theorem 3.4 
are then fulfilled. 

Similarly, if [2ah- 1<K, 2,Bh;:;£A] we choose S=K1D, T=A1D with K 1 E 

(2ah- 1, K), A1 >A and ,\ 1 -A sufficiently small. D 
Let the Runge-Kutta method (1.3) be algebraically stable. Consider along with 

(3.6), (3.7), the perturbed relations 

(3.16) 

(3.17) 

Uk= Uk-1 +bTFji, 

iik = uk-1 + brx, 

ji-AFji= p, 

x-FAx=q, 

respectively. For given h>O, a~O, ,B~O, a+,B<O, Corollary 3.6 (with K=A =O) 
proves the existence of a constant -y such that 

(3.7), (3.I7):::;>1uk-ukl;;:; -rllqll 
uniformly for all f satisfying (2.1) (note that Rank[Ar,b]=Rank[Ar] since 
x T (A rBx)?; ~(x Tb ) 2 (for all x E 11r)). Under the same assumptions the corollary also 
proves the existence of a -y such that 

(3.6), (3.I6):::;>1uk-ukl;;:; YllPll 
uniformly for all f satisfying (2.1), provided we assume additionally that 

a< 0, or A is regular. 

We note that when a= 0 this stability result for (3.16) also follows from [12, Thm. 
5.3.7]. On the other hand, Corollary 3.6 implies the general bound for luk - ukl in terms 
of II p 11 ( cf. (3.6), (3.16)) that also follows from [12, Thm. 5.3.7). 

3.5. Examples. 
Example 3.7. Consider the 3-stage Labotto IIIC method (cf. Example 2.5) and 

let f satisfy (1.2). Choosing Ji1 = {2}, Ji2 = {1, 3}, it follows from Corollary 3.5 that 

I iik - ukl;;:; "Y" II rll 
whenever (3.8), (3.9) hold. Here -y is independent of h > O and f. The formulation (3 .8) 
of the Runge-Kutta step for which this stability result is valid, reads in full 

(3. l 8a) 

(3.18b) 

uk = uk-1 +t(z1 +4f2(z2) + z3), 

Z1 == f1Wz1 -2f2(z2) + z3 )), 

z2 == f2(2z1+5f2(z2)- z3 ), 

Z3 = f3(t(z1+4f2(Z2) + Z3)) 

with J;(g) = h..f(tk-1 + c;h, uk-i +g), c0 =0, c1 =L c2= 1. 
For II i - z 11 there is no analogous upper bound valid in terms of II r II. 
If we define iib ji by (3.16), it can be proved that not only 

sup {/l.Y-yll: PE IK3n, llPI/;;:; 1,f satisfies (1.2)} =co 

(cf. [10, ex. 4.4], [12, ex. 5.9.2)), but also 

sup {luk -ukl: PE IK3n, llPll;;:; 1,f satisfies (1.2)} =co. 
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In practical applications the use of (3.18) thus seems to have an advantage over 
the use of (1.3). A small residual vector in the process (3.18) has generally a substantially 
smaller effect on the approximation to U(td than in the process (1.3). 

Example 3.8. Consider an arbitrary method satisfying condition (1.4) (e.g. Gauss, 
Radau IA or IIA-see [ 13 ]). 

Applying Corollary 3.6 it can be seen that, for any disjoint .Ji 1 , .Ji2 with .Ji1 U .Ji2 = 
{1,2, · · ·, m}, there exist K 0 >0, A0 >0, y>O such that 

(3.8), (3.9) ~ luk - ukl ~ Yllrll 
uniformly for all h > 0 and f satisfying (2.1) with 

{3h~A0 • 

In particular we thus have 

(3.6), (3.16)~1uk - ukl ~ YllPll and (3.7), (3.17)~1uk - ukl ~ Yllqll 
uniformly for h > 0 and f as above. This completes a so-called BS-stability result on 
(3.6), (3.16) with a= 0 given in [13, Thm. 4.1, Cor. 4.1], [12, Thm. 7.4.1]. 

It thus follows that a small residual, e.g. in the numerical solution of either ( 1.3b) 
or (l.5b), only slightly disturbs the corresponding uk computed via (1.3a) or (1.5a), 
respectively (uniformly for ah- 1 ;;;a K 0 , f3h ;;;a A0). 

Example 3.9. We finally give a counterexample showing that assumption (iv) in 
Corollary 3.6 cannot be omitted. 

Consider Euler's method (m = 1, A= 0, b = 1). The conditions (i), (ii), (iii) of the 
corollary are fulfilled with 

81 =1, K =O, A= 1, a =0, f3 =0, h = 1, .Ji2 =0. 

Applying (3.6), (3.16) with uk-i = 0, f(t, g) = JLg, µ < 0, we have 

uk-uk = µp. 

Letting µ ~ -oo we see that the conclusion of Corollary 3.6 is not valid. 

4. The proof of Theorem 2.1. Theorem 2.1 is easily proved by using Lemma 4.1 
and by a combination of Theorem 3.3 with the subsequent Lemma 4.2. 

LEMMA 4.1. Each of the following systems ( 4.1)-(4.4) has a unique solution if! any 
of the other systems has a unique solution. 

(4.1) 

(4.2) 

(4.3) 

(4.4) 

y-AFy=O, 

x-FAx=O, 

Hz=O, 

y-Ax=O, x-Fy=O. 

Proof. Apply Lemma 3.1. D 
LEMMA 4.2. Let E be a finite dimensional vector space over II< with norm II · II, and 

let G: E ~ E be a given continuous function. Assume <P: Ex [O, oo) ~ [O, oo) has the 
properties 

(a) <f>(z; ·) is isotone on [O, oo) (for all z e E), 
(b) <f>(z; O) =0 (for all ze E), 
(c) II i- zll ~ </>(z; II Gi- Gzll) (for all z, i EE). 

Then there is a unique z* E E with Gz* = 0. 
Proof. G is a continuous one-to-one mapping defined on E. The domain-invariance 

theorem (cf. [18]) thus implies that G(E) is open. 
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Property (c) implies that llGzll ~ oo (when llzll ~ oo). Therefore a bounded sequence 
z1> z2 , z3 • • • exists with 

lim II Gzk II == r, 
k ... oo 

r = inf {II Gz 11: z E E}. 

Consequently there is a subsequence {yk} of {zd with 

lim Yk = z*, lim Gyk == Gz*, II Gz* II = r 
k-+CO k-+OO 

for some z* E E. 
Since G(E) is open, we have r = 0. 0 
We note that theorems with much resemblance to the above lemma can be found 

in the literature (see e.g. (16, Tum. 13.5], (19, Thm. 5.3.8]). 
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