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MULTIPLE GRID AND OSHER'S SCHEME FOR THE EFFICIENT SOLUTION OF 
THE STEADY EULER EQUATIONS 

P.W. HEMKER and S.P. SPEKREIJSE 
Centrum voor Wiskunde en lnformatica, 1009 AB Amsterdam, The Netherlands 

An iterative method is developed for the .solution of the steady Euler equations for inviscid flow. The 
system of hyperbolic conservation laws is discretized by a finite-volume Osher-discretization. The iterative 
method is a multiple grid (FAS) iteration with symmetric Gauss-Seidel (SGS) as a relaxation method. Initial 
estimates are obtained by full multigrid (FMG). In the pointwise relaxation the equations are kept in 
block-coupled form and local linearization of the equations and the boundary conditions is considered. The 
efficient formulation of Osher's discretization of the 2-D non-isentropic steady Euler equations and its 
linearization is presented. The efficiency of FAS-SGS iteration is shown for a transonic model problem. It 
appears that, for the problem considered, the rate of convergence is almost independent of the gridsize and 
that for all meshsizes the discrete system is solved up to truncation error accuracy in only a few (2 or 3) 
iteration cycles. 

1. Introduction 

Recently the multiple grid method has become a well-established technique for the 
acceleration of relaxation-iterations to solve the sparse systems that arise from discretization 
of elliptic partial differential equations. The advantage of multigrid over other acceleration 
techniques is the fact that-under suitable, but quite general circumstances-the rate of 
convergence is independent of the size of the system to be solved. For other methods the rate 
slows down rapidly for finer discretizations when the systems get larger. This makes the 
multiple grid method superior to other methods-at least for very large elliptic systems. 

With success the multiple grid technique has also been applied for other types of equations, 
such as parabolic partial differential equations and integral equations. Based on the pioneering 
work of Brandt [2] it is expected that by the multigrid method, for many equations, a 
sufficiently accurate approximate solution can be computed in an amount of work that is 
equivalent to a small number of evaluations of the (nonlinear) operator. 

Also for the steady solution of hyperbolic equations, such as the time-dependent Euler 
equations, the multiple grid technique has been used for the acceleration of the solution 
process [6, 7, 16, 18]. In particular when no accurate representation of the time dependence is 
required, a suitable acceleration may be expected. 

In this paper we treat some aspects of the solution of the steady Euler equations. We show 
that for a-nontrivial-standard model problem, multiple grid iteration yields again a process 
of which the rate of convergence is independent of the size of the system. The problem treated 
is the transonic flow of a gas in a channel with a circular bump. No special provisions are made 
with respect to the solution that is to be found. The shock is captured by the discretization. 
Experiments with the computation of flows around an airfoil show a similar behavior. 
However, for flows with a smaller Mach number the convergence rate of the multigrid 
iteration slightly decreases, cf. [5]. 

0168-9274/86/$3.50 © 1986, Elsevier Science Publishers B.V. (North-Holland) 



476 P. W. Hemker, S.P. Spekreijse I Multiple grid scheme for Euler's equation 

We treat the Euler equations for two dimensions. However, all techniques used can be 
extended in a straightforward way to the 3-D Euler equations. 

In the following sections we give the details of the computational method. In Section 2 we 
treat the finite-volume technique for the conservative discretization of the system of conserva
tion laws, and we describe the implementation of the Osher approximate Riemann-solver in 
some detail. This description shows that the implementation of Osher's scheme is not so 
complex as is generally believed, provided that the right dependent variables are used. Two 
variants of Osher's scheme are shown, one being somewhat less expensive than the version 
originally proposed. 

In Section 3 the treatment of the different possible boundary conditions is given. Similarly 
to what is seen for elliptic boundary value problems, it seems essential for a straightforward 
multigrid approach to have a discretization of the boundary conditions which is completely 
consistent with the discretization of the interior of the domain. This might be a reason why 
Osher's scheme-based on Riemann-invariants, just as a proper boundary condition treatment 
does-combines so well with multiple grid. 

In Section 4 we give a description of the linearization of the discretization. Here again a 
good choice of dependent variables gives a convenient description and leads to a rather simple 
implementation. The linearization might be used for the solution of the nonlinear discrete 
system. Then the linear multigrid technique may serve the efficient solution of the linear 
system that arise in a Newton-type process. This approach is taken by Mulder [10]. In the 
present paper we use linearization in the nonlinear pointwise relaxation method. In each point 
the 4 x 4 nonlinear systems are approximately solved by one or more iterations of a 
Newton-process. 

In Section 5 the FAS- and FMG-multigrid techniques are described and in Section 6 
numerical results are shown. In the last section some conclusions are summarized. 

2. Finite volume Osher discretization for the 2-D steady Euler equations 

The 2-D Euler equations can be written in conservative vector form as 

a a a 
at q + ax f( q) + a y g( q) = 0 ' (2.1) 

on an open DC IR 2, where 

( 
pu ) puz + p 

f= puv ' 
u(E + p) 

( ::u ) 
g = PV.2 + p . 

v(E + p) 

(2.2) 

Here p, u, v, p and E are respectively density, velocity components in the x- and y-directions, 
pressure and total energy per unit volume. Furthermore, E may be expressed as 

E = p · (e + Hu2 + v2 )), (2.3) 

where the specific internal energy e is related to the pressure and density by the perfect gas 
law 
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p = ( y - l)pe, (2.4) 

with y denoting the ratio of specific heats. 
In (2.2) the state-vector q is given in the conservation variables: mass, momentum and 

energy per unit volume. In some cases the same state is more conveniently described by the 
variables (p, u, v, p) or by (c, u, v, z), where c = \f yp/p is the local speed of sound and 
z = ln(pp -y) is a measure for the specific entropy. 

