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SUMMARY 

When the method of lines is used for solving time-dependent partial differential equations, finite differences 
are commonly employed to obtain the semidiscrete equations. Usually, if the solution is expected to be 
smooth, symmetric difference formulae are chosen for approximating the spatial derivatives. These difference 
formulae are almost invariably based on Lagrange type differentiation formulae. However, if it is known in 
advance that periodic components of given frequency are dominating in the solution, more accurate difference 
formulae, based on exponentials with imaginary exponent, are available. This paper derives such formulae 
and presents numerical results which clearly indicate that the accuracy can be improved considerably by 
exploiting additional knowledge on the frequencies of the solution. 

L INTRODUCTION 

A widely used approach to solving time-dependent partial differential equations is the method of 
lines. This method replaces the spatial derivatives by discrete approximations and enables us to 
apply well-developed time integrators for solving the resulting systems of ordinary differential 
equations. When finite differences are used to obtain the semidiscrete equations, almost invariably 
Lagrange-type formulae, based on polynomial interpolation of the solution, are employed to 
derive the difference approximations. However, in many problems arising in fluid dynamics it is 
known in advance that the solution is dominated by one or more periodic components of 
known frequency. In such cases it turns out to be better to use difference formulae based on 
trigonometric interpolation, that is we require that the difference formulae have a reduced 
truncation error for certain exponential functions with imaginary argument (see section 2). We 
will call such formulae exponentially fitted difference formulae. 

In Reference 1 exponentially fitted difference approximations to first-order spatial derivatives 
were derived and were shown to be more accurate than conventional difference formulae in 
oscillatory problems. These results are summarized in section 3.1. In section 3.1, similar formulae 
are derived for second-order derivatives and a comparison is made with conventional difference 
formulae. In section 3.3, we discuss the automatic estimation of dominant frequencies in grid 
functions. By means of a few numerical examples we show the performance of such a frequency 
estimator. 

Section 4 provides formulae for approximating boundary conditions to be imposed on periodic 
solutions. 

Finally, in Section 5, we show by a number of numerical experiments that using exponentially 
fitted difference formulae in the space discretization of partial differential equations leads to a 
considerable improvement of the accuracy. 

The adaption of spatial discretizations to known frequencies of the exact solution has received 
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little attention in the literature. This is in contrast to the development of time integrators for solving 
periodic initial-value problems where a lot of work already has been done. We mention the papers 
of Gautschi2 Brusa and Nigro,3 Gladwell and Thomas4 and van der Houwen and Sommeijer,5 

where further references to oscillatory time integrators can be found. 

2. THE TRUNCATION ERROR IN THE METHOD OF LINES 

We discuss the discretization of partial differential equations of the general form 

a•w ( aw aw a2 w o2 w) -.=F(w):=G t,x,w,-8 ,-8 ,-8 2 ,-0 2 , x=(x1,x2leQ, v=l,2 
Ot X1 X2 X1 X2 

(1) 

where Fis the differential operator defined by the function G, and where it is known in advance that 
the solution is composed of components that are periodic in the space variable x. Applying the 
method of lines we replace the differential operators by difference operators: 

a a2 

-8 ~Dj, -0 2 ~D2+j• j= 1,2 
Xj Xj 

and instead of (1), we consider the equation 

a·w 
-8-=Fa(W):= G(t,x, W,D 1 W,D 2 W,D 3 W,D4 W) 

c 

xena:= {xfx = (jllx1,l.Llx2f; j, l = 0, ± 1, ± 2 

where W is a function of t and x. 

(2) 

(3) 

The truncation error of the semidiscrete equation (3) corresponding to a given test function 
w = w(t, x) is given by 

a•w 
L(w):= fuv-F a(w) = F(w)- F a(w), xeQa (4) 

Suppose that the solution of (1) is given by 

R 

w0 := L wgl(t)exp(if<•l·x) (5) 
r=l 

where the frequency vectors 

f (r). = (j<•l j<•l)T r = 1 R 
. 1 ' 2 ' ' •.. ' 

are either known or are known to lie in a given real domain. Furthermore, let the exponential 
functions in (5) be eigenfunctions of the difference operators in (2) with eigenvalues defined by 

Diexp(if<•l·x)=c5flexp(if<•l.x), j= 1, ... ,4 (6) 

