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Summary. We address the question of convergence of fully discrete Runge
Kutta approximations. We prove that, under certain conditions, the order 
in time of the fully discrete scheme equals the conventional order of the 
Runge-Kutta formula being used. However, these conditions, which are 
necessary for the result to hold, are not natural. As a result, in many 
problems the order in time will be strictly smaller than the conventional 
one, a phenomenon called order reduction. This phenomenon is extensively 
discussed, both analytically and numerically. As distinct from earlier contri
butions we here treat explicit Runge-Kutta schemes. Although our results 
are valid for both parabolic and hyperbolic problems, the examples we 
present are therefore taken from the hyperbolic field, as it is in this area 
that explicit discretizations are most appealing. 

Subject Classifications: AMS(MOS): 65X02, 65Ml0, 65M20; CR: Gl.7. 

I. Introduction 

In many cases of practical interest evolutionary problems in partial differential 
equations (PDEs) are solved numerically by schemes which can be derived and 
implemented along the ideas of the well-known method of lines (MOL) ap
proach. In this technique the numerical treatment of the PDE problem is 
thought of as consisting of two parts, viz. the discretization in space and the 
integration in time. In the space discretization the PDE is converted into a 
time continuous system of ordinary differential equations (ODEs) by finite 
difference or finite element techniques. This ODE system is then integrated in 
time by one of the many available integration schemes, e.g., a Runge-Kutta 
(RK) or a linear multistep scheme. To mention an example, which we discuss 
later in this paper, the classical 4-th order, 4 stage, explicit RK formula is some
times used to integrate in time hyperbolic problems arising in fluid dynamics 
[8, 14]. 

In this paper we address the question of convergence of fully discrete RK 
approximations to the PDE solution. We prove, that under certain conditions, 
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the order in time of the fully discrete scheme equals the conventional order of 
the RK formula being used. However, these conditions, which are necessary for 
the result to hold, are not natural. As a result, in many problems the order in 
time will be strictly smaller than the conventional one, a phenomenon called 
order reduction. 

In the MOL literature the phenomenon of order reduction has got very 
little attention. In fact, we are only aware of a few papers on this topic. The 
contributions [!] and [12] deal with implicit RK schemes. When applied to 
stiff systems of ODEs, not necessarily semi-discrete PDEs, these schemes also 
suffer from reduction of the order. This is the central issue of the B-con
vergence theory developed in [5]. In fact, the MOL paper [12] heavily relies 
on results from the B-convergence theory, whereas [1] is completely inde
pendent of it and concentrates on discretizations of ODEs in Banach space. As 
distinct from these contributions we here treat explicit RK schemes. Although 
our results are valid for both parabolic and hyperbolic problems, the examples 
we present are therefore taken from the hyperbolic field, as it is in this area 
that explicit discretizations are most appealing. 

The contents of the paper is as follows. In Sect. 2 we collect preliminaries 
on the (linear) PDE problem, the space discretization, and the RK method. In 
Sect. 3 we examine the full local error. Here we present a detailed discussion of 
the order reduction phenomenon and explain that it will be present unless 
certain boundary conditions are fulfilled. It is emphasized, however, that these 
conditions are not natural to the problem but arise as constraints by the use of 
the Runge-Kutta method. Sect. 4 deals with the behaviour of the full global 
error. Following[!, 2, 12], we here discuss a special technique for transferring 
estimates of the local errors to the global one. This technique shows that the 
decrease in global order, although present, is not as marked as the standard 
convergence analysis would predict. Section 5 is devoted to a numerical illus
tration which nicely supports the theory. Then, in Sect. 6, we present a simple 
means for avoiding the reduction by transforming the given problem. Sect. 7 
contains some final remarks and concludes the paper. 

2. Preliminaries 

2.1. Partial Differential Problem 

We consider linear problems of the form 

u1=Anu+fn(t), xEQ, 0-;2t-;2T<oo, 

Aru=f~(t), XEI', 0-;2t;:::;; T, 

u(x, 0) given, xEQ, 

(2.1 a) 

(2.1 b) 

(2.1 c) 

wh~re Q is a spatial domain in IR, IR 2 or IR 3, with boundary r and A denotes 
a lmear, q-th order differential operator in Q which differentiates the Q(possibly 
vector valued) unknown function u with respect to the spatial variables. The 
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linear differential operator Ar possesses order ~ q-1, acts on the boundary I' 
and serves to introduce the boundary conditions (2.1 b). Note that the in
homogeneous terms fn, fr and the coefficients of An, Ar may depend on x. 
This dependence is not however reflected in the notation. 

