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Chapter 1

Introduction

Today, the European health care systems are facing great pressure. One
reason for this is the increased demand for care due to a rapidly ageing pop-
ulation. At the same time new medical technologies keep emerging that im-
prove diagnosis and treatment possibilities but also increase costs for health
care provision. The health care expenditures in the Netherlands, for ex-
ample, have increased from 8 percent of the gross national product in 2000
to 13 percent in 20051. Therefore, the efficient organization of the health
care system has become a major political issue. In this context, hospitals
are of particular interest as they yield the single largest costs in the health
care system. In the Netherlands hospital costs amount to approximately
thirty percent of the total health care expenditures2. In order to reduce
health care expenditures, many European countries, like the Netherlands,
have introduced a free market health care system to increase the competition
among care providers. Moreover, in 2005 the Dutch government introduced
a case-based reimbursement system (diagnosis related groups) for part of
the hospital services that reward more efficient utilization of resources. Fur-
thermore, patients increasingly include factors such as reputation, patient
service and waiting times in their choice of health care service provider. Due
to the increased cost pressure, competition and patients’ consumer aware-
ness, many hospitals face the need to optimize their processes in favor of cost
optimization and reduced patient waiting times. In order to decrease costs
hospitals need to increase the utilization of their resources and reduce the
patients’ duration of admission. Increasing the resource utilization, however,

1Data obtained from the European World Health Organization (WHO),
http://data.euro.who.int/

2Obtained from Statistics Netherlands (Dutch: Centraal Bureau voor de Statistiek)
for the year 2005, http://www.cbs.nl/
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may lead to bottlenecks that cause blocking of patient flow and consequently
increasing patient waiting times. Thus, the efficient planning of care services
in hospitals becomes increasingly important.

Admission control plays an important role in the efficient planning of
care provision [1, 99]. Admission control is concerned with selecting a mix
of patients to be admitted to the hospital as inpatients such that the avail-
able resource capacity and the demand for health care services are matched.
Through the combination of the different care requirements of different pa-
tient types the available resources can be used in a more efficient and effective
way. As stated in Groot [37] goals of admission control are amongst others
a high utilization of the available capacity, smooth patient flow resulting in
minimal length of stay of the patients and improved patient service.

Closely related to admission control is hospital resource management
that targets the efficient deployment of resources, for example operating
rooms or beds, when and where they are needed. Allocating resources to
the different units in the hospital affects the patient mix that can be admit-
ted to the hospital. Clearly, by in- or decreasing the capacity at a hospital
unit the flow of patients at the respective unit is in- or decreased. But as pa-
tient pathways often involve more than one hospital unit and possibly share
resources with other pathways, an allocation decision may also (indirectly)
influence other patient flows and thus the possible patient admissions. For
example, if resources at a unit that is involved in one patient flow are in-
creased, this may compromise the flow of other patients at shared resources
that may then be mainly occupied by the first increased patient flow. In
a straightforward way admission decisions influence the resources that are
needed at the different units in the hospital. Therefore, resource manage-
ment and admission control are important and coupled managerial issues to
be considered in order to improve hospital operations.

In many hospitals the planning of patient admissions and the alloca-
tion of hospital resources are major managerial issues, especially due to the
complex relationship between resources, utilization and patient throughput
for different patient groups [40]. One reason for this is the uncertainty
that is inherent in hospital operations. First, patient arrivals are stochastic.
Emergency patients arrive in urgent need for care and require immediate
admission to the hospital. Also, the arrival of elective patients is uncer-
tain, however, their arrival may be buffered by a waiting list. Second, the
treatment processes of patients are often stochastic. Complications may oc-
cur that require a patient’s transfer to another care unit than anticipated
and also the duration of treatment of a patient at a care unit is stochastic.
Moreover, the planning task is highly complex, as hospital planners need to
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consider multiple patient treatment processes that typically involve several
hospital units. Often, resources (e.g. at the Intensive Care unit) are shared
by multiple treatment processes. Thus, hospital resource management and
patient admission planning are complex and highly dynamic problems.

In this thesis we develop planning techniques for decision support on
patient admission control and hospital resource management. We consider
multiple hospital care units, multiple patient groups with stochastic treat-
ment processes and uncertain resource availability due to the overlapping
patient treatment processes. In the remainder of this chapter, we present a
general description and model of the hospital domain and patient flows in
Section 1.1, the planning problems at hand and the aim of our research are
described in Section 1.2. Then, we outline the approach taken in this work
and define the scope of our work in Section 1.3. We end this chapter with
an overview of related work on hospital planning in Section 1.4, an outline
and roadmap for the remainder of this thesis in Section 1.5 and an overview
of the publications this thesis is based upon in Section 1.6.

1.1 Description and model of problem domain

In this section a description of the hospital domain and the patient flows is
given. First, we describe the hospital domain with the organizational struc-
ture of a hospital and the different hospital units relevant for this study.
Then, we provide a description of patient flows and treatment processes.
Finally, we present a generic domain model including patient flows and con-
straints.

1.1.1 Characteristics of the hospital domain

In general, a hospital can be divided into several, medically specialized, care
units [26, 59, 81]. Hospital care units like nursing wards provide treatment
and monitoring and are typically dedicated to a medical specialty such as
orthopedics or cardiothoracic surgery. In the terminology of industrial orga-
nizational theory, the term workstation would be used to denote the different
departments in a hospital as the responsibility for the patients’ treatment
processes remains at the respective specialists who has admitted the patient
to the hospital. However, since the term ’hospital (care) unit’ is commonly
used in the field, we will adopt this nomenclature in the remainder of this
thesis.

Often, hospital care units are shared by different specialties. Exam-
ples of shared care units are the operating room (OR) unit, where medical
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specialties are assigned time slots for performing surgical procedures, and
the intensive care unit (ICU), where patients with serious to life-threatening
diseases are monitored. Often, the ICU is divided into several subunits char-
acterized by different care levels. Care levels indicate the intensity of care
and monitoring. Within the ICU, we distinguish three care levels: intensive
care (IC), high care (HC) and medium care (MC), in decreasing order. An-
other important part of the ICU is the post anesthesia care unit (PACU)
where patients recovering from anesthesia are monitored. Unless complica-
tions occur, patients stay at the PACU only for a few hours before returning
home or to another hospital unit. Some hospitals also have designated ICU
areas for medical specialties, e.g. the Coronary Care Unit (CCU) for heart
disease. A description of the care provided at the different care units and
their admission criteria is given in Table 1.1.

Unit Description Patient admission crite-
ria

Intensive Care
(IC)

Highly technical care and
monitoring including artificial
respiration or internal moni-
toring

Patients with serious to life-
threatening health condi-
tion

Cardiac Care
Unit (CCU)

Comparable to IC with ex-
tensive heart monitoring and
testing equipment, staff spe-
cialized in heart conditions
and procedures

Patients after a heart attack
or major cardiac surgery.

High Care (HC) Highly technical care and
monitoring

Postoperative patients

Medium Care
(MC)

Care focussed on revalidation,
less technical than IC and HC,
but intensive alertness and ad-
ditional facilities, e.g. ECG or
oxygen saturation monitoring;
”step-down” after IC/HC

Postoperative and/or
trauma patients that do not
satisfy admission criteria
for IC/HC, but are too
care-intensive for regular
ward

Post anesthesia
care unit (PACU)

Highly technical postsurgery
monitoring and care

Postoperative patients re-
covering from anesthesia

Ward Revalidation and care linked
to corresponding specialty

Patients of corresponding
specialty

Table 1.1: Hospital care units with description of provided care and patient admission
indication

For providing patient care at a hospital unit, resources are required.
Relevant resources are ORs and hospital beds. The availability of facil-
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ity resources may be temporary, for example, ORs are typically available
between 8 a.m. and 5 p.m. Hospital beds may also be opened only for a
predetermined time period which is typically the case at the PACU.

In order to accommodate patients at the appropriate care level, back-
up capacity may be used. This means that an additional bed is opened at
the respective care unit or that a patient is temporarily accommodated at
another unit until a regular bed is available. For example, the CCU may
serve as back-up for the ICU. Usage of back-up capacity is undesired by
hospital management as it may introduce additional operational effort for
the medical staff involved in patient and/or bed transports. Also, back-up
capacity usage may affect other patient groups that require the resources at
the back-up unit.

Schedules of shared resources, like ORs, are managed locally by the dif-
ferent units. Typically, each unit applies its own (medical) priorities and
preferences that may be based on medical guidelines, working habits, etc.
and are specific to the medical domain considered. Moreover, patient ad-
missions and transfers are planned in a decentralized fashion. Information
concerning patient admissions and transfers is solely communicated to other
hospital units if a patient needs to be transferred to the respective facility.
Thus, planning in hospitals has strong decentralized features.

1.1.2 Patient flows in a hospital

Patient flows can be classified based on how hospital resources are needed.
This classification results in an outpatient flow (patients who visit the hos-
pital, clinic, or associated facility for diagnosis or treatment but are not
hospitalized) and inpatient flow (patients who are admitted to the hospi-
tal and stay overnight or for an indeterminate time, usually several days or
weeks). In this thesis we focus on the latter patient flow.

In the following, we distinguish between elective surgical patients and
emergency patients in urgent need for intensive care. We assume that sur-
gical patients are always put on a waiting list3. Surgical and emergency
inpatient flows typically involve multiple care units, such as the specialities’
wards, the OR and postoperative care departments. The patients’ postop-
erative care requirement is often uncertain, depending on the complexity of
the surgical procedures. The treatment processes considered in this thesis

3This assumption also allows for the treatment of surgical emergency patients such
that emergency patients are given highest priority and are either placed on top of the
waiting list or admitted instead of an elective patient. However, this is not included in
the analysis.
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are complex, i.e. they are characterized by uncertainty and involve multiple
care units.

Furthermore, we assume that patients can be grouped on the basis of
their resource consumption. The resource consumption is determined by
the required treatment steps, the involved resources and the respective du-
ration, see e.g. [1, 99]. The objective for patient grouping is to identify and
anticipate the resource need of different patient groups [63]. In the medical
domain, various grouping and classification techniques are developed and
used [33]. For example, diagnosis related groups (DRGs) [33] provide an ag-
gregated way of patient grouping. A machine learning approach for patient
grouping based on detailed process data is presented in [66]. Alternatively,
techniques like knowledge elicitation from medical specialists or statistical
data analysis could be used to determine hospital-specific patient grouping.

In this thesis, we focus on cardiothoracic inpatient flows and their inter-
action with other surgical and emergency patient flows. The cardiothoracic
patient group was chosen because the associated patient flows are in general
well-defined, which is advantageous as patient flow mining is beyond the
scope of this thesis. Moreover, cardiothoracic patients represent a large pa-
tient population. The cardiothoracic treatment process involves the surgical
treatment of coronary heart and lung diseases, e.g (open-)heart surgery for
coronary artery bypass grafting and heart valve replacement. Due to the
complex surgical procedures it is not very predictable which postoperative
care the patients require. The treatment involves several care units, i.e. the
OR, ICU and a corresponding ward. The OR and ICU are typically shared
with other surgical and emergency patients. The interaction can have a
great impact on the patient flows because it results in limited and uncertain
resource availability at these units. As the resources at the OR, the ICU
and the wards are not used by outpatient flows, we do not include these
flows in the analysis and model.

The models that are used in this thesis for the hospital domain and
patient pathways are further elaborated in the following section.

1.1.3 Domain and patient flow model

The underlying model in this thesis is comprised of two principal compo-
nents: a network of specialized hospital units and patient pathways ac-
cording to which patients of different groups (cf. Section 1.1.2) are flowing
through the network.
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Domain model & resource allocation

The hospital units provide treatment and monitoring for (parts of) the pa-
tients’ treatment process for which resources are required. Hospital resources
comprise, for example, diagnostic facilities (such as CT scanners), equipment
(such as heart rate monitors), specialized staff, operating rooms (ORs) and
hospital beds [87]. In this thesis, we restrict our focus to ORs and hospital
beds, as they are crucial for hospital production and their utilization is of
major managerial importance. Here, we consider personnel and equipment
scheduling as subsequent problem to OR and bed allocation, where facility
allocations serve as constraints to personnel and equipment scheduling. For
the latter problems sophisticated techniques have been proposed in the liter-
ature, e.g. [3, 21, 22, 54, 68, 92], which may be combined with our approach.
In the following we assume that resources are fully staffed and equipped
with specialized facilities.

A resource allocation specifies how resources are assigned to the differ-
ent units. Here, we consider the temporary assignment of resources. The
assignment of ORs, for example, is typically done in half-day OR sessions.
Moreover, allocated hospital beds may available only for certain time pe-
riods. For instance, beds at the PACU are open for a limited period of
time during and after OR working hours. This factor is incorporated in our
model as the temporary availability of (post)surgical resources may affect
the workload at the ICU and other care units. Furthermore, the allocation
of resources may change over time, for example the bed capacity at nursing
wards during the weekend may be reduced.

The allocation of resources is associated with costs for required staff, ma-
terials, etc. that need to be taken into account by the hospital management
in efficiency considerations.

Patient flow model

We define a patient pathway (in the following also referred to as patient
path) of a patient group as the sequence of required treatment operations
and their respective duration. In the hospital context, the treatment dura-
tion is typically referred to as Length of Stay (LoS). The LoS is modeled
as a random variable that follows a predefined probability distribution. As
discussed in Marazzi et al. [63], typical models for patients’ LoS are asym-
metric distributions with outliers towards high values of LoS (right-skewed).
Widely used models are Lognormal, Gamma and Weibull distributions [63].

The patient pathways considered in this thesis are complex and stochas-
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tic, i.e. pathways involve multiple hospital units and the routing between
adjacent treatment steps is stochastic. The stochastic routing reflects the
possibility of complications that require a patient transfer to another unit
than expected, for example the ICU, and is modeled by conditional proba-
bility distributions.

An example of a surgical pathway is depicted in Figure 1.1. The pa-
tient pathway model is illustrated using a graph-like structure where the
involved hospital units are represented by nodes that are connected by ar-
rows that depict the patient flows. Here, the pathway comprises the surgery
and the postoperative care of a group of surgical patients. Postoperative
complications may occur with a probability, Pr(HC |OR), and require the
admission to the HC prior to revalidation at the ward. Without complica-
tions, with probability 1−Pr(HC |OR), patients return to the ward directly
after surgery in this example.� ��� �� ���
Figure 1.1: Example for a surgical patient pathway including postoperative complica-
tions that require transfer to the HC

Patient pathways indicate the resource need of patients in a hospital.
The actual flow of patients through the network of care units, however, is also
determined by the availability of resources. This means that a patient may
be admitted or transferred to a unit that is not indicated by the patient’s
pathway if no bed is available at the destined unit. The possibilities for
adapting a patient’s pathway are

1. the patient is (temporarily) admitted to another care unit,

2. the concerned patient remains (temporarily) admitted to the current
unit.

The first possibility is restricted to units of equal or higher care level in
order to ensure the quality of the patients’ care. The latter option may
require the usage of back-up capacity. Both options comprise the possibility
of a later patient transfer to the originally indicated unit if a bed becomes
available. The two possibilities are depicted in Figure 1.2 for the example
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in Figure 1.1. Here, the dashed arrows represent that infeasible patient
transfers to the indicated units due to resource unavailability. The bold
arrows depict the possible adaptations of the patient pathways.