Then from (4) and the definition of the operators F and Fa it follows that the magnitude of the 
truncation error corresponding to (5) can be reduced by minimizing the magnitude of the functions 

8Wo R 
-;--x -Diwo= L [ifYl-c5YlJwt\t)exp(if<•l.x), 
u j r= 1 

(7a) 

j= 1,2 

(7b) 
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We observe that by symmetric difference operators, we obtain in (6)purely imaginary eigenvalues 
for j = 1, 2 and real eigenvalues for j = 3, 4. Thus, it is then feasible to minimize the magnitude of the 
functions (7) by minimizing the extreme values of the real-valued functions 

"j(r) - s:(r) (j(r))2 + l:(r) . - 1 2 • - 1 R z i u i , i u i + 2, J - , , r - , ... , (8) 

by a judicious choice of the discretization weights in the difference operators. Since we do not want 
too many grid points involved in the discretization molecules, the minimization of (8) is only 
effective if R is small, that is the exact solution is dominated by only a few Fourier components. 

3. EXPONENTIALLY FITTED DIFFERENCE FORMULAE 

In this section we present discretization molecules for numerical differentation of periodic 
functions of the form (5). 

3.1. First-order derivatives 

Without derivation we give a symmetric, fourth-order, four-point line discretization:1 

D1=Al [~1(E:1-Ei1)+~2(Ef-E12)] 
L1X1 , 

Z+ z_ 

sin(z+) sin(z_) z+ 
e2 := 4[cos(z+)-cos(z_)J' ei:= 2sin(z+) - 2e2 cos(z+) 

where E 1 defines the forward shift operator over one mesh width; here 

z+ =f\1lAx1, z_ =f\2 ltJ.x1 

if we want to eliminate just two frequencies from the truncation error, and 

z± = tl.x1 [t(n + jf) ± !J2(n - JI)J1'2 

if we want to minimize the truncation error for all frequencies in the interval 

J1::;;nl::;;f1· 

A similar definition holds for the difference operator D2. 
The formula (9) will be called an exponentially fitted difference formula. 

3.2. Second-order derivatives 

Consider the approximation 

a2 D ·- 1 ~ ~ ;,:(1J(E+i+E-i)(E+1+E-1) 
-2 ~ 3.---)-2 L, L, 'oj 1 1 2 2 
OX1 (tl.X1 l=Oj=O 

(9) 

(lOa) 

(lOb) 

(11) 

where E, denotes the shift operator along the x;-axis. It is elementary to show that this 
approxi~ation is second-order accurate if 

k 

L er= O[(Ax1Y+ 2], 
j,l=O 

k 

L pey> = t + O[(Ax1)PJ 
j,l=O 

(12a) 
k L l2~Yl = O[(Ax 1)P] 

j,l=O 
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holds for p = 2, and fourth-order accurate if (12a) holds for p = 4 and if, in addition, 

k k 

I /4 c;y>o[(Lix1)2 ], Il12c;y> = O[(Lix1)2 ] (12b) 
j,l;Q j,l 

We remark that usually the order terms in the order equations (12a) and (12b) are set to zero, so 
that polynomials of sufficiently low degree are exactly differentiated. The corresponding difference 
formulae will be called conventional formulae. The introduction of the order terms does not 
decrease the (algebraic) order of the difference formulae and enables us to differentiate certain 
exponential functions with reduced errors, as will be shown below. 

Let us apply the symmetric difference operator (11) to an exponential function. This leads to the 
eigenvalue (cf. (6)) 

Defining the function 
k 

a 1(µ):=µf+4 I ~y>cos{jµi)cos(/µ 2 ) 
j,l;O 

it follows from (8) and (14) that we should minimize 

l(J~>)2+6~1 1=A 21 la1(µ<'>)!, r=l,. . .,R 
Ll X1 

In particular, we consider the minimization of (15) for five-point line discretizations, i.e. 

