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We consider a semi-Markov additive process A (-)—that is, a Markov additive process
for which the sojourn times in the various states have general (rather than exponential)
distributions. Letting the L.évy processes X;(-), which describe the evolution of A(-)
while the background process is in state i, be increasing, it is shown how double
transforms of the type [, e~ E[e™*4(") dr] can be computed. It turns out that these

follow, for given nonnegative o and g, from a system of linear equations, which has
a unique positive solution. Several extensions are considered as well.

1. INTRODUCTION

Markov additive processes (MAPs) have proven an important modeling tool in com-
munications networking [13, Chaps. 6 and 7] as well as finance [4,10], whereas
nowadays also applications in biology are envisaged (see, e.g., [9]). This has led
to a vast body of literature; for an overview, see, for instance, [3, Chap. XI]. A MAP is

essentially a Lévy process whose Laplace exponent depends on the state of a (finite-
state) Markovian background process; while this background process is in state i,
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the MAP, say A(-), evolves as a Lévy process Y;(-) characterized by its Lévy expo-
nent @;(-) [S]. MAPs can be considered a nontrivial generalization of the standard
LLévy process, and many results that were established earlier for Lévy processes were
extended to the MAP tframework. In particular, transforms of the type [E exp(—aA(r)),
for given nonnegative o and ¢, can be given explicitly in terms of a matrix exponential
( [3, Prop. 2.1]; compare also [11]).

In a MAP i1t 1s implicit that the sojourn times in the states of the background
process are exponentially distributed. Less 1s known about the situation in which this
exponentiality assumption is lifted. To the best of our knowledge, one of the few
results known [7, Eq. (2.1.3)] 1s for a very special case. The situation considered
in [7] corresponds to a two-state background process, where one of the states (the
“off-state”) corresponding to A(-) being constant and the other state (the “on-state™)
corresponds to A(-) growing with constant speed; the on-times are allowed to have a
general distribution, but the off-times are still assumed to be exponentially distributed.
The result 1s 1n terms of double transforms of the type fom e~ E[e~*A] dt.

The goal of this note is to consider the situation of general sojourn times for all
states of the background process, in which we could call A(-) a semi-Markov additive

process (SMAP). We show that for a given (nonnegative) value of o and ¢, the double
transtforms

satisfy a linear system of equations, here, X(-) records the state of the background
process and IE;(-) denotes expectation given that the background process starts off
in state ¢ at time 0. In addition, we show that this system of linear equations has a
unique positive solution. Bearing the applications in, for example, communications
networking and biology in mind, we let the Lévy processes Y;(-) be increasing, but
we also comment on what changes if we relax this assumption.

We proceed by presenting the formal model description of an SMAP. This sSMAP
A(-) 1s defined as follows (where it 1s assumed that A(0) = 0):

e Let X, be a discrete-time, irreducible Markov chain living on a finite state
space [ := {1,...,N}. Its transition matrix 1s given by P = (pg)%ml , and the
corresponding invariant distribution 1s p.

e Let (B;,)nen be, for any [ € I, a sequence of nonnegative independent and
identically distributed (i.1.d.) random variables, distributed as the generic
random variable B;; the N sequences (B;,)nen are assumed to be mutually
independent. Let X (¢) be a (continuous-time) semi-Markov chain on /, defined
as follows. Supposing X (0) = i, the background process X (-) stays in i for a
period that 1s distributed as B;. Then X (#) jumps according to the transition
matrix P to some new state j. It stays there for a time distributed according to
B; and so forth. It 1s assumed that [£B; is finite for all .

e Whilein state i, A(-) evolves as an increasing Lévy process (also referred to as
“subordinator”) Y;(t). Lévy processes are stochastic processes with stationary,
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iIndependent increments; see, for example, [S] or [3, Chap. IX]. We denote
the Laplace exponent of Y;(t) by ¢;():

REe—a¥i) — ,—@ila)t

The Lévy processes Y;(-) are independent of the background process X (-).