(a) temporary admission to another care unit

(b) temporarily continued admission

Figure 1.2: Examples for temporarily adapting the patient pathway depicted in Fig-
ure 1.1 through (a) admitting the patient temporarily to the IC due to unavailability of
HC bed and (b) continued stay at HC in case of unavailability of ward bed after compli-
cations (resource unavailability is represented by dashed arrows)

The transfer probabilities, determined by Pr(HC |OR), in Figure 1.1
thus refer to the general occurrence of complications and their type. The
adaptation of the patient pathway, however, is determined based on the re-
source availability at the different units by mutual agreement between the
corresponding care units’ planners and physician(s) in charge. Moreover,
adapting the pathways induces discrete and disruptive behavior in the sys-
tem.

Using back-up capacity means that an additional bed is opened at the
care unit for a short period of time. An additional bed can be accomplished
through a (temporarily) increased workforce or shifting a bed from another
hospital unit. Therefore, back-up capacity usage is undesired by hospital
staff and managers and should be accounted for in assessing a resource
allocation.
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In practice, the decisions whether a patient is transferred to an alter-
native unit, which units are considered for alternative transfer and whether
patients are retransferred to the originally indicated unit depend on the
availability, the demand and urgency for the corresponding hospital beds
and the transfer policy employed by the hospital unit(s).

In general, we assume that the amount of patient flow into a care unit
equals the amount of flow out of the care unit, shifted by a non-constant
time per patient. Without this assumption patients could possibly remain
at a hospital care unit for an infinite period of time.

The flow of patients into the hospital is determined by the admission
scheme (also referred to as admission schedule), the demand for care and
the resource availability. The admission scheme specifies the (maximal)
number of patients per patient group to be admitted to the hospital on
a certain day and thus determines the planned patient mix in the hospi-
tal. Admission schemes are typically set up and handled in a decentralized
fashion by the different care units and specialties due to the organizational
structure (cf. Section 1.1.1). In practice, the time horizon for an admis-
sion scheme varies per specialty and hospital between one day and several
weeks or months. The actual patient admissions are typically limited by the
current demand for care, like for example for emergency patients whose ar-
rival is uncertain, and the resource availability at the concerned care units.
Thus, an admission scheme specifies an upper bound for the actual number
of patients to be admitted. The higher the number of possible patient ad-
missions in the admission scheme, the greater is the impact of the patient
demand and resource availability on the actual patient admissions. The
situation where solely the patient demand and resource availability deter-
mines the actual patient admissions is in the remainder also referred to as
unconstrained admission control, cf. Chapter 3.

If the number of patients to be admitted exceeds the number of avail-
able beds, a multitude of clinical variables determines which patients are
admitted. In our model, we represent this medical choice by a stochastic
process that randomly selects patients for available beds (excluding back-up
capacity). The same decision-making model is used for patient transfers
between care units. As our model is set up in a generic way, incorporating a
more elaborate model for the clinical decision-making into our model would
be straightforward. However, the medical decision-making in patient care is
beyond the scope of this thesis and is therefore not taken into consideration.

The flow of patients leaving the hospital, i.e. after completion of the pa-
tients’ treatment processes, can have different destinations. For example,
patients can be discharged to their homes or other care facilities, like for
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instance rehabilitation centers or elderly homes. Patient discharges to other
care facilities may be restricted by local admission schemes or bed availabil-
ity. This constraint is not considered in our model since the focus of our
work is on the processes and resources within a hospital. Depending on the
diagnosis or illness, also mortality is a possible discharge destination. In our
model, the different discharge possibilities are considered on an aggregated
level.

1.2 Problem description and contributions

1.2.1 Problem definition

As described in Section 1.1, the problem domain considered in this thesis
is characterized by autonomously planning and deciding hospital care units
and stochastic and heterogeneous patient flows. In such a complex system,
the unbalanced utilization of hospital resources is a major problem. Unbal-
anced resource utilization means that periods with under-utilized resource
capacity are alternated by periods with resource scarcity, e.g. at the ICU.
To a certain extent unbalanced utilization cannot be avoided in a stochastic
environment. However, an inappropriate resource allocation and improper
planning of patient admissions can potentially worsen the situation. This
is due to the time-dependency of resource allocation and patient admission
decisions, meaning that decisions taken now may cause an unnecessarily un-
balanced resource utilization in the current and future periods and thereby
affect possible patient admissions in the future.

Unbalanced resource utilization has two implications. On the one hand,
allocated resources are used inefficiently. Moreover, costs may incur for
unused resource capacity. The costs for unused OR capacity, for example,
may amount to several thousand euro per hour for an empty OR. On the
other hand, the scarcity of resources causes major planning difficulties and
patient flow disturbances. First, the scarcity of resources may lead to the
unintended accommodation of patients at units that are not indicated by
their corresponding patient pathway, cf. Section 1.1.3. This may lead to
capacity conflicts and patients being structurally admitted to non-indicated
units which possibly requires unintended patient transfers and transports in
addition to the disturbance of the patient flows. Second, resource scarcity
may lead to the the blocking of patient flows which leads to cancelations of
patient admissions and possibly the costly cancelation of surgeries. This,
in turn, may compromise the patients’ satisfaction. If back-up capacity
may be used as described in Section 1.1.3 this may alleviate cancelations of
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admissions and surgeries for one specialty but possibly cause the disturbance
of other patient flows that are not included in the model.

Moreover, the decentralization of hospital organizations complicates the
centralized management control in hospitals. Specialties may mistrust im-
proved admission schedules proposed by a decision support system that does
not take the decentralized way of decision-making into account. Conse-
quently, hospital specialties may not adhere to proposed admission schemes
and thereby introduce unforeseen additional occupancy fluctuation in the
network of hospital units.

1.2.2 Research goal

Given the problems described in Section 1.2.1, the research goal of the work
presented in this thesis can be summarized as follows:

Develop methods and techniques for decision support for hospital
patient flow logistics taking into account the high degree of uncer-
tainty, heterogeneity and decentralization present in the hospital
domain, to facilitate an efficient usage of hospital resources.

Based on the research goal this thesis addresses the following questions:

• How can we design a fine-grained simulation that reflects the decen-
tralized decision-making in the hospital domain and that is based on
real-life case study incorporating (medical) guidelines and business
rules? For this aim, the simulation should incorporate models for
complex patient treatment processes involving multiple hospital units
and stochastic resource need.

• How can we predict future hospital resource usage given the cur-
rent resource occupancy? To answer this question we need to de-
termine which (de-)centralized information the prediction should be
based upon. Moreover, we need to develop a model to realistically cap-
ture future fluctuating resource usage. For computational efficiency a
prediction function for this problem is desirable.

• How can we optimize the number of allocated hospital resources such
that the resource allocations at multiple hospital care units are coordi-
nated? For this purpose we need to identify relevant goals to be taken
into consideration for the optimization. Also, we need to determine an
appropriate and efficient solution method for this optimization prob-
lem.
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• How can we design adaptive policies for allocating resource to the dif-
ferent hospital units that dynamically respond to changes in the hos-
pital environment and optimize such allocation policies with respect
to multiple conflicting objectives? Also, future resource occupancy
should be anticipated and taken into account when designing and op-
timizing adaptive resource allocation policies.

1.2.3 Contributions

The main contributions made by answering the research questions in Sec-
tion 1.2.2 are:

• An agent-based simulation for coordinating cardiothoracic, other sur-
gical and emergency patient flows has been developed where the in-
volved specialties and hospital units are each represented by an agent.
The simulation has been designed based on knowledge elicitation in
the from of interviews with domain experts during a case study and
statistical data analysis. The simulation has been extensively vali-
dated by simulation experiments and the simulation and results has
been approved by domain experts and planners from the case study
hospital (Chapter 2).

• Two methods for predicting future resource usage given current bed
occupancy and planned patient admissions have been developed that
can assist in proactive decision-making: forward simulation using the
agent-based simulation and supervised learning using artificial neural
networks. We have assessed the precision of the developed techniques
and demonstrated that the obtained predictions improve benchmark
forecasts derived from hospital practice (Chapter 3).

• An approach for the optimization of the resource allocation at multi-
ple hospital units has been developed using an evolutionary algorithm.
The algorithm determines optimal resource allocations according to
multiple conflicting criteria simultaneously. This approach has been
shown using computational experiments to improve the current hospi-
tal practice for resource allocation (Chapter 4).

• Policies for adaptive resource allocation have been designed that can
anticipate future resource usage and that are implementable and un-
derstandable for planners in hospital practice. A policy optimization
approach for dynamic multi-objective optimization has been developed
to determine the policy parameters using an evolutionary algorithm.
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Computational experiments show that the optimized resource alloca-
tions optimized in Chapter 4 can be considerably improved using our
adaptive allocation policies. Moreover, the policies can be further im-
proved by including prediction information (Chapter 5).

1.3 Approach

The focus of this thesis is on the computational aspects of health care man-
agement science. Thus, our research is set in-between the fields of computer
science and management studies. Specifically, our approach combines tech-
niques from agent-based simulation and computational intelligence for deci-
sion support in health care which are designed and evaluated on the basis
of a complex realistic hospital setting. The keystones of our approach are
described below.

1.3.1 Case study

For a realistic study of patient planning in a hospital setting, the techniques
presented in this thesis were developed in cooperation with the Catharina
Hospital Eindhoven (CHE), the Netherlands. The CHE is a large university-
affiliated general hospital that offers international state-of-the-art medicine
for, amongst others, cardiothoracic surgery (CTS) and intensive care in ad-
dition to the required basic medical care. An extensive case study was
performed at the CTS department and the ICU which comprised several
interviews with medical specialists, planners and managers and an exten-
sive statistical analysis of data from the hospital information system. On
the basis of the CHE case study we studied the requirements for a simula-
tion in this setting. The simulation is described in detail in Chapter 2 and
incorporates multiple planned surgical and emergency patient flows. The
parameters of the patient flows in the simulation were determined based on
the CHE patient flows and the initial resource allocation was set accord-
ing to the CHE situation. Moreover, the decision-making at the different
care units at the CHE inspired the policies employed by the units in the
simulation and their parameter values. Using the CHE parameter settings
as simulation instance, we validated the simulation and showed that the re-
sults obtained from the simulation compare well to the outcomes realized by
the human planners at the CHE. Furthermore, the CHE parameter settings
were used for the experimental evaluation of the prediction approaches for
future resource occupancy and the resource management optimization pre-
sented in the different chapters of this thesis. Our results obtained under
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the realistic settings used in our evaluations demonstrate the applicability
of the developed techniques in a real-world problem setting. Furthermore,
our results should also be implementable in other hospital settings with
comparable problem features in terms of heterogeneity, stochasticity and
decentralization. This is due to the fact that we used the CHE case study
for our requirements analysis for this type of problem. Furthermore, the
CHE case study setting is sufficiently generic for surgical (particularly with
regard to CTS) and emergency patient flows. Moreover, we varied the CHE
parameters in our evaluations, showing the robustness of the solutions.

1.3.2 Agent-based simulation

As discussed in Section 1.1, hospitals often show a distributed organiza-
tional structure. They are divided into several autonomous hospital units,
each associated with a medical specialty. Patient admission decisions are
taken locally and indicated patient transfers are negotiated among the con-
cerned care units that each apply their own decision criteria, e.g. bed reser-
vation policies, (medical) priorities or preferences. These domain features
are reminiscent of multiagent systems (MAS), making such systems natural
candidates for modeling the problem domain and supporting decision rules
that are developed in this thesis.

Although there is no generally agreed definition of software agents in the
computer science research community, a commonly used definition is given
in Weiss [101]:

An agent is a computer module that is situated in some environ-
ment, and that is capable of autonomous action in this environ-
ment in order to meet its design goals.

A MAS is a system that is composed of multiple agents that communicate
and interact with each other in order to solve one or more tasks. In the
domain at hand, the agents are models for the real-life entities in the hos-
pital. Specifically, we designed software agents in a MAS that realistically
model hospital care units with individual decision-making policies, as in the
CHE case, in a detailed fashion and used them in an agent-based simulation
(ABS). Thus, an ABS approach closely matches hospitals’ organizational
structure and allows a detailed modeling of actual decision-making charac-
teristics.

The agents’ task is the coordination of patient flow through patient ad-
missions, surgery scheduling and patient transfers to the required care units
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such that the hospital resources are used efficiently. The agents are situ-
ated in a hospital environment that is characterized by stochastic changes,
i.e. complications that require unexpected patient transfers, emergency pa-
tient arrivals and uncertain treatment durations. Furthermore, the hospital
environment is dynamic, i.e. the environment changes over time due to the
patients that are admitted and their demand for care.

In an ABS the interaction and decisions in a MAS are simulated. The
simulation is used to assess the effect of the emergent behavior of the agents
on the system as a whole. In our approach, an ABS is a refinement of
discrete event simulation, where the agent paradigm is used to represent the
different hospital entities by autonomous agents in the simulation software.

1.3.3 Computational intelligence

The techniques presented in this thesis combine an agent-based model-
ing and simulation approach with intelligent planning and scheduling ap-
proaches. Specifically, we focused on computational intelligence (CI) tech-
niques for determining scheduling policies. This focus was chosen as exact
methods are too computationally intensive and very hard to use in com-
plex and dynamic systems, whereas CI techniques have been shown to be
powerful in this problem settings, e.g. in [14, 20, 68, 100].

CI is a branch of the artificial intelligence (AI) research field that consid-
ers algorithms such as neural networks, evolutionary algorithms and heuris-
tic search. Algorithms in CI combine elements of learning, adaptation and
evolution to be able to handle dynamically changing environments and com-
plex optimization.

Specifically, in this thesis we apply artificial neural networks (ANNs) and
heuristic search in Chapter 3 and evolutionary algorithms (EAs) in Chap-
ter 4 and Chapter 5 for the prediction of future resource occupancy and the
optimization of resource allocation in hospitals, respectively. The applied
CI techniques will be described in detail in the corresponding chapters. Be-
low, a brief introduction of the relevant techniques will be provided. The
interested reader is also referred to Bishop [7], Russell and Norvig [82] for
an in-depth description of the employed CI techniques.

ANNs provide a general way to define parameterized non-linear func-
tions, inspired by the way in which neurons are connected in the brain.
ANNs are commonly used to perform function approximation by fitting
the parameters and structure of the network to data, i.e. machine learning.
Through their adaptivity, ANNs have been shown to be able to be powerful
real-world problem solvers [7, 51, 100].
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An EA is a population-based metaheuristic optimization algorithm in-
spired by biological evolution. Throughout the optimization a set or popula-
tion of candidate solutions is maintained. Iteratively the candidate solutions
are evaluated using a fitness function, selected based on their fitness and new
candidate solutions are generated by mutation and recombination operators.
EAs have been shown to be very powerful for stochastic optimization, espe-
cially in domains where multiple conflicting objectives need to be taken into
account [14, 20, 32].

Similar to EAs, heuristic search is an informed search technique where
problem-specific knowledge is used to search for an ”optimal” solution
among a number of candidate solutions [82]. Iterative improvement algo-
rithms often provide a practical approach where an initial solution is selected
randomly which is iteratively improved by applying small changes to the
current solution. One distinguishes between hill-climbing search that moves
to solutions of increasing value and simulated annealing that allow tem-
porarily deteriorating changes. In our work the first iterative improvement
technique was applied.

