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In telephone networks the switching and connecting operations are pertormed by the exchanges. The 
Stored Program Control (SPC) exchanges which are nowadays installed are computer controlled. One of 
the problems with these exchanges is the severe pertormance degradation during periods in which the 
demand for service exceeds the design capacity. The problem of overload control is then to maximize \he 
number of successfully completed calls. In this paper two models for overload control of an SPC exchange 
are proposed that are refinements of an earlier model. A stochastic control problem for one of these 
models is shown to have a bang-bang type of optimal solution. 

1. INTRODUCTION 

The purpose of this paper is to present refined models for the operation of SPC telephone exchanges 
and to consider a stochastic control problem for overload control. 

Telephone exchanges are the operational units at the nodes of telephone networks. In the last few 
years computer-controlled Stored Program Control (SPC) exchanges have been installed. In such an 
exchange the operations are executed by a processor according to a stored program. The operations 
of such an exchange may be summarized as follows. If a customer picks up the receiver this action 
generates a signal that will be detected by the exchange. After some delay, the exchange answers by 
sending a dial tone. After the customer has dialed the desired number, the exchange establishes, with 
some delay and depending on availability, a connection with the requested phone. All these different 
tasks have to be executed sequentially by the processor. 

The performance of an SPC exchange can degrade considerably during periods in which the 
demand for service exceeds the design capacity [5]. The response time of the exchange during such 
periods is relatively Jong. This may cause impatient customers to dial prematurely, before a dial tone 
is given, after which an incompletely received telephone number takes up processor capacity and ends 
up as an unsuccessful call. Other requests for connections, that have been transmitted properly to the 
exchange, may encounter long processing delays. This then causes customers to abandon the call 
request and, possibly, to redial soon after. In this case capacity of the exchange is also wasted. That 
this performance degradation is a serious problem may be concluded from the data of (5]. 

The problem of overload control is then to maximize the number of successfully processed call 
requests. A call request may either be given access or be refused access. This decision represents the 
control action. References on this problem are [I,5,6,7,8,9,10,13]. The overload control problem also 
arises in mobile automatic telephony, in PBX business exchanges and other communication equip
ment. 

A model for overload control has been proposed by one of the authors [ 13], based on an approach 
developed by F.C. Schoute (8,9,10]. This model consists of a hierarchical queueing system represent
ing calls-in-build-up and tasks for the processor. Weak points in this model are: I. there is no model 
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for the successfully processed call requests; 2. retrials are not modeled. The present paper gives two 
refined models of an SPC exchange and then considers a stochastic control problem for one of these 
models. 

The terminology used for counting and jump processes may be found in [4]. For a survey of 
modeling, stochastic filtering and stochastic control of such processes see [3]. References on the con
trol of queueing systems are [11,12]. 

The authors acknowledge useful discussions with F.C. Schoute of Philips Telecommunicatie Indus
trie on the problem of overload control. They also thank the governments of Belgium and The Neth
erlands which through their cultural exchange agreement have provided financial support for the 
cooperation of the two authors. 

2. A HIERARCHICAL QUEUEING SYSTEM 

In this section the model for an SPC telephone exchange of [ 13] is summarized and discussed. 

The mathematical model 
A brief description of the technical operation of an SPC exchange follows. A customer who picks up 
the receiver sends thus a signal to the telephone exchange, to be called a call request. Call ·requests, 
when detected by the exchange, are placed in a buffer by the central processor. These buffered 
requests will be termed calls-in-build-up. During its presence at the buffer a call-in-build-up generates 
tasks which are executed sequentially by the central processor. Examples of tasks are a request for a 
dial tone, detection and recognition of dialed digits, the establishment of a connection, and related 
actions. 

call entry admitted 

requests gate call requests 

queue 1 

calls-in 

build-up X 

arrivals 

of tasks 

queue 2 

tasks Y 

FIGURE I. A hierarchical model for overload control. 