2.2. Space Discretization 

The discretization in space of the problem (2.1), by means of finite-elements or 
finite-differences, results in a Cauchy problem 

(2.2) 

Here h is the parameter of a grid in QuI' and Uh= Uh(t) is an m-dimensional 
real vector consisting of approximations to u at grid points. The time-inde
pendent matrix Ah originates from AD, Ar and the vector fh(t) arises from the 
inhomogeneous terms of (2.1). 

In what follows, we are interested in the behaviour of (2.2) as h-+ 0. A 
crucial consideration is that, as the grid is refined, both the dimension m of 
(2.2) and the size of the entries of Ah will grow (these entries contain negative 
powers of the grid-spacing). As a result the problem (2.2) becomes increasingly 
stiffer for h-+O. We assume that, for h-+0, the entries of Ah grow like h-q, with 
q the order in space of (2.1). 

We denote by uh(t) the restriction of u(x, t) to the spatial grid (or other 
suitable representation of u in that grid [10]) and by oc:h(t) the space truncation 
error defined by 

(2.3) 

We assume that (2.2) is consistent with (2.1) in the sense that, as h-+ 0, 
max llah(t)ll-+0. Throughout this paper, II· II denotes a chosen norm for m

o;a;1;:;;;r 
dimensional vectors and the corresponding operator norm for m x m matrices. 
The space truncation error will enter the analysis in Sect. 3. 

2.3. The Runge-Kutta Scheme 

In order to numerically advance in time the solution of (2.2), we employ an 
explicit Runge-Kutta method. For our purpose it is convenient to describe 
this ODE method as it applies to a linear system of OD Es of the form 

w=Mw+g(t), (2.4) 

with M a constant matrix. If w" denotes the approximation to w(nr) generated 
by the method with stepsize r, the step w"-+ w•+ 1 is performed by first comput
ing recursively intermediate approximations Y1 , Y2 , ... , Y. through 

i-1 

f;=w"+r L: aii[M}j+g(t.+cir)], 
i= 1 

(2.5) 
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and then setting 
s 

w"+ 1 =w"+T L bJMY;+g(tn+C;T)]. (2.6) 
i= 1 

Here a;i' b;, C;, i = 1, .. ., s, j = l, ... , i -1, are coefficients associated with the 
particular RK method being used and s is the number of stages. We denote by 

s i -1 

p the (classical) order of the method and assume that L: b; = 1, L: aii = c i' j 
i=l j=l 

= l, ... , s. We also set as+ 1. i=bi, j= l, ... , sand c,+ 1 =1. The local accuracy of 
(2.5)-(2.6) will now be investigated in a manner related to that common in the 
B-convergence theory [5, 4] and slightly different from that based on Butcher 
trees. 

We first consider a perturbed step w" __. w"+ 1 

i-1 

f;=w"+T L: aii[M}j+g(tn+ciT)] +r;, 
j= 1 

s 

w"+ 1 =w" +r L b;[Mf;+ g(tn +ciT)] +rs+ 1' 
i= 1 

(2.7) 

(2.8) 

where the residuals r;, i = 1, ... , s + 1, measure to what extent the perturbed 
values w"+ 1, w", Y; fail to satisfy the equations (2.5)-(2.6). If we now subtract 
(2.5)-(2.6) from (2.7)-(2.8), we obtain a set of relations satisfied by the differ
ences w" -w", w"+ 1 -wn+ 1, Y; - Y;, i = 1, ... , s. A straightforward recursive elim
ination of the intermediate differences Y;- Y;, i = 1, ... , s, leads to an expression 
for w"+ 1 - w"+ 1 in terms of the residuals, i.e., 

s+ 1 

w"+ I -wn+ 1 = P(T M)(w"-w") + L: Q;(TM) r;, (2.9) 
i= 1 

where P, Q;, i= 1, ... , s+l, are polynomials. The degree of P is ~sand Q; has 
degree ~ s + 1 - i. The coefficients of P, Q; can readily be expressed as functions 
of the coefficients aii' b;, c; of the method, but those expressions play no role 
here. Note that P is the usual stability polynomial. 