The combination of an agent-based simulation with CI optimization tech-
niques appears to be a promising approach for decision support in a hospital
setting where the planning is often performed in a decentralized way. More-
over, it allows for designing and evaluating improved (adaptive) policies,
which can then be implemented easily in real life.

1.4 Literature positioning

There is a number of different research areas that are related to the work
presented in this thesis. The relevant areas are the fields of operations man-
agement, operations research and artificial intelligence, in particular compu-
tational intelligence and agent technology. In the following, we provide an
outline and give some exemplary references of the work in the different areas
and their relevance for the work presented in this thesis. In the respective
chapters of this thesis, we will additionally provide a more detailed review
of the relevant literature.

1.4.1 Operations Management

In the operations management literature several frameworks can be found
that describe the way activities and resources should be managed in a hos-
pital.



18 Chapter 1. Introduction

Fetter and Freeman [33] propose a framework for product line manage-
ment [85] based on diagnosis related groups (DRGs). Their control system
uses the concept of matrix management in hospitals which means that hospi-
tal management is organized both hierarchically at the different care, ancil-
lary units and specialties and laterally across departments for DRG product
line management. The proposed financial accounting system distinguishes
between clinical and administrative management.

The concept of DRGs is also used for the operations planning and con-
trol system presented in Roth and Van Dierdonck [81]. Their framework
describes the major components of a hospital resource planning system,
i.e. demand forecasting, admission control and capacity planning modules,
whose input is translated into resource requirements using the general ma-
terials requirements planning logic [85].

A framework for capacity management in health care is proposed
in Smith-Daniels et al. [87] where the authors distinguish between deci-
sions concerning the acquisition and the allocation of facility and workforce
resources.

A framework for surgical process scheduling is proposed in Blake and
Carter [8] that subdivides the problem domain into advance (referring to
booking patient admissions in advance), allocation (concerning OR surgery
scheduling, cf. Section 1.4.2) and external resource scheduling (relating to
booking of required pre- and postoperative care) with a subdivision into
strategic, operational and organizational impact of the scheduling decisions.

Vissers et al. [98] present a framework for hospital production control
that is based on the framework for general production control in [6]. Due
to the framework’s focus on production control and its generality, we will
use it to position our work and approaches in the related literature. In the
following, a brief outline of the framework is given.

The hospital production control framework distinguishes five levels of
control. The highest level of strategic planning is concerned with the global
direction of the hospital in the future, e.g. the extension or addition of a
specialism. The second level of control is the patient volumes planning and
control which involves decisions regarding the required resource capacity and
agreements with health insurance companies concerning the patient volumes
per diagnosis family. The resources planning and control level constitutes
the third level of the framework. Here, target resource utilization is de-
fined and the resource usage of the different patient groups and specialties
is determined. The fourth control level is called patient group planning and
control and is concerned with defining treatment policies and urgency cri-
teria and allocating resources to the patient groups. The fifth level, patient



1.4. Literature positioning 19

planning and control, is concerned with the coupling of resources to single
patients and is thus on the operational level of the treatment processes of the
individual patients. The work on patient flow control, prediction and hos-
pital resource management presented in this thesis can be positioned on the
patient group planning and control level within the scope of this framework.

The purpose of the aforementioned frameworks is to describe what de-
cisions should be taken, whereas in our work we focus on how management
decisions should be taken. In this thesis, we present computational mod-
els and methods to support hospital management decisions in the presence
of complex stochastic patient pathways with overlapping resource require-
ments.

1.4.2 Operations Research

A range of health care logistics problems has been addressed in the oper-
ations research literature, comprising outpatient, e.g. [44, 52, 57] as well
as inpatient settings. With respect to inpatient optimization problems the
operations research literature has mainly focused on single specialties and
care units within a hospital. A significant number of publications has been
attended to the problems of OR surgery scheduling, hospital resource man-
agement and patient admission scheduling for which examples of related
work will be briefly reviewed below4.

OR surgery scheduling A simulation and a scheduling heuristic to mini-
mize idle time at the OR are presented in Charnetski [23] taking the resulting
costs for surgeon, OR staff and facility idle time into account. In Strum et al.
[88] a minimal cost analysis is presented for blocks of OR time to be sched-
uled. The mixed-integer linear optimization approach described in Sier et al.
[84] addresses the scheduling of elective surgeries considering slack between
procedures and clinical and organizational constraints. Guinet and Chaa-
bane [38] develop a heuristic for OR scheduling that minimizes OR overtime
subject to patients’ release and due date constraints. Focussing on ortho-
pedic trauma surgery, Bowers and Mould [18] present a simulation and an
approximating mathematical model which are used to examine scheduling
and resource reservation policies to balance elective and emergency surg-
eries. The approach presented in Hans et al. [39] addresses the optimization
of a master surgery schedule using scheduling heuristics and a local search

4Also, the problem of nurse or shift scheduling has been addressed in the operations
research literature, e.g. [21, 22, 72, 92]. However, we refrain from discussing this area of
research as it lies beyond the focus of this thesis.
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approach with focus on the robustness of the resulting schedule regarding
possible delays.

In the work presented in this thesis, the issue of OR planning plays a only
secondary role as we focus on the coordination of multiple (surgical) patient
flows that involve multiple pre- and postoperative care units. OR planning
is addressed on a high level and involves the allocation of OR time slots to
the CTS patients considering the order of surgeries and cancelations due to
unavailable postoperative care resources on an aggregated level. Specifically,
OR planning is performed using a heuristic that is based on the a-priori
indication for postoperative treatment of CTS and other surgical patients
including the corresponding resources’ availability.

Hospital resource management Work in this area has primarily ad-
dressed general bed allocation decisions. For example, in Vissers [97] ag-
gregated resource allocations are determined by a stepwise approach that is
based on long-term projections on future patient flows and resource demand.
In Harper and Shahani [40] aggregated allocation policies are evaluated us-
ing simulation. The work reported in Kusters and Groot [60] and Vissers
et al. [99] provide theoretical results for bed utilization levels. In VanBerkel
[93] surgical patient flows are simulated to aid resource allocation decisions
at the OR and dedicated care facilities. The work reported in Stummer et al.
[89] focusses on determining the location and size of hospital departments
in a network of hospitals in a certain region.

In this context, the intensive care unit (ICU) has received special research
attention. Ridge et al. [80] present a simulation model based on a case study
that is used for the optimization of the ICU bed allocation and propose a
reservation policy for emergency patients. In Kim et al. [55] the issue of
pooling beds for different specialties at the ICU is addressed. Also, geriatric
wards have been addressed specifically, for example [35] where a queueing
model is presented.

Moreover, statistical prediction methods have been presented in the lit-
erature, e.g. Tandberg and Qualls [91] where a time series approach is devel-
oped to forecast patient arrivals and their LoS, or Littig and Isken [61] where
a logistic regression model is presented for short-term aggregated occupancy
prediction using clinical information.

In our work we consider resource allocations of OR time slots and dif-
ferent types of beds on the level of individual hospital care units taking
the stochastic treatment processes and multiple performance measures into
account. This combination of problem features has not been addressed in
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earlier work but reflects the complexity of real-life hospital resource manage-
ment. Moreover, we present a novel optimization approach that facilitates
the dynamic allocation of resource in hospital practice. In our approach,
we use adaptive allocation policies, i.e. parameterized functions, that deter-
mine the adaptive resource decisions in different situations given real-time
information concerning the resource occupancy. Moreover, we develop de-
tailed prediction methods for forecasting the distribution of future resource
occupancy. We use the predicted resource occupancy information in the
allocation policies which has not yet been addressed by other authors.

Admission control This problem is addressed in e.g. [1, 9, 37, 58, 99] on
different levels of hospital planning, cf. Section 1.4.1. The work in Blake and
Carter [9] addresses the optimization of the overall patient case mix on a
strategic planning level using a linear programming approach to (1) generate
a given required profit and (2) deviate minimally from a predetermined
patient mix. On the level of patient group planning and control, Kolesar
[58] derives a stationary Markov chain model that calculates the long-run
bed occupancy resulting from patient admissions, discharges and transfers.
In Groot [37] different admission policies are evaluated in a setting where
patient pathways involve the OR and a general pool of postoperative beds.
The pathways are characterized by deterministic treatment durations and
stochastic arrivals. The admission planning approach in Vissers et al. [99]
and its extension in Adan et al. [1] takes the (expected) amount of resources
required at the OR and postoperative care units into account.

In our work on predicting future resource occupancy, we consider a
heuristic approach to determine admission schemes to control patient ar-
rivals. The complex features of real-life patient treatment processes that
we incorporate, i.e. comprising multiple care units in combination with
stochastic routing and treatment durations, have not been considered in
the approaches mentioned above. In the heuristic approach, we incorporate
online resource occupancy information in the decision-making. However,
the approach is restricted to local search within the scope of occupancy
predictions to incorporate changing patient admissions.

In general, the operations research approaches described above have been
shown to be very effective in solving well-defined centralized, aggregated or
steady-state optimization problems. However, the techniques have so far
found little application in hospital practice, in great part due to the inherent
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decentralization of hospital organizations. Due to this, a lower level of mod-
eling and aggregation is needed to consider the inherent diversity in patient
attributes and scheduling goals at the different units involved in complex
patient flows. In our work, we incorporate both the decentralization and
the dynamics of patient flow scheduling using an agent-based simulation
approach in combination with computational intelligence optimization tech-
niques. Moreover, our approach considers stochastic patient pathways and
their possible interdependency due to overlapping resource requirements of
patient flows. Furthermore, in contrast to analytical models our approach
is very flexible and can be easily adapted to other settings.

1.4.3 Artificial Intelligence

Related work in the field of artificial intelligence (AI) typically addresses
the dynamic nature of hospital logistics and makes use of available medical
information systems. An overview of AI planning and scheduling approaches
is given in Sypyropoulos [90]. Similarly to the operations research literature,
planning and scheduling studies in the AI field have focussed on single units.
Also, decentralized decision support approaches have been advocated [69],
amongst others for patient scheduling5. A literature overview of these two
areas is provided below.

Single hospital unit problems Podgorelec and Kokol [79] present a
genetic algorithm to tackle the problem of scheduling therapy appointments
for multiple types of patients in an outpatient clinic. Vermeulen et al. [95]
propose an adaptive mechanism for online adjustments of resource calenders
to schedule multiple types of patients with different priorities in a radiology
clinic. These approaches are not applicable in the inpatient hospital setting
considered in this thesis and do not consider multiple hospital care units
that need to coordinate the different patient flows.

Also, several prediction approaches for forecasting patients’ LoS and
treatment processes have been reported in earlier work. In this area machine
learning techniques and ANNS have been applied. For example, Izenberg

5In addition to decentralized patient scheduling, several successful MAS approaches
have been presented in the areas of modeling and retrieval of medical informa-
tion/knowledge, clinical decision support for patient monitoring and diagnosis reasoning
and documentation of medical treatment activities [67]. Also, the problems of (decentral-
ized) team and shift scheduling has been addressed in earlier work, e.g. [2, 4, 5, 19, 24,
54, 68]. However, these research areas will be omitted in the literature review below as
the scope of our work is on patient treatment flow control.
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et al. [51] propose an ANN for predicting the mortality of patients after
trauma. In Maruster et al. [66] machine learning techniques are presented
for grouping patients based on their logistic requirements. In Lowell and
Davis [62] ANNs are applied to predict the LoS of a DRG. Walczak et al.
[100] use ANNs to predict the exact LoS for different patient groups based on
patient characteristics and clinical information. Yeong et al. [102] present an
ANN approach for predicting LoS categories using radiological information.
In contrast to previous work, we assume that patient treatment process
information is available, albeit in a stochastic form. We present different
methods for predicting the distribution of future resource occupancy at dif-
ferent hospital care units given the current resource occupancy and planned
patient admissions, which has not been addressed in earlier work. Moveover,
we apply the obtained predictions in hospital resource management.

Decentralized hospital simulation and scheduling In previous work
the effect of decentralized decision-making structures in hospitals has been
investigated [59]. Different organizational settings were considered ranging
from existing hospital structure with autonomous care and ancillary units
over partly decentralized units to fully centralized hospital organizations.
In our approach, we model and simulate the existing fully-decentralized
hospital structure present in the case study hospital and develop planning
methods for providing decision-support.

Earlier work on agent-based hospital simulation has been presented in
e.g. [43, 83]. In Sibbel and Urban [83] modeling and design issues for de-
veloping general agent-based simulation systems for the hospital domain
are discussed. The presented approach is based on a normative reference
model for modeling human decision-making behavior by agents. Herrler and
Puppe [43] present an agent-based simulation kit based on the simulation
environment SeSAm [42] to evaluate different scheduling heuristics. Also,
two case studies for task scheduling are presented to evaluate the simulation.
The work in [43] is embedded in the Agent.Hospital framework [56] which
also includes an agent-based medical ontology, as well as several norma-
tive approaches for processes simulation and patient and staff scheduling in
hospitals. In contrast to the approaches described above, our agent-based
simulation was built in a bottom-up approach. In our case study at the
CHE we analyzed the requirements for a realistic simulation in this set-
ting. As a result, our agent-based simulation is tailored towards inpatient
treatment processes and the involved patient flow logistics. As explained in
Section 1.1, the associated problem dynamics differ considerably from out-
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patient settings. Therefore, earlier agent-based simulation approaches are
not applicable in this problem domain. The agents’ scheduling behavior in
our simulation is modeled by heuristics that are inspired by current hospi-
tal scheduling practice. In our work we combine these realistic scheduling
heuristics with computational intelligence techniques. In contrast to the
simulation approaches described above, our approach allows us to address
the dynamic aspects and develop a fast simulation with negligible overhead.

Also, patient scheduling has been addressed in several agent-based ap-
proaches. Specifically, task scheduling has been subject of several agent-
based planning approaches in the past. In Decker and Li [26] the issue of
conflict handling is studied for scheduling patient tests at different ancillary
units. The coordination concept is based on on Generalized Partial Global
Planning [27, 28] and involves bidding in auctions for time slots taking into
account the patients’ assigned medical priority and constraints imposed by
already scheduled tasks. In a comparable setting, [75, 76, 77] propose an
agent-based scheduling system where the planning of patient tests is based
on a contract-net protocol [101] and medical wellness functions of patients.
In Marinagi et al. [64] the problem of planning and (re-)scheduling patient
tests in hospital laboratories is addressed. The proposed approach uses de-
composition techniques to divide complex tests into a set of activities and
temporal constraints concerning activities and resources. Oddi and Cesta
[71] consider the problem of scheduling medical treatments on resources
based on clinical protocols for the treatment of patients. The approach uses
constraint-based scheduling techniques and a mixed-initiative problem solv-
ing mechanism where a constructive solution is further improved by a user
or a tabu search algorithm. In Vermeulen et al. [94] a coordination mecha-
nism is presented for exchanging appointment slots in order to improve the
patient’s schedules in an outpatient setting.

Our work on patient flow logistics is focussed on the process manage-
ment for surgical and emergency patient flows. In this problem setting,
the task scheduling approaches developed in earlier research as described
above cannot be applied in a straightforward way. This is due the uncer-
tain availability of resources due to the stochastic patient pathways which
imposes additional non-deterministic constraints on the scheduling problem
that need to be taken into account. Moreover, the above approaches for pa-
tient scheduling have been shown to be efficient in settings with predefined
(and partly deterministic) treatment path. This assumption does not hold in
the hospital inpatient setting considered in this thesis with patient pathways
characterized by stochastic treatment durations and routing. These stochas-
tic factors perturb the resource schedules and thus further complicate the
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problem.

