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This paper studies the traffic flow in a virtual circuit of a computer communication network with window 
flow control. Due to finite buffer capacity, overflow of data packets is possible. Lost packets have to be 
retransmitted. To maintain the original order of the packets, subsequently sent packets also have to be 
retransmitted, causing a deterioriation of throughput. 

An ap_proximation method, based on a queueing network model, is developed to analyse the throughput 
behaviour. This method leads to exact results tor the single-hop network. For the multi-hop circuit, it yields 
very accurate approx1mat1ons, as 1s illustrated by simulation. 
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1. INTRODUCTION 

A computer communication network consists of a number of facilities (processors, links between 
processors, etc.) shared by competing users (messages or packets). Senders generate messages, which 
are subsequently transmitted over the network to receivers. The acceptance of a message by a 
receiver usually consists of (i) storing the message in a buffer, and (ii) sending an acknowledgment 
(ACK) back to the sender. As soon as the sender receives this ACK, he knows that there is no longer 
any need to store a copy of that message; a buffer space can be emptied. However, when the sender 
has not received an ACK within a certain period of time after transmission (the time-out), or when he 
receives a negative acknowledgment (NACK), he will retransmit that message in order to prevent end­
lessly long waiting times. 

The finite capacities of the network facilities cause conflicts between the messages. Queues of mes­
sages are formed in front of certain facilities, and finite buffers are filled to completion so that mes­
sages are lost and have to be retransmitted. This may lead to a drastic reduction of the performance 
of the system, what is reflected in ever longer waiting times and a decrease of the effective throughput 
of the network. 

If too many messages lay a claim on the available resources in the network, flow control procedures 
are needed to prevent the system from becoming overloaded. Generally a distinction is made between 
local and global flow control. Local flow control is the collection of procedures that regulate the 
traffic within the network, for example between two nodes; global flow control is the collection of pro­
cedures that regulate the externally offered traffic (Gerla and Kleinrock (8)). The principle of global 
flow control is to shift congestion from the interior of the network to the points of traffic admittance 
(Reiser [ 12)). 

In the following our attention will be devoted to a form of global flow control, viz. end-to-end flow 
control, that is being exercised on so-called virtual circuits of the network (a virtual circuit is a fixed 
route, along which messages are transmitted between a particular sender and a particular receiver, see 
Fig. 1). 
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Fig. 1 A virtual circuit. 

The most common end-to-end protocol is the window flow control protocol (see Cerf and Kahn [5] and 
Reiser [12,13]). The principle behind this protocol is that an upper limit is imposed on the number of 
not yet acknowledged messages that can simultaneously be present in the virtual circuit. This max­
imum is called the window size. 
Several variants of the window ftow control protocol are in existence. On<! of them, the sliding window 
protocol, plays an important role in this study, and will therefore now be discussed in more detail (see 
Reiser [12,13]). 
The sliding window mechanism operates as follows (see Fig. 2). 

1. For each message (or packet) that is being transmitted over the virtual circuit, a counter (which is 
initially set to N, the window size) is decreased by one. 

2. As soon as the counter reaches the value zero, no more new messages are admitted to the virtual 
circuit (the sender stops transmission). 

3. Each message is individually acknowledged by the receiver upon reception. As soon as the sender 
receives an ACK, the counter is increased by one. The sender is reactivated when the counter goes 
up from zero to one. 

It is often assumed that ACK's are received after a negligibly short network delay (see Fig. 2). 
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with counter 

k:=k-1 

I 
I k:=k+l ,_ - - -

network 

ACK's 

Fig. 2 Virtual circuit operating a sliding window. 



175 

A virtual circuit can easily be represented by a queueing network. In that case the sender is a 
source whi~h, ~th a certain. intensi.ty, ?enerates customers (messages); these customers travel along 
the su~ssive ~s .of the Vlftual Clfcu1t. Each link can be modelled as a service system with one 
server, with service times t~at equal the transmission times of messages over this link. Thus the service 
time of a message at. a .se~~ system is determined by the length of that message. 
For a further analysis it is important to remark that the sliding window mechanism keeps the sum of 
the total number of customers and of the ACK's present on the virtual circuit, and of the counter, 
constant and equal to N. Consequently, a virtual circuit with a sliding window mechanism can be 
modelled as a closed cyc~c queue~.g network (see Fig. 3, and cf. Reiser [12]). It is thereby of course 
assumed that each node m the ongmal system has a buffer capacity of at least N, so that retransmis­
sion is never. necessar.y .. The queue length at the service system with service intensity ;\now represents 
the counter m the. ongmal ~ystem. Of course, the server with service intensity l /a; represents the 
link between the 1-th and (1+1)-th node of the virtual circuit (with average transmission time a;), 
i=l, ... ,M. 