We finish the model description by providing a number of examples of Lévy sub-
ordinators. An example used frequently is that of linear drifts; then ¢;() = «ar;, for
r; > 0. A second leading example is that of compound Poisson processes: While the
background process is in state {, an 1.1.d. sequence of jobs (distributed as a random
vartable J;) arrives according to a Poisson process of rate A;, leading to

p;(e) = A(1 — Ee™%).

For the case of jobs of size 1, this reduces to ¢;(x) = A;(1 — e™%). A last example
relates to the record process of a Lévy process Z(+). Defining T, := inf{r : Z(t) > x},

1t 1s easily seen that the increasing process T, has stationary independent increments
and is theretore a L.évy process.

2. ANALYSIS

For ease, we start in our analysis by considering special increasing Lévy processes:

While in state i, A(-) grows at a linear rate r; > O; later we consider the general case.
In this ““linear drift case, we have

[
A(t) = f ryo dr.
4,

This A(-) 1s often used as input for fluid queuing models; see, for example, [2,6,12].
We are interested in the so-called double transform

*®
Hj(at,q) = [O eI B [e 4D k(=) | d,

where 1t 1s assumed that the background process has just jumped to state i at time

0 (we come back to this issue in Remark 2.3). Interestingly, this transform can be
alternatively written as

1 OO
"{‘]'“ L qe“q’ Ef [BMQA(I) 1 {X(I)mj]] dt =

Ly, q) = Ei[e™ x|

ﬁj(aa q)
q 2

where 7, 1s an exponentially distributed random variable with mean 1/g; we call t,
the “killing epoch™. We first decompose

. —aA(T, —A(T, , 1.
L, q) = Bl e N xcemjir <8y | + Ei e x()mjie 20 5

these terms we call 1 and /5, respectively.
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First, consider /,. Then the killing epoch, t,, takes place before B; (1.e., the end
of the sojourn time in state {). We thus obtain

o0 PO
Iy = f / qewsqe—_ans B, (1)1 (i=/) dr ds.
0 s

Changing the order of integration, we eventually obtain

w—— q
‘"j}q+cxr,-

) = 1y (1 — Li(qg + «ri)),

where L;(-) 1s the Laplace transform of B;.

Now, we consider [,. Observe that if the sojourn time of state i ends betfore the
killing epoch, we can let the Markov chain jump and sample the killing epoch again,
due to the memoryless property. This reasoning leads to

00 pS
I, = f [ (]emsqemar"rfgi(f) dr ds Zpgka%}g (e, (])
0 JO ki

Again interchanging the integrals, we obtain

I = Li(q + ar) Zpikaﬁj(a, q)
ki

We have thus arrived at the following result.

THEOREM 2.1: Fix the final state j and the values of o« and g (assumed nonnegative).
Then the vector

X = (glj(aa Q)v JRN 7$Nj(a! Q))T

is the unique solution of a system of equations Ax = b. Here the entries of the matrix
A :=1— P are given by

Pl

Py 1= Li(q + ari)pi,
which is between O and 1. In addition, the vector b = (by,...,by)" is given by

. q
bgimlgm'ml““Lg !
{ "}q—{-ar,-( (g +ar;))

The uniqueness of the solution follows from the fact that A 1s (strictly) diagonally
dominant for nonnegative & and g and, hence, invertible.

COROLLARY 2.2: Consider the above model, but now with the constant drifts (with
slope r;) replaced by Lévy subordinators Y;(-) (with Laplace exponent p;(c)). Then
Theorem 2.1 goes through, with g + ar; replaced by g + @i(c).
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Remark 2.3: Above we assumed that the background process had just jumped to
state [ at time 0. In this remark we wish to compute the double transform when the
background process starts off in equilibrium at time 0. Assuming that the generic
random variables B;, with i = 1, ..., N, have finite mean, 1t 1s clear that the long-run
fraction of time that the background process X (-) spends in state ; 1s given by