1.5 Outline and roadmap of the thesis

The remainder of this thesis is organized as follows.

Chapter 2 describes and validates the agent-based simulation developed
in the CTS case study at the CHE. In this chapter we formalize the
domain and patient flow model. Moreover, we describe the case study
performed at the CHE with the corresponding patient pathways and
resource allocation settings. The agent-based simulation is presented
with the agents’ decision-making policies that were inspired by the
case study which also provided the corresponding policy parameters.
Several basic and what-if scenarios are presented that demonstrate
the functionality of the simulation and applicability for the problem
domain.

Chapter 3 focuses on the prediction of future hospital resource occupancy
for the model described in Chapter 2. Given the current and planned
patient admissions the bed occupancy over a period of several days
is predicted. To account for fluctuations during the day, the resource
occupancy is modeled by a probability distribution. We present two
prediction approaches: forward simulation and supervised learning.
Forward simulation is used to forecast the future bed occupancy by
estimates of the empirical distribution function calculated based on
samples obtained from several simulation runs. For the supervised
learning we use (artificial) neural networks. For this approach, the
empirical probability distributions of bed occupancy obtained from
forward simulation experiments are approximated by Gaussian mix-
ture distributions, i.e. the convex sum of normal distributions, whose
parameters are learned by the neural network. We evaluate the sam-
ple size needed to obtain accurate and precise predictions using for-
ward simulation and show the feasibility of the supervised learning
approach. The forward simulation prediction approach will be used
further throughout the thesis.

Chapter 4 is concerned with the optimization of hospital resource man-
agement in a network of care units. We present a multi-objective evo-
lutionary optimization approach that uses the simulation presented
in Chapter 2 as grey-box evaluation. The three conflicting objectives
used in the optimization are: maximal patient throughput, minimal
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resource costs and minimal usage of back-up capacity. The optimized
resource allocations improve benchmarks obtained from hospital prac-
tice in resource management. Moreover, we determine the algorithmic
settings required to obtain accurate optimization results at reasonable
computational costs.

Chapter 5 addresses adaptive hospital resource management and the opti-
mization thereof. We take a policy-based optimization approach which
means that a policy, i.e. a parameterized function, is used to determine
an allocation decision given the current state, is optimized in terms of
its attributes. The developed policies allow for adaptive resource allo-
cations that improve the optimized allocations obtained in Chapter 4.
Moreover, the results show the benefit of incorporating predictions on
future resource occupancy to anticipate the effect of allocation deci-
sions taken now on the future. Furthermore, we evaluate the algorith-
mic settings in order to reduce the computational costs involved in the
MO policy optimization approach.

Chapter 6 provides our concluding remarks and discusses possibilities for
future work.

A roadmap of this thesis is illustrated by the dependency diagram shown in
Figure 1.3. The simulation described in Chapter 2 forms the basis for the
computational methods presented in Chapter 3 to Chapter 5. Therefore,
the reader is advised to read Chapter 2 as a starter. The prediction method
of forward simulation developed in Chapter 3 is applied in Chapter 5, so
the reader is advised to consider Chapter 3 for in-depth information on the
anticipatory approach in adaptive resource management. The section on
supervised learning using neural networks can be skipped at first reading.
Finally, Chapter 4 introduces the main concepts of multi-objective optimiza-
tion and the evolutionary MO optimization approach which is extended in
Chapter 5, so the reader is advised to read these chapters in the given order.

1.6 Publications

A paper based on the contents of Chapter 2 appeared as [47]:
A.K. Hutzschenreuter, P.A.N. Bosman, I. Blonk-Altena, J. van Aarle, and
J.A. La Poutré. Agent-based Patient Admission Scheduling in Hospitals.
In: Padgham et al., editors, Autonomous Agents and Multiagent Systems –
AAMAS 2008, pages 45–54. IFAAMAS, 2008.



1.6. Publications 27

Figure 1.3: Dependency diagram of the chapters in this thesis where the dependencies
to Chapter 3 are only with respect to prediction by forward simulation

A paper based partly on Chapter 4 and partly on Chapter 5 was pub-
lished as [48]:
A.K. Hutzschenreuter, P.A.N. Bosman, J.A. La Poutré. Evolutionary Mul-
tiobjective Optimization for Dynamic Hospital Resource Management. In:
Proceedings of the 5th International Conference on Evolutionary Multi-
Criterion Optimization – EMO ’09, volume 5467 of Lecture Notes in Com-
puter Science, pages 320–334, Springer-Verlag, 2009.

A short version of Chapter 5 with contributions from Chapter 3 will appear
as [49]:
A.K. Hutzschenreuter, P.A.N. Bosman, J.A. La Poutré. Enhanced Hospital
Resource Management using Anticipatory Policies in Online Dynamic Multi-
Objective Optimization. In: Proceedings of the Genetic and Evolutionary
Computation Conference – GECCO 2010, ACM press, to appear.
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Chapter 2

Agent-based simulation for

hospital patient flow

In this chapter an agent-based simulation for surgical and emergency patient
flows in a hospital is described. The simulation was developed in collabora-
tion with a large university-affiliated hospital in Eindhoven, the Netherlands,
and is based on an extensive case analysis, comprising data analysis and in-
terviews. We focus on the coordination of different surgical patient types
with probabilistic treatment processes involving multiple hospital units. We
also consider the unplanned arrival of other patients requiring (partly) the
same hospital resources. The model allows for the assessment of resource
network usage as a function of different policies for decision making. Sim-
ulation experiments support the validity of our agent-based simulation for
decision support. A short version of this chapter has appeared in [47].

2.1 Introduction

As argued in Chapter 1, the hospital domain is an environment of uncer-
tainty and heterogeneity. Patient treatment processes are unpredictable
because of stochastic routing between treatment steps, stochastic length of
stay (LoS) and possibly stochastic arrival times, e.g. unexpected emergency
patients, cf. Chapter 1, Section 1.1.3. Moreover, patient treatment pro-
cesses often involve several hospital units. Often, resources, e.g. at the ICU,
are shared by multiple treatment processes. The actual flow of inpatients
through the network of hospital units, however, depends on the available
resources at the different units. Thus, actual patient pathways may deviate
from the medically indicated treatment processes, patient transfers may be
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deferred, and patient admissions and operations may need to be canceled.
Due to the stochastic patient processes and the actual patient flow being
the result of resource availability, an analytical evaluation of such a problem
setting is not feasible. Furthermore, changing the structure of the patient
pathways or the underlying probability distributions is non-trivial in an ana-
lytical model. In order to gain insight into the functioning of such a complex
and dynamic system we developed a simulation for this problem setting. In
addition to providing insight, the simulation allows for predicting effects of
changed system or environment variables (so called what-if scenarios) that
would otherwise be unpredictable, e.g. changing the parameters of the units’
transfer and admission policies or hospital resource allocations.

Hospitals often show a distributed organizational structure [26, 59, 81].
They are divided into several autonomous hospital units that are each asso-
ciated with a medical specialty. Schedules of shared resources, like operating
rooms, are managed locally by the units each applying their own (medical)
priorities and preferences. Thus, patient scheduling in hospitals has strong
decentralized features, cf. Section 1.1.1. In order to obtain a simulation that
realistically represents the problem domain and allows for accurate what-if
evaluations, the simulation model should not only incorporate the stochastic
features related to patient care of different patient groups, but also reflect
the distributed decision making by the different hospital units. Therefore,
an agent-based simulation is a natural candidate to model hospital reality.

The agent-based simulation was developed in a cooperation between
academia and the Catharina Hospital Eindhoven (CHE), the Netherlands.
As outlined in Section 1.3, we base the simulation model on an extensive case
analysis at the cardiothoracic surgery (CTS) department at the CHE. The
CHE is a large university-affiliated hospital in Eindhoven with state-of-the-
art intensive care and CTS medicine. The case study comprises an extensive
data analysis and several interviews with experts from the CTS unit and the
ICU. Specifically, we consider CTS-patient flows and their interaction with
other surgical and emergency patient flows. The different hospital care units
involved in the treatment of these patients are represented each by an au-
tonomous agent in the simulation. The following features are included in
the simulation:

• different patient characteristics that influence the patients’ priority
and pathway in the hospital,

• patient treatment processes with stochastic routing and LoS,

• multiple hospital care units with individual scheduling policies, and
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• limited and uncertain resource availability due to the inflow of other
surgical patients and the arrival of emergency patients.

To the best of our knowledge, this is the first agent-based simulation for
hospital patient scheduling that includes the features above and that is based
on real hospital data and scheduling practice.

The remainder of this chapter is organized as follows. First, we discuss
related work in Section 2.2. The design of the agent-based simulation is de-
scribed in Section 2.3 with the architectural structure, the decision model of
the agents, the patient pathway model and the case study inputs. Then, the
simulation experiments that were performed for evaluating and validating
the simulation are reported in Section 2.4. Finally, in Section 2.5 we provide
our conclusions.

2.2 Related work

As mentioned in Chapter 1, Section 1.4, relevant related work on patient
scheduling and simulation in hospitals can be found in the Operations Re-
search and Management literature and AI literature on agent-based model-
ing and optimization. Typical planning problems considered in the Opera-
tions Research literature relate to single care units. Especially the problems
of operating room scheduling (e.g. [18, 23, 39]), the allocation of hospital
beds to a care unit (e.g. [35, 40, 55, 58, 80, 89, 97]) and the scheduling of
diagnostic facilities (e.g. [52, 57, 73, 74]) have attracted major research in-
terest. In our work, we focus on complex treatment processes that involve
multiple hospital units, i.e. the OR, ICU and nursing wards. The work
reported in [60] and [1, 99] provide theoretical results for bed utilization
levels for patient treatment processes with deterministic routing. We of-
fer a more operational approach which can deal with stochastic treatment
durations and routing. Moreover, our agent-based simulation approach is
very flexible and can be easily adapted to other settings matching structural
hospital features. The simulation model presented in Harper and Shahani
[40] facilitates the evaluation of aggregated bed allocation policies. Our ap-
proach allows for an in-depth analysis of allocation strategies also on the
level of different hospital units. Additionally, the effect of (small) changes
in bed allocations can be evaluated using the agent-based simulation tool.
The simulation study in VanBerkel [93] focuses on waiting time reduction
and capacity planning for partly deterministic patient flows of the general
surgery specialty. We consider complex patient pathways involving multi-
ple postoperative care units, that are also used by other specialties’ patient
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pathways, and stochastic routing. In Groot [37] different surgical admission
policies are evaluated in a setting that involves the OR and a general pool
of postoperative care beds with a stochastic demand for care and deter-
ministic treatment processes. In our model we consider stochastic patient
processes and a hospital setting with multiple postoperative care units that
are required by several patient pathways. The work in Blake and Carter
[9] addresses the optimization of the overall patient case mix on a strategic
level, whereas our approach is on an operational level of control for pa-
tient (admission) scheduling. The stationary Markov chain model described
in Kolesar [58] is used to optimize admissions given the estimation on avail-
able resources while our approach explicitly includes fluctuations in hospital
resource utilization due to the stochastic patient treatment processes.

Fewer approaches on agent-based patient planning and scheduling have
been proposed in the AI literature. In [26] the issue of conflict handling in pa-
tient task scheduling is studied. However, the dynamics of the problem, like
stochastic treatment durations and stochastic routing, as well as different
patient characteristics are not considered. Random treatment durations and
routing between treatment steps are, however, very important to consider
because they perturb the hospital units’ schedules. The approach described
in [75, 76, 77] for patient task planning is based on medical wellness func-
tions of patients. In our work, we did not include medical wellness functions
for patients since the utility elicitation of representative wellness functions
is considered time-consuming, data collection is resource-intense and is still
an open problem in epidemiological research [46]. Moreover, the solution
does not scale sufficiently and does not consider resource constraints for in-
patient planning and the stochastic patient care features incorporated in our
approach. Multiple appointments in an outpatient setting have been studied
in [94]. Their approach assumes a predefined treatment path which does not
hold in our problem setting. Also, no stochastic appointment lengths were
considered.

2.3 Simulation model

In the following section the design of the agent-based simulation is presented.
Our system of concepts follows the terminology of Fishwick [34]. The context
of the simulation is a network of hospital care units through which patients
of different types are flowing according to their pathways, cf. Chapter 1,
Section 1.1.3. As described in Section 1.3, we designed and implemented a
simulation for this setting based on a case study at the Catharina hospital
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Eindhoven (CHE) using the paradigm of software agents to represent the
different care units involved in the patient treatment.

For the analysis and design of the agent-based simulation, the method-
ologies in [29] and [70] were taken into account. During the development
phase, the model and functionality were frequently discussed with hospital
planners and managers at the CHE. The resulting model was approved by
the CHE domain experts.

In the following, we first discuss the requirements and goal of the simu-
lation. Then, we present an overview of simulation with the different agents
involved, their decision models and a model of the patient flows.

2.3.1 Requirements & goals

The goal of the simulation is to realistically model and simulate patient
flows in a hospital setting. On that account, the model design should cap-
ture the autonomy of hospital care units. Specifically, the simulation model
should facilitate that the different care units autonomously initiate and eval-
uate patient admissions, schedule medical procedures and arrange patient
transfers & discharges according to the patients’ pathways. Moreover, the
model should allow for care units to react flexibly to bottlenecks arising from
high resource occupancy in their units through dynamic adjustment of pa-
tient transfers under some medical restrictions. Furthermore, the simulation
should be flexible and adjustable to other patient pathway and hospital set-
tings. Considering the execution of the simulation model, the model should
be executable on a single PC and feature a reasonable runtime.

2.3.2 Architecture of the simulation model

Figure 2.1 provides an overview of the agent-based simulation. The simu-
lation is composed of three major sections: the case inputs, the simulation
and its output. The figure also includes the relation of the simulation to
three adaptive computational models for predicting future resource usage
and optimizing dynamic resource management and admission control which
will be discussed in the remaining chapters of this thesis. Below we discuss
the main parts of our simulation in more detail.

Case study inputs The inputs of the simulation can be divided into
information concerning patient care and general conditions for hospital op-
erations. The patient information comprises the relevant patient groups and
their pathways, patient priorities and waiting lists. The model that is used



34 Chapter 2. Agent-based simulation for hospital patient flow

Case study inputs

Patient 
pathways

Patient 
waiting lists

Scheduling 
rules

Patient 
priorities

Performance 
measures

Initial 
resource 
allocation

Initial 
admission 
scheme

Care unit 
agent

Care unit 
agent

Care unit 
agent

Care unit 
agent

OR 
scheduling 

agent

Care unit 
agent

Care unit 
agent

Model of 
agents

Simulation

Patient 
admissions

Patient 
admission 
scheme

Patient 
transfers/

discharges

Resource 
allocation

Adaptive 
computational 

models
Resource 
allocation 
(policy)

Chapter 4 & 5

Output

Performance
Simulation 

logs

Resource 
occupancy  
prediction

Chapter 3

input/output

agent communication

legend

Adaptive 
admission 
scheduling 

Figure 2.1: Overview of the agent-based simulation

in the simulation for the patient pathways will be discussed in detail in Sec-
tion 2.3.4. The general conditions for operations in the simulation include
an initial allocation of resources to the different units, a basic admission
scheme, scheduling rules and output measures for the performance of the
simulation. The case inputs of the simulation are obtained from an exten-
sive data analysis of historical data and interviews with domain expert from
the CHE. The case study and the derived inputs are reported in further
detail in Section 2.3.5.