To discretize (2.1), the domain [1 is subdivided into disjunct quadrilateral cells £2 .. in a 
i, I 

regular fashion such that 

[1 = u [1 ... 
i,j l,f 

We restrict ourselves to subdivisions that are topologically equivalent with simple square 
meshes, such that [li,j and Di,J:!:.l or [li:!:.I,j are neighboring cells. Further we denote the 
neighbq_rs of_ D;, 1 by [liJ,k' (k = N, S, E, W), and a common wall between D;,j and [lii,k by 
I';1 ,k = £1;1 n £2;1 ,k. The restriction to this kind of regular geometry is not necessary for the 
discretization method but leads to simple data structures when the method is implemented. 

By integration of (2.1) over D;,1 we obtain 

:t J L . q dx dy + Ln . (f. nx +g. ny) ds =a (2.5a) 
l,j l ,j 

or 

(2.5b) 

where V;1 is the volume of cell ni.J and q;1 is the mean value of q over D;,r Further we 
introduce the notation 

r (f. n + g . n ) ds = f;. k . s .. k ' J I';j ,k x y lj, lf, 

where s .. k is the length of I'. k and J,.. k is the mean flux outward D; 1. over the side I';, k· Now it lj, l], l], • • 

is easy to see that, if [1 . . and £2,., ,., are neighbors with a common side 
I, J • 

rk = r ... k, If, l f , 

then s k = s., ., k' and f;. k = -f,.,., k" The space discretization of (2.1) is done according to the 
lj, I f , If, I ] , 

Godunov principle (cf. [4]): the state q(t, x, y) is approximated by qit) for all il;,1 and the 
mean fluxes f;. k are approximated from the states in the adjacent cells. For this purpose, a 
computed fl.u~·f, .. k(q .. q .. k) is introduced to replace f, .. k· Thus we obtain the semi-discretiza-

''· I]' lj, If, 

tion of (2.1): 

v;i :t qij = - t S;j,kfj,k( qij' qij,k) ' 

and for the steady equations we obtain the discrete system of equations 

Nh(qh)=O, 

which is short for 

(Nh( qh));i: = L s;J.kfj.k( q;1, q;1,k) = 0 for all i, j. 
k 

(2.6) 

(2.7) 
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If the cell nij is adjacent to the boundary of n, i.e. I';j,k can, then a state qij,k is possibly not 
available. In that case fti.k is computed from qii and the boundary conditions at I';j,k· 

The main difficulty in the discretization of (2.1) is the construction of a proper approxima
tion f;j,k for a given qii and qij,k' A possible approach is to consider the state q(t, x, y) at t = t0 
as piecewise constant over the cells D;i and to compute (approximately) the fluxes over the 
walls as a quasi one-dimensional problem during a small time (t0 , t0 +At), by solving the 
Riemann-problem for gasdynamics [4, 17]. These fluxes are used as f;i,k(q;r qii.k). Approxi
mate Riemann-solvers have been proposed by Steger-Warming [19], van Leer [4, 20, 21], Roe 
[14, 15] and Osher [11, 12). 

The possible irregularity of the mesh is easily dealt with by making use of the invariance of 
the Euler equations under rotation of the coordinate system for the independent variables x 
and y. Let the normal of a skew wall I';i,k' directed from flu to nii.k' be given by 
(nP µ 2 ) =(cos </>;i,k' sin <!>;j,k), then the simple local rotation 

reduces the computation of f;i,k to the approximate solution of the one-dimensional Riemann 
problem in the x-direction, i.e. 

(2.8) 

where 

The numerical flux function f will be discussed later in this paper. We see that the 
geometrical data about the mesh, needed to set up equation (2.7) are only the quantities s;j,k 
and <f>ij,k for each cell wall. Handling the irregular mesh by this finite-volume approach, there 
is no need to introduce a transformation in the equations that are used. They remain simply in 
their form (2.1)-(2.2). Further it is immediately clear that-in this way-the discrete system is 
fully conservative, also for the nonuniform mesh. 

An additional advantage of this finite-volume approach is that we can easily set up the 
residual Nh( qh) and its linearization dNh( qh) I dqh by assembling the contributions that are 
computed for each cell wall separately. This assembling procedure is completely analogous to 
the finite element technique, where the construction of the load vector and the stiffness matrix 
is done by assembling the element stiffness matrices. 

In this paper Osher's approximate Riemann-solver is used for the numerical flux f( %' q1 ) 

in (2.8). In the remainder of this section we give a short description of this function. In fact, 
we distinguish two strongly related variants of it, viz. the 0-(original) variant and the 
P-(physical) variant. The advantages of the Osher discretization procedure can be found e.g. 
in [11, 12]. Its main disadvantage seems its supposed complexity, when compared with other 
approximate Riemann solvers. The main objective of our exposition is to show that the 
scheme can be implemented in a simple and straightforward way. Further we need this 
description for further reference and to show (in Section 4) how its linearization is obtained in 
a convenient way. 