We next consider the particular case of (2. 7), (2.8) given by 

i.e., all the values are taken from the theoretical solution w(t). In this case, and 
assuming that w is smooth, we can write, for i = 1, ... , s, s + 1. 

i-1 

r;=w(tn+c;r)-w(tn)-! L a;JMw(tn+ciT)+g(tn+ciT)] 
j= 1 

i-1 

=w(tn+C;!)-w(tn)-T L: a;iw(tn+cir) 
j= 1 

-d 2 •. ( ) d v (Pl( ) R - ;2! wtn + ... + ipr w tn + i' (2.10) 

where again, dii are scalar functions of the coefficients of the method, whose 
expression is not needed here. Note that r 1 =0, since c 1 =0. In (2.10) the 
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remainder R; is O(rP+ 1) and the constant in the O(tP+ 1) term depends only on 
the RK method and on w<P+ lJ_ Substitution of (2.10) in (2.9) leads to the error 
relation, where we have taken into account that r 1 = 0, 

w(tn+ 1)-wn+ 1 = P(tM) [w(tn)-w"] 
s+l p s+l 

+ L Q;(tM) L dij!jW(j)(tn)+ L Q;(tM)R;. (2.11) 
i=2 j=2 i=2 

In the case where wn = w(tn) the difference w(tn+ 1)-w"+ 1 is by definition the 
local error /"+ 1 . We have assumed the method to be of order p, so that /"+ 1 

= O(tP+ 1 ). Therefore in the right hand-side of (2.11) all terms involving powers 
t\ k~p, must cancel and this leaves us finally with an expression 

s+ 1 

1n+l=Lµ1j!l+jMlw(j)(tn)+ L Q;(!M)R;, (2.12) 
l, j i= 2 

where, once more, µ 1j are scalar functions of the coefficients of the RK method 
and the indices l,j satisfy 1 ~/ ~s -1, 2 ~j ~p, p + 1 ~ l + j. 
Example 2.1. We shall illustrate the foregoing derivation for the classical 4-
stage, 4-th order scheme with the parameters 

0 0 

1/2 1/2 0 

1/2 0 1/2 0 (2.13) 

C4 a41 a44 0 0 1 0 

bl ... b4 1/6 1/3 1/3 1/6 

The stability polynomial P arising first in equation (2.9) 1s the (4, 0)-Pade 
approximation to eZ, 

P(z) = 1+z+1/2 z2 + 1/6 z3 + 1 /24 z2 

and the polynomials Q1' ... , Q5 arising in (2.9) are given by 

1 1 2 1 3 1 4 1 1 2 1 3 Q1 {z)="6 z+6 z +12 z + 24 z, Q2 (z)=3 z+6 z +Uz, 

1 1 2 1 
Q 3 (z)= 3 z+ 6 z, Q4 (z)="6 z, Q5 (z)= 1. 

The expansions of the residuals r; introduced in (2.10) are 

(
r

1

) ( 0 
r2 1/8 

:: ~ -1/~ 

0 

1/48 

-2/48 
2/48 

0 

(2.14) 

(2.15) 

(2.16) 
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The local error in+ 1 given by (2.12) is found to be 

[•+I= (-1- Mw<4J +-=-!. M2 w<Jl +__!_ M3 w<ZJ) ,s 
576 288 96 

+ (--=--!__ M2 w<4l +-1- M3 w<3J) r6 
1152 576 

I s 
+-- M3w<4lr7+ L Q;(rM)R;o 

4608 i=2 

(2.17) 

where all derivatives are evaluated at t = tn. The form of (2.17) will be used 
later in the paper. D 

3. Behaviour of the Full Local Error 

In this section we examine the behaviour of the full local error, i.e., the local 
error associated with the true PDE solution uh instead of the local error 
associated with the intermediate ODE solution Uh (cf. [13]). The subsequent 
analysis is carried out under the following hypotheses. 

(HI) The restriction uh(t) of the PDE solution possesses p+l derivatives 
u~ 1 (t). Furthermore, lluj(l(t)ii, j=O,l, ... ,p+l, can be bounded uniformly in t 

and h. 

(H2) The space and time grid refinements are carried out subject to a 
restriction 

(3.1) 

where ). is a fixed positive constant and q the order in space of (2.1 ). 

(H 3) For grid refinements satisfying (3.1 ), the expression r II Ahli can be 
bounded independently of r and h. (The bounds can nevertheless depend on A..) 