2 
D3 = (~xJi [2~o + ~ 1 (£ { 1 + E) 1) + ~ 2 (E { 2 + E) 2)] 

( 13) 

(14) 

( 15) 

(16) 

where we have omitted the super index in the discretization weights. The corresponding function 
(14) assumes the form 

ai (µ) = µf + 4[~0 +~ 1 cos (µi) + ( 2 cos (2µi)] 

= µf + 4(~o - ~1) + 4~ 1 cos (µ 1 ) + 8c;2 cos2 (µ 1) = :a1 (µ 1 ) 

In order to minimize the extreme values of (15) we require 

a1 (z,)=O, r= 1,2,3 

(17) 

(18) 

where the three zeros of a 1 are located at suitable points in the frequency interval. For instance, 
if R = 3 and the three frequencies in (15) are known, then we set 

z,=f~>~x 1 , r= 1,2,3 

Alternatively, when it is only known that 

}1~Jr1 ~J1, r=1,. . .,R 

(19) 

(20) 

then suitable values for z, can be obtained by identifying the zeros of a1 (z) with the zeros of a 
Chebyshev polynomial shifted to the interval of frequencies (20). 1 This results in 
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Z3= F~Ji~2xi)cos(~-) (21) 

The conditions (18) imply that exponential functions of the form 

exp(i~:~), r= 1,2,3 

are exactly differentiated by the difference operator (16). 
For future reference, we give the solution of equation (18): 

• lzf(c2 -c3 )+z~(c3 -c 1 )+z~(c 1 -c2 ) 
s2 = ------ ------

s (c 1 - c2 )(c3 - ci)(c2 - c3 ) 

1 zf- z~ 
~1= -------2~ (c +c1) 

4C1-C2 2 1 -

(22) 

~0=~2-~1C1 -2~2 d-±zf: c,=cos(z,), r=l,2,3 

The discretization (16), (22) will be called an exponentially .fitted dijference formula. 

We observe that the usual 5-point line discretization arises if a(z) has all its zeros at the origin. 
The corresponding weights are given by 

(23) 

This discretization satisfies (12) with p = 4 so that it is fourth-order accurate. It can be shown that 
the discretizations ( 16), (22), ( 19) and ( 16), (22), (21) are also fourth-order accurate. 

In order to compare the truncation errors of the discretizations ( 16), (22) and (23), we derive 
expressions for the extreme values of I ii I on the frequency interval (20) if the mesh size tends to zero. 
For (23) we easily find 

(24) 

Since, in the case (22), the zeros of ii vanish as the mesh size decreases, we find a similar expression to 
(24) only differing by the order constant; numerically we found for the case where the left end point 

of the frequency interval is the origin 

I ii 1 (J1~x 1l I:::::: -1 -(J1~X1)6 as ~x1 ->0 (25) 
3000 

3.3. Automatic estimation of dominant frequencies 

In actual computation, it is convenient to estimate automatically the main frequencies of the 
numerical solution. Suppose that at t = f (f fixed) the numerical solution is expected to be an 

approximation to the function 
R 

u(x):= L a,exp(if<'J·x), a,EC, r<rJEiR 2 (26) 
r=l 

A straightforward technique for determining the frequency vectors f(r) is based on the minimization 

of the expression 
N 

I !u(x)- uj1 2 (27) 
j= 1 

where Vi denotes the numerical approximation to u(x) and {xi}f= 1 represents a set of grid points. 
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Most numerical libraries for large scale computing contain a suitable least-squares routine for 
solving this problem (e.g. NAG routine E04FCF). The efficiency of the least-squares algorithm for 
finding the frequencies r<r> (and the coefficients a,) that minimize (27) decreases when the number of 
parameters increases. Therefore, it is advantageous to replace (27) by an expression in which fewer 
parameters are involved. In particular, it would be nice when only the frequency parameters f<r> are 
left. We illustrate the derivation of such an expression by a few examples. 

Example 1. Let in (26) x be scalar and let R = 1, i.e. 

u(x) = a 1 exp(ij<'>x) 

By applying the operator P(E), where Eis the forward shift operator and 

m 

P(z) = L pizi 
j= -m 

we obtain the identity 

P(E)u(x) - P(eif<llA.x)u(x) ::= 0 

Suppose that P(z) satisfies the condition 

Then (30) assumes the form 

P(z) = P(l/z) 

m 

P*(z):= Po+ 2 L picos(jz) 
j= 1 

P(E)u(x)- P*(J< 1> Ax)u(x) = 0 

This identity suggests the minimization of the one-parameter expression 

N 

L I [P(E)- P*(f(l) Ax)] Ujl 2 

j= 1 

(28) 

(29) 

(30) 

(31) 

(32) 

(33) 

(34) 

Simple examples of a suitable function P(z) are given by P 1 (z) = z + (1/z) and P 2 (z) = z - 2 + (l/z). 