According to Osher, in (2.8) the numerical flux function is defined by 
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where lfq(w)I is the absolute value of the matrix fq(w), as defined by 

lfq(w)I := RIAIR- 1 • 

479 

(2.9) 

Here IAI is the diagonal matrix of the absolute values of the eigenvalues ,\ of fq(w). These 
eigenvalues form the diagonal matrix A in the eigenvalue-eigenvector decomposition 

fq(w) = RAR-1 • 

In (2.9) the integration path is still to be defined, but we know that the matrix has a complete 
set of eigenvalues ,\k viz. A1 = u - c, A.2 = ,\3 = u, ,\4 = u + c (where c = V yp/p is the speed of 
sound) and a set of 3 corresponding eigenspaces RP R2,3 and R4. 

The integral s:~ lfq(w)I dw is computed along a path q = q(s), 0~s~1, q(O) = qo, q(l) = 
q1 • This path is divided into subpaths rk, k= 1,2,3, connecting the states q(k-l) 13 and qk 13 . 
These subpaths I'k are constructed such that on I'k the direction of the path aq(s) I as is 
tangential to Rm, m = m(k), an eigenvector. Feasible choices for Rm(k) are given in Table 1. 

Table 1 
The choice m(k) and (between brackets) the tangential eigenspace along I'k for Osher-type methods 

Variant 0 Variant P 
m(k) m(k) 

k=l 4 (R4) 1 (R1) 
k=2 2,3 (R2.J 2,3 (R2.3) 
k=3 1 (R,) 4 (R4) 

The states q113 and q213 are determined by means of the Riemann invariants r//('(k)( q(s)), 
l 7'= m, l = 1, 2, 3, 4, which are invariant quantities along rk. These .Pr(q), m = 1, 2, 3, 4, are 

4 1 
i/J3=i/J3=v, 

4 1 
i/J1=1/14=z, 

i/J~ = u + 2c/(y- l), I/I~ = u - 2c I ( y - 1) , (2.10) 

2 3 2 3 
i/J1=1/J1=u, t/J4=t/J4=p, 

where c=\lyp/p, z=ln(pp-y). Thus, q113 and q213 are determined from% and q1 by the 
equations 

,1,m(k)( ) _ ,1,m(k) ( ) 
'f'/ q(k-1)/3 -'l'l qk/3' k=l,2,3, l=rfm(k). 

These are 8 equations for the 8 unknowns in q113 and q213 . 
Expressing the state q in the dependent variables u, v, c and z, we obtain directly z 113 = z0 , 

z 213 = zi> v113 = v0, v213 = v1 • Introducing a= exp((z1 - z0 )/(2y )), p 113 = p 213 leads to 

c213 /c 113 = exp((z213 - z 113 )/2y) =a, 

and we arrive at the linear system 

U113 ± 2c113 /( y - 1) = u0 ± 2c0 /( y - 1) =: '1"o , 

U213:;: 2c213 /(y-1) = U1:;: 2c1 /('Y-1) =: P1' 

(2.11) 

(2.12) 
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Here, the upper sign stands for the P-variant and the lower sign for the 0-variant of the Osher 
scheme. This convention will be used throughout the remainder of this paper. 

A meaningful solution exists for the P-variant as long as no cavitation occurs ('l/'0 > P1 ); for 
the 0-variant the path q0 - q 113 - q213 - q1 does not exist in the (unlikely) case of two states 
% and q1 for which P1 > P0 • (Notice that the meaning of P0 , P1 is different for the 0- and 
P-variant!) 

This system is easily solved as 

The relevant eigenvalues at the points qk 13 , k = l, 2, 3, are 

Ao:= ,\m(1)(%) = Uo +Co' 

A113 := ,\m(I/q113) = U113 + cl/3' 

A!/2 := Am(2)(q113) = ,\m(2)(q2/3) = ul/3 = U213' 

A2/3 := Am(3)(q2;3) = U213 ± Cz13' 

Al:= Am(3)(q1) = U1 ±cl. 

(2.13) 

(2.14) 

Because A1,4 are genuinely nonlinear eigenvalues, Am<kl is monotonous along I'k, k = 1, 3, and 
Am(k)( q(s)) cha~ges_ sign at most once along these I'k. E.g. a sonic point qs1 with Amol( q(s 1)) 

exists on Fi if A.0 • A.113 :::s 0. This sonic point is computed from the linear system 

Vs =Vo' Us:+ Cs= 0, 
(2.15) 

zs = Zo ' us± 2c,I( y -1) = P0 . 

Similarly, a sonic point qs2 is found on I'3 if A213 • .A1 :::s 0. 
Along the path q(s), 0:::ss:::s1, Am(k)( q(s)) may change sign only at the points q113 or q213 

and at sonic points q51 or qs2 (if they occur). 
Thus from (2.9) we obtain 

f( q0 , q 1 ) = f( %)(sign( A0 ) + 1) /2 + f( qs 1)(sign( A113 ) - sign( A0 )) /2 

+ f( q113 )(sign( A112 ) - sign(A113 )) /2 

t f(q 213 )(sign(A213)- sign(A112))/2 

+ f( q52 )(sign( A1 ) - sign( A213 )) /2 + f( q1)(1- sign( A1 )) /2. 

