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Numerical Integration of Retarded Differential 
Equations with Periodic Solutions 

H. ARNDT, P.J. VAN DER HOUWEN, B.P. SOMMEIJER 

ABSTRACT: It is the purpose of this paper to show that the minimax versions of linear multistep methods, 
originally derived for ordinary differential equations with a periodic solution, are also suitable for the integration of 
re_tar<l_-4 differential equations possessing a periodic solution. Especially for this type of equations it is extremely 
uoeful to have methods yielding highly accurate results for relatively large time steps h. We consider several 
examples of first-order and second-order equations with constant and state-dependent delay and compare the 
numerical result.s with that of the conventional methods. 

l. INTRODUCTION 

We consider the following initial value problem for retarded differential equations 

( 1.1) 
y'(t) = f(t, y(t), z(t)) for t E [O, b] 

y(t)=i,b(t) for tE[-s,O] 

with z(t) = y(t - r(t, y(t))). 

Here i,b is the initial function, i,b [-s, OJ ......, IRm, the function f is defined in an open subset 11 c 

m x JRm x mm, such that 

(O,i,b(0),1/>(t)) E 11 for all t E [-s,O], 

and the (state-dependent) delay r is a real function defined on an open subset !l* of IR x mm, where 

!l' is the projection of !l on its first m + l components, and r is nonnegative and bounded on !1', 

0 s; r( t, y) s; ro. 

If f, .p, r are continuous there exists a solution of the initial value problem ( 1.1) on an interval [O, b]; if, 

in addition, f(t, y, z) i~ Lipschitz-continuous with respect to y and z and r(t, y) is Lipschitz-continuous 

with respect toy we have uniqueness and continuous dependence on the data; see Driver [3] and Hale [5]. 
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We will study linear multistep methods for the numerical integration of (1.1) in the special case where 

it is known that (1.1) possesses a periodic solution. We will consider Adams-Moulton and Milne-Simpson 

methods. Both families of methods will be applied in conventional form and in the so-called minimax 

form as described in [6]. The minimax versions take into account the periodicity of the solution and are 

rather effective in the case of ordinary differential equations. 

Since a rich source of periodic problems is formed by initial value problems involving retarded diffe

rential equations of second order (cf. El'sgol'ts and Norkin[4,p.187]), we also consider linear multistep 

methods for second-order equations; in particular, we will investigate the conventional and the minimax 

version of the symmetric method of Lambert and Watson [7] (this family of methods was specifically 

designed for the integration of periodic problems). 

Summarizing, it is the purpose of this paper to show that the minimax versions of linear multistep 

methods, originally derived for ordinary differential equations with a periodic solution, are also suitable 

for the integration of retarded differential equations possessing a periodic solution. Especially for this 

type of equations it is extremely useful to have methods yielding highly accurate results for relatively 

large time steps h; this is because delay equations require the storage of y- (or /-) vectors, the number 

of which is roughly equal to ma.x T(t, y(t))/h :S To/h. 
1,11(1) 

2. LINEAR MULTISTEP METHODS 

We consider the application of linear multistep (LM) methods known from ordinary differential equa

tions (ODEs) to retarded problems. We will discuss the case of first-order ODEs, but the case of 

second-order ODEs can be dealt with in an analogous manner. Generally, the application of an LM 

method can be accomplished by the following algorithm (for convenience let us first consider the case of 

a constant delay T > 0): 

Choose a grid 0 =to< t1 < t2 < ... < tN = b with constant stepsize h = t; - t;-i < r. Let (p,u) be a 

linear multistep method of order p for ordinary differential equations with characteristic polynomials 

k k 

e(~) = 2:a;~·;, uc~l = L:b,~i. 
j:O j=O 
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Assume that we have starting values yo, Yi, .. ., Yk-- i as approximations for y(to), y(ti), ... , y( tk- i ). 

Then if Yo, Yi, ... , Yn+k-i are known compute Yn+k from 

p(E)yn = lw(E)Jn 

if tn - T::; 0, 

if tn - T > 0. 

Here the function u is a suitable interpolate of the known values, e.g. 

most often piecewise polynomial interpolation of fixed order q (degree q - I) for suitable q is used. 

The same arguments apply for nonconstant delay r; for state dependent delay we use r(tn, Yn) as an 

approximation of r(tn, y(tn)). 