The dynamics of the processor load may be modeled by a hierarchical queueing system as in figure 
1. Call requests represented by an arrival process may or may not be admitted to the exchange, pos
sibly based on the outcome of a toss of a coin. The probability of admission represents the control 
action. Call requests that have been refused access are assumed not to return. A call request that has 
been admitted to the exchange is placed in a buffer with an infinite number of servers. Such calls-m
build-up have independent identically exponentially distributed service times. 

During its presence at queue 1 a call-in-build-up generates tasks that have to be executed by the 
central processor. The intensity of the arrival process of tasks is assumed to be proportional to the 
number of calls-in-build-up in queue I. The task execution process is modeled by a single server 
queue MIMI l operating on a first-in-first-out rule and with an infinite buffer. 
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Assume given a complete probability space (Q, F, P) and a time index set T = R + . Let 

Z+ ={1,2, ... }, N={0,1,2, ... }. 

The construction of the hierarchical queueing system proceeds via a measure transformation indexed 
by a class of control policies U. For each adrnissable control policy U(.) one obtains the following 
dynamic representation for theli.ierarchical queueing system, 

dX(t) = [AoV(t) - µ1X(t)]dt + dM1(t), X(O), 

dY(t) = [.\2X(t) - l(Y(i)>OJl'i]dt + dM2(t), Y(O), 

(2.1) 

(2.2) 

where X :Q X T ->R + represents the number of calls-in-build-up, Y :Q X T ->R + the number of tasks 
waiting or being served and M 1, M 2 local martingales. For details on this model see [13, sections 2 
and 3]. 

Criticism and comments on the hierarchical queueing system 
1. How to represent a successfully processed call request? A call request will be termed successful if it 

reaches a ringing or busy signal at the requested phone. The goal of overload control is to maxim
ize the number of successfully processed call requests. It is preferable to exhibit successful call 
requests explicitly in the model rather than only in the cost function. 

Clearly a call request will be processed successfully if the delay in giving a dial tone and in estab
lishing a connection is smaller than the time a customer is willing to wait. Thus one needs to 
model the time delays. How to do this is discussed at point 3 below. 

2. The criticism may be voiced that in the hierarchical queueing system there is no connection 
between the server in queue I and the server in queue 2. Thus a call-in-build-up may leave from 
queue I before the tasks it has generated have been processed by the central processor in queue 2. 

To counter this criticism recall that a call request in queue 1 represents the active task generation 
phase during which tasks, such as a request for a dial tone, for a connection and for routing are 
generated. Should there then be a connection between the departure processes of queue I and 
queue 2, in particular should the time a call request is in the active task generation phase depend 
on the processing of its tasks? A little thought leads one to conclude that one has to distinguish 
call requests that are actively generating tasks and those that are merely waiting for the processing 
of these tasks. Queue 1 should include the former, another queue could represent the latter. Furth
ermore, there should be a connection between the processing of tasks and the waiting call requests. 
This the leads to the question what is the delay in processing a call request compared with the pati
ence of a customer? 

Remark that in general the active task generation phase is longer than the period during which 
the customer dials the telephone number. 

3. What is the time necessary to process a call request and how can one model the patience of a cus
tomer? The customer notices two types of delay, one in waiting for a dial tone and one in waiting 
for the connection. In the hierarchical model these delays are not explicitly represented. On the 
other hand, the time necessary to process the call request is not explicitly represented either. This 
period could be inferred from: 1. the time a call request is present in queue 1 actively generating 
tasks; 2. after a call attempt has left queue 1, the time it takes the processor to process the tasks 
generated by that call attempt. 

Notice that because of the memory in queue 2 the second period is sensitive to overload condi
tions. Thus in situations close to or in overload, the intensity of the arrival process of tasks is 
momentarily larger than the intensity of the server process of queue 2. Then queue 2 will increase 
rapidly and cause the waiting time necessary to process the tasks of a customer to grow too. 

The question is then how to refine the model such that the above mentioned time periods are 
exhibited explicitly? 
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4. In the hierarchical queueing system it is assumed that customers that have been refused access will 
not return. This is unrealistic. A fraction of customers will attempt to redial after some time. 
Such repeated call requests will be termed retrials. Although it is hinted at in [13] that retrials may 
be modeled, this has not been done yet. Forys [5] argues that retrials can be a very important 
cause of performance degradation. 