In most cases many eigenvalues A will have equal signs and f( % , q 1) is computed as the sum 
of only_ a few f(q). Fur~her we notice thatf(%, q1) is a continuous function in all A's and we 
see ±A113 <_ ±A112 < ±,\213 . Because of this continuity we may neglect the case of a zero 
eigenvalue A and we compute the numerical flux as 
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then f( %) 

+ if .A0 -.A.113 < 0 then sign ( A113 )- f( q si) 

+ if .A113 • .A112 < 0 then ± f( q113 ) 

+ if .A112 • A.213 < 0 then ± f( q213 ) 

+if .A213 • .A 1 < 0 then sign ( i.1 ) • f( qs2 ) 

+ if .A 1 < 0 then f( q 1 ) • 
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'Ihis expression seems rather complex. However, if the ordered sequence A0 , A113 , A112 , A213 , 

.A 1 can be split in two parts (possibly empty), the first of which contains only negative and the 
second only positive signs, then a q exists such that simply f( %' q1) = f( q ). We identify this 
state q as the state of the gas at the cell wall. For physically realistic situations, in the 
0-variant this occurs only in the supersonic cases (all i's positive or negative). Then the 
scheme corresponds to a pure upwinding scheme. For the P-variant, however, it occurs not 
only for these supersonic cases, but on a sonic line and for subsonic flow as well. If we exclude 
the unlikely cases that u 112 < 0 and u0 - c0 > 0, or u 112 > 0 and u 1 +c 1 < 0, for the P-variant 
numerical fluxes near a shock are the only ones for which f( %, q1) is found to be a sum of 
more (viz. 3) terms f(q). This makes the P-variant attractive from the point of view of 
efficiency. 

3. Boundary conditions 

The flux of the conservative variables f;j,k, at the boundary of the domain I2 is partially 
determined by qij' the state of the flow near the boundary and partially by ~he boundary 
conditions. To compute the value of these f;j,k we determine first the state qB = qij,k at the 
boundary an, depending on qij and on the boundary conditions. Thenf(q;j' qB), as described 
in Section 2, is used to compute the boundary flux. 

In order to see what boundary conditions are required at the boundary for a properly posed 
problem, we first consider a time-dependent one-dimensional problem on a half-line 

a q 1 at + a f ( q) I at = o , 
In quasi-linear form we write (3.1) as 

qt+ A( q)qx = 0, 

where A(q) = df!dq. 

(3.1) 

(3.2) 

For the hyperbolic system (3.2), a complete set of real eigenvalues A( q) and linearly 
independent eigenspaces R( q) exists and we obtain 

q, + R( q)A( q)R- 1( q)qx = 0. 

Assuming the existence of a w( q) such that 

dwl dq = R- 1( q), 

we find the uncoupled system 

w1 + A(w)wx = 0. 

(3.3) 

(3.4) 

(3.5) 
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Clearly, for any component W; for which A;~ 0, the value w;(t, 0), t;:::,: 0, is determined by 
w;(O, x), x;:::,: 0. For these components the characteristics leave the domain x > 0. However, for 
components for which A.;> 0, characteristics enter the domain and boundary conditions are to 
be given; i.e. for each A;> 0 a boundary condition B;(w, t) = 0 is required and the complete 
set of conditions should yield a non-singular dB/dwi for all variables wi for which Ai> 0. 
Returning to the original dependent variables q, this means that a set boundary conditions 
B;(q, t) = 0 is required such that 

(dB/dq) · (dqldwi) = (dB/dq)R+(q) (3.6) 

is non-singular. 
R(q)=dqldw is the set of eigenvectors of A(q) and {dq/dwil Ai>O}=R\q) is the 

rectangular matrix of eigenvectors corresponding to the positive eigenvalues. 
For the discretization of the 2-D problem (2.1) near the boundary, the boundary conditions 

are considered as locally one-dimensional. This is completely consistent with the discretization 
over internal cell walls as treated in Section 2. 

To satisfy the boundary conditions in the discrete equations (2. 7) we determine qB, the 
state at the boundary, such that it satisfies the boundary conditions and the equality 

f;j,k = j( qB) = f( qB' q;) · (3.7) 

In view of (2.9) the second equality implies 

JqiJ fq(w) dw = Jqii l/q(w)I dw, 
qB qB 

(3.8) 

i.e. qB should satisfy the boundary conditions and should be connected with qii by a path q(s) 
such that 

(3.9) 

Such a path can be constructed again as a sum of subpaths along eigenvectors, as described in 
Section 2 for qii and qij,k· Now only the eigenvectors corresponding to the positive eigenvalues 
can be used and the number of subpaths depends on the type of the boundary conditions (i.e. 
depends on the number of ingoing and outgoing characteristics). The endpoints of the I'k are 
comp.uted by means of the Riemann invariants (as in Section 2) and the boundary data. 

We consider 5 different cases: 
(1) Supersonic inflow: All,.\> 0. A full set of 4 boundary conditions is necessary; B( qB) = 0 

specifies q8 completely; q8 is independent of qii; f( q8 , q;i) = f( q8 ). 

(2) Supersonic outflow: All,.\< 0. No boundary condition is to be specified; q8 = qii satisfies 
the relation f(q 8 , q;) = (f(q;i). 

(3) Subsonic inflow: u - c = A. 1 < 0, u = A2 ,3 > 0, u + c = ,.\4 > 0. The integration path 
follows R2 _3 ( q) and R4 ( q). Here we can distinguish between two possibilities: 

(a) variant (P): q8 is connected to an intermediate state q1 along R2 3 ( q) and q1 is 
connected to q;i by R4 ( q); or · 

(b) an Osher path (variant 0): qB and q1 are connected by R 4 (q), and q1 and qii by R2,3. 
In both cases the determination of qB and q1 involves 8 unknowns. Three boundary conditions 
are given and 5 relations of the type (2.10), viz. for tf!~, t{I~, tf!~, tf!!, tf!~, are available. In order 
to satisfy (3.9) no sonic point may appear between q8 and q;i· 

(4) Subsonic outflow: A1 < 0, A2 ,3 < 0, A.4 > 0. The integration path runs along R 4 ( q) and q;i 
and q8 are connected by 



P. W. Hemker, S.P. Spekreijse I Multiple grid scheme for Euler's equation 483 

(3.10) 

The single boundary condition B( qB) = 0 and the 3 relations (3.10) determine qB. Again, no 
sonic point may appear between qB and qii" 

(5) Solid wall: A1 <0, A2,3 = 0, A4 > 0. Here a qB can be computed as in the case of subsonic 
outflow, where u = 0 serves as the boundary condition. However, this state at the boundary qB 
is not uniquely determined. Any other state q~ which shares the state variables p (pressure) 
and u = 0 with qB satisfies the relation /( qB) = /( q~) = f( qB, q;j) as well. Now there are 
different boundary states, which-however-all infer the same boundary flux, i.e. they all 
satisfy our requirements. 