Fig. 3 Queueing model of the virtual circuit pictured in Fig. 2. 
The queue with infinite service intensity represents the receiver. 

00 

N 

A complete network, with sliding window mechanisms on the virtual circuits, can hence be 
modelled as a queueing network consisting of several closed chains. If we suppose that the transmis­
sion times of one and the same message at successive links are independent (Kleinrock's "Indepen­
dence Assumption", see Kleinrock [ 10]) and negative exponentially distributed, then an exact analysis 
of the joint queue-length distribution in the model is possible (Baskett et al. [l]). However, the compu­
tational complexity rapidly grows with the number of closed chains so that, actually, exact solutions 
are only possible in rather simple cases (see Reiser and Kobayashi (14]). In (12), Reiser presents an 
efficient heuristic method to handle this problem. 

As remarked above, the buffer capacities of the nodes - in particular in a local area network - can­
not always be assumed to be infinite. Therefore it is possible that a message, upon arrival at a node, 
carmot be accepted because the buffer space is full. In that case this message, K say, has to be 
retransmitted by the sender. There are various procedures to let the sender know that K has been 
lost. First of all, a time-out mechanism may be used: a clock starts running at the time a message 
transmission starts, and when no ACK has been received for this message within a certain period of 
time, the time-out, the sender assumes that the message has been lost. Another procedure is the fol­
lowing. When the receiver receives a message with a higher sequence number than K without having 
received K, he sends a negative acknowledgment (NACK) - which contains Ks sequence number -
back to the sender. Usually the order of the messages has to be maintained, in order to prevent the 
need for sorting messages at the receiver. Consequently, not only K has to be retransmitted, but also 
those messages that were subsequently sent. 

These blocking and retransmission phenomena generally make an exact mathematical analysis 
prohibitive. There is a strong need for mathematical models that reasonably accurately reflect the 
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behaviour of real networks with overflow and flow control, and that are still amenable to an exact or 
approximate analysis. The goal of the present paper is to develop and analyse such a model. It is a 
queueing model of a virtual circuit with a sliding window mechanism, in which only the destination 
node has a finite buffer capacity. The model is an extension of the cyclic queueing model of Reiser 
[12], which was described above. An approximation method for the analysis of this queueing model is 
developed. Attention is restricted to the throughput of the circuit, and in particular to the maximum 
attainable throughput (in the case of an infinitely fast source). Throughput is a very important per­
formance measure in these flow-controlled networks. Another useful performance measure, the end­
to-end delay of messages over the network, will be the subject of a future study. 

The rest of the paper is organized in the following way. Below we describe the queueing network 
model which represents a virtual circuit with limited buffer capacity at the destination node_ Section 
2 is devoted to an approximate analysis of the model. This analysis is shown to be exact in the case 
of a single-hop circuit (i.e., no intermediate nodes between source node and destination node)_ In 
Section 3 we compare the approximation results with results obtained by simulation. Several tables 
and graphs are presented, which illustrate the accuracy of our approximation and which expose the 
influence of retransmissions on the (maximum) throughput in a virtual circuit with overflow and flow 
control. In Section 4 we summarize our findings and we mention some points which are considered 
for future research. 

Queueing model description 
We have already seen that a virtual circuit which operates a sliding window protocol can be modeled 
as a closed queueing network. We now add the assumption that the last node of the circuit has finite 
buffer space of size L ( <N). In Fig. 4 the corresponding queueing network has been drawn. 

I/ a1 ~------~ 1 I O'.M-1 I /aM -
D 

overflow N 

Fig. 4 Queueing model of a virtual circuit with buffer overflow. 