Resource allocation In accordance with Section 1.1.3 the resource allo-
cation in our simulation specifies the number of resources, i.e. half-day OR
time slots and hospital beds, that are allocated to the different care units
and specialties. Moreover, the resource allocation indicates the temporal
availability of the allocated resources. The resource allocation may be ad-
justed online based on a resource allocation policy and information obtained
from the care unit agents in the simulation. The online adjustment of re-
sources will be further discussed in Chapter 4 on the optimization of hospital
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resource allocations.

Patient admission scheme As introduced in Section 1.1.3 the admis-
sion scheme controls the flow of patients into the system of hospital units
represented in the simulation. The scheme determines the (maximal) daily
number of patients to be admitted to the hospital which also depends the
availability of elective surgical patient groups on the waiting lists and their
medical priorities, e.g. [75].

Patient admissions, transfers and discharges The simulation of the
patient pathways generates events to indicate the arrival or possible transfer
of a patient. Patient arrivals initiate the internal decision making of the
corresponding agent to evaluate the admission. Patient transfers trigger
the interaction between the involved agents. As explained in Section 1.1.3,
the actual patient admissions, transfers and discharges are the result of the
agent communication.

Model of agents The agent model comprises two types of agent: OR
scheduling agents and care unit agents. An OR scheduling agent represents
a surgical specialty and is responsible for managing the schedule for the
allocated OR time slots. Care unit agents, in abbreviation also referred to
as unit agents, act on behalf of postoperative and critical care hospital units.
The unit agents coordinate patient transfers with other agents based on the
patients’ pathways and the available resource capacity. Furthermore, unit
agents decide upon patient admissions on the basis of the admission scheme
and the available resources. The agent mapping and the agents’ roles were
identified by use cases obtained from the CHE case analysis.

The different agents negotiate patient transfers in the simulation through
message exchange indicated by dashed arrows in Figure 2.1.

The internal decision making model of the OR scheduling and care unit
agents are described in detail in Section 2.3.3, respectively.

Output The system offers logging possibilities for actual patient admis-
sion, transfer and discharge decisions which is used to determine different
outcome measures. The outcome measures include

• the patient throughput, i.e. the number of patients that completed
their treatment process, for the different patient groups,

• the number of patients per group treated at the different units,
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• the number of rejected patient admissions at the different hospital
units,

• the number of rejected patient transfers per patient group at the dif-
ferent hospital units,

• the number of canceled surgery sessions for the different patient groups
due to unavailable postoperative care beds, cf. Section 1.1.3,

• the frequency and duration of back-up capacity usage at the different
units for the different patient groups, and

• the total costs for regular resource capacity at the different hospital
units.

Moreover, the simulation model offers several statistics for evaluating the
different output measures. In accordance with the hospital management
at the CHE, the performance measures of interest are determined by the
mean and standard deviation of the patient throughput, the costs associated
with total regular bed capacity and unused OR capacity as well as the
accumulated back-up capacity usage.

Decision variables In accordance with the hospital managers from the
CHE, the following variables are considered as free decision variables in the
simulation:

• the number of allocated beds and ORs,

• the patient admission scheme, and

• the parameters of the unit agents’ patient (re-)transfer policies.

2.3.3 Decision model of agents

Patient transfers are negotiated among the different agents in the simulation
through message exchange. In their decision making process whether to ac-
cept or reject requested patient transfers the agents apply their individual
scheduling policies and decision criteria. In the following we first give a gen-
eral description of the agents’ communication and decision making process.
Then, we address the specific decision making models of the different types
of agents.
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General description

In the communication protocol employed by the agents, a patient transfer
is proposed from the agent that represents the unit where the patient is
currently admitted to the indicated care unit’s agent. The applied agent
evaluates the proposed transfer based on its admission policies and other
decision criteria. The agent then returns a message to inform the applying
agent how many of the proposed patient transfers are accepted, if any. If
a patient transfer is accepted, an additional message is sent to inform the
accepting agent of the actual patient transfer. Thereafter, the patient is
admitted to the care unit and assigned to a resource.

In general, patients are admitted to a hospital unit only if resources are
available, excluding available back-up capacity. In our simulation some ex-
ceptions to this rule are made for patients that are already admitted to the
hospital which is inspired by the scheduling policies employed at the case
study hospital which is described in more detail in Section 2.3.5. In line with
current hospital practice this means that if more patients are proposed for
transfer than resources are available, a choice must be made which patients
are admitted. This decision is typically based on a multitude of clinical vari-
ables. As explained in Section 1.3 the medical choice for assigning surgical
and emergency patients to available resources is represented by a stochastic
process that first randomly selects patients with the highest priority level,
i.e. emergency status. Any remaining available capacity is then assigned
randomly to the other patients proposed for transfer. Due to the generic
setup of the simulation also a more elaborate choice model can potentially
be incorporated in a straightforward manner.

In the simulation the agents continually check whether a patient is fit for
transfer or discharge. The eligibility for transfer and discharge is based on
the LoS, i.e. if the LoS of the patient at the specific unit has elapsed1. If a
patient is admitted to a hospital unit that is not indicated by the patient’s
pathway due to resource shortage at the concerned unit, cf. Section 1.1.3,
the corresponding care unit agent may also propose later on to re-transfer
the patient to the care unit originally indicated. The LoS for the indicated
care unit is then reduced by the time the patient spent at the transferring
unit. Also, the agents attempt to accommodate patients that have been
admitted to back-up capacity to a ”regular” bed if one becomes available
through another patient’s transfer or discharge.

Figure 2.2 provides a graphical representation of the decision models of

1In reality the eligibility for transfer is a medical input that is assessed by the medical
staff.
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Figure 2.2: Decision models of agents in agent-based simulation for the (a) OR scheduling
agent and (b) care unit agents (dashed lines indicate agent communication)

OR scheduling agent

The task of the OR scheduling agent is to schedule surgical patients to OR
time slots. This comprises the following actions and decisions:

• prior to surgery: initiate the admission of the surgical patients to fill
available OR time slots of the respective specialty,

• on the day of surgery: determine OR scheme & requests for pre- and
postoperative transfers to the corresponding care unit agents.

The number of patient admissions that are initiated is derived from the
admission scheme of the relevant patient types. Due to the cost pressure,
surgical patients are commonly admitted to the hospital only few days prior
to their planned surgery. In our simulation a fixed preoperative LoS of one
day is assumed.

The agent’s scheduling policies determine the OR scheme which is ini-
tially derived from the admission scheme of the day prior to surgery. The
scheduling policies incorporate medical and organizational rules imposed
by the hospital context and specify. For example, the rules comprise con-
straints on allocating OR time slots to type of patients, e.g. time slots in
the morning are reserved for children or patients with postoperative indi-
cation for transfer to the PACU which is opened only for a limited period
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of time. Moreover, the scheduling policies require that a postoperative care
bed is available and reserved at the indicated care unit in order to perform
a surgery. The meaning is as follows. If a postoperative care bed is avail-
able, a patient with corresponding patient type is always scheduled for an
available OR time slot. However, if postoperative care beds are unavailable,
the OR scheduling agent reduces the number of corresponding surgeries in
OR scheme accordingly.

Based on the OR scheme, the OR scheduling agent requests patients
planned for surgery to be transferred from their current units to the OR
theater. Also, the OR scheduling agent requests the postoperative patient
transfers to the indicated care units.

Care unit agents

Care unit agents perform the task of coordinating patient transfers with
the different agents involved in the different patient pathways. Regarding
patient admission, transfer or discharge decisions the following factors are
taken into consideration: the current bed occupancy, the number of allocated
resources, the agent’s scheduling policies, the admission scheme and the
messages exchanged with the other agents.

The agents’ scheduling policies affect the admission and transfer deci-
sions as follows:

• whether to reserve resources(s) for specific patient groups,

• whether to accept patient admissions & transfers and to which extent
depending on the available resources (excluding reserved capacity),

• whether and how back-up capacity is allocated to patients,

• which patients are selected to undergo surgery if requested by OR
scheduling agent,

• whether an alternative patient transfer is arranged if the originally
indicated care unit agent rejects the transfer, and

• whether patient re-transfer is attempted.

As explained above, a care agent only accepts a patient transfer or admission
if a resource is available to assign the patient to. Following the clinical rule
at the CHE, patients in more severe clinical condition are given priority to
be selected for transfer or admission. Also, some care unit agents may use
back-up capacity in order to accommodate patients of specific patient types.
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Concerning preoperative patient admissions requested by OR scheduling
agent(s), a care unit agent may account for eligible preoperative patients
that are already admitted due to previously canceled surgeries. Based on
organizational rules at the CHE, in our model patients remain admitted to
the corresponding care unit if their surgery has been postponed.

For selecting surgical patients for available OR time slots the care unit
agents apply a random choice. This is a representation of reality where
this decision is taken by the specialty’s medical staff. Through the random
choice it may happen in the simulation that a patient remains at the care
unit for a ”long” time. In reality the chances for being selected for an OR
slot increase with increasing time spent at a care unit. However, since we
distinguish the patient types this does not become a limiting factor for the
remaining treatment process.

If a patient transfer is rejected a care unit agent may arrange for an
alternative patient transfer. This means that a (temporary) patient trans-
fer is requested to another unit that is not indicated by the corresponding
patient pathway. According to medical rules, the first option is restricted
to care units of equal or higher care level than the unit originally indicated.
The patient pathway is then adjusted accordingly. If the transfer to another
unit of equal or higher care level is not possible, the patient has to remain
admitted to the corresponding unit. Depending on the scheduling policy,
this procedure is repeated until the patient transfer is accepted or the LoS
has elapsed. It should be noted that if patients remain admitted at their
current unit, this may especially affect surgical patient flows to the OR since
appropriate postoperative care resources must be available and reserved for
patients before undergoing surgery.

If a care unit agent has accepted the (temporary) transfer of a patient
who has a different, possibly lower, care indication, the agent may decide to
initiate the re-transfer of the respective patient to the originally indicated
care level. This decision may depend on the current resource utilization,
cf. Section 2.3.5.

The agent-based model reflects the complex features of the hospital do-
main in a detailed and realistic way. The case study and the relevant inputs
are described in detail in Section 2.3.5. The experimental evaluation and
validation of the simulation is presented in Section 2.4.

2.3.4 Model of patient pathways

This section describes the model of patient pathways that is used in the
simulation. The model is a formalization of the model described in Chap-
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ter 1. As discussed in Section 1.1.2 and Section 1.1.3, we consider patient
groups with similar resource consumption during their treatment. The set
of patient groups that can be distinguished on the basis of the resource need
is denoted by Θ. Let U denote the relevant hospital units involved in the
patient treatment processes to be considered. All possible pathways of a
patient type g ∈ Θ are modeled as a probabilistic graph [10]. The graph is
given by the tuple Gg = (Ug, Ag, P g), where Ug ⊂ U denotes the hospital
care units involved in the treatment process and Ag represents the set of
arcs between units u ∈ Ug, i.e. the possible adjacent treatment operations.
The length of stay (LoS) of a patient of group g ∈ Θ at hospital unit u ∈ Ug

is modeled as a random variable, LoSg
u, that follows a discrete probability

distribution PLoSg
u . P g is the set of conditional probability distributions

defined on Ag with

P g = {Pr(v|u, g, t)|u, v ∈ Ug, (u, v) ∈ Ag, t ≥ 0} for g ∈ Θ. (2.1)

Pr(v|u, g, t) represents the probability that care provided by unit v is re-
quired given that a patient of type g has been admitted to unit u for t time
units. The possible patients’discharge destinations from the hospital are
indicated by o ∈ U which comprise home or other care facilities, but also
mortality.

Consider for example the patient pathway illustrated in Figure 2.3 where
a surgical patient treatment graph of a patient type g is depicted. The care
units involved in the treatment process are Ug = {OR,HC,Ward}, where
HC denotes the High Care, cf. Table 1.1 on page 4. The units are represented
as nodes in the patient graph with associated LoS indicated by the node,
PLoSg

u , u ∈ Ug. The arcs of the graph represent the clinical decision between
adjoining treatment steps. Here, all patients of type g undergo surgery at
the OR, then a patient may either require HC care after surgery or ward
care which is determined by the conditional probabilities Pr(HC|OR, g, t)
and Pr(Ward|OR, g, t) = 1−Pr(HC|OR, g, t). All patients admitted to the
HC subsequently require ward care and finally all patients are discharged
from the ward after completed treatment.

As outlined above and in Section 1.1.3, the actual flow of patients be-
tween hospital units is the result of negotiation between the corresponding
units for which the decision models of the different agents discussed above
are taken into account. The patient pathways thus specify the patient flows
in a situation of unlimited resource availability. Possible destinations of pa-
tients’ discharges from the hospital are home or other care facilities, but also
mortality.
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Figure 2.3: Illustration of probabilistic graph model of a patient pathway

2.3.5 Case study

The simulation instance that is used throughout the remainder of this thesis
is based on an extensive case analysis at the CTS department at the CHE.
Below, we describe the different case inputs for the simulation.

Patient pathways and priorities

The following patient pathway description is based on numerous expert in-
terviews in combination with an extensive data analysis. In the CTS case
study, the relevant care units are included in the set U that is given by
U={CTS-OR, IC, IC-HC, MC, CCU, CTS-HC, CTS-PACU, CTS-ward, o},
cf. Chapter 1, Section 1.1. Here, the prefix CTS indicates that a hospital
unit is (partly) dedicated to CTS patients, e.g. OR time slots assigned to the
CTS specialty. The High Care (HC) unit is subdivided into IC-HC, which
is shared by different surgical specialties, and CTS-HC which occasionally
allows other patients as well. o summarizes the possible destinations of a
patient’s discharge from the hospital, cf. Section 2.3.4.

In the CHE case study for the CTS, four types of patient pathways
(type I to IV) were identified. Type I and II patients are CTS patients,
for whom the first postoperative care is indicated as CTS-HC and CTS-
PACU, respectively. The decision for a type I or II pathway is based on
a preoperative assessment of the patient’s clinical condition. The type III
pathway corresponds to the treatment process of emergency patients who
arrive unexpectedly. The type IV patient path represents the inflow of other
surgical patients in the system. Other surgical patients comprise patients
from amongst others general surgery, orthopedics and gynaecology. These
patient flows are aggregated because of the strategic focus on cardiothoracic
surgery at the CHE and the resulting relatively small number of patients for
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other surgical specialties.