Example (subsonic inflow). Assume that at a subsonic inflow left-end boundary uB, vB, zB are 
given. In the cell near the boundary the state qij is given by qii = (cij• U;r vij• z;i)T, which 
should satisfy u;j > 0, U;i + C;j > 0. Then qii and qB are related by paths along R2 ,3 ( q) and along 
Riq). Let the intersection point of both paths be q1 = (cI> uI> vp z 1). Two possibilities exist: 
either q;i and q1 are connected by R2 ,3( q) and q1 and qB by R 4 ( q) (0-variant), or qij and q1 are 
connected by R 4( q) and q1 and q8 by R2,3 ( q) (P-variant). Consider the latter possibility; we 
have the relations 

Pr= PB• 

Thus, we find Ur= uB, v1 =vii' Zr = zii• c1 = C;i- Hy- l)(u;i- uB); PB= p 1 is calculated from 
c1 and Zr and finally cB is obtained from PB and zB. 

Example (subsonic outflow). Assume that at a subsonic outflow left-end boundary the 
pressure p is given. In the cell near the boundary the state qii is given by qij = (c;i' uii• vii' Z;i)T, 

which should satisfy u;i < 0, u;j - c;i < 0. Then q;; and qB are related by (3.10) yielding V;; = vB, 
z;j = zB, U;; - 2c;il( y -1) = uB - 2cB/( y -1). Together with the prescribed PB this results in 

qB = (cB, uij - 2(c;j - c8)/( ")' -1), vij• Z;i), 

where 

y I d ( -z .. ) 11 'Y CB =ypB PB an Pa= PB e '1 • 

In (3.6) we found for a properly posed problem the requirement of a nonsingular 
(dB/dq)R+(q) for the boundary conditions B;(q) = 0. This provides us with a measure for the 
quality of the boundary conditions. We can quantify the well-posedness of a set of boundary 
conditions B(q) = 0 by the angle between the subspaces spanned by R+(q) and (dB/dq? 
E.g. for subsonic outflow the angle between VB(q) and Rlq) determines the quality of the 
boundary condition. 

4. Linearization 

Both in the case of a complete linearization of (2. 7) and in the case when only local 
linearization is applied in a nonlinear relaxation method, we need convenient expressions for 
dNh(qh)/dqh. From (2.7) we obtain 
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=O otherwise. 

Now, in view of (2.8), the computation of dNh(qh)ldqh reduces to evaluations of 

f(o>(qo, qi)= af(%, q1)la% and !(1)(%, q1) = af(q0 , q1)/aq1. 

(4.1) 

(4.la) 

(4.lb) 

(4.lc) 

A matrix dNh(qh)ldqh can be assembled per cell wall as explained for Nh(qh) in Section 2. 
If in (4.la) qij,k = q8 is a boundary state, then a relation qij,k = q8 (q;) exists and the 

corresponding term in ( 4. la) is to be read as 

d 
= Sij,k dq .. hj,k( qij• qB( q;)) 

If 

= s;j,k ddq .. {T-1f(Tq;r Tqa(q;))} 
If 

(4.2) 

Here T denotes Tij,k as in (2.8). The derivatives dq8 / dqij depend on the type of boundary 
condition and are in each case derived from the relations q8 (qii) as described in Section 3. 

We noticed already that the integration paths are easily expressed in the dependent 
variables u, v, c and z. The numerical flux and its partial derivatives are also conveniently 
expre.ssed in these variables. The flux-vector f = (pu, pu2 + p, puv, u(E + p))T is found as a 
function of q = (c, u, v, z)T by noting that 

p = (e-zc2/y)11(,,-1), P = pc2/y, 

E = ! p(u2 + v 2 ) + pc2/'Y( 'Y -1). 

In these variables the Jacobian matrix of the flux 

df a(pu, pu2 + p, puv, u(E + p)) 
dq = a(c, u, v, z) 

reads as 

( 
hpu/c 

f'( )= df = hp(u2+c2 )/c 
q dq hpuv/c 

hu(E + p + pc2 )/c 

p 0 
2pu 0 
pv pu 

pu2 + E + p puv 

- !hpu ) 
- !h(pu2 + p) 

- !hpuv ' 
-~hu(E + p) 

(4.3) 

where h = 2/( 'Y-1). In terms of this matrix, from (2.17) follows 
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a . -
- f( qo, qi)= if Ao> 0 then f'( %) 
a% 

+if .A0 ·1113 < o then sign (A113 )f'( q51 )(aqs11 a%) 

+if A113 ·1112 < O then ±f'( q 113 )(aq113 / a%) 

+if A112. 12/3 < 0 then ±f'( q213)(aq213I aqo). 
(4.4) 

The derivatives aq/a%, q = qs1' q113 , q213 , are derived from the differentiable relations 
(2.11)-(2.15), which yield 