The local error (at tn+ 1) of the fully discrete solution as an approximation 
to the PDE solution is defined by 

(3.2) 

where ~uh(tn) represents the result of a RK step for the system (2.2) starting 
from uh(tn). Our task in this section is to derive bounds for 11/Z+ 1 11 of the form 

C(rk+r max llO(h(t)ll), 
0;;; t;;; 1' 

(3.3) 

where C denotes a constant independent of tn, r and h and k is a pos1t1ve 
number. We will see that in order that the bound (3.3) be uniform in h, the 
exponent k must sometimes be taken smaller than p + 1, the value one naively 
expects from the behaviour of the RK method as applied to ODEs. 

In order to derive an expression for /~+ 1, we consider in (2. 7)-(2.8) the 
perturbed step w"+ 1=uh(tn+1), w"=uh(tn), }]=uh(tn+C/t"), j=l, ... ,s. The re-
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siduals r; now take the form (cf. (2.3), (2.10)) 

i-l 

r;=uh(tn+c;r)-uh(tn)-r I aij[Ahuh(t 11 +cjr)+fh(t11 +cjr)] 
j= 1 

i-1 

=uh(t 11 +c;r)-uh(t11)-r I a;j[uh(t 11 +cjr)+ah(t11 +cjr)] 
j= 1 

= d;2 ,2 uh(tn) + ... +dip rP u<;')(tn) + R;, 

411 

(3.4) 

where dij are the coefficients found in (2.10) and R; contains not only the 
remainder in the Taylor expansion of u~>(t11 +cjr), but also the term' Ia;/X 11 (t11 

+cir). From these considerations and the hypothesis (H 1) it is clear that the 
norms llR;ll satisfy a bound of the form (3.3) with k = p + 1. On proceeding now 
in a manner similar to that in the previous section, we find 

s+ 1 

111+1=°"µ .,r+iAl u(j)(t )+ "Q.(rA )R. 
h L.., lJ h h n L.., 1 h '' 

(3.5) 
l, j i=2 

where the summation /,j extends to 1~/~s-1, 2~j~p, p+l~l+j. We now 
proceed to bound /~ + 1. 

Lemma 3.1. Under the hypotheses above the norms llQ;(rAh)ll, i= 1, ... , s+ 1, can 
be bounded independently of r, h. 

Proof This follows directly from (H3), since llrj A~ll ~ llrAhlli. D 

After this lemma, it is clear that the second term in the right hand side of 
(3.5) can be bounded in the form (3.3) with k = p + 1. In estimating the first sum 
at least two different settings may be considered. 

(Sl) If the further assumption is made that the norms llA~u~l(tnlll are 
bounded uniformly in t 11 and h, then II/~+ 1 II is bounded by (3.3) with k = p + 1. 

(S2) If no relation is assumed between the powers of Ah and the derivatives 
of u,,(t), then to bound a term like r 1+i A~ u~l uniformly in h, one must write 

llql+j A~ u~>ll = rj ll(rAh)1 u~lll ~ ri II rAhll 1 llu~> II 

and employ (H 1) and (H 3). The price to be paid is that now the order in ' is j 
rather than p + 1, and in general the local error (3.5) contains terms with j = 2. 
(See in (2.17) the term (1/96) r 5 Aj;u~2 l that one gets for the classical RK4 

scheme). In this way only an 0(r2) bound is obtained, regardless of the value of 
the classical order p. Note that this order reduction is not induced by lack of 
smoothness in u(x, t), but rather by the presence of powers of Ah in the 
expression for the local error, as these powers will contain negative powers of 
h. 

In the above it was tacitly assumed that for the l and j considered the 
coefficient µ1j of r1 + i A~ u~> in (3.5) is not equal to zero. Trivially, if µli = 0, this 
term does not cause reduction. In the standard schemes of order p with p 
stages (p = 2(1 )4) the coefficient µP_ 1 , 2 associated with the term with highest 
order reduction cannot be zero. Schemes can be constructed with zero µ1i 

coefficients. However, only at the price of introducing additional stages for a 
given order p. 
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Between the extreme settings (S 1)-(S2) one can conceive situations (S 3) 
where one knows that llA1 uU>ll ·hr=O(l) for a certain y<ql. Then (H2) shows 

h h bi . that l!rl+J A~uV>!I behaves like O(rj+t-yfq), which is a more favoura e estimate 
than the O(rJ) stemming from (S2). 