5. In the model of [13] it is assumed that the number of calls-in-build-up and the number of tasks can 
be measured and used for control. In most exchanges this is not possible. In general one can 
observe only the number of calls-in-build-up and the idle time of the processor. The last measure
ment is not relevant for overload conditions. The full information case, in which one assumes 
knowledge of the past of all processes, is useful for theoretical analysis only. The ultimate goal is 
the partial information case, in which only practically available measurements are used. Solution of 
that problem will involve the solution of a filtering problem. 
Based on the preceding comments, two new models are introduced in the next section. The aim is 

to represent all phenomena which cause the performance degradation under overload, while keeping 
the model analytically tractible. 

3. REFINED MODELS 
In this section two new models are proposed for the processor load in an SPC exchange. They differ 
from the hierarchical queueing system of section 2 in that a call request may be in an active or in a 
passive phase. In addition, there is an equation for the process of successfully processed call requests. 
In the first model retrials will be modeled. 

Model 1 
See figure 2. for the interconnections of the network of model 1. 
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FIGURE 2. A refined model for overload control (model I). 
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Assume given a complete probability space and a time index set T =R +. An arrival process is 
denoted by A and a departure process by D. Super indices will be used to relate such processes to a 
queue. From now on all stochastic processes denoted by M with a certain index will denote local 
martingales. 

The entry gate. The arrival process of original call requests is assumed to be a Poisson process with 
intensity \i and with representation, 

dA (t) = Ao dt + dM I (t), A (0). (3.1) 

As in the hierarchical queueing system of section 2 access to the exchange is controlled. The arrival 
process of queue 1 with the calls-in-build-up will be assumed to have the representation, 

00 -

A x(t) = ~ U(k)I(r,(A +D')<;;I), (3.2) 
k =I 

where rk(A +DR) is the stopping time of the k-th arrival of the process (A +DR) and 
U:QxN ....... {0,1} is a random sequence that represents whether a call request is admitted or not. As 
in [13] one can then show existence of a stochastic process U:QXT ....... [0,1) such that Ax has the 
representation 

dAx(t) = [\J + µ4 R(t)] U(t) dt + dM2(t), Ax(O). (3.3) 

Furthermore, as in [13], one can reformulate the model such that one only works with a control pro
cess U from some class U to be specified later. From such a control process U one can deduce the 
sequence U of (3.2). -

Thus a fraction U(.) of customers is admitted, and a fraction (I - U(.)) is not admitted. Of the 
latter a fraction r 0 is assumed to redial after some time. This process will be modeled in the retrial 
queue, see below. There also the variable R will be defined. 

The calls-in-build-up. A call request present in queue I will be termed a call-in-build-up. Its presence 
there signifies that it is actively generating tasks that have to be executed by the processor- It will be 
assumed that a call request is present at queue 1 for an exponentially distributed time with mean .ul 1• 

As in the hierarchical queueing system queue I will be taken to be a . / M / oo queue, thus with an 
infinite number of servers. The departure process from queue I is then represented by, 

dDx(t) = µ1X(t)dt + dM 3(t), Dx(O). (3.4) 

The equation for the number of calls-in-build-up X :it X T _,.R + is, 

X(t) = X(O) + A x(t) - Dx(t), (3.5) 

(3.6) 

The tasks. During the presence of a call request in queue I it is assumed to generate tasks. The pro
cess of task generation will be assumed to be a Poisson process for each customer. The arrival rate at 
queue 2 is thus proportional to the number of calls-in-build-up. The representation of the arrival pro
cess of queue 2 is, 

(3.7) 

The service times at queue 2 are independent and exponentially distributed with mean µ,2· 1. Tasks 
are executed in the order of their arrival. 

dDY(t) = /L2f(YUJ>O)dt + dM6(t), Dy(O), 

Y(I) = Y(O) + A r(t) - D r(t), 

(3.8) 

(3.9) 
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(3.10) 

Call requests waiting for the processing of their tasks. As mentioned in section 2, the presence of a call 
request in queue I represents the active task generation phase of the call request. However, after the 
active task generation phase there will be a period in which the customer has to wait for the process
ing of his tasks. This waiting time will be modeled by queue 3. 