The service systems Ql> ... , QM represent the M nodes of the virtual circuit with their outgoing 
links. Q; is a single-server system, i = 1,2, ... ,M. Service times at Q; are independent, negative 
exponentially distributed stochastic variables with mean a;, i = 1,2, ... ,M; service times at different 
queues are also independent. The service times represent transmission times of messages between the 
nodes of the virtual circuit plus, possibly, an additional nodal delay. The receiver is not modelled 
because we assume that as soon as a message has obtained its service at QM, it has reached the 
receiver; the receiver immediately sends an acknowledgrnent back to the sender, and this ACK has 
infinitely short transmission time and delay. In reality ACK's are either piggybacked on other mes­
sages which are sent along the reverse route, or are stand-alone. Stand-alone ACK's are often 
assigned a higher priority. In that case the assumption of infinitely short transmission time and delay 
for ACK's (which are much shorter than ordinary datafiow messages) is not unrealistic; see also 
Remark 2.4. 
We have not modelled the sender, because we assume that its message generation intensity is infinite: 
as soon as the sender has received an ACK, a new message is admitted to Q 1• In this way we can 
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study th~ maximum attainable trn:oughpu.t of the virtual circuit (to study throughput per se we would 
ha~e to include anothe~ queue,. with service rate equal to the intensity of the sender). We have thus 
arnv~ at a closed cyclic queuemg model. The number of customers in the system equals N, the win­
dow size. 

Q 1 •••• , QM-1 have "infinite" waiting rooms (waiting rooms of size at lea~t N -1). QM has a finite 
waiting room of size L -1: at most L customers can be in service or waiting at QM. We assume that 
N>L. When a cust~mer, say K, leaves QM-I and finds L customers in QM upon arrival, then 
overflow occurs. Earlier, several procedures were mentioned to let the sender know that a message 
has been lost (time-out, NACK). In the present study we shall model the NACK mechanism but not 
the time-out mechanism. Our model could be adapted to incorporate the time-out mechanism (cf. 
Remark 2.3), but the minor complications arising from this inclusion would obscure the essence of the 
approximation method. 

Suppose that message K is the first one that is lost. The receiver only notices that K has been lost, 
when he receives a message with a higher sequence number than K. The receiver now sends a NACK 
for K back to the sender. As in the case of ACK's, it is assumed that NACK's experience no 
transmission time and delay. The implications for the queueing model are th~ following. Suppose 
that customer K is the first one to cause overflow, and suepose that customer K is the first one, sent 
after K, to be admitted to QM. As soon as the service of Kin QM is completed, Kand all customers 
who have left Q 1 after K instantaneously return to Q 1 (to fit the overflow phenomenon in the context 
of our closed queueing network, we might introduce a "wait" queue WQ; overflown customers 
immediately enter WQ, and stay there until a NACK has reached the sender). Consequently, 
immediately after the service completion of K in QM, all customers are in Q1• Because the original 
order of the customers has to be maintained, K is the first one to be taken into service in Q 1, 

preempting another service if necessary. Apart from this, the service discipline in all queues is first­
come first-served. 

REMARK I.I 
In the present study it is assumed that, upon the arrival of a NACK at the source node, old messages 
are instantaneously removed from the nodes of the virtual circuit. An interesting question is whether 
a protocol which effectively accomplishes this can be implemented efficiently. Such a protocol should 
work as follows. Suppose A and B are communicating over a virtual circuit. At a certain epoch B 
sends a NACK to A (because B received a message with a wrong sequence number). The source and 
destination addresses of this NACK control message (B and A, respectively) are used to recognize 
messages, sent from A to B, in the buffers of the intermediate nodes of the virtual circuit. At each 
node visited hy the NACK, messages with destination address B and source address A can be 
removed because copies of these messages will be retransmitted upon arrival of the NACK at the 
source node. 