The following example should be helpful in illustrating the relevance of 
distinguishing the three situations (S 1)-(S3). 

Example 3.1. We consider the simple model hyperbolic problem 

u1 = - ux + f f!(x, t), 

u(O, t) = fr(t), 

O~x~l, 

O~t;;;l, 

u(x,0)=u 0 (x), O~x~l, 

(3.6a) 

(3.6 b) 

(3.6c) 

which is assumed to possess a smooth solution. (This requirement implies not 
only that r1 0 , fn and fr are smooth, but also that they satisfy certain com
patibility conditions whose expressions are of no consequence here.) If m is a 
positive integer, a uniform grid x1 =j/m(O~j~m) is introduced in [O, 1], and 
(3.6) is discretized in space as follows (h = m- 1) 

roll r-1/h lrull rj~(xpt)+h- 1/r(t)l ljh-1/h fQ(X2,t) 
= !jh- ljh + f~(X3, t) . 

um 1/h-l/h um j~(l,t) 

(3.7) 

We work with the usual L2-norm. When the matrix Ah acts on a vector vh 
obtained by restricting to the grid a smooth function v(x), 0 ~ x;;; I, the 
2°d 3rd ... , m1h entries in Ah vh approximate values of vx and therefore can be 
bounded independently of h. However the first entry in A 11 vh will behave like 
h- 1 leading to a h- 112 behaviour of II Ah vh II, unless v satisfies the homogeneous 
boundary condition v(O) = 0. It follows that the term rP+ 1 Ah uf P> is 0( ,r+ 1 ), 

uniformly in h, if u~ 1 is 0 at the boundary, a condition which is of course 
satisfied if the boundary term fr(t) is identically zero, but not in general. To 
sum up, if j~ = 0 then the term rP+ 1 Ah u~> that features in (3.5) if s ~ 2, behaves 
like O(rr+ 1) uniformly in h, but in other case it may behave only like O(rP+ 1i 2) 

(use the arguments in situation (S 3) above, with q = 1 and y = I /2). 
In a similar vein A; vh is bounded if v(O)=O and vx(O)=O. If in (3.6) fr=O 

and fn(O, t) = 0, then both u and ux will be zero at the boundary and as a 
consequence the same will be true for all their derivatives with respect to t. In 
this. case the terms rJ+ 1 A; uV1, j = p - l, p, which feature in (3.5) if s ~ 2 are 
O(r1+2) uniformly in hand consequently O(rr+ 1). 

However, in general, 11A; vhll behaves like h- 3 12 and this results in a 
reduction to O(rP- 112) in the term rP+l A~u~- 1 ', and a reduction to O(rP+ 112 ) 

in rP+ 2 A~ uhr'. The general trend should now be clear: for a method with s 
stages the optimal exponent k=p+ 1 in (3.3) cannot be obtained unless the 
theoretical solution u(x, t) satisfies s - I boundary requirements 

u(O, t)=O, ux(O, t)=O, ... , w- 2;axs- 2 ) u(O, t)=O 
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that render it possible for A~u~'(l~l~s-l, 2~j~p, p+l~l+j) to remain 

bounded uniformly in h. These s -1 boundary requirements for u will be 

satisfied if and only if ffl, fr do not violate a set of s - I constraints fr= 0, 

ffJ(O, t)=O, ... , (as- 3/tJxs- 3 )ffJ(O, t)=O. We emphasize that such constraints are 

induced by the numerical method and are not related to the compatibility 

conditions that .f~, ffl, u 0 must satisfy in order that u be smooth. Perhaps it is 

useful to point out that for homogeneous problems (homogeneous boundary 

conditions and no forcing term), the above constraints are trivially satisfied 
and no order reduction occurs. 

4. Behaviour of the Full Global Error 

We now turn to the full global error defined by 

( 4.1) 

where U" denotes the fully discrete solution at time tn. For simplicity we 

assume e~ = 0 our aim is to derive bounds of the form 

lie~+ 1 II ~ C(rk + max II cth(t) II), 
O:iii;i;T 

(4.2) 

with C a constant independent of t", r, h, and k a positive number that we 

would like to be p in view of the order of the RK method when applied to an 

ODE. Our first result is 

Theorem 4.1. Assume that (Hl)-(H3) hold, that llA~uW'Ctnlll can be bounded 

uniformly in h and tn, for 2~j~p. l=p+ 1-j, and that for each h and r, 

II P ( r Ah) 11 ~ 1. Then the convergence estimate ( 4.2) holds with an optimal value k 

=p. 