0B,
(Z;V: 1 ©j ) B,

_T['i i

Our goal 1s then to compute

o0
%J(CX, C]) — /O e 4! K, [EMQAU)l{X(I)mj}] dt,

where the subscript = denotes that we start off in equilibrium at time 0. It follows
from the theory of semi-Markov processes that the state of the background process at
time O 1s distributed according to sr. It is important to note, however, that supposing

that this state is i, the time until the first jump is nor distributed according to B;, but
according to its residual lifetime variant B’:

P(B <x) =

1 A
P(B,; dy.
IEIB;[@ (Bi > y)dy

Let fB () be the density of the residual lifetime and 1;(x) be the corresponding Laplace
transform:

]P)(Bz = JC) z{ (Od) o ] “Li(a)
EB,' ’ z - (XEB; .

We obtain that, with %5 i(«, q) 1= g7 (&, q),

fs,(x) =

N
Lrila,q) =) mLya,q),
(=]
where Zi(% g) equals

« 1 i / ' LA
L{i=j) 7+ o) (1 — Li(g + o (&’))) + Li(g + ¢i(a)) | szkﬁg (o, q)

\ ks

note that the .Z(«, g) can be computed using Theorem 2.1. These formulas match
the results for the two-state case in [7, Eq. (2.1.3)].
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Example 2.4: We here consider a two-state SMAP, with py; = pa» = 0. Fixj = 1; for
reasons of symmetry the results forj = 2 follow directly from those forj = 1. Denote

q

[ ) :Li + [ Ilv [ .  —_— —————
gi(ee,q) (g + @i(a)) ni(ce, ) ———

It follows that

A=l 1 ( L Gile, 6]))
I — &1 (o, q) (e, q) \S2(x, q) 1 |
b — (771(% ‘?)(1 T Cl(av Q))! O)T .

Elementary computations yield that

(ﬁuw,q)) e (= §i(@. ) ( ! )
D(a,q)) 1 — ¢ (o, )02 (a,q) \S200,9) )

After lengthy calculations, it follows that, with £;(g) := 1/(q EB;) and suppressing
the arguments of &;, ¢;, and n;,

o 2 | — &)1 — &5
ﬂll(a,q)mm '"“glnl( gl)( g._)

?

| —ti182
: (= )1 — ¢
O

Taking ¢ (a¢) = Oand ¢ () = « (so that we obtain an “on—off source” that alternates
between transmitting at a constant rate 1 and being silent) and assuming the off-times
to have an exponential distribution, we indeed retrieve Eq. (2.1.3) of [7].

3. CONCLUDING REMARKS

The results presented in this note are in terms of double transform that, in general,
cannot be 1nverted explicitly. Instead, one has to rely on numerical techniques to
obtain accurate approximations for probabilities of the type P(A(¢) > x). It is noted
that, recently, substantial progress has been made with respect to this type of inversion
techniques. In addition to the ‘classical’ reference [1], we wish to draw attention on
novel 1deas developed by den Iseger, reported in [8].

When the Lévy processes Y;(-) are not necessarily subordinators, one clearly
needs to work with characteristic exponents rather than Laplace exponents. One can
easily derive the system of linear equations that 1s solved by the transform of the
characteristic function of A(r).

In many applications from practice (in particular, those from biology), one con-
siders the following situation. The process X (-) alternates between two states—say 1
and 2—and 1n state [, particles are generated according to a Poisson process with rate
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Ai 2 0. For general sojourn-time distributions, the double transform of A(r) can be
computed as described in this article. One could, however, assume that every particle
remains in the system for an exponential time (say, with mean 1/u) and suppose that
the goal 1s to find the distribution of the number of particles N(r) that is present at
time . It is clear that the theory that we developed does not apply anymore; observe
that the rate of particles leaving is proportional to the number of particles present (as
In the M/G/oo queue). The analysis presented in this article might serve as a first step

toward finding the distribution of the number of particles N (¢) present at time f or the
corresponding steady-state distribution N (00).
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