The pathway of type I patients is depicted in Figure 2.4. Here, type
I patients undergo surgery during the OR time slots allocated to the CTS
specialty, denoted as CTS-OR. After surgery, they are admitted to the CTS-
HC for recovery from surgery and are expected to return to the CTS-ward
on the following day. The schedule of the ward round at the CTS-HC de-
termines the fixed point in time when patient transfer decisions are taken.
This implies that the LoS at the CTS-HC can be considered as deterministic
and t is irrelevant in (2.1). Complications require an admission to IC or MC
for 15% of the type I patients. Patients admitted to IC or MC are subse-
quently transferred to the CTS-ward. If type I patients no longer require
medical care and monitoring in the hospital, they are discharged and leave
the system. Complications requiring re-admission or re-operation can be
easily incorporated in our model. In the considered CTS case study, how-
ever, they were irrelevant because they occur only exceptionally (in about
0.6% of the cases). Figure 2.5 shows the four types of patient pathways

pat. type I

15%

CTS-ward

15%

MC

IC

70%
CTS-OR CTS-HC

Figure 2.4: Representation of type I patient pathway1

and their interference. By dashed arcs, the possible pathways of type II pa-
tients are depicted. Type II patients follow a fast-track variant of the type
I path. Postoperative recovery and care is performed at the CTS-PACU
and type II patients are expected to return to the CTS-ward on the same
day of surgery. Similarly to type I patients, the LoS at the CTS-PACU can
be considered as deterministic as type II patients have to be transferred to
another care unit at the closing of the CTS-PACU. Severe complications
that require admission to IC or MC occur but rarely and the corresponding
routing probabilities to IC and MC are given as 5% and 15%, respectively1 .
The postoperative and critical care units involved in the CTS patient treat-
ment processes are also partly required by other patients. The corresponding
resource requirements are depicted by the type III and IV pathways in Fig-
ure 2.5. In our research we focus on the possible interference between the
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different patient pathways. For this reason, we restrict the model of the
type III and IV pathways to the IC, IC-HC, CTS-HC and MC unit as the
preceding and successive treatment steps of type III and IV patients involve
other dedicated resources that are not required by CTS patients. Therefore,
type III patients arrive at the IC or MC while type IV treatment primarily
involves the IC-HC. If IC-HC beds are scarce, type IV patients may alter-
natively be routed for admission at the IC or CTS-HC1. In this model we
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Figure 2.5: Interference of CTS, other surgical and emergency patient pathways1

distinguish two levels of patient priority: the ”emergency” priority status
which is assigned to type III patients and type I and II patients with IC
indication after surgery and the remaining ”regular” patients. In case of re-
source scarcity the CHE units primarily accept ”emergency” patients while
”regular” patients are eligible for alternative routing.

Resource allocation

For the treatment of the CTS patient groups at the CHE four half-day OR
sessions are allocated to the CTS specialty. For the CTS, a half-day OR
session corresponds to one surgery that can be performed. The early OR
slots are assigned to type II patients which is required by the design of
the CTS patient pathways. As described in Section 2.3.5, the CTS-PACU
beds are only opened for a limited time and the type II patients require a
postsurgical recovery time before returning to the CTS-ward. The number
of postoperative care beds at CTS-PACU and CTS-HC equals the number
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of OR slots allocated to the CTS specialty. Beds at the CTS-PACU and
CTS-HC are opened for a limited time window. Moreover, there are four
IC-HC and MC beds and 11 IC beds for acute care and monitoring. For the
revalidation at the CTS-ward 35 beds are allocated. The hospital beds at IC,
IC-HC, MC and the CTS-ward are opened 24 hours, 7 days per week which
is indicated as 24/7. The resource allocation and availability of resources at
the CHE is also summarized in Table 2.1.

Unit Number of resources Resource availability

CTS-OR 4 ORs Mo-Fr 8h00-12h00
CTS-OR 4 ORs Mo-Fr 12h00-17h00
CTS-PACU 4 beds Mo-Fr 12h00-22h00
CTS-HC 4 beds Mo 10h00-Sa 10h00
IC 11 beds 24/7
IC-HC 4 beds 24/7
MC 4 beds 24/7
CTS-ward 35 beds 24/7

Table 2.1: Number and availability of allocated resources at the different care units in
CHE case study

Agents’ policies for agent-based simulation

In the simulation, the OR scheduling agent represents the CTS specialty.
The care unit agents act on behalf of the IC, IC-HC, MC, CTS-HC and the
CTS-PACU unit and the CTS-ward. The implemented scheduling policies
of the different agents are summarized in Table 2.2 on page 46. Below the
policies are described in further detail.

Communication moments The CHE patient pathways and resource
availability constraints result in a number of fixed time points for admis-
sion and transfer communication among the OR scheduling and several care
unit agents in the simulation. A time line with the timely fixed decision and
communication moments for the involved agents is depicted in Figure 2.6.
Except for the fixed decision and communication moments, care unit agents
initiate patient transfer communication if a patient is eligible for transfer,
cf. Section 2.3.3.

OR scheduling agent The OR scheme of the OR scheduling agent for
the CTS specifies the number of type I and II patients to be scheduled to
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OR Scheduling
agent

request transfer of type II and I from CTS-ward to OR as specified in OR scheme at time SCTS II

and SCTS I, respectively (cf. Figure 2.6); reserve beds at CTS-PACU and CTS-HC prior to surgery;
if informed that insufficient beds are available, cancel surgeries accordingly; based on OR scheme
for following day, inform CTS-ward on required number of type I and II patients at time AI+II;
send transfer requests to CTS-PACU and CTS-HC agents after completed surgery of type II and I
patients, respectively

CTS-PACU agent send transfer requests to hospital unit indicated for admitted patients at time TCTS-PACU

CTS-HC agent send transfer requests to care unit agents at time TCTS-HC; if transfer is rejected by all possible care
unit agents, patients remains (temporarily) at CTS-HC (and is repeatedly proposed for transfer,
depending on the settings of the re-transfer policy); on request of the OR scheduling agent reserve
beds for postoperative type I patients; accept admission of type IV patients if beds are available;
possibly retry patient transfer for type I to MC and re-transfer type IV patients to IC-HC

IC agent admit all type I & II patients with IC indication, possibly use back-up capacity if IC beds are
scarce; other patient admissions are accepted by random choice over patients contained in transfer
proposal, retain one bed for type III patients; retry transfer of CTS patients to MC and type IV
patients to IC-HC, respectively, depending on the settings of the re-transfer policy

IC-HC agent if insufficient beds are available for requested type IV admissions, send admission request to IC (and
if necessary the CTS-HC) agent; if unsuccessful, reject admission; admit other patients proposed
for transfer by random choice to free beds; retry transfer of CTS patients to MC, depending on the
settings of the re-transfer policy

MC agent admit all patients from CTS-PACU; if MC beds are scarce, use back-up capacity; admit other
patients proposed for transfer by random choice to free beds

CTS-ward agent admit all postoperative patients; the number of preoperative admissions depends on the following
day’s OR scheme accounting for previously admitted patients whose surgeries have been canceled;
if OR scheme is adjusted due to unavailability of postoperative care beds, randomly select patients
of corresponding patient type; if ward beds are scarce, use back-up capacity

Table 2.2: Scheduling policies implemented in agent-based simulation system
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AIV 

Figure 2.6: Time line for the fixed decision moments and communication: S - schedule
surgery, T - transfer, A - admission and respective agent/patient group

the allocated OR time slots, i.e. 2 half-day sessions for each of the 4 ORs.
As described above, the early OR slots are assigned to type II patients due
to the design of the CTS patient pathways.

IC agent At the CHE, type I and II patients with IC indication are con-
sidered like emergency patients and are assigned the same priority. In ac-
cordance with CHE practice, they are always admitted to the IC if required.
If free IC beds are scarce, the IC agent may use back-up capacity to ac-
commodate the emergency patients which is accounted for in the system’s
performance. At the same time, beds may be reserved for arriving type III
patients. At the CHE, this policy is applied for one IC bed. If the admission
of type III patients from outside the hospital system is rejected by the IC
agent this is accounted for in the performance measures. In this case pa-
tients are admitted to another hospital which, however, is beyond the scope
of our work and consequently left out of our model.

MC agent We analyzed at the CHE that the MC agent always accepts
transfer proposals from the CTS-PACU because CTS-PACU beds are closed
at 22pm. If MC beds are scarce, patients will be accommodated to back-up
capacity.

CTS-HC agent The alternative patient routing possibilities are illus-
trated in Figure 2.7 for type I patients. Here, the possible consecutive
patient path is depicted by bold arrows. If a type I patient, that is currently
admitted to the CTS-HC with a MC indication, is rejected for transfer to the
MC, the CTS-HC agent approaches the IC-HC agent which normally is not
intended for in the type I patient pathway, cf. Section 2.3.5 and Figure 2.4.
If the proposed transfer is accepted by the IC-HC, the patient is transferred
to the higher care level. Otherwise, a care agent of the next higher care
level is approached, here the IC agent. If the transfer to the IC unit is not



48 Chapter 2. Agent-based simulation for hospital patient flow

possible, the second rule applies and the patient has to remain admitted
to the CTS-HC until closing time or indicated transfer to the CTS-ward.
Possibly, the patient is repeatedly proposed for transfer to the MC, this de-
pends on the settings of the agent’s re-transfer policy. It should be noted
that this second option may affect the type I patient flow to the OR since
appropriate postoperative care resources must be available and reserved for
patients before undergoing surgery.
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Figure 2.7: Current practice for alternative patient routing of type I patients

IC-HC agent Similarly to the CTS-HC agent, alternative patient rout-
ing may also be applied by the IC-HC agent for the admission of type IV
patients. At the CHE, first the IC agent is approached, followed by the
CTS-HC agent. If alternative routing is not feasible, type IV patient ad-
missions are rejected. A rejected admission may affect the corresponding
surgical specialty’s OR schedule and may cause blocking at the dedicated
nursing ward. Since our focus is on the interference between type I, II, III
and IV patient flows, only the relevant care units in the type IV patient
pathway are considered. The effects of rejected type IV transfers are not
accounted for in the system’s performance.

CTS-ward agent Given the admission requests for type I and II patients,
the CTS-ward agent schedules the patients’ admissions to the CTS-ward for
the following day while accounting for previously canceled surgeries. In
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our model patients remain admitted to the CTS-ward unit if their surgery
has been postponed. The CTS-ward agent randomly selects type I and II
patients for the available OR time slots. Postoperative type I and II patient
transfers are always accepted by the CTS-ward agent, if necessary back-up
capacity is used to accommodate the patients.

Data analysis

In addition to several expert interviews at the ICU and the CTS department
of the CHE, we conducted an extensive data analysis to obtain real life
patient pathway data for the simulation. The relevant anonymized patient
admission data was obtained by combining pathway data from multiple,
partly unit-specific, hospital information systems at the CHE.

Data inclusion and initial analysis The inclusion criteria were set to
select all patient admission records of CTS, emergency and other surgical
patients with postoperative ICU care that completed their treatment at the
CHE2 in the year 2005. The obtained data was inspected on an aggregated
level and erroneous data were corrected, if possible, or otherwise excluded.
For example, if the LoS at the CTS-PACU unit exceeded the official working
hours due to delayed patient transfers or entry into the system. Also, outliers
with a LoS of more than 50 days were removed as it appeared in discussions
that very long LoS often indicated dateless patient transfers.

Results The relevant input parameters, i.e. the parameters determining
the LoS distribution and the conditional routing probabilities, of the dif-
ferent patient pathways introduced in Section 2.3.5 are given in Table 2.3.

Patient routing The proportion of type I patients in the CTS patient
population amounts to 60% which corresponds to preliminary estimates ob-
tained from CHE domain experts. The type I patient routing probabilities
after the patients’ stay at the CTS-HC derived from the data amount to
0.1 and 0.2 for the MC and IC (including IC-HC), respectively. Due to the
current practice of alternative patient routing in case of resource scarcity at
the CHE, cf. Figure 2.7, the routing probabilities were set to 0.15 for MC
and IC, respectively, corresponding to the medical transfer indications on

2This criterion excludes deceased CTS patients who amount only to a small proportion
of the total patient volume, cf. Section 2.3.5.
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Patient group Unit LoS (hours)
mean±stdev

Routing prob.

Type I

CTS-HC 15 ± 0 -
IC 48.48 ± 54 0.15
MC 24.48 ± 38.52 0.15
CTS-ward 120 ± 22.08 0.7

Type II

CTS-PACU 6 ± 0 -
IC 42 ± 57.12 0.05
MC 10.32 ± 22.08 0.15
CTS-ward 120 ± 22.08 0.8

Type III IC 89.48 ± 200.82 -

Type IV IC-HC 34.94 ± 68.51 -

Table 2.3: Parameters of patient pathways

the basis of CHE expert knowledge. The type II routing probabilities are
not affected by the transfer practice and were therefore based on the data
analysis and amount to 5% and 15% for postoperative MC and IC transfers,
respectively. No correlation could be found between the LoS and subsequent
patient routing, therefore the conditional routing probabilities in (2.1) will
be considered independent of t.

Patient LoS For modeling the patient LoS data we considered typical
LoS models proposed in the literature were considered, e.g. in [41, 63, 65].
Typical LoS distributions are skewed, i.e. asymmetric, and contain outliers.
Skewness of LoS distributions is characterized by a long-sided tail on the
right, which means that the probability mass is concentrated on small values
of the distribution with relatively few high values as outliers. Three most
widely used models for sampling patients’ LoS are Lognormal, Gamma and
Weibull distributions [63]. Additionally, we evaluated Poisson, Beta, Erlang,
Normal, Exponential, Triangular and Uniform distributions and their fit
using the Kolmogorov-Smirnov goodness-of-fit test [45]. Overall, Lognormal
and Gamma distributions appeared to best fit the CHE LoS data. We chose
Lognormal distributions as their use is simple and fast. Moreover, Gamma
distributions did not result in significantly different simulation results in
the basic setting. In accordance with expert opinion, alternative patient
routing according to the rules explained in Section 2.3.5 does not affect the
LoS of a patient. Also, no correlation could be found between the LoS at
the different units. Therefore, the Lognormal distribution parameters were
estimated independently using the method of moments [45].
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Since the focus of the simulation are the surgical and emergency patient
flows rather than the surgery scheduling, we assume a constant surgery du-
ration, i.e. a half-day session corresponds to one surgery. Based on CHE
practice, a constant preoperative LoS at the CTS-ward of one day is as-
sumed.

Patient arrivals According to the CHE admission scheme and re-
source allocation, 4 type I and II patients are scheduled to undergo surgery
during the allocated OR sessions, respectively. Type III patients arrive at
the IC according a Poisson process with on average two patients per day.
Type IV patient arrivals vary between 2 and 4 patients per day with a
mode of 3. Their arrival is determined determined by the corresponding OR
scheme, as explained in Section 2.3.5. As there is currently no coordination
among the surgical specialties at the CHE concerning their OR schemes and
resulting need for postoperative ICU beds, their arrival can also be con-
sidered as a random process. In discussion with CHE domain experts the
obtained parameters and models were deemed realistic.

2.3.6 Technical details of implementation

The agent-based simulation model is implemented in Java as an event-based
simulation [78]. In our model, events are patient admissions, transfers and
discharges. The different local events at the care units trigger the com-
munication among the involved agents through messages. The simulation
runs on a single thread with the agent communication being synchronized
as follows: the hospital simulator provides at every time stamp, i.e. every
ten minutes in simulated time, the opportunity to the agents to send and
respond to messages during multiple rounds. The simulation clock is moved
to the next time stamp if no events have occurred or there are no more
message to exchange in the current round. For sending and responding to
messages the agents are selected in a random order in each round.