Proof: For l ~ l ~ s - 1, 2 ~j ~ p, p + 1 ~ l + j we can write 

II ,i+j A~ u~'ll ~ rP+ 1 llrAhll 1+ j-p- l llAi;+ l -j uVlll = O(rP+ 1 ), 

so that the local error in (3.5) possesses a bound (3.3) with k = p + 1. This 

bound and the stability assumption llP(rAh)ll ~ 1 lead, in the standard way, to 

(4.2) with k=p. D 

Some remarks are in order: First, we have required assumptions on 

II A~ uV' II. We saw in the previous section that these requirements are not 

naturally fulfilled in the applications, except if the PDE problem is homo

geneous. Secondly, the stability condition llP(rAh)ll ~ 1 is satisfied if the norm 

under consideration derives from an inner product, the matrices Ah are normal 

and A. in (3.1) has been chosen so that the eigenvalues of r Ah lie in the stability 

region S of the RK method S = {z: IP(z)I ~ l} [9]. For nonnormal matrices this 

condition on the eigenvalues is necessary but not sufficient. An interesting 

sufficient condition involving the stability region S has been given by Spijker, 

[11], Th. 6.1. 
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ln the general case where II A:, uVlll are not bounded the analysis in the 
previous section only guarantees a r 2-bound for the local error, leading via 
stability to an exponent k = 1 in (4.2). A finer study of the local error, along the 
lines of what we called (S3) may result in rk+ 1-bounds for the local error, with 
2 < k + 1 < p + I and lead to rk-estimates of the global error. 

An important point we want to make now is that the standard approach of 
transferring the local errors to the global error via stability (first bounding and 
then adding) can be unduly pessimistic [12]. An alternative technique, essen
tially used in [!, 2, 12] will now be presented. We consider one of the terms 
.u 1Jr1 +iA~uV 1 , J~/~s-1, 2~j~p, p+l;;i;l+j, that may suffer from reduction. 
This term contributes to the global error e~ by an amount 

II 

a"=µ Tl+j '\ P(rA )n-i A 1 uUl(t ) h /j L., h h h i - 1 • (4.3) 
i= 1 

Assume that the matrix (l-P(rAh))- 1 rAh can be defined and satisfies a bound 

(4.4) 

with .>r independent of r, h. (The feasibility of this condition is discussed later.) 
Then in (4.3) we can write 

n 

a~=111irt+j-l [(1-P(rAhW 1 rAh](I-P(rAh)) I P(rAh)"-i A~-i uVl(t;_ 1) 

i=l 

= 111i r1+i- 1 [(J - P(r Ah))- 1 r Ah]· [ A~- 1 uj/1 (t,._1)- P(r Aht A~- 1 uVl(l0 ) 

n- I 

+ ;~1 P(r Ah)"-i A~ - i (uV)(t;_ il- uVl(t;)) J . 
The following result now follows easily: 

Theorem 4.2. Assume that (H 1)-(H 3) and ( 4.4) hold and that as h, r vary 
llP(rAh)ll ~ 1. Then the contribution to the global error of' a term A' UJ 
I < I ? ll tj h u I , 
= ~s-1, ~~j;;i,p, p+ I ;£1+ j, possesses a bound of thefo;m 

(4.5) 

Proof It is enough to write 

llA~-l(uV 1 (t;-1J-uVl(t;))ll=/I s A~- 1 uV+l>(s)dsff ;;;,rmaxllA~-l uv+ 1 1. D 
li -1 t, h 

The. adv~nt~ge of the n~w approach is that we have got rid of one power of 
~h· 1.e., we are now .dealmg with A~- 1 instead of the A~ we started with. Jn the 
\'.or.st ~ase, where J = 2 and no relation is assumed hetween A'- I and the 

~~n~atives of uh, the bound (4.5) is O(r 2), as shown by (H3). Recall that in the 
stan ard ~pproach we only proved an O(r) bound for the global error in the 
worst settmg (S2) (cf. Th. 4.1). 
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Before we close this section the feasibility of (4.4) should be discussed. The 
rational function <P(z)=(l -P(z))- 1 z is finite if P(z)=I= 1. Now, by consistency, 
P(z)=l+z+O(z2), so that for z=O, P(z)=l. But nevertheless cfa(O) is finite. 
Therefore, (J-P(i-Ah))- 1 i-Ah exists if i-Ah has no nonzero eigenvalue on the 
boundary of the stability region, a requirement only marginally more demand
ing than the spectral necessary stability condition mentioned above. Further
more, slight modifications of sufficient stability conditions guanrantee the ex
istence of a uniform bound (4.4). Two instances are given in the next proposi
tion. 