Some inherent difficulties may occur: In general the solution y of (I.I) is differentiable only once on 

[O, b] even if the data are analytic as can be seen from the simple example 

y'(t) = y(t-1) for t ~ 0, 

y(t) = 1 for t ::; 0, 

the solution of which possesses so called jump discontinuities at the natural numbers. In this example 

the solution gets smoother with increasing t because of the constant delay but this is not the case in 

general. If yUl (L) f. yU) (t+) and yU-I) (L) = y(j- I) (t+) then y has a jump discontinuity of order J at 

t. If all jump discontinuities of order p or less belong to the grid and the method is started again after 

each of these discontinuities the order of the resulting method is min(p, q ). Observe that in this case one 

generally has to use a nonequidistant grid. 

A second difficulty arises if r is very small. On the one hand the jump discontinuities in this case lie 

near together which may reduce the stepsize drastically, on the other hand if r < h then the interpolation 

formula is implicit with respect to the unknown value Ynf k· 

Last but not least note that in general the exact solution y is only continuous at t0 . Therefore one 

cannot use the known values Y-k+i, Y-k+2, ... , y0 of the initial function as starting values of the multistep 

method, that is Y-J = y(-Jh) = 1/1(-fh), J = 0, I, ... , k - l. The starting values can be computed e.g. 

with a onestep method or with LM methods that increase the order. 
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3. PERIODIC SOLUTIONS 

We call a solution y of (l.l) periodic with period T > 0 and frequency w = 21t/T on the interval [O,b] 

if 

y(t + T) = y(t) for all t E !O, b-T). 

In general the solution is not periodic on the interval [-s, b). For example consider the problem 

y1(t) =(y(t) - sin t) · g(t, y(t), y(t - r)) +cost, t ~ 0 

y(t) =.P(t), t :S 0 

where g is arbitrary. For all initial functions .P with .,P(O) = 0 the function y(t) = sin t is a periodic 

solution of the problem on [O, oo) but in general y is not periodic on [-s, oo ). 

If f, t/• and rare p-times differentiable then the solution y of (1.1) is at least (p+ 1)-times differentiable 

between jump discontinuities. Because of the bounded delay the solution will be globally (p + 1 )-times 

differentiable for large enough t. If in addition y is periodic on [O, b] then for sufficiently large b we can 

conclude that y is (p + I)-times differentiable on the whole interval [O, b]. Consequently we need not 

obey the jump discontinuities for periodic solutions of the initial value problem and may use a constant 

stepsize - at least for tests. 

4. PREDICTOR - CORRECTOR METHODS 

Suppose one decides to solve the implicit relations, arising in the application of an LM method, by a 

predictor-corrector method. Then we are faced with the problem of choosing the order of the predictor. 

In the case of non state-dependent delays one could use a predictor of order p - 1, when the corrector is 

of order p, because the problem can be handled similar to ordinary differential equations. In problems 

with state-dependent delays r it is better to use a predictor with the same order as the corrector because 

a good approximation y~+k is needed for the computation of the retarded argument 

which is used in the corrector step. 
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5. INTERPOLATION 

We want to give some more detailed comments to the type of interpolation procedure. Assume that 

an Adams method for ordinary differential equations is used, 

k 

Yn+k -Yn+c-1 = h L b;fn+;· 
i=O 

Such formulas are constructed by approximating the integrand in the Volterra equation 

y(tn+k) - y(tn+k-d = 7• J(s, y(s))ds 

t'"+•-1 

by a polynomial Pn+.1: that interpolates at tn+i the value /n+i• j = 0, 1, ... , k, that is 

Yn+k - Yn+.1:- I = 

k 

P,.H(s)ds = h Lb;fn+j· 
i=O 

If in the case of retarded differential equations an approximation for the value y(t•) with t• = tn+k -

r(t,.+c,y(tn+.1:)) is needed and we have t,_ 1 :$ t• < t1 for some l::;; I< n + k, it is very natural to take 

t" 

y(t*) ~ Yl-1 + J P1(s)ds 

ti-1 

where Pi interpolates the values /1--J at t1-3, j = 0, 1, ... , k, see Bock, Schloder [2]. One can show that 

with these formulas not only the local integration error can be controlled but the local interpolation error 

as well, cf. Arndt [l]. 