Example 2. Next we consider the case R = 2: 

u(x) = a 1 exp (if(l> x) + a2 exp (i/<2> x) 

Let us define the functions 

v(x): = P(E)u(x), w(x): = P2(E)u(x) 

Then we easily derive the identity 

(35) 

(36) 

P*(J< 1> !u)P*(j< 2> Ax)u(x)- [P*(j< 1> Ax)+ P*(j< 2>Lix)]v(x) + w(x) = 0 (37) 

As in the preceding example, this identity straightforwardly leads to a two-parameter expression to 
be minimized over the two frequency parameters. 

In order to illustrate the performance ofa frequency estimator based on (37) we have listed a few 
results in Table I for both functions P 1 (z) and P 2 (z). The choice of these functions is determined by 
efficiency considerations. The functions u(x) correspond to the functions w(O, x) used in our 
numerical experiments reported in Section 5. The results obtained show that the inaccuracy of the 
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Table I. Estimation of dominant frequencies 

P1(z) P2 (z) 
Problem 2n/f:..x pt) f'2l pii p21 

1. u(x) = sin (sin (x)) 8 0 1-10 0 1·45 
16 1·00 2·99 1·00 2·99 

3. u(x) = tan(sin(x)) 16 1·00 3-32 1 ·01 3-32 
4. u(x) =sin (4x) +sin (5x) 16 4·05 5·90 4·05 5·90 

+sin (6x) 
5. sin (x) +sin (1 ·2x) 8 1·00 1·20 1·00 1·20 

estimated frequencies is at most 10 per cent for P 1 (z) and 40 per cent for P 2 (z). The latter error 

occurs for problem 1 on the coarsest grid. The other results appeared not to be sensitive to the 
choice of the function P(z). 

4. EXPONENTIALLY FITTED EXTRAPOLATION 

In order to apply the symmetric difference operator (9) and (16), (22) near the boundary points 

we need to extrapolate, beyond the boundary, the numerical solution obtained at internal grid 
points. When conventional difference operators are used, then we may employ polynomial 

extrapolation; for example, the sixth-order formula 

w(x) ~ [6(£1 + Ei)- 15(Ef +Et)+ 20Ei- E1] w(x) (38) 

However, when using exponentially fitted discretizations, then polynomial extrapolation is 
inaccurate, unless still higher order formulae are applied. A more attractive alternative is the use of 

exponentially fitted extrapolation formulae. 
Let us start with the symmetric interpolation formula 

k k 

w(x) ~Ai w(x):= I I cyi(E{ + E1i)(E~ + E2 1)w(x) (39) 
l=O j= 1 

and require that this approximation has a small truncation error for functions of the form (5). 

Then, the extrapolation weights should be such that 

R 

w0 -A 1 Wo = L [1- aTlJw~l(t)exp(if(r)·x) 
r= 1 

k k (40) 
arl:= 4 I I cy>cosUµTl)cos(lµ~>l 

l=O j= 1 

is small in magnitude. This is achieved by minimizing the magnitude of the function 

k k 

b1 (µJ: = 1 - ar> = 1 - 4 I I cy) cos Uµil cos (1µ2) (41) 
l=Oj=l 

over the range of frequencies. (Notice that b1 (µ) does not have the same form as the function 
a1 (µ)defined by (14): this can be traced back to the fact that a1 (µ)corresponds to the truncation 
error of a difference operator, whereas b1 (µ)corresponds to the truncation error of an extrapolation 

formula.) This minimax problem is similar to that discussed in section 3.2 for the function (14) 

and the (approximate) solution of this problem can be obtained along the same lines. 
In our numerical experiments we will apply the seven-point formula that arises for 
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Defining 

b1 (µ) = li1 (µ 1 ): = l - 4[(1 cos (µ 1 ) + ( 2 cos (2/L 1 ) + (3 cost3p 1 )] 

we arrive at the fitting conditions (cf. (18)) 

D1 (z,) = 0, r = 1,2, 3 

(42) 

(43) 

(44) 

where the three zeros of 01 coincide with (19) or (21). By solving (44), we obtain the extrapolation 
weights and the resulting extrapolation formula is then given by 

[ 
y y 1 J w(x)~ -;2 (E 1 +Ei)-~_l_(Ei+Eil+:,-:;-~Ef-£7 w(x) 
;,3 t,3 --,3 

(45) 

Just as the difference formula (16), (22), the extrapolation formula (45) presents an approximat
ion to the formula that really minimizes the magnitude of the function (41 ). In the special case 
where (j0 = 0 for I-=/ 0, it is possible to solve the minimax problem exactly, because b 1 (µ) can 
then be expressed as a polynomial in cos (µ 1 ) and for polynomials minimax solutions arc available. 