Only a fraction w 1 of the customers are assumed to be still waiting after their last task has been 
generated. The remaining (1-w 1) fraction of customers is assumed to have departed. Of this a frac
tion r 1 goes to the retrial queue. 

Let fork EZ+, Z(k,.):QXT-"R+ be the number of tasks that have to be processed before the 
last task of the k-th customer leaving queue I is completed. The arrival process of Z (k,.) is then 
taken to be, 

(3.11) 

where ,,.k(Dx) is the stopping time at which the k-th customer departs from queue I and 
W 1 :QXN-"{O,I} is a sequence of independent random variables that determines whether a customer 
is still waiting or not. Assume that P(W1(k)= l)==w 1 and that W 1 is independent of all other 
processes. The expression (3.11) is an approximation of the true waiting time for several reasons. For 
example, because it starts when the k-th customer leaves queue I rather than at the time this customer 
generates his last task. The departure process for Z (k,.) must then be, 

D 2 (k,t) == ~l(Z(k,s-)>O)~DY(s), (3.12) 
s.,.;;;;t 

Z(k,t) = Z(k,O) + A 2 (k,t) - D 2 (k,t), (3.13) 

dZ(k,t) == [µ 1w 1X(t)Y(t)lw'uJ=k-IJ-µ21(Y(r)>OJl<z<k.r)>o)]dt + dM 8(t), Z(k,0). (3.14) 

Summarizing, Z(k,.)jumps to the value Y,,- at ,,.k(Dx), and subsequently jumps by -1 each time DY 
jumps by +I until it becomes zero. 

The patience of customers. Queue 3 will also model the patience of customers in waiting for the pro
cessing of their tasks. The total processing time of a customer consists of the time his call request 
generates tasks, which includes his dial time, and his waiting time after the generation of the last task. 
The task generation time is exponentially distributed by the assumptions for queue 1. This time does 
not depend on the state of the network, in particular not on overload conditions. It will be assumed 
that the waiting time of the customer after the last task in generated, is also exponentially distributed 
with mean µ3 1 • 

In accordance with the assumptions stated above concerning the waiting time of a customer after 
having left queue I, one has the following representation. Here P(k,t)= I represents that a customer 
is waiting and P(k,t)=O that he is not waiting. For the k-th customer leaving queue I, 

P(k,t) == P(k, 0) + AP(k,t) - DP(k,t), (3.15) 

AP(k,t) == W1(k)l<r.<D').;;1)> 

where ,,.k(Dx) and W 1 are as defined below (3.11), 

d.Ap(k,t) == W1JL1X(t)l(D'(t)=k-l)dt + dM9(t), Ap(k,O), 

dDP(k,t) == µ.3l(P(k,l)>O)dt + dM10(t), Dp(k, 0), 

dP(k,t) == [w 1µ1X(t)lw'u>=k-l)-µ3l<P(k.r)>Oj]dt + dM11(t), P(k,0). 

(3.16) 

(3.17) 

(3.18) 

(3.19) 
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The successfully processed call requests. The call request of the k-th customer leaving queue I is suc
cessful if the processing of his last task is finished before his patience has run out. The successfully 
processed call requests may then be modeled by, 