The waiting lists for the different patient groups are generated at begin-
ning of a simulation run. For the patients the patients’ arrival dates and
pathway, i.e. the required treatment steps (including complications) and the
respective LoS, are sampled. The information disclosed to an agent is re-
stricted to an event at the time a patient can be transferred or discharged.
In the case of a possible patient transfer, the hospital unit to which the
patient is to be transferred is indicated.

The computation of the random samples from the different distributions
and the ordering of agents in the interaction can be initialized by a fixed
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random seed in the simulation which allows for the repetition of simulation
experiments.

A run of 52 simulated weeks using the agent-based simulation takes on
average about 0.7 seconds on an Intel Pentium 4 2.4GHz machine with 2GB
RAM. Including the possibilities of re-transferring patients, cf. Section 2.3.3,
increases the runtime of the simulation by approximately factor 5 due to the
increased communication efforts among the agents.

2.4 Experimental evaluation

Our goal was to develop a realistic simulation for patient admission and
transfer scheduling for surgical and emergency patient flows. For this aim,
we discussed the agent-based simulation described in Section 2.3 during fre-
quent meetings with domain experts at the CHE. Moreover, we performed
various simulation experiments to compare the performance of the agent-
based simulation to the outcomes achieved by human planners at the CHE
hospital. This section describes the conducted experiments. First, we de-
scribe the experimental setup used for the simulation experiments. Second,
we present the results obtained for the basic setting where the resource al-
location and agents’ policy parameters were obtained from the CHE case
study. Then, we consider what-if scenarios relating to allocation adjust-
ments and different patient (re-)transfer policies employed by the care unit
agents in the simulation.

2.4.1 Setup of simulation experiments

For validating and evaluating the simulation we performed 50 simulation
runs of 52 simulated weeks, each after a warming-up period of 12 weeks.
Preliminary experiments showed that a warming-up period of 12 days is
sufficient in order to avoid starting with an empty hospital.

Patient pathway settings The patient pathway settings of our simu-
lation experiments are given in Table 2.3 on page 50 which are based on
the CHE data analysis. We employed the admission scheme of the CHE as
described in Section 2.3.5. The number of type III and IV admissions is
restricted by the bed availability at the corresponding units.

Patient inflow at the MC is included in an abstract manner: the number
of available beds is sampled at the start of a day using a discrete stationary
probability distribution. This representation was chosen because type I
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and II patients are admitted to the MC for about one day (on average).
This implies a minimal time dependency between subsequent days. Other
patient inflow requires 3, 2, 1 or 0 beds with probability 0.2, 0.5, 0.2 and
0.1, respectively.

Resource allocation settings For the basic validation and evaluation
of our system, we consider the current fixed resource allocation employed
at the CHE given in Table 2.1 on page 45. The associated relative unit
costs, cu u ∈ U , are given in Table 2.4. The unit costs for the different
types of hospital beds relate to the daily costs for staff and materials and
are expressed relative to the costs of a nursing ward bed. For example, at
the IC the ratio between patients and nursing staff is 1:1 whereas the ratio
is 2:1 at the MC.

Definition and calculation outcome measures As reported in Sec-
tion 2.3.6, the simulation model offers a number of outcome measures. Of
particular interest to the hospital management is the patient throughput
defined as the number of patients that leave the system after completed
treatment, for the different patient groups.

Hospital resource costs refer to ”regular” resources and their associated
costs based on the resource allocation at the hospital units. Specifically,
the resource costs for ”regular”’resource capacity are calculated by the sum
of the number of allocated resources, ru weighed by the respective cost
parameters, cu, for u ∈ U . The total resource costs are given by the sum
of the costs for the ”regular” resource capacity and the costs arising from
unused OR capacity, i.e.

total resource costs =
∑

u∈U\{CTS−OR}

cu · ru + cCTS−OR · ucCTS−OR, (2.2)

where ucCTS−OR denotes the period of unused OR capacity due to canceled
surgeries as a result of unavailable postoperative care beds. The cost factor
cCTS−OR comprises personnel costs for surgeons, anesthesiologists and other
OR staff scheduled for the OR session. We assume that all fixed and variable
costs for an OR are covered by the surgical procedure that is to be performed.
Therefore, costs from unused OR capacity arise since a higher OR utilization
would result in reduced staff requirements for the OR. The cost calculation
does not include sunk costs for OR, hospital beds and equipment as capital
budgeting purposes are beyond the scope of the developed simulation.
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Unit CTS-OR CTS-PACU CTS-HC IC IC-HC MC CTS-ward
cu 0.09 2 2 4 2 2 1

Table 2.4: Relative unit resource costs in the CHE case study

Back-up capacity usage is expressed as the total sum of time, i.e. days,
that back-up capacity was used at the different hospital care units weighted
by the respective unit’s resource costs.

2.4.2 Basic scenario

In Table 2.5 the mean and standard deviation (stdev) of the outcome mea-
sures for the setup described in Section 2.4.1 with the current CHE resource
allocation given in Table 2.1 are shown. The results presented in this section
do not involve the re-transfer of alternatively accommodated patients to the
units clinically indicated by their respective pathway.

Outcome measure mean ± stdev

Throughput
type I+II 1844.84 ± 30.61
type III 540.8 ± 23.59
type IV 905.78 ± 8.75

Costs
resource allocation 111.0 ± 0
canceled CTS surgeries 21.23 ± 2.74

Total back-up capacity usage 428.04 ± 54.55

Table 2.5: Simulation outcomes (mean ± standard deviation) for basic scenario

With the decision policies presented in Section 2.3.3, the agent-based
simulation achieved a mean total patient throughput of about 3300 patients.
Of this, 1845 patients of type I and II are treated with a standard deviation
of approximately 30. Purely based on the CTS-OR capacity, a maximum
throughput of 2080 type I and II patients could be realized. In practice,
however, this upper bound is not realized because the frequent blocking at
the ICU affects the patient flow through CTS-PACU and CTS-HC which in
turn causes canceled CTS surgeries. At the CHE, about 1800 type I and
II patients undergo surgery per year. Thus, the output of the agent-based
simulation compares well to the human CHE planners. Regarding admission
requests for type III and IV patients, the system achieves an acceptance
rate of about 84% and 99%, respectively. These outcomes are comparable
to recent aggregated measurements performed at the CHE.
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In our simulations, about 430 days of back-up capacity are used in one
year, cf. Table 2.5. This corresponds to approximately 1.2 beds per day.
The majority of the back-up capacity usage (95%) is attributed to the CTS-
ward, the remaining 3% and 2% of back-up capacity is used by the IC and
the MC unit, respectively. At the CTS-ward 54% of the back-up capacity
is required to admit preoperative patients after which these patients follow
the regular treatment process described in Section 2.3.5. On average, back-
up capacity is used for about 14 hours per day. Postoperative patients are
initially admitted to a back-up bed in about 15.5% of the cases with a mean
LoS of about 7.5 hours. At the IC a back-up bed is required about once
every two weeks for circa 9 hours on average. The frequency of back-up
capacity usage at the MC back-up capacity is slightly higher compared to
the IC (once every ten days), in total for about 7 days per year. Domain
experts from the CHE have found the above results to be realistic.

Simulated patient flows Due to the alternative patient routing poli-
cies employed by the care unit agents, the simulated patient routing differs
slightly from the routing indicated by the corresponding patient pathway
parameters, cf. Section 2.3.3. The simulated patient routing on which the
results in Table 2.5 are based is given in Table 2.6. The flow of type I pa-
tients deviates from the pathway routing such that about 4% of the patients
with MC indication are alternatively admitted to the IC-HC or IC due to
the unavailability of MC beds. This corresponds well to the historical flow of
type I patients at the CHE found in our data analysis, cf. Section 2.3.5. The
type II patient flow closely follows the clinical pathway as can be expected
since alternative routing policies do not involve type II patients, cf. Ta-
ble 2.2. Thus, compared to the CHE case, the simulation not only achieves
comparable overall outcome measures but also closely resembles historical
patient flows for type I and II patients.

For type IV patients, solely 62,5% of the patients are admitted to the
unit indicated by the patient pathway. The remaining 37,5% of the patients
are in almost equal shares admitted to the IC and the CTS-HC unit. Unfor-
tunately, the conformance of type IV patient routing could not be evaluated
using CHE case study data. However, since the patient throughput results
in Table 2.5 correspond to aggregated CHE measurements the simulation
appears to approximate the real-life routing well.

Simulation run length The simulation outcomes are almost linear in
the number of simulated weeks in a simulation run, as shown in Figure 2.8.
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Patient group Unit Routing param.
patient pathway

Simulated
routing prob.

Type I

IC 0.15 0.153
IC-HC 0.0 0.034
MC 0.15 0.112
CTS-ward 0.7 0.701

Type II
IC 0.05 0.052
MC 0.15 0.147
CTS-ward 0.8 0.801

Type IV
IC-HC 1.0 0.625
IC 0.0 0.189
CTS-HC 0.0 0.186

Table 2.6: Pathway routing parameters, cf. Table 2.3, and simulated patient routing
resulting from care unit agents’ scheduling policies

The total throughput ranges between about 253±9 to more than 3300±40
patients. The values of the other performance measures have a compara-
tively smaller range with about 113±3 to 133±12 and 30±11 to 453±50 for
the total resource costs and the back-up usage, respectively. Therefore, for
computationally expensive calculations also shorter durations of the sim-
ulation can be used, e.g. for resource occupancy prediction and allocation
optimization, presented in the subsequent chapters of this thesis.+

2.4.3 Scenario analyses

In order to better understand the complex relationship between resource al-
location, scheduling policies, resource occupancy and admission acceptance
rates, we analyzed several scenarios using the agent-based simulation model
described above. Here, we present multiple parameter settings relating to
the decision variables in the simulation model. First, we consider changes in
the allocation of resources at the different hospital units and their effect on
the system’s performance. We examine the allocation of CTS-ward beds in
order to decrease the local back-up capacity usage and analyze the resulting
duration and frequency of back-up capacity usage. Moreover, we consider
the scenario where the IC-HC is closed and the allocated beds are shifted
to the IC to increase the flexibility of resource usage at the ICU. Second,
we address the impact of the scheduling policies of the agents on the system
performance. Here, we consider the effect of re-transfer policies employed
by the IC, IC-HC and CTS-HC agents on the resulting patient through-
put, resource costs and back-up capacity usage. Furthermore, we present
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Figure 2.8: Simulation outcomes as a function of the duration of a simulation run
including 12 weeks of warming up

an adaptive method for employing re-transfer policies at the different care
units based on the current resource utilization.

Resource allocation at CTS-ward

In the current situation at the CHE, cf. Section 2.4.2, about half of the
preoperative CTS patients are admitted to (back-up beds at) other nursing
wards because no bed is available at the CTS-ward. Although the quality
of care is not compromised, admission to the CTS-ward is preferable from
a patient-friendliness point of view3.

In order to reduce the back-up capacity usage at the CTS-ward, we
evaluated the resulting back-up capacity usage from varying the number
of CTS-ward beds between 35 (the current CHE allocation) to 42 beds.
Preliminary experiments showed that more than 42 CTS-ward beds did
not result in further reduction of back-up capacity usage. The resource
allocations at the other hospital units remain unchanged. Tn Figure 2.9
the mean and standard deviation (depicted by the bars) of the duration of
the back-up capacity usage (in days) and the frequency for 50 simulation
runs of 52 weeks each are depicted. It should be noted that the CTS-

3Admission to the CTS-ward is preferred as it familiarizes the patient with the unit
and staff and facilitates additional tests and consults if required.
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ward capacity does not restrict patient admissions and transfers, thus the
throughput remains constant at about 1844 patients p.a.

From a cost perspective, additional CTS-ward beds linearly increase the
total resource costs according to equation (2.2). With respect to the usage of
back-up capacity, we can see that the number of CTS-ward beds is inversely
proportional to the duration and frequency of back-up capacity usage at the
CTS-ward, as was expected. The curve progression in both figures suggest a
hyperbolic relationship. The marginal reduction in bach-up capacity usage
duration and frequency decreases for increasing number of CTS-ward beds.
For 36 CTS-ward beds the back-up capacity usage decreases by about 35%.
For a higher number of CTS-ward beds the marginal decrease in duration
and frequency becomes smaller with about 26%, 16% and 10% for 37, 38,
39 and 40 CTS-ward beds, respectively. An absolute reduction in back-up
capacity usage of 80% and 90% is achieved for 3 and 4 additional CTS-ward
beds.

Back-up capacity is chiefly required for accommodating preoperative pa-
tients of which the share increases for increasing number of CTS-ward beds.
Moreover, we can note that the standard deviation of back-up capacity usage
decreases with increasing CTS-ward capacity.

Intermediate conclusions For a resource allocation decision, a trade-off
has to be made by hospital management between feasible back-up usage and
resource costs. The marginal reduction in back-up usage, both in terms of
the duration as the frequency, diminishes for increasing CTS-ward capacity.

Resource allocation at IC and IC-HC

In favor of increased flexibility in patient admissions at the ICU, the CHE
management discussed the option of closing the IC-HC unit and transfer
the bed capacity to the IC. Using the simulation model various allocations
of beds at the IC can be analyzed. The resource allocations at the other
hospital units remain unchanged. Figure 2.10 shows the mean and standard
deviation of the realized throughput per patient group for the scenario with
0 IC-HC beds and varying IC bed capacity. For increasing IC bed capacity,
the figure demonstrates that the mean throughput of CTS, other surgical
and emergency patients increases with decreasing variability. Specifically,
the mean throughput of type I and II patients increases almost linearly from
1562.3 to 1975.92 for 10 to 17 IC beds. For more than 17 IC beds the increase
diminishes with in total about 2051 type I+II patients being treated if 20
beds are allocated to the IC. Interestingly, the standard deviation increases
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Figure 2.9: Mean and standard deviation (bars) of back-up capacity usage at CTS-ward
for varying number of CTS-ward beds in terms of (a) the duration in days and (b) the
frequency
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for increasing number of IC beds ≤ 13 with about 46% from 30.6 to 44.6 and
then decreases for more than 14 beds by about 61% to 17.3. It appears that
an allocation with a small number of IC beds and no IC-HC beds causes
an increased interference between the different patient flows in the system.
The throughput of type III patients is on average about 500 with a standard
deviation of circa 23 for 10 IC beds and increases to a mean of about 630
with a standard deviation of about 19 for 17 IC beds which corresponds to an
acceptance rate of approximately 98%. The mean and standard deviation
of the type III throughput remain almost constant for more than 17 IC
beds. Thus, the variability in type III throughput is primarily determined
by the variation of patient arrivals and LoS. The type IV throughput remains
almost constant with a mean increase of about 30 from 10 to 20 IC beds
which corresponds to an acceptance rate for admission of 99.7%. Here, the
increasing number of IC beds causes the the number of type IV patients
treated at the CTS-HC to decrease and to increase the number of treated
type IV patients at the IC. Thus, we can conclude that the patient mix is
strongly dependent on the resource allocation in the system. In order to
guarantee the same total patient throughput as in the CHE case study 3
additional IC beds are required when the IC-HC unit is closed. A total
of 15 IC beds is needed in order to achieve a patient mix with a minimal
throughput per group that is comparable to the CHE patient mix if the IC-
HC is closed. Thus, the resource allocation at the ICU has a great impact
on the patient mix flowing through the system and on the variability of the
patient flows.