Proposition 4.1. Each of the following two conditions is sufficient for (4.4) to 
hold: 

(i) The norm II· II is an inner product norm, the matrices Ah are normal and as 
i-, h vary the eigenvalues of i-Ah remain in a closed set F contained in {O}u(S 
- 8S), where oS is the boundary of S. 

(ii) The norm II · II is an inner product norm and a positive number p exists 
such that the disk {z: Jz+pl~p} is contained in {O}u(S-oS) and, as i-,h vary, 
lli-Ah+plll ~p. 

Proof (i) The rational function <f>(z)=(l -P(z))- 1 z is bounded in F. If 
l</>(z)l~Jf in F, then 

11(1-P(i-Ah))- 1 i-Ahll = max { <f>(µ): µeSpec(i-Ah)} ~ Jf; 

where we have used the spectral theorem and the fact that <f>(i-Ah) is normal. 
(ii) This follows from a theorem due to von Neumann [7] (cf. [2, 6, 

11]). 0 

5. Numerical Illustration 

Example 5.1. A simple experiment will be presented first which clearly shows 
the order reduction phenomenon. We consider the simple semidiscretization of 
Example 3.1 together with the classical fourth order RK-scheme (2.13). The 
mesh-ratio parameter A. is taken to be 1, a choice that guarantees that 
llP(rAh)ll ~ 1 and that (4.4) holds. (Use Th. 6.1 in [11] and Proposition 4.1, (ii)). 
Furthermore, we take u0 (x) = 1 + x, fr(t) = 1/(1 + t), fa(t) = (t-x)/( 1 + t}2 so as to 
have the simple solution u=(l +x)/(l +t). Since this is linear in space, ah=O, 
i.e., there is no error introduced by the space discretization. 

The time derivatives of u are not zero at the boundary; and then the 
analysis in Example 3.1 shows that the term i- 5 (1/96) A~ uk2> behaves only like 
i- 2·5 uniformly in h, leading to a decrease in local order of 2.5 units. The other 
terms of the local error involve higher powers of -r or lower powers of Ah and 
therefore suffer from reductions which harm less than that of the i- 5 A~ uk2' 

term. The conventional bound for the global error would show a O(ri. 5 ) 

behaviour of the global error, uniformly in h. However, the use of Theorem 4.2, 
reveals that the global error possesses a better, O(i- 2 · 5), bound. Moreover the 
exponent 2.5 cannot be increased because at t 1 the local and global errors 
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coincide and we know that the local is not better than O(r2 · 5 ), Table 1 shows 

the L2-errors at t = l. 

Table l 

r 1i-1 

10 

10 0.31 10 -4 

20 0.12 10 -5 
40 0.62 10 -7 
RO 0.3510- 8 

20 

0.49 10 -5 
0.20 10 -6 
0.10 10 -7 

40 

0.83 10 -6 
0.3410-7 

80 

From the table we computed the observed order of convergence obtained. 
The notation (1/10, 1/10)2.66(1/20, 1/20) denotes that an order of 2.66 was 
observed when refining the grid from r = 1/10, h = 1/10 to r = 1/20, h = 1/20, i.e., 
2.66=log 10 ~/log 10 2, where~ denotes the ratio of the error at (1/10.1/10) to the 
error at ( l/20, l/20). The rows of Table 2 display the observed order in the 
simultaneous refinement of ' and h, where the effect of the reduction is clearly 
seen. 

Table 2 

II Ill I 10) 
(1 20, I 10) 
(140, 1 10) 

2.66 
2.58 
2.63 

{l/20, 1/20) 
(1;40, 1/20) 
(1 /80, 1/20) 

2.56 
2.55 

( 1 /40, 1 /40) 
( 1/80, 1/40) 

2.56 (1/80, 1/80) 

The rows of Table 3 provide the order observed when in Table I, the 
attention is focused in successively having ' with h fixed along the row. 