Ds(k,t) = '2, I(P(k,s -J>Oi/(Z(k,s -)= l)!lD2 (k,s), (3.20) 
s.;1 

= '2,l(P(k,s -)>Oi/((Z(k,s -)= l)t:...D y(s), 

00 

dDs(t) = '2, dDs(k,t) (3.21) 
k=I 

00 

= [ '2, I(P(k,tJ>O)l (Y(1J>oil (Z(k,t)= 1)]1L2dt + dM n(t), Ds(O). 
k=I 

Retrials. Customers with a call request may be turned away by the exchange or loose their patience 
and terminate the call request. In the model these cases are represented by: L the call requests that 
have been refused access to the exchange by the entry gate; 2. the call requests that have been ter
minated by customers that are in the active task generation phase of queue l; 3. the call requests that 
are unsuccessful because the customer's patience has run out before his last task has been processed. 
It is assumed that of the customers that have been turned away or that lost their patience, a fraction 
attempts to redial after an exponentially distributed time with mean µ.4 1. In the model this will be 
represented by queue 4 that is in principle . / M / oo, with an infinite number of servers. A call 
request present in queue 4 will be termed to be in the retrial mode. The variable R represents the 
number of call requests that are in the retrial mode. The independent random sequences 
Qi. Q3 :Q XN -.{O, I} represent whether a call request goes to the retrial mode, if Q 1(k)=1, or not, if 
Q1(k)=O. Assume that P({Q 1(k)= l})=r" and P({Q 3(k)= l})=r3 and that the sequences Q1>Q 2 
are independent and independent of all other processes. 

The process of retrials can then be modeled as, 

dA RO(t) = [Ao + JJ.4R(t)]r0(1- U(t))dt + dM 13(t), A RO(O), (3.22) 
00 

AR 1(t) = '2,Q1(k)(l-W1(k))J(,,(D')..;1)• 
k =l 

dAR 1(t) = r 1(1-wi)µ.1X(t)dt + dM 14(t), AR 1(0), 

AR3(t) = ~ Q3(k)I(1,(D'").;1)> 
k =l 

(3.23) 

(3.24) 

(3.25) 

where rk(DSN) is the stopping time of the k-th jump of the process DsN, which process counts the 
number of call requests that leave queue 3 unsuccessfully, 

DSN(t) = '2,I(P(k.s-)=Oi/(Z(k.s-)=1)6.D 2 (k,s), ,,.., 
00 

dA R3(t) = '2, r3JJ.2/(P(k,t)=O)J(Z(k,t)= I)/(Y(t)>O)dt + dM 1s(t), A R 3(0), 
k =I 

AR(t) = ARO(t) + ARl(t) + AR3(t), 

dAR(t) = [ro(l-U(t))(Xo+µ.4 R(t)) + r 1(1-wi)µ. 1X(t), 
00 

+ '2, r3µ.2I (P(k.t)=Oi/(Z(k,I)= I)/(Y(l)>O)]dt + dM 16(t), A R(O), 
k=I 

dDR(t) = 1J.4R (t)dt + dM 17(t), DR(O), 

(3.26) 

(3.27) 

(3.28) 

(3.29) 
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00 

+ 2: (1.1.2hl(P(k,1)=0)l(z(k,1)= 1/(Y(l)>oi) - µ4R (t)]dt + dM 18 (1), R (0). 
k=I 

(3.30) 

(3.31) 

The final stochastic dynamic system consists then of the formula's (3.6,3.10,3.11,3.14,3.16,3.19,3.31) 
with as controlled variable the successful departure process specified by (3.21). The specification of 
the stochastic control system is then completed by the definition of a class of admissable controls. 

Model 2 
Although model 1 answers the criticism of and comments on the hierarchical queueing model of sec
tion 2, it is rather complicated. Therefore a simplified model will be proposed below. Model 2 differs 
from model 1 in that the queues for the waiting call requests are aggregated to just one queue in 
which the distinction between customers disappears. Moreover, retrials are not modeled. See figure 3 
for the network of model 2. 
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FIGURE 3. Another refined model for overload control (model 2). 

successful 

departures 

Because part of model 2 is identical to model 1, those equations are not duplicated here. This con
cerns the entry gate, the buffer with calls-in-build-up as modeled by queue 1 and the task processor as 
modeled by queue 2, with the equations (3.1,3.3,3.4,3.6,3.7,3.8,3.10) with R =O. 