5. NUMERICAL EXPERIMENTS 

By means of numerical examples we will show that the exponentially fitted discretization formulae 
derived in the preceding sections lead to considerably larger accuracies than the conventional 
discretizations, for both linear and non-linear problems. The problems are specified in Table II. 

The initial conditions are taken from the exact solution. In cases where the solution is periodic 
with respect to the given x-interval, we compare results obtained by imposing Dirichlct boundary 
conditions and by imposing a periodicity condition. We confine our experiments to equations 
of the form 

(46) 

The spatial discretization was based on 5-point formulae; we present results obtained by 
conventional and by exponentially fitted formulae ((16) with (23) and with (22)). In the case of 
Dirichlet boundary conditions, we used the polynomial extrapolation formula (38) for con
ventional discretizations and the exponentially fitted formula (45) otherwise. 

The time integration was performed by the second-order Runge-Kutta-Nystrom method 
generated by the Butcher array: 5 

1/2 0 
1/2 0 1/30 
1/2 0 0 1/12 

(47) 
0 0 0 1/2 
0 0 1 1 

This method has zero dissipation and phase-lag order q = 6. The periodicity interval is given by 
[O, (2·75)2]. 

The accuracy of the results is measured by the number of correct digits, i.e. by 

cd:= - log10 1 maximal absolute error at the end point t =TI (48) 

In the table of results, cd(P) and cd(D) correspond to results obtained by imposing periodic and 
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Table II. Numerical results 

Problem T 2rr/f...x T/f...t ur11 cd(P) cd(D) 

1. wtt - wxx 
-- --------- --

w = sin(sin(x + t)) 
8 16 {0,0,0} 1·80 1-30 

0 ~x~2n 
{I, 2, 3} 2·99 2·89 

O~t~ T 
16 32 {0,0,0} 2-92 2·17 

{l,3,5} 4·19 4·19 

(1 + w2)wxx 
2. Wtt= 8 16 {O, 0, O} 

1 +sin2 (sin(x+t)) 
1·83 1·32 

{ 1, 2, 3} 3·00 2-90 

16 32 {0,0,0} 2·92 2·18 

w = sin(sin(x + t)) 
{I, 3, 5 J 4·20 4·20 

o~ x~ ln 10 16 32 {O, 0, O} 1·88 1·83 
0< t< T { 1, 3, 5} 4·17 4·06 

--------

3. 
(1 + w2)wxx 

wtt=- 16 32 [0,0,0} 
1 +tan 2 (sin(x+t)) 

I ·95 1-46 
{1,:u: 2·21 1·74 

w = tan(sin(x + t)) { 1,3, 5: 2·70 2-45 
0 ~ x ~ 2n, 0 < t ~ T (0.2,4) 1·98 1-75 

4. Wtt = Wxx 

w =sin 4(x + t) +sin 5(x + t) 16 32 {0,0,0} -0·06 -0·65 
+sin 6(x + t) [3, 7] 0·62 -0·02 

0 ~ x ~ 2n, 0 ~ t ~ T [4,6] I ·58 1·06 
[ 4·5, 5·5] HI 0·60 

------------

5. Wu=w2[wxx-~+w 8 16 {O, 0, O} -0·62 1-16 

+ 0-44sin(l·2x + t)J [0·9, I ·3] -0·61 3·26 

w= sin(x+ t) + sin(1·2x + t) [1, 1 ·2] -0·61 3-28 

0 ~ x ~ 2n, 0 ~ t < T [1·05, 1-1] -0·61 3-34 

------------- - ---------·---·------ --- ----··---------
--~ .. ·--- ._ _____ 

6. 
6xt 2 7 8 16 {O, 0, O} 0·98 1-31 

Wu= Wxx + 811:3 (x - r-) 

. . ( xt ) 3 

{1,2,3} 0·84 1-40 

w = sm (sm (x + t)) + 2n 

16 32 {0,0,0l 0·54 2· 15 

0 < x ~ 2n, 0 ~ t < T [U,5] 0·52 1-84 

Dirichlet boundary conditions, respectively. We observe that imposing periodic boundary 

conditions in cases where the initial conditions are not periodic with respect to the given x-interral 

leads to singularities in the exact solution at the boundary points (e.g. problem 5) caused by an 

inconsistency of the initial-boundary values. 