2. ANALYSIS OF THE QUEUEING MODEL 

In this section we study the maximum attainable throughput, T, of the queueing model described 
above, with 

T : = E[number of customers leaving QM per unit of time who do not have to be retransmitted], (2.1) 

or alternatively, 

T : = £[number of customers entering QM per unit of time who do not have to be retransmitted]. (2.2) 

Let 11 denote the j-th epoch, after time O, at which a customer completes service in QM, having been 
the first admitted customer in this queue after the occurrence of overflow; t1 corresponds to the epoch 
of the j-th transmission of a NACK. A basic observation is that the joint queue length process at 
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Q 1, ••• , Qu is a regenerative process (cf. Cohen [7]), with regeneration epochs t 1,t 2 , •••• So the queue 
length process, and in particular also the departure process from Qu -1, repeats itself probabilistically 
speaking after each t1 epoch. Moreover, the lengths r1 : = t1 - t1 - 1 of the successive regeneration 
intervals are independent. Let r denote a stochastic variable with the same distribution as r 1 ,r 2, ..•• 

Because of the regenerative character of the queue length and departure processes, 

£[number of customers entering QM in [O,r] who do not have to be retransmitted] 
T = E[r] . (2.3) 

So we can restrict ourselves to one arbitrary regeneration interval [O,r]. It appears to be natural to 
divide this interval into three consecutive subintervals I i. B, I 2· Here 
I 1 is the period from 0 until the first arrival of a customer at QM (note that all N customers are at Q 1 

at time O); 
B is the period from the end of I 1 until the first occurrence of overflow at QM; 
I 2 is the period from the end of B until the end of the regeneration interval. 
Denote the lengths of these periods by i 1, b, i 2, respectively. Then 

r = i1 + b + i2. 

During the I 1-period no contribution to the throughput is made. During the Ii-period at least one 
customer is admitted to QM, but no contribution to the throughput is made because all those admit­
ted during this period must be retransmitted. Hence only during the B-period a contribution to the 
throughput can be made. Let a denote the mean interdeparture time from QM -I during a B-period. 
Then, cf. (2.3), 

Trivially, 

T=_!_E[b] 
a E[r] 

M-1 

1 E[b] 
a E[ii] + E[b] + £[i2] 

(2.4) 

E[i 1] = 2; a1. (2.5) 
j=I 

Below we introduce one single approximation assumption which immediately yields a simple approxi­
mation for E[b] and £[i2 ] and hence for T. 

Approximation assumption 
During B- and I 2-periods, the arrival process at QM is a Poisson process with intensity I/ a; I/ a 
equals the throughput in the closed cyclic queueing system with N customers, obtained from the one 
under consideration by removing QM-

Before motivating this approximation assumption, we first demonstrate how it yields simple approx­
imations for E[b] and £[i2], and hence for T. 

Approximation for E[ b] 
According to the assumption, Qu behaves during a B-period like an MIMI I queue, say Q, with 
arrival intensity I /a and mean service time °'M· At the beginning of a B-period, the queue length at 
Q (QM) increases from zero to one. Let P.J,b j,k ;;.Q, denote the first entrance time in state k starting 
from state j for the queue length process in Q. Then, under the approximation assumption, 

E[b] = E[P.1,L+iJ- (2.6) 

Introducing 

a:= au /a, 

we can prove the following lemma: 
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£[1-&1,L+il = aM (L+J)(a-J) + (l/a)L+l - I 
(I -a)2 

I 2 3 = a(-L +-L) 2 2 , 

First observe that 

and 

E (JAo, i} = a . 

(2.7) 

a= 1. 

(2.8) 

(2.9) 

Based on the assumption that there are j customers in Q, E (1-'1.J + 1 } can be calculated by just looking 
at the next e~ent (the departure or the arrival of a customer). Denoting by ,,.M a service time at QM, 
by,,. a negative exponentially distributed random variable with £{,,.}=a, and by (A) the indicator 
function of event A, it holds that 

E(rj.J+l} = E('T(rM;o.T)}+E{TM(rM<r)}+E(l-'J-l,J+l(TM<T)}, j = 1,2,.... (2.10) 

From \2.8), because of the mutual independence of 1-'J- l.J +i. TM and r in the right hand side of 
(2.10), 1t follows that 

E {1-'J,J+ 1} = E { T(TM ;;;;.,,.)} + E {TM(TM<T)} +Pr{ rM<r}[E{l-'rl.J} + E {µ1,1 + i}]. 

From this E (1-'J.J + 1 } can easily be solved. Using 

we find 

It is now easy to derive (2. 7) from (2.8), (2. 9) and (2.11 ). 