Another possibility for the interpolation procedure is given by the above mentioned Hermite-

interpolation at points t1±; for certain ;" such that t• lies nearly in the middle of these points. These 

formulas come along with fewer grid points and therefore theoretically lead to a smaller error. 
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6. MINIMAX METHODS 

The minimax modification of a linear multistep method (p, a) for an m - th order ODE is defined by 

the equations (cf. [6], [8]) 

'Pm(iv(ll) = 0, l = l, 2,. .. ,r, 

(6.1) 

Here, [,._,, w] =: h- 1 [1", v) is an estimate of the inverval of dominant frequencies in the exact solution 

of the ODE. The value of r is determined by the number of free coefficients in the polynomials p and 

a. Generally, the system (6.1) represents a (linear) system with complex coefficients so that, in order 

to obtain real-valued coefficients, we should have 2r free coefficients in (p, a). In the special case of 

symmetric methods (i.e., p(17) = 17kp(11- 1) and a(T/) = T/ka(17- 1 )), the system (6.1) has a real coefficient 

matrix, so that we need only r free parameters in (p, a). 

We conclude this section by deriving a relation for the truncation error in the case of a retarded 

differential equation with periodic solution. Assuming the localizing assumption to be satisfied (y(t 3 ) = 

y1 ,j = 0, ... , n), we may write 

y (t) = u (t) + I (t, h), 

where u (t) is the interpolating function introduced in Section 2, and I (t, h) denotes the interpolation 

error. The truncation error at tn+k is given by 

Tn+k := p (E) y (t,.) - hma (E) J (tn, y (tn), u (tn - r)) 

"-'P(E)y(tn)-hma(E) [J(tn,y(tn),y(tn-r))- ~~l(tn,h)]. 

Recalling the definition of 'Pm(z) we find 

(6.2) 

whne m is the order of the differential equation. If 'Pm corresponds to a minimax method adapted to 

the periodic solution y(t), than the truncation error is dominated by the second term containing the 

interpolation error I(t, h). From this we conclude that high accuracies can be expected provided that we 

use interpolation of sufficiently high order. 
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7. NUMERICAL EXPERIMENTS 

In this section we want to demonstrate the performance of the minimax modification of linear multi step 

methods both in PECE mode and when using Newton iteration. All methods tested are of order p = 6. 

When applied in PECE mode we used (for first-order equations) the Adams-Bashforth method of order 

6 (AB6 ) as predictor and the Adams-Moulton method of order 6 (AM6 ) or the Milne-Simpson method 

of order 6 (M S6 ) as corrector. In the case of the minimax-modification of the PECE method, both the 

predictor and corrector were modified. In the case of second-order equations, we applied the 4-step sym

metric method of Lambert and Watson of order 6 (LW6 ) (cf.[7, p.198]). In all experiments, interpolation 

polynomials of degree 9 (i.e. of order 10) were employed. The abscissas used are: t1-9, t1-s, ... ,t1, where 

l is determined by t1_1 $ t' < t1 and t' is the retarded argument (cf. Section 5). 

In the tables of results given in the following subsections, the accuracy is measured by the number of 

correct digits in the numerical solution at the end point tN, i.e., by 

sd := - log10(i YN - y(tN) I). 

7 .1 DELAY EQUATIONS OF FIRST ORDER 

First we consider an example possessing a constant delay: 

(7.1) 
y'(t)=y(t)+y(t-11')+3cost+5sint, tE[0,10], 

y(t)=3sint-5cost, t$0, 

with exact solution y( t) = 3 sin t - 5 cost. 

In Tables 7.1 and 7.2 we list respectively the accuracies of the conventional and minimax methods, 

obtained for several values of the step length h. 
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AB5-AM5 AM6 AB6 MSs MS6 

h (PECE) (Newton) (PECE) (Newton) 

2/5 -0.l 0.1 0.1 0.4 

1/5 1.8 1.4 1.9 1.8 

1/10 3.6 3.0 5.7 3.4 

1/20 4.9 4.7 5.5 5.1 

1/40 6.6 6.5 7.0 6.9 

Table 7.1 

sd-values for problem (7.1) using conventional methods 

AB5-AM5 AMs A Ba MS5 MS5 
h (PECE) (Newton) (PECE) (Newton) 

2/5 4.6 3.0 4.8 3.0 
1/5 6.5 6.0 6.6 5.8 
1/10 8.3 7.7 11.3 8.3 

Table 7.2 

sd-values for problem (7.1) using minimax methods with [l:!.o', w] = [0.95, 1.05] 

In this example, the choice of the corrector (AM or MS) is of minor importance whereas the way in 

which the corrector has been solved (either PECE-mode or Newton iteration) is more crucial. However, 

the improvement obtained by the minimax versions is easily recognized. It should be noted that the 

additional effort required by the minimax methods is almost negligible. 