Hence 

a aa = -- az 2y 0' 

2 
a'IJi0 = au0 ± --1 ac0 , y-

oU112 = 1: a [ oPo + y(y~ 1) C113 dZo J' 
oc113 = +Hy - l)[au 112 - a'1Ji0], ac213 =±Hy - 1) au 112 , 

2 
( 'Y + 1) 

aqsl 2 
= +---

0% -(y+l) 

0 
0 

1 
a+ 1 

+(y-1) 
-(y+l) 

( 'Y - 1) 
( '}' + 1) 

0 
0 

0 0 

0 0 

1 0 
0 1 

+ y-1 0 
- 2(a + 1) 

_!_.~ 
2y a+ 1 

aql/3 2 a 
= +--·--

a 
a+ 1 

0 

- 1 C213 

O + y( y - 1) . a + 1 aqo - '}' - 1 a + 1 

0 
0 

1 

aq213 a 
--=--· 

aqo a+ 1 

0 
1 
0 

0 
1 

±Hy-1) o 

1 

0 
0 

_ C113 
0 + y( 'Y - 1) 

0 0 
0 0 

(4.5) 

(4.6a) 

(4.6b) 

(4.6c) 

With the expressions (4.3), (4.4) and (4.6), the matrix f( 0 i(q0 , q1 ) is readily computed; 
/( 1)(%, q1 ) is obtained similarly. For an efficient implementation of (4.4), a splitting of the 
matrices ( 4.6) in low rank matrices is possible. It appears that both Jacobi_an matrices 
/( 0)(%, q1 ) and f( 1/q0, q1) are continuous functions of% and q1 as long as A. 112 = u 113 = 

Uz13 ~ 0. 
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5. Multigrid iteration 

Recently several attempts have been made to apply multigrid techniques for the solution of 
stationary and non-stationary Euler equations. Relevant papers are by Ron-Ho Ni [16], Steger 
[18], Jespersen [7, 8], Jameson [6], Dick [3], and Mulder [10]. The improvements by multigrid 
acceleration range from moderate to significant. The authors use different discretization 
methods and different methods for the solution of the nonlinear system. The most significant 
improvement for the solution of the stationary equations seems to be obtained by Mulder and 
van Leer [22], who use van Leer's flux splitting for the discretization and a 'switched 
evolution-relaxation' (SER) scheme for the solution of the nonlinear system. The SER
scheme is a hybrid form of time-stepping (forward Euler) and Newton's method. In each step 
a linear system is to be solved and it is to this linear solution process that multigrid is applied. 
For this linear multigrid process (the correction scheme, CS, used to accelerate linear 
Gauss-Seidel relaxation) they find a significant acceleration. 

For the advantages and the disadvantages of the use of multigrid to a linearized system or, 
as an alternative, to use nonlinear multigrid see Jespersen [8]. In the present paper we 
consider a nonlinear multigrid method for the solution of the nonlinear system (2. 7) with 
an-at the moment arbitrary but small-right-hand side 

Nh(qh) = rh. (5.1) 

We use iteration with the full approximation scheme (FAS), cf. [2]. For this we need a 
sequence of discretizations 

Nh;(qh) 

with h1 > h2 > · · · > h1 =h. For the meshwidth h; we take h; = 2h;+i ·For an irregular mesh we 
delete each second meshline to obtain the coarser grid. 

One FAS cycle for the solution of (5.1) consists of the following steps: 
Step 0. Start with an approximate solution qh. 
Step 1. Improve q h by application of p nonlinear (pre-) relaxation iterations to Nh ( q h) = r h. 
Step 2. Compute the residual Nh( qh). 
Step 3. Find an approximation, q2h, of qh on the next coarser grid. (Either use q2h = 

R2h,hqh, where R2h,h, is a restriction operator from the h-grid to the 2h-grid, or use 
another previously obtained approximation q2h.) 

Step 4. Compute 

Step 5. 

'2h = Nzh(q2h) + R2h,h(rh - Nh(qh)), 

where R2h,h is (another) restriction operator from the h-grid to the 2h-grid. 
Approximate the solution of 

Nzh(qzh) = 'zh (5.2) 

by application of a FAS cycles. The result is called q2h. 

Step 6. Correct the current solution by 

qh := qh + Ph,2h(<i.2h - qzh), 

where Ph,Zh is a prolongation (interpolation) operator. 
Step 7. Improve q h by application of q nonlinear (post-) relaxation iterations to Nh ( q h) = r h. 

• r 
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The Steps 2-6 in this process are called 'coarse grid correction'. These steps are skipped on 
~ coarsest grid h 1 • For the solution of the nonlinear system (2. 7), FAS iteration is simply 
plied with rh = 0 on the finest grid. By the FAS iteration in (5.2) small right-hand sides 
equal zero appear on the coarser grids. 
In order to complete the description of the FAS-cycle we need to be explicit about: 
(1) the choice of the operators N2h, Ph,Zh• R 2h,h and eventually R 2h,h; 
(2) the FAS strategy, i.e. the numbers p, q, a- (u = 1 characterizes a V-cycle, a-= 2 a 
-cycle); 
(3) the nonlinear relaxation method. 
For the operators N2h, Ph,Zh and R 2h,h we make a choice that is consistent with the concept 
our finite-volume discretization. This discretization is essentially a weighted residual 

~thod, where the solution is approximated by a piecewise constant function (on cells n;j) 
d where the residual is weighted by characteristic functions on all nij. From this point of 
~w, it is natural to use a piecewise constant interpolation for Ph zh and to use addition over 
bcells for R 2h,h as in [10]. Notice that R 2h,h = P~.zh· With these' choices it is clear that 