Approximation of E[i2] 
Under the approximation assumption, 

£[i2) = (L+l)aM + a(-1-1-l- 1• 
+a 

(2.11) 

(2.12) 

Indeed, i 2 consists of L +I services in Q (QM) and, possibly, an idle period. The probability that Q 
(and hence QM) becomes empty in an J 2-period before a customer is admitted, equals (I/ (I +a))L -I 
(remember that admission is not possible before the queue length has decreased to L -1, and that 
Pr{r>rM} =I /(I +a)). 
In fact it is possible to obtain the distributions of b and i 2 under the approximation assumption, but 
they are not needed in the present study. 

From (2.4)-(2.7) and (2.12) the following approximation for the maximum attainable throughput is 
obtained: 
For a¥:!, 

a(L+l)(a-1) + (l/a)L+I - 1 - I 

1-a 2 
T~ ~-------------'..:....-=,L__------;--;~~-~~-;;---;--

1 L 1( ,L=-+__,l)_,,,_(a"----1~)_+~(_1 ~!_a~)L_+_I _-_! - ~ + M"' I ~l 
(L + l)aM + a(--) - + aM - ~ ..:.. ~ 

l+a (J-a)2 1 =1 

(2.13) 
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l_L2 + lL 
2 2 T~ ~~~~~~--'=---__:=---~~~~-:---3 M-1 
I + a ( J_ L 2 + - L) + ~ a1 

2 2 1~-1 
(L .- J)a + a( 2 

We would like to emphasize that (2.13) has been derived after the introduction of one single approxi-
mation as~umption. 

Motivation vf the approximation assumption 
We draw upon results from (3] concerning a closed cyclic queueing model that is identical to the one 
of Fig. 4, with one exception: all waiting rooms are infinite. In [3] exact results from [4] are used to 
analyse the influence of the "slowest server" (the server with largest mean service time) on cycle time­
and sojourn time distributions. Of particular interest to us is the result for the mean cycle time, E[C], 
because the throughput T 0 equals N / E[C]. It is shown in [3] that, when a; and a1 are the largest 
and one-but-largest mean service time: 

a 
E[C] = Na,[l + 0((-::Lf)J, N->oo, (2.14) 

a, 

so 

(2.15) 

As an example. for M == 2. 

a~ - af 1 
== - I-

Approximation of E [CJ by Na, and of T 0 by I /a, yields remarkably accurate results, even when N 
is rather small and a1 is close to a,. The worst case is when all mean service times are equal; in that 
case T0 == N / ((N + M - I )a1 ). The explanation for the high accuracy is that in a closed cyclic sys­
tem the queue with the slowest server is seldom empty - so the departure process of this queue is 
closely approximated by a Poisson process, and the throughput in the system is closely approximated 
by the service rate at this queue. 

Now consider our closed cyclic model, with finite waiting room in QM, during a B-period. We dis­
tinguish two cases. 
Case (i): aM is not the largest mean service time. 
The output rate from QM _ 1 during a B-period is in this case hardly influenced by the presence of 
QM· Hence this output rate may be put equal to the throughput in the cyclic queueing model consist­
ing of Qi. ... , QM - J • The output process is closely approximated by a Poisson process, correspond­
ing to the departure process from the queue with the slowest server. 
The above reasoning still holds if there is not one unique slowest server in the set { Q 1, ••• , Qu - 1 } • 
The assumption of a Poisson process is less justified, but the departure rate from Qu _ 1 is still closely 
approximated by the throughput in the (M - I)-queue cyclic model. 
Case (ii): aM is the largest mean service time. 
If L would have been infinite. the throughput would have been dominated by Qu. But for finite L, 
the other queues still contain at least N - L customers; the queue with the slowest server out of these 
M - I queues will hardly ever be empty, and the output process from QM-I is still determined by 
that queue. 
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A clear illustration of this fact is provided by the model with M =2 queues. During a B-period Q1 
contains at least N - L >0 customers, and the departure process from Q 1 is a Poisson process with 
rate 1 I al> regardless of Q2. Indeed, our approximation procedure (which involves only one approxi­
mation assumption) yields exact results for the case of M = 2 queues. 

The above reasoning can also be applied to the 12-period. The approximation will be slightly less 
accurate, because QM may contain close to L customers during the larger part of this period, and 
because there may be less than N - L customers in {Qi. ... , QM _ 1 } due to overflow. 