The process of last tasks. It will be assumed that of every task finished by the processor, thus of 
Dr (t), it is a last task of some customer with a certain probability. This is modeled by a random 
variable Q(t), with P({Q(t)=l})=c2 taken to be the proportion of last tasks over the total number 
of tasks, here c2 =\.2 / µ1 . A disadvantage of this model is that it does not follow the short term 
fluctuations of the number of calls-in-build-up. The advantage of this model is that it is simple. 

00 

D YL(t) = 2: QI (k)f(<,(D'),,,;;1)> (3.32) 
k "'I 

dD YL(t) = C2/l2l(Y(l)>O)dt + dM 19(1), D YL(O). (3.33) 
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Call requests waiting for processing of their tasks. The period which a call request has to wait for the 
processing of its tasks will be represented by queue 3. If there is a departure from queue 1, then there 
is an arrival at queue 3. The waiting time of each customer at queue 3 is in principle exponentially 
distributed with mean µ.) 1 and assumed to be independent of those of other customers. There is a 
departure from queue 3 if the patience of a customer runs out or if the last task of a customer is pro
cessed. 

dA 2 (t) :::: dDx(t) = µ. 1X(t)dt + dM20(t), A 2 (0), 

dD 2 p(t):::: µ3Z(t)dt + dM21U), D 2 p(O), 

Dzc = 2:J(D"(s-)c;.D 1(s-))I(Z(s-)>O)D.DYL(s), 
s~t 

Z(t):::: 2(0) + A 2 (t) - D 2P(t) - D 2c(t), 

dZ(t) = [µ,X(t) - µ3Z(t) - C2JJ.2l(D"(r)c;.D'Ul/(Y(l)>O)/(Z(l)>O)]dt + dM22(t), 

D 2 (0). 

(3.34) 

(3.35) 

(3.36) 

(3.37) 

(3.38) 

Successfully processed call requests. Finally one has to model the process of successfully processed call 
requests Ds. In the model it is assumed that a processed call request is successful if the number of 
completed last tasks is larger than or equal to the number of customers that have departed from 
queue 3, 

S~l 

dDs(t):::: c2µ.z!<D"ul:;.D'uiil<Z<i)>O)I(Y(t)>O)dt + dM 23 (t), D 5 (0). 

d(D Yl(t)-D 2 )(t) :::: [czµz/(Y(l)>O) - µ3Z(t) 

- Czp.z/<D"(1);.D'(t)/(Y(1J>O)/(z(1)>0iJdt + dM z4(t), D YL(O)- D 2 (0). 

(3.39) 

(3.40) 

(3.41) 

The stochastic control system of model 2 consists then of (3.6,3.10,3.38,3.41) with as controlled vari
able the process D 5 of (3.40). Let U be the class of admissable control policies that are measurable 
functions of the past of the processeSin the model. This completes the specification of model 2. 

4. STOCHASTIC CONTROL 

hi this section the overload control problem is formulated as a stochastic control problem for model 
2. 

PROBLEM 4.1. Given the stochastic dynamic system described by model 2 of section 3 with the time index 
set T =[ta. t 11 the class of inpw processes !!_ and the cost function 

J(u) = -Eu[D 5 (t 1) - D 5 (t 0 )] (4.1) 

1, 

= - Eulf C2/L2 I (D''ul;.D1 (l))I(Z(l)>O)I(Y(l)>O) dt]. 
1,, 

Determine an optimal control u' E !!_ such that J ( u •) ~J (u ), for all u E !!_. 

THEOREM 4.2. Assume there exists a function v: T X N 4 -">R satisfying the following dijferentia{ equation, 

v(ti.k 1, ••. ,k 4 ) = 0, 

dv(t,k) I dt - czµ.z/(k,;.o)(k)J(k,>O)(k)h,>o)(k) (4.2) 

+ [v (t,k J +I,.)- V (t,k )],\if (v(1,k, + 1,.)-v(l,k )<0) 



where 

+ [v(t,k1 - l,.,k3 + l,.)-v(t,k)]µ.1k1 

+ [v(t,.,k 2 + l,.)-v(t,k)]A1k1 
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+ [v (t,.,k 2 -1, .)-v (t,k)](l -c2)1£2/ (k,>OJ(k) 