(5.3) 

. the coarse-grid finite-volume discretization is a formal Galerkin approximation of the 
.e-grid finite-volume discretization. Using (5.3) on all different levels we obtain a nested 
quence of discretizations, i.e. the following scheme (Fig. 1) of operators and spaces is 
mmutative. 
The effect of the Galerkin approximation N2h = R 2h,hNhPh,Zh on the approximate solution 
obtained after a coarse grid correction is the following. If we take q2h = R 2h,hqh in Step 3 of 

e algorithm, with R 2h,h such that R 2h.hPh,Zh = l2h is the identity operator on X 2h, and if (5.2) 
solved exactly, then 

R2h,h[rh - NhPh,2hR2h,hijh] = R2h,h[Nhqh - NhPh,2hRzh,hqh], 

, for the restriction of the residual 

x 

i 
xh 

.2h I 
X2h 

•Ahl . 

R2h,h[rh - Nh(ijh)] = R2h,h[(Nhqh - NhPh,2hR2h,hqh)- (Nhijh - NhPh,2hR2h,h qh)] · 

(5.4) 

N y 

Nh 
l Rh 

yh 

N2h 
l R2h,h 

Y2h 

1 R4h,2h 
. . . 

~· 1. The nested sequence of discretizations. 



488 P.W. Hemker, S.P. Spekreijse I Multiple grid scheme for Euler's equation 

In two particular cases the restriction of the residual vanishes for a Galerkin approximation. 
First, qh E Range(Ph.2h) implies eh E Range(Ph,2h). This means that for any such qh the 
corrected solution qh has a residual for which the restriction vanishes: 

R2h,h[rh - Nh(qh)] = 0 · 

Secondly, for an affine operator Nh, (5.4) would imply 

R2h,hNh(Ih - Ph.2hR2h,h)( qh - qh) = R2h,hNh(lh - Ph,2hR2h,h)Ph,2h ... = 0. 

In the neighborhood of a solution, the difference qh - qh will be small and Nh will approxi
mately behave as an affine operator: the restriction of its residual will be very small, viz. 
0( II q h - q h 11 2). A small restriction of the residual means that possible large residues over 
neighboring cells cancel: the residual is rapidly varying. Local relaxation methods should be 
able to eliminate such residuals efficiently. 

Experience with multigrid algorithms in another context makes it plausible that p = q = 
u = 1 is a good choice for a strategy. This is the choice mainly used in our experiments. Other 
choices with small values for p, q and cr can be made. What is best depends much on the 
relaxation used, and research can be made seeking the most efficient combination. Up to now, 
it appears that different (p, q, cr)-strategies are not much different in efficiency. Usually a 
smaller convergence factor is compensated by a corresponding amount of additional work. 

For the relaxation method we have used several alternatives, all being of the collective 
Gauss-Seidel type, where for each cell the 4 variables are recomputed simultaneously. For the 
solution of these nonlinear 4 x 4 systems, one or more steps of a Newton-iteration are used 
until the local residual is reduced below a specified amount. In almost all cases it appeared 
most efficient to take this tolerance so crude that no more than one iteration step per point is 
performed. Several relaxations were considered (cf. [5]): LEX: GS-relaxation with lexico
graphical ordering; SGSl: symmetric Gauss-Seidel from NW to SE and vice versa; SGS2: the 
same from NE to SW; RB: using a checkerboard ordering of the points. In almost all cases the 
same relaxation was used in both steps 1 and 7 of the algorithm. Another good choice was 
SGS3: to use SGSl for the pre- and SGS2 for the post-relaxation. In [5] we compared some of 
these relaxations in combination with a uniform grid. In Section 6 we restrict ourselves to 
SGS3 relaxation and consider the effect of different strategies (p, q, u). 

For the nonlinear multigrid as described above, it is important to start with reasonably good 
initial estimates. Since we do not want to provide sophisticated a priori estimates, we use the 
full-multigrid (FMG) technique to compute this estimate. 

In the FMG-method (or nested iteration) a crude initial estimate-in our case a uniform 
flow satisfying the inlet and outlet boundary conditions-is used. To obtain a first estimate on 
each finer level, first the solution on the next coarser grid is improved by a single FAS cycle 
and then this improved approximation is interpolated to the finer grid. These steps are 
repeated on the finer levels until the finest level has been reached. 

The interpolation used to obtain the first guess on each level should be of high enough 
order to comply with the accuracy of the discretization. In our case_, where the discretization is 
of first-order, the zero-order prolongation Ph,2h as used in the Galerkin approximation is not 
accurate enough, and a first-order bilinear interpolation is used. 

6. Numerical results 

In this section, for a few numerical examples, we show that the rate of convergence of the 
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FAS-iteration is almost independent of the number of points in the mesh. Further, because 
the truncation error is O(h) and the FAS convergence factors are well below 0.5, we see that 
with the FMG initial estimates a single (or a few) FAS iteration step(s) is (are) sufficient to 
obtain truncation error accuracy in the solution of the nonlinear system. 

The examples used are based on a single physical problem: the computation of a transonic 
flow in a channel with a circular bump. This is a standard problem, used to compare many 
different methods (13]. 

The numerical experiments shown are restricted to the first-order discretization as described 
in Sections 2 and 3. We see that this discretization gives already a good approximation. 
Further improvement can be obtained by higher-order discretization. This, however, will not 
influence the rate of convergence of the FAS iteration, if the higher order is obtained by 
means of the defect correction (1], where only nonlinear systems of the type ( 5 .1) are solved 
and the second order is obtained by the construction of the proper right-hand side r h. 