In the next section numerical results will be presented, which illustrate the accuracy of our approxi­
mation and which reveal the influence of window flow control and retransmissions on the throughput 
in a virtual circuit. We close the present section with some remarks. 

REMARK 2.1 
Additional motivation for the approximation assumption is provided by referring to the Chandy­
Herzog-Woo theorem (Norton's theorem in the context of electrical circuits; cf. Chandy et al. [6] and 
Lavenberg [11]). This theorem applies to the entire class of product-form networks, but for our pur­
pose it is sufficient to restrict attention to the cyclic product-form network of Fig. 4 with L = oo. The 
principle is as follows. Study one queue, say QM, by replacing the network by a two-queue closed 
cyclic system consisting of QM and one service center, C. C should be "flow-equivalent" to 
{ Q 1> ••• , QM -d. i.e., the service rate at C, when it contains j customers, should equal the arrival 
rate at QM when Qi. ... , QM-I together contain j customers. According to the Chandy-Herzog­
Woo theorem, this replacement procedure yields exact results for QM when Cs service rate with j 
customers is chosen to be the throughput in the (M - I )-queue closed cyclic system { Q 1, ••• , QM - I } 

with j customers. 
If this theorem would still hold in our model, then we could study QM during B- and Ii-periods by 
introducing an arrival rate µ.(j), equal to the throughput in the (M - I )-queue model { Q 1, ••• , QM - I } 

with j customers. But this is just the idea we have used, apart from the fact that we have taken µ(j) 
equal to µ.(N)= I/ a for all j. Note that j-,N -L in the B-period, while the throughput hardly 
varies with the number of customers. We could have calculated µ.(j) for all j-values, but this would 
have complicated the approximation without a clear improvement of accuracy. 

REMARK 2.2 
In [2] the throughput in a virtual circuit is studied for the (idealized) case in which overflow is observed 
as soon as it occurs. Again the regenerative approach is applicable. In this case the 12-period has 
length zero, and at the beginning of an 11 -period there are N - L customers in Q 1 and L customers 
in QM. Using M/M/ I-theory, it is easy to calculate the probability p1 of there being j customers in 
QM at the end of the 11 -period. The mean length of the B-period is subsequently estimated by calcu­
lating mean entrance times E[Ji1,L + 1 ], multiplying by Pi and summing over j. 
In Section 3 we numerically compare the maximum attainable throughput for the case with NACK's 
and for this idealized situation in which overflow immediately leads to retransmission. For the latter 
case, too, the approximation procedure yields exact results when M = 2. 

REMARK 2.3 
The approximation procedure can also be modified to incorporate a time-out mechanism. It is rea­
sonable to assume that the time-out is chosen so large, that the probability of a message time-out 
excess due to very long sojourn times (instead of overflow) is negligibly small. Now a similar regenera­
tion approach as before can be used, with similar choices of the 11 - and B-periods. The 1 i-period 
should be replaced by a period between overflow and time-out excess. The length of this period can 
be estimated. 
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REMARK 2.4 
In the present model the network delay of ACK's and NACK's is neglected. Such delays can be 
modelled by the introduction of an infinite server queue between QM and Q 1- The approximation 
method can easily be adapted to this new situation. 

REMARK 2.5 
A performance measure which has not been discussed until now is the overflow intensity ( 0) defined 
as 

1 O= . 
E[time between two subsequent arrivals of a NACK at the source node] 

Obviously 

0 
E[i i]+ E[b]+ E[i 2] 

Hence, the approximation method for the throughput can also be used to approximate the overflow 
intensity. 

3. NUMERICAL RESULTS 

In this section we present tables and graphs to show the accuracy of our throughput approximation 
(2.13), and to reveal the influence of window flow control and overflow on the throughput. From the 
large variety of possible parameter combinations, some representative examples have been chosen. 
For these examples the approximation results are compared to results obtained by simulation. 
Table I and Figure 5 expose the dependence of the throughput T on the buffer size L; Table II and 
Figures 6a, 6b show the influence of the number of customers N (window size) on the throughput, 
and Table III and Figure 7 consider models with a large number of queues. 
In all tables three possible situations are distinguished: 
(i) max{ a,, i = 1, ... ,M -1} <aM, 
(ii) max{a;, i=l, ... ,M-l)=aM, 
(iii) max{a;, i = l, ... ,M- l)>aM. 