+ [v(t,.,k 2 - l,k 3 -1,.)-v(t,k)]c2P-ilck,;;.o1(k)lck,>O> 

+ [v(t,.,k2 -1,.,k4 + l)-v(t,k)]1£2C2l(k.<O)(k)I(k,>O)(k) 

+ [v(t,.,k 3 - l,k4 - l)-v(t,k)]µ.3k3 

= 0, 

X(t) = (X(t), Y(t),Z (t),(D YL(t)- D 2 (t))), (4.3) 

denotes the state, where kT=(ki,k 2,k3 ,k4)EN4 denotes values of the state and a dot denotes com
ponents of k that remain unchanged. Then 

U"(t) = IR_(v(t,X(t-)+1,.)-v(t,X(t-),.)) (4.4) 

is an optimal control for problem 4.2. 

The interpretation of the optimal control law (4.3) is simple. Here v(t,X(t)) is the estimate of the 
future cost at time t ET given the current state X(t ). Then, 

v (t,X(t - ) + 1,.)- v (t,X(t - ), .), (4.5) 

is the change in the estimate of the future cost if a customer is admitted. Thus the control law (4.3) is 
such that a customer is admitted if in doing so the estimate of the future cost is decreased. The 
optimal control law is of bang-bang type, it takes only the extremal values 0 or I. A similar result 
can be obtained for the stochastic control problem for model I although the equivalent of (4.2) is 
more complex. 

The proof of 4.2 is a standard application of dynamic programming and therefore omitted. It is 
analogous to the proof of theorem 4.1 in [ 13]. In fact the proof is a speciaJ case of the following pro
position. 

PROPOSITION 4.3. Assume given a stochastic control system with as state process a pure jump process 
X:f.!XT-Rn. The jumps can take onljt a finite number of values, say ri, ... ,rmERn. Let X; 
represent the process that consists of the jumps of X of height r; onljt. The intensities of these jumps are 
assumed to be linear in the control process U, 

dX;(t) = [A1;(X(t))+A2;(X(t))U(t)]dt + dM(t), X;(O). 

Given further a cost function, 
t, 

J(U) = Eu[j (c 1(X(s)) + c2(X(s))U(s)) di']. 
lo 

Then the Bel/man-Hamilton-Jacobi equation is linear in the control U, 

minu(l)E[0,1][ dv(t,X(t))/dt + C1(X(t)) + C2(X(t))U(t) 

+ ; ~[v (t,X(t) + r,)-v (t,X(t))][X1;(X(t))+ Xu(X(t))U(t)] ], 
i=l 

and the optimal control law is of bang-bang type, 

(4.6) 

(4.7) 

(4.8) 
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U(t) == IR . (c 2(X(t - ) + 1 ~m [v (t,X(t -)+ r; )-v(t,X(t - ))] A2;(X(t - )) ). (4. 9) 

/-:=:! 

Comments 
I. Instead of the stochastic control problem on a finite horizon one may also consider the infinite hor

izon problem, either for a discounted cost or for an average cost criterion. As in [13], there exists 

under certain conditions a time-invariant control law. Although this has not yet been worked out 

in detail for model 2 it seems that the control law is again of bang-bang type. 
2. The stochastic control problem with partial observations still has to be considered. A realistic 

assumption is that the number of calls-in-build-up, the waiting call requests and the idle time of the 

processor and can be observed. This partially observed stochastic control problem leads to a sto

chastic filtering problem for the state of the control system given the observations. This filtering 

problem has been solved for the hierarchical queueing system of section 2. There it turns out that 

the resulting stochastic control system with the filter system is again linear in the control. By pro

position 4.3 the optimal control law is thus again of bang-bang type. 

3. For the application of control algorithms based on the suggested models and stochastic control, 

more research is necessary. The authors' research program includes an investigation of time

invariant stochastic control laws for average and discounted cost functions, development of algo

rithms for the numerical approximation of such control laws and of a performance analysis. 
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