Table 3 

(l 10, L 10) 
(120, 1120) 
(140, 140) 

4.69 
4.61 
4.60 

( 1/20, 1/10) 
(1/40, 1;20) 
(1/80, 1/40) 

4.27 
4.32 

(1/40, 1/10) 
( 1/80, 1/20) 

4.14 (1/80, 1/10) 

Thus, on a fixed spatial grid there is no order reduction visible. Of course, 
this is the behaviour one should expect as one is now solving a fixed system of 
ODEs. With our fourth order method, the order asymptotically behaves like 
Cr4 on each fixed grid. The issue at hand is that C depends on the choice of 
mesh and increases with decreasing h. This is very clearly borne out in the last 
row of Table I. 

6. A voiding Order Reduction 

In this section we suggest a simple means for avoiding the order reduction. 
Although the principle is quite general, we prefer to describe it in the context 
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of a concrete situation. We consider again the model problem (3.6) and the 
classical RK method, but now the simple discretization (3.7) is replaced by the 
4-th order scheme 

(1/6) [Uj_ 1+4Vj+ uj+ 1] =(1/(2h)) [Uj_ 1 - ui+ 1] 

+(1/6)[fn(xj-l• t)+4f0 (xj, t)+fn(xi+ 1 , t)], j= 1 (l)m-1, (6.1) 
with 

(1/6)[Um-1+2 Um] =(1/(2h)) [Um-1 - Um] +(1/6)[j~(Xm-1•t)+2j~(Xm, t)] (6.2) 

near the boundary x= 1. Note that (6.1)-(6.2) is the result of the Product 
Approximation Galerkin technique based on piecewise linear test functions 
[3]. 

From an analysis similar to that presented before an order reduction is to 
be feared, unless fn, fr satisfy the two constraints fr= 0, f 0(0, t) = 0 necessary 
for Ah, A; to act boundedly on the time derivatives of uh. Now if w(x, t) is a 
known function, then v = u + w satisfies the transformed problem 

(6.3) 
where 

(6.4) 

are known functions. The idea is to choose w such the application of the 
numerical method to the problem (6.3) does not cause reduction (i.e., gr=O, 
g0 (0, t) = 0), and then solve numerically for v and retrieve u from u = v -w. The 
finding of w is not difficult here. One may for instance choose w(x, t) to be of 
the form w(x, t) = ix(t) + x f3(t) and then the conditions on g0 , gr readily de
termine ix(t) and f3(t). 

The left half of Table 4 gives the L2 -errors for u when the integration is 
performed on (3.6) with f.,, fr, u0 chosen so that the solution is u(x, t) 
=cos(lOt) exp(- !Ox). The right half of the table corresponds to errors in u 
when the numerical integration is performed on the transformed problem (6.3). 
The results are in complete agreement with the theory. 

Table 4 

•=h Error order 

1/10 0.46 10 -2 
1/20 0.5210-3 3.14 
1/40 0.76 10 -4 2.77 
1/80 0.13 10 -4 2.54 

7. Concluding Remarks 

Error order 

0.49 10 -2 
0.21 10 -4 3.88 
0.21 10 -4 3.88 
0.1410 -5 3.91 

The attention here has been restricted to linear problems. Order reduction also 
takes place for nonlinear problems and the mechanism involved there is 
essentially the one we have discussed. The extensions of the analysis to the 
nonlinear case is possible but becomes rather technical and offers no new 
insight. 
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For implicit RK schemes the main ideas of our analysis are still valid. 
However, the interest there is in situations where -r and h are not related and 
therefore our hypothesis (H2) and (H3) should be forsaken. The details of the 
analysis become then quite different [1, 12]. The technique for avoiding the 
order reduction outlined in Sect. 6, can also be used with implicit schemes. In 
fact we have employed it with success to retrieve the 3rd and 4th order of 
convergence of the diagonally implicit RK schemes discussed in [12]. 

It is fair to say that in practical problems the negative effects caused by 
order reduction are likely to be less important than those stemming from other 
sources, such as errors in space, instabilities at boundaries, curved boundaries, 
etc. However, the understanding of this phenomenon is essential in situations 
where one is interested in higher order methods. 
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