The tables show that the approximation yields very good results, even when the overflow intensity is 
large (as in case (i) above). The relative approximation errors indicated in the tables are defined as: 

approximation result - simulation result X 1 OO% . 
simulation result 

We now discuss the results in some detail. 
In Table I the approximation is tested for different values of the buffer size (L) at QM. T,;m. and 

T approx. denote the simulation result and the approximation result for the throughput, respectively. In 
all cases M = 4, N = 6 and a4 = I. Of course the throughput grows when L becomes larger. 
The last four cases in Table I (with a1 =2>>0.2=a2 =a3 ) provide additional justification for the 
idea behind our approximation assumption: if there is a unique queue in { Q 1, ••• , QM _ 1 } with larg­
est mean service time, then the arrival process at QM during a B-period is very well approximated by 
a Poisson process with intensity l/max{ a;, i = l, ... ,M -1} (cf. Section 2). Indeed, the approximation 
yields extremely accurate results for these cases. 
A typical curve of the throughput as function of the buffer size is shown in Figure 5. The results are 
compared with the throughput in the corresponding model with infinite buffer space at all queues (see 
Figure 3). Of course the throughput remains constant as soon as L becomes larger than the number 
of customers (N) in the system. We also display the throughput for the idealized case in which 
overflow is observed as soon as it occurs (cf. Remark 2.2). As expected, the throughput for that case 
is somewhat higher. 
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In Table II it is shown that the approximation method accurately reflects the influence of the win­

dow size (N) on the maximum throughput. Again the results are presented for a model consisting of 

M = 4 queues. It can be concluded that the dependence of the throughput on N increases when the 

overflow intensity becomes smaller. In the first cases of Table II (with a4 =2>l=max{a1,a2 ,a3 }, 

hence with a hlgh overflow intensity) the throughput hardly depends on N. 

In Figure 6a the throughput, as a function of N, is depicted for a model consisting of four queues of 

which Q 4 has two buffer places (M =4, L =2). To show the influence of the finite buffer space, the 

throughput results for the corresponding model with infinite buffer space are indicated m the same 

figure. It is interesting to see how, due to the finite buffer space (which makes retransmissions neces­

sary in case of overflow), the throughput decreases if N is enlarged from two to three, whereas the 

throughput increases for the model with infinite buffer space. From Figure 6b it follows that this is 

not a general phenomenon. The shape of the throughput curve depends on the relation between am 

and max{a;, i = l, ... ,M-1}. Indeed, for the case of Figure 6b, aM<<max(a,, i = l, ... ,M-1} (small 

overflow intensity) whereas for the case depicted in Figure 6a, aM = max{ a,, i = 1, ... ,M - 1} (large 

overflow intensity). 

Table III contains some results for larger values of M, the number of queues. In all cases M = 11 

and a;= I, i == 1, ... , 10. The approximations for these larger networks are still very accurate. 

Figure 7 shows the influence of M on the throughput. It is seen that the difference with the 

throughput in the model with infinite buffer space becomes smaller when the number of queues grows. 

Obviously this is due to the fact that the overflow intensity in the model with finite buffer space 

decreases when M becomes larger (the customers are spread over more queues). 

L 0'.1 0'.2 0'.3 Tsim. Tapprox. % error 

l 0.5 0.2 0.2 0.359 0.361 +0.6 
2 0.5 0.2 0.2 0.565 0.571 +I.I 
3 0.5 0.2 0.2 0.672 0.682 + 1.5 
4 0.5 0.2 0.2 0.742 0.748 +0.8 

1 I I 1 0.248 0.247 -0.4 
2 I I I 0.415 0.420 + 1.2 
3 1 I 1 0.519 0.524 + 1.0 
4 I I I 0.587 0.589 +0.3 

1 2 I 1 0.217 0.213 -1.8 
2 2 l I 0.348 0.349 +0.3 
3 2 I I 0.415 0.417 +0.5 
4 2 I 1 0.449 0.451 +0.4 

l 2 0.2 0.2 0.240 0.242 +0.8 
2 2 0.2 0.2 0.372 0.374 +0.5 
3 2 0.2 0.2 0.438 0.436 -0.5 
4 2 0.2 0.2 0.467 0.467 +0.0 