The purpose of the experiments listed in Table TI is to show that the use of exponentially 

fitted space discretizations, instead of conventional discretizations, will improve the accuracy 

considerably in all cases where the exact solution is periodic. This assertion is supported by the 
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Table III. cd(D) values for various frequency intervals 1j1,J1] 

2n 

Problem 7 t:.x At {O, 0, O} [O, 1] [0,2] 

Wu= Wx.x 8 16 2·06 1·92 1·44 
w = 1/(l + x + t) 16 32 2·78 2·71 2·48 

O~x~2n,O~t~l 32 64 3·78 3·74 3·62 

Table IV. Numerical results for problem 2 with Lh = 2n/16, 
tit= 1/32 

{f~l} = {O, 0, O} {!~)} = {1,3,5} 
cd(P) cd(D) cd(P) cd(D) 

0·2 3·75 3-25 4·47 4·47 
0·4 3·33 2·65 4·26 4·26 
0·6 3·02 2-30 4·17 4-17 
0·8 2-91 2·16 4·16 4·16 
1·0 2·92 2·18 4·20 4·20 
2·0 2·54 2·03 4·27 4·29 
4·0 2·25 1·90 4·14 4·25 

[0,3] 

0·70 
2·06 
3·78 

results obtained for the problems 1-5. Even in a case where the true frequencies differ completely 
from the predicted frequencies, such as in the last row of problem 3, the exponentially fitted 
formulae are competitive with the conventional formulae. Also, notice that changing from periodic 
to Dirichlet boundary conditions decreases the accuracy of conventional space discretizations 
much more than the accuracy of the exponentially fitted discretizations. 

The last problem of Table II was obtained from problem I by adding a non-oscillatory term to 
the exact solution. As a consequence, only the oscillatory part of the solution will be computed 
with increased accuracy by the exponentially fitted method, whereas the non-oscillatory part is 
computed with considerably reduced accuracy. The results in Table II indicate that in such cases 
there is no advantage in using exponentially fitted methods. Notice that imposing periodic 
boundary conditions leads to bad accuracies because of the inconsistency in the initial-boundary 
values. 

Next, we integrated a problem with no space oscillations at all. In Table III, results are given 
for the conventional discretization (arising if the frequencies are {O, 0, O}) and for three frequency 
intervals. At first, if the grid is rather coarse, the exponentially fitted method is considerably less 
accurate than the conventional method. On finer grids, however, the accuracies become more 
and more comparable because the exponentially fitted method converges to the conventional 
method. 

Finally, we considered the error behaviour as a function oft. The results for problem 2 listed 
in Table II already indicate that the conventional method is more sensitive to long interval 
integration than the exponentially fitted method. Table IV presents more detailed information 
on the error behaviour of the various methods. 

6. CONCLUDING REMARKS 

Below we summarize the main properties of exponentially fitted space discretizations in 
comparison with conventional discretizations using the same number of grid points: 



(i) 
(ii) 
(iii) 

(iv) 
(v) 

(vi) 
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The additional costs are negligible. 
The order of accuracy does not change (cf. Table III). 
The accuracy improves considerably if 
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(a) only a few (approximately known) frequencies dominate the solution (cf. problems 
1-4) 

(b) all dominating frequencies are located in a small interval (cf. problems 5). 
The properties (i), (ii) and (iii) also hold for non-linear problems. 
If the solution contains non-periodic components, then there is no advantage in using 
exponentially fitted space discretizations (cf. problem 6). 
If the solution contains no periodic components, then conventional discretization methods 
are to be preferred. 

Furthermore, we remark that the frequency estimator described in Section 3.3 yields reliable 
results and can be used as a part of a computer implementation of exponentially fitted space 
discretizations. 

Finally, we observe that a similar approach can be followed in designing space discretizations 
that are fitted to exponentials with real arguments (i.e. in (5) if<'> is real valued). 
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