Mention should be made of the fact that, for this example, ). := 8/(t, y, z)/8y ist positive. As the 

principle root of the characteristic equation approximates e~h for h -+ 0 we must reckon with amplification 

of roundoff errors. For this example, in which ). = I and the endpoint of integration equals 10, the 

accumulated amplification can be as bad as (eh)"'i!l = e10 =: 2 · 104 (for small h). Hence, in requiring a 

result which is accurate in say n digits, we should use a machine which performs the calculations in at 

least n + 4 digits. 
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In our second example we consider a state-dependent delay term: 

(7.2) 
y'(t) = w· cot(g(t)) · y(t)- . (w( ))y(t-r(t,y(t))), t E [O, 10] 

sm g t 

y(t) = sin(wt), t :5 0 

with r(t,y):=t(2+~e~) 
and g(t) := wr(t, sin( wt)) 

which has the exact solution y(t) = sin(wt). 

We applied the various methods for different values of the frequency w. In the minimax versions we 

employed the frequency interva.1 l.c=!,w] = [0.95w, l.05w]. The results can be found in Tables 7.3 an 7.4. 

AB6-AM6 AM6 AB6 -MS5 MS5 
w h {PECE) {Newton) (PECE) (Newton) 

2/5 3.7 4.3 3.9 3.3 
1 1/5 5.4 5.7 6.7 6.1 

1/10 7.2 7.4 8.0 7.2 
1/20 9.1 9.2 9.2 9.8 
1/10 3.5 3.8 4.6 0.2 

3 1/20 5.5 5.9 2.6 1.2 
1/40 7.9 7.7 3.0 1.1 

Table 7.3 

sd-values for problem {7.2) using conventional methods 

AB6 -AM6 AM6 ABs- MSs MSs 
w h (PECE) (Newton) (PECE) (Newton) 

2/5 8.4 5.7 8.6 6.2 
1 1/5 10.1 9.3 11.5 10.9 

1/10 11.9 11.8 12.6 11.7 
3 1/10 8.2 6.0 8.6 2.7 

1/20 10.2 9.4 7.3 5.0 

Table 7.4 

sd-values for problem (7.2) using minimax methods with [!:!!,W] = [0.95w, l.05w] 

The results for w = 1 give rise to the same conclusions as in the previous example. However, both 

in the conventional as well as in the minimax version, the Adams-Moulton method is superior to the 

Milne-Simpson method as the frequency w increases. This is due to the better stability properties of the 

Ada.ms-type methods. 
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· t f th f equency For w = 3 we obtain in Finally, we consider the influence of an inaccurate est1ma e o e r · 

case of the AM6-minimax method the following results 

w w sd-value for h 1/10 

2.85 3.15 6.0 (see Table 7.4) 
2.5 3.5 5.9 

2.0 4.0 5.2 

2.0 2.5 4.9 
2.5 3.0 6.0 

3.0 3.5 6.1 
3.5 4.0 4.6 

7.2 DELAY EQUATIONS OF SECOND ORDER 

Our first example is the second-order equivalent of problem (7.1): 

y"(t) = -y(t) - y(t - 3;) + 3cos t + 6 sin t, t E [O, 10], 

(7.3) y(t) = 3sin t - 5 cost, t ~ o, 

y1 ( t) = 3 cos t + 5 sin t, t ~ 0 

with exact solution y(t) = 3 sin t - 5 cost. Table 7.5 shows the results for the Lambert-Watson method 

and for its minimax variant using the frequency interval [0.95, 1.05]. In these tests the implicit relations 

were solved using Newton's method. Again, a substantial gain in accuracy ; .. obtained. 

[

- h LWs (conventional) 
2/5 4.1 
1/5 6.0 
~ __ J _____ ~·-8 ____ ~ 

Table 7.5 

LW6 - .(minim~~)_. j 5.3 
7.9 
11.l 
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As a second example we consider a Bessel-type equation involving a state-dependent delay: 

y"(t) + (100 + ~ )y(t) + y(t - 1 - y2(t)) = g(t), t E [3, 10] 

(7.4) y(t) = d Jo(lOt), t ::5 3 

y'(t) = !t-i [Jo(lOt) - 20tJ1 (10t)], t ::5 3 

where Jo and J 1 are the Bessel functions of first and second kind, respectively. The inhomogeneous term 

g(t) is chosen in such a way that we have the almost periodic solution 

y(t) = ti J0 (10t). 

The results can be found in Table 7.6. Obviously, the frequency is approximately equal to 10; hence, the 

minimax method was applied using the frequency interval [9.9, 10.1]. 

I h LWe (conventional) LWe (minimax) 

L_ 
1/10 1.7 4.0 
1/20 3.7 6.4 
1/40 5.5 10.1 

Table 7.6 
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