Table I. Comparison of approximation results with simulation results for various values of the buffer 

size (L). In all cases M =4, N ==6, a4 =I. 
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N L °'1 °'2 °'3 a4 Ts;m. T approx. % error 

4 3 1 0.5 0.5 2 0.336 0.335 -0.3 
6 3 1 0.5 0.5 2 0.336 0.335 -0.3 
8 3 1 0.5 0.5 2 0.338 0.336 -0.6 

10 3 1 0.5 0.5 2 0.338 0.336 -0.6 

4 5 2 1.5 1.5 2 0.323 0.323 0.0 
6 5 2 1.5 1.5 2 0.339 0.339 -0.0 
8 5 2 1.5 1.5 2 0.341 0.344 +0.9 

10 5 2 1.5 1.5 2 0.342 0.347 + 1.5 

4 2 0.2 1 1 0.1 0.770 0.778 + 1.0 
6 2 0.2 1 1 0.1 0.825 0.836 +1.3 
8 2 0.2 1 1 0.1 0.858 0.868 + 1.2 

10 2 0.2 I I 0.1 0.875 0.888 + 1.5 

Table II. Comparison of approximation results with simulation results for various values of the win­
dow size (N). In all cases M =4. 
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N L an T,;m. T approx. % error 

30 5 5 0.138 0.136 -1.4 
30 5 I 0.562 0.565 +0.5 
30 5 0.2 0.767 0.769 +0.3 

30 10 5 0.164 0.162 -1.2 
30 10 l 0.695 0.713 +2.6 
30 10 0.2 0.767 0.769 +0.3 

Table III. Comparison of approximation results with simulation results for the case that the system 
consists of M = 11 queues. In all cases a; = I, i = I,.., 10. 
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Fig. 7 The influence of the number of queues (M) on the throughput. N = 8, L = 3, a;= I, i =I, ... ,M. 
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4. CONCLUSIONS 

A simple throughput approximation for virtual circuits in computer communication networks with 
window ftow control and overflow has been derived and investigated. The results can be summarized 
as follows. 

The approximation is exact for the case of a single-hop circuit (no intermediate nodes between the 
source node and the destination node). 
In general, the relative error of the approximation is at most a few percent. 
The approximation formula (2.13) and its construction give much insight into the qualitative and 
quantitative behaviour of the throughput as a function of several system parameters (window size, 
buffer size of the destination node, number of nodes, transmission speeds). 

3 For example, the throughput is seen to be almost independent of the window size when the 
overflow intensity is high. 

Finally, we mention some points which are considered for future research. 

(i) The end-to-end delay of messages over a virtual circuit of the network is an important performance 
measure. The approach of the present paper may be useful for obtaining end-to-end delay approxi­
mations. Preliminary results are contained in [2]. 

(ii) The ultimate goal of studies like the present one, is to obtain insight into the behaviour of a net­
work consisting of several virtual circuits. When studying one circuit of such a network in isolation, 
the presence of other circuits can be represented by external traffic entering and leaving the nodes of 
the isolated circuit. In the case of infinite buffer sizes and negative exponentially distributed service 
times (cf. Fig.3), the assumption that the external arrival streams are Poisson leads to an easily 
analyzable queueing network of BCMP type ( cf. Hayes [9], Section 11.3.2). It appears that one can 
eliminate the external streams in this case by aa'Jjusting the service rates. If node i has mean service 
time a; and external arrival rate A;, then I/ a; ~,,.,u = I/ a; - A; (and no external traffic) leads to 
exact throughput results for the virtual circuit. This justifies the study of virtual circuits withuut 

interfering traffic, in the case without buffer size restrictions. It remains to be investigated whether a 
similar approach can be used when not all buffer sizes are infinite. 

(iii) In relation to Remark I. I concerning the instantaneous removal of messages from the nodes of 
the virtual circuit, we mention the investigation of a model in which old packets are neither removed 
nor ignored. Generally speaking, the presence of old packets in the network is the source of 
throughput degradation in a situation with an increasing offered load. The method described in the 
present paper can easily be modified to incorporate the presence of old packets; introduction of one 
additional approximation assumption is needed. Preliminary numerical results are encouraging. 
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