The physical problem is specified in Fig. 2. A non-uniform mesh in the channel is used as 
shown in Fig. 3. 

At level!, l = 1, 2, 3, 4, 5 the vertices of the quadrangles D;j in the (x, y)-space correspond 
to a regular square mesh over 5 · 2U-ll x 2 · 2(1-l) cells on (-2, 3] x (0, 2] in the ( g, 77)-space 
The ( g, 17) to (x, y) mapping is given by 

{
x = -0.42- 0.15 · exp(-3.75g - 5.13), -2.0 ~ g < -1.37, 
x = 0.32g - 0.14' -1.37 ~ g ~ 2.15 ' 
x = 0.44 + 0.11 · exp(3.70g-7.96), 2.15 < g ~ 3.0. 

lgl ;?:!0.5' 
lgl <0.5' 

{ y = z' 
y = z + 0.084(0.25 - x2 )(2 - z), 

where z = 0.19(exp(l.22277)- l.O). 
In this case, where the bump is built in the geometry, both solid boundaries are treated as 

described in Section 3. This is in contrast with the approximation as used in (5] for uniform 
meshes. 

In Fig. 3 both the pressure distribution along the lower and upper surface of the channel 
and the supersonic region in the channel are shown. We see that the shock extends over a 
single cell. In Fig. 4 we show the pressure distribution along the lower wall for various 
refinements of the mesh. In the finer discretization the Zierep expansion appears after the 
shock. 

2.0 

y 

--·-____ t~~~'-"-'-'-~'-'-'-'~~'-"'-"-4 
I I 
I I 

: N : 
u, v ,c, z --f> ::----+-- W + E _ _,___ ___ :-+ p 
inflow : : outflow 

I S I 
I I I 

_ _Q_:F=:=·'-· '--1'>x 
'I' . I . 

k0·\iP5J 
Fig. 2. The model problem: flow in a channel. The height of the circular bump is 0.042; y = 1.4. 
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Fig. 3. The mesh at level 4 used for discretization of n. The supersonic region and the pressure distribution along 
the lower and upper surface are shown. 

For the same problem, in Figs. 5-7 we show the convergence histories for several 
(p, q, a-)-strategies of the FAS iteration. The norm of the residual is shown after each 
iteration step. The norm used is the largest value of the L 1-norms of the four components in 
the flux. We see that the rate of convergence is almost independent of the number of levels. 
For the uniform mesh and the standard strategy [5] the convergence factor is about 0.25 per 
FAS-cycle and for the non-uniform mesh 0.38 per cycle. In all these experiments the P-variant 
of Osher's scheme was used. When the 0-version was used, neither in the solution found, nor 
in the convergence behavior significant differences were observed. 
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Fig. 4. The pressure distribution along the lower surface of the channel, computed for l = 2, 3, 4, 5. 

10° 

convergence factor : 0.38 

l=4 (16x40 grid I 

(8x20 grid) 

(4x1Q grid) 

Fig. 6.4 

5 10 15 

FAS iteration steps 

Fig. 5. The convergence history of the FAS iteration with strategy: p = q =er= 1, and SGS3 iteration. 
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l=4 

L=3 

Fig. 6.5 

convergence factor: 0.23 

10-10....__---~----~----~ 

0 5 10 15 
FAS iteratiO"l steps 

Fig. 6. The convergence history of the FAS iteration 
with strategy: p = q = 1, rr = 2, and SGS3 iteration. 

7. Conclusion 

10° r-------r-------,-------, 

10·10 
0 

Fig. 6.6 

5 

convergence factor: 0.17 

l=4 116x40 grid I 

l=3 l8x20 gr1dl 

· L= 2 (4xl0 grid I 

10 15 

FAS iteration steps 

Fig. 7. The convergence history of the FAS iteration 
with strategy: p = q = 2, u = 1, and SGS3 iteration. 

In the previous sections we have seen-by a non-trivial example-that with a good 
sequence of discretizations real multigrid efficiency can be obtained for the transonic steady 
Euler equations, i.e. the rate of convergence for FAS iteration is independent of the number 
of cells in the mesh. A good sequence of discretizations is obtained by the consistent use of the 
finite-volume technique. It induces a completely conservative 2-D discretization and it 
prescribes both the prolongations and the restrictions. Moreover, it induces a sequence of 
Galerkin discretization on all grids. 

Probably the most important ingredient in the finite-volume discretization is the choice of a 
good numerical flux function. For this Osher's approximate Riemann-solver, and a slight 
variant of it, could be used. The reason for the excellent performance might be the fact that a 
completely consistent treatment is given to the interior and the boundaries of the domain. 
Both at the domain boundaries and in the interior, the appropriate Riemann invariants are 
used to transfer information over cell boundaries. Further, the numerical flux has smooth 
derivatives, which avoids problems when Newton's method is used in the relaxation. 

By the use of the FMG (full multigrid) technique, sufficiently accurate initial estimates 
could be obtained (for about the work of~ FAS-cycle) such that two or three FAS iterations 
(with p = q =a= 1, SGS3-relaxation) are sufficient to obtain truncation error accuracy. This 
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means that these (non-isenthalpic and non-isentropic) steady Euler problems can be solved by 
an amount of work that is equivalent with about 3 x ~ x 2 nonlinear symmetric Gauss-Seidel 
relaxations sweeps. 
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