Figure 2.11 depicts the total resource costs and the total back-up ca-
pacity usage in the network of care units for different resource allocations
with 0 IC-HC beds and varying number of IC beds. The costs are a convex
function of the number of IC beds and range from 152.82 to 144.53 for 10 to
20 IC beds with a minimum at 16 IC beds and costs of about 140.7 thereby
exceeding the costs for the CHE resource allocation of about 132.45, cf. Ta-
ble 2.5. Thus, from a cost perspective the closing of the IC-HC appears to
be disadvantageous compared to the resource allocation in Table 2.1.

Regarding the back-up capacity usage, closing the IC-HC affects the IC
and the network of care units in different ways. On the one hand, the back-
up capacity usage at the IC decreases from 10.9 to 0.2 bed days on average
from 11 to 20 IC beds. On the other hand, the total back-up capacity
usage in the network is an increasing function of the number of IC beds
in this scenario ranging between about 158 to 788 beds days in total. For
the allocation with 16 IC and 0 IC-HC beds that minimizes the resource
costs, the back-up capacity usage amounts to about 559 beds days which is
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Figure 2.10: Mean and standard deviation (bars) of patient throughput realized with
an allocation of 0 IC-HC beds and varying number of IC bed

about 30% higher compared to the current CHE allocation. This effect can
be explained by the overall increased patient flow which is not aligned with
the current resource allocation at the remaining care units. For minimizing
the back-up capacity usage one should therefore consider not solely the IC
and IC-HC unit, but all of the involved units in order to avoid creating
mismatches between demand for care and resource availability.

Optimization of bed allocation at IC and IC-HC To automatically
find an optimal bed allocation at the ICU, we implemented a brute-force
optimizer that uses the simulation to evaluate different bed allocations. It
can be used for various objective functions. The number of IC-HC and
IC beds are varied from 0 to 15 and from 5 to 25 which results in 336
possible bed allocations. Each allocation was evaluated on the basis of 20
simulation runs of 52 simulated weeks and a warming-up period of 12 weeks.
On an Intel Pentium 4 2.4GHz machine with 2GB RAM the runtime of the
allocation optimizer amounts to about 81 minutes on average. We illustrate
the algorithm using the cost-effectiveness ratio of the resource allocations as
a one-dimensional objective function to be minimized. The cost-effectiveness
measure is defined as the ratio of (1) mean resource costs (including the costs
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Figure 2.11: Mean total resource costs and back-up capacity usage realized with an
allocation of 0 IC-HC beds and varying number of IC bed

for canceled surgeries) to the mean total patient throughput and (2) mean
total back-up usage to the mean total patient throughput. In the first case
the optimal bed allocation is 6 IC-HC beds and 5 IC beds which results in
resource costs per patient of 0.033 cost units on average. The mean annual
total throughput is about 3100 patients. In the second case an optimum is
reached for 8 IC and 0 IC-HC beds with a mean back-up usage of 0.048 bed
days per patient.

Figure 2.12 and Figure 2.13 show a plot of the corresponding objective
landscape of the mean resource costs and back-up capacity usage per pa-
tient for different IC-HC and IC bed allocations, respectively. Figure 2.12
shows that resource costs per patient are convex with a minimum at 5 IC
and 6 IC-HC beds. Compared to the current situation at the CHE, this
allocation increases the patient throughput of type I+II by 4.55%. Type
III throughput decreases by factor 2, while type IV throughput remains al-
most the same. Costs for regular capacity are decreased by 21%, whereas
back-up costs are increased by 92.44%. For the mean back-up usage per
patient depicted in Figure 2.13, mean costs increase by almost 39%, type
I+II, III and IV throughput is decreased by about 34.4%, 16.2% and 18.5%,
respectively. Back-up usage, however, is decreased with 84.3% compared
to the performance of the current CHE allocation. These results show the
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complex relationship between the patient throughput and the allocated re-
sources in a situation with intersecting patient flows. Unlike from a costing
perspective, decreasing the IC-HC capacity seems advisable from a back-up
capacity usage point of view.
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Figure 2.12: Surface plot of mean resource costs per patient for varying IC-HC and IC
bed allocations

Intermediate conclusions Closing the IC-HC increases the proportion
of treated type III patients and decreases the throughput of type I+II and
IV patients. A resource allocation that yields a comparable patient mix
to the CHE patient mix incurs higher resource costs but lowers the back-
up capacity usage in the system. Thus, a trade-off between the patient
throughput, the resource costs and the back-up capacity usage is required for
allocation decisions concerning the IC. Moreover, we can conclude that the
patient mix is strongly dependent on the resource allocation in the system.
Therefore, the scope for capacity adjustments should comprise all the units
in the network in order to avoid creating mismatches between demand for
care and resource availability.
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Figure 2.13: Surface plot of mean back-up capacity usage per patient for varying IC-HC
and IC bed allocations

Effect of employing patient re-transfer policies

Another complex issue in hospital patient flow scheduling practice is the
decision whether or not patients admitted to a unit that is not clinically
indicated should be re-transferred to follow the originally provided patient
pathway. For example, type IV patients could be admitted to a free CTS-
HC bed in the situation of a temporary bed shortage at the IC-HC and be
re-transferred to the indicated IC-HC as soon as a bed becomes available.
From an organizational and patient perspective, patient re-transfers are un-
desirable as the transfers introduce additional disturbance in the patients’
revalidation and nursing staff’s working process. From an efficiency point
of view, however, the possibility of re-transfers provides for the appropriate
accommodation of patients after periods of (local) resource scarcity while
maintaining patient flow and restoring patient pathways in the system.

The policy for re-transferring patients works as follows: the agent rep-
resenting the care unit the patient was alternatively admitted to proposes
regularly, e.g. every hour, the patient’s transfer to the originally indicated
unit such that the patient will be transferred as soon as a bed becomes
available. A summary of the considered re-transfer destinations for the dif-
ferent patient groups is given in Table 2.7, cf. Table 2.2. As explained in
Section 2.3.3, only type I patients with MC indication are considered for
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re-transfer as type I patients with IC indication will always be admitted
to the IC. Here, we consider the alternative routing policy for re-transfer
of type I patients. In the following, we study several situations. First, we
analyze the impact of fixed re-transfer policies at the different units. Then,
we study an adaptive mechanism to regulate patient re-transfers depending
on the capacity utilization at the different units.

Patient groups
Hospital unit type I type II type III type IV

CTS-HC (1)MC,
(2)IC-HC,
(3)IC

- - IC-HC

IC-HC MC - - -
IC - - - IC-HC

Table 2.7: Possible re-transfer destinations (and ordering) for different patient groups at
different care units

Effect of employing re-transfer policies at CTS-HC, IC-HC and IC
The results from applying re-transfer policies at the IC, IC-HC and CTS-HC
for the different patient groups with the current CHE resource allocation are
given in Table 2.8 on page 66. Here, we consider the diverse individual and
joint options for re-transfer policies for patient groups and care units. The
option of re-transferring type I patients from the IC-HC unit is omitted in
Table 2.8 as the results almost equal the results of the ’type I+IV all units’
option.

The different options for applying re-transfer policies have varying ef-
fects. Solely considering type I patients for re-transfer yields same or slightly
increased patient throughput and back-up capacity usage compared to the
basic setting without re-transferring. Re-transfer policies that relate to type
I and type IV patients, however, reveal throughput improvements of consid-
erable extent for type I, II and III patients, minor changes for type IV pa-
tients and considerable reduction of canceled CTS surgeries. Similar to the
resource allocation scenarios above, the increased patient throughput comes
at the costs of increased back-up capacity usage. Re-transferring all type I
and IV patients at IC, IC-HC and CTS-HC yields the best cost-efficiency
ratio, followed by the option to re-transfer all type I and IV patients at IC
and CTS-HC.
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Re-transfer policy
Outcome measure type I+IV all

units
type I all units type IV IC type I+IV CTS-

HC

Throughput
type I+II 1925.56 ± 25.72 1850.12 ± 30.98 1866.6 ± 36.63 1905.82 ± 23.72
type III 555.4 ± 24.11 540.3 ± 23.86 558.26 ± 24.53 538.68 ± 23.53
type IV 910.38 ± 7.86 906.68 ± 8.62 906.68 ± 8.13 910.14 ± 7.94

Costs canceled CTS surgeries 14.09 ± 2.21 20.98 ± 2.78 19.48 ± 3.25 15.91 ± 2.05
Total back-up capacity usage 531.44 ± 58.58 436.46 ± 58.09 459.89 ± 63.45 494.84 ± 52.93

type I CTS-HC type I+IV IC &
CTS-HC

type I+IV IC &
IC-HC

type IV all units

Throughput
type I+II 1844.86 ± 31.39 1922.52 ± 26.87 1921.86 ± 27.41 1871.42 ± 38.18
type III 540.4 ± 23.82 555.6 ± 24.14 555.34 ± 24.22 557.76 ± 24.54
type IV 906.02 ± 8.65 910.24 ± 7.83 909.72 ± 7.96 907.08 ± 8.25

Costs canceled CTS surgeries 21.45 ± 2.8 14.33 ± 2.3 14.4 ± 2.35 19.033 ± 3.41
Total back-up capacity usage 428.78 ± 55.24 525.16 ± 56.09 525.61 ± 57.55 469.03 ± 64.23

Table 2.8: Simulation outcomes (mean ± stdev) for different combinations of re-transfer policies employed by IC, IC-HC and CTS-HC
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Adaptive re-transfer mechanism Due to the beneficial performance
of re-transferring patients we also considered an adaptive mechanism that
controls whether re-transfer policies are employed when a high degree of
resource utilization is achieved. The resource utilization is defined as the
state at unit u at time t, denoted by su(t), which is given by the ratio
between utilized capacity and allocated resources, i.e.

su(t) =
no. beds occupied at u at time t

ru
. (2.3)

The mechanism is based on a predefined threshold for the resource utilization
at unit u, RUT u, and applies to the specified patient types I and IV, where
applicable. The policy can be described as follows:
{

propose pat. temporarily admitted to u for transfer , if su(ti) > RUT u,
pat. remain admitted to u until LoSg

u has elapsed , otherwise.
(2.4)

So, if a unit is too crowded, i.e. the threshold of resource utilization is
exceeded, the respective care unit agent proposes patient re-transfers to the
agents given in Table 2.7 on page 65. Otherwise, already admitted patients
remain at the respective unit until the patients’ LoS has elapsed and they
are eligible for normal transfer.

Specifically, the resource utilization is evaluated on a hourly basis and
the re-transfer policy is set accordingly. The simulation outcomes realized
by the adaptive mechanism for different utilization thresholds are given in
Table 2.9. The actual patient routing that results from the patient re-
transfers is comparable to the routing presented in Table 2.6.

The utilization thresholds in Table 2.9 are based on utilization targets
typically presented in the literature, e.g. Vissers and Beech [96]. In a sensi-
tivity analysis we also considered thresholds below 0.7 and in steps of 0.05.
However, these settings resulted in comparable results and are therefore
omitted in Table 2.9. The adaptive mechanism can achieve a slight im-
provement compared to the performance of the fixed re-transfer policies in
Table 2.8. A threshold of 0.8, for example, realizes approximately the same
mean patient throughput, CTS surgery cancelations and back-up capacity
usage but reduces the variability of the outcome measures. Higher thresh-
old values provide for slightly decreased patient throughput accompanied by
reduced back-up capacity usage and increased surgery cancelations.

Intermediate conclusions Employing re-transfer policies can consider-
ably increase improve the patient flow in the simulation. A further improve-
ment in efficiency can be achieved through adaptive re-transfer policies that
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Utilization thresholds RUT u

Outcome measure 0.7 0.8 0.9 1.0

Throughput
type I+II 1925.54 ± 25.71 1925.34 ± 24.4 1922.86 ± 25.39 1915.8 ± 25.13
type III 555.4 ± 24.11 555.74 ± 23.81 554.98 ± 23.64 555.14 ± 24.11
type IV 910.38 ± 7.86 910.38 ± 8.04 910.18 ± 8.13 910.14 ± 7.99

Costs canceled CTS
surgeries

14.09 ± 2.21 14.09 ± 2.09 14.31 ± 2.18 15.0 ± 2.16

Total back-up capac-
ity usage

530.39 ± 58.29 526.44 ± 56.62 519.02 ± 57.68 507.12 ± 51.99

Table 2.9: Simulation outcomes (mean ± stdev) for adaptive re-transfer mechanism with varying utilization thresholds
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initiate patient re-transfers only if the resource utilization rate exceeds a pre-
determined threshold. Selecting an appropriate threshold involves a trade-
off between patient throughput and resulting back-up capacity usage.

2.5 Conclusions

In this chapter we presented an agent-based simulation for hospital patient
scheduling that realistically captures the complex features of the problem
domain. To the best of our knowledge, this is the first agent-based simu-
lation for patient admission and transfer scheduling that includes multiple
patient groups with stochastic arrival and treatment processes. We showed
that an agent-based simulation can be developed based on knowledge elicita-
tion from the case that realistically reflects the problem domain. Extensive
simulation experiments demonstrate the applicability of the simulation and
show how the agent-based simulation is useful for decision support. Further-
more, the implemented simulation can be adjusted to comparable situations
in other hospital settings. In a hospital setting where the planning is often
performed in a decentralized way, a multi-agent approach is ideal because it
allows for designing and evaluating improved (adaptive) policies, which can
then be implemented easily in real life.

The multiple simulation outcomes for the basic setting show that perfor-
mance achieved by the agent-based simulation is comparable to the planning
performed by hospital staff of the CHE. The patient throughput differs min-
imally from the situation at the case study hospital and CHE planners and
managers consider the results on resource costs and resource usage realistic
for the basic scenario.

What-if scenarios show that the agent-based simulation can be helpful
in analyzing the complex relationship between bed allocations, occupancy
and patient mix. The agent-based simulation approach allows for a detailed
modeling of the decision making processes of the involved care units and re-
alistic analysis of the system that otherwise would be impossible. Moreover,
the simulation allows for a fast analysis of changed input settings where one
year of hospital time can be simulated in less than one second. Thus, the
simulation is of substantial value for decision support for hospital manage-
ment.

We also presented a first approach to optimize the resource allocation
in the network of care units using the simulation. Here, we considered the
number of IC-HC and IC beds as free variables which appeared to have a sig-
nificant influence on the overall patient throughput. The efficient computa-
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tion and the size of the search space allowed using a brute-force optimization
which guarantees a globally optimal solution. We illustrate the optimizer by
using the mean resource costs and mean back-up capacity usage per patient
as objective functions, but other performance measures can also be easily
incorporated in the simulation. Our results demonstrate that a local allo-
cation decision affects the patient flows not only at the respective care unit,
but in the entire network of care units in the case of the complex patient
pathways considered in this thesis. Therefore, allocation decisions should be
taken at the level of the network of care units and thus coordinate all rele-
vant resource categories to avoid creating mismatches between demand for
care and the resource availability. Also, our results show the multi-objective
nature of the hospital resource management problem. These two aspects
will be further addressed in Chapter 4 and extended to allow for dynamic
allocations in Chapter 5. The complex stochastic problem features, the de-
centralized and realistic decision making, the short runtime of the simulation
and the insightful results presented in this chapter show that a well-designed
agent-based simulation for hospital scheduling is of substantial use for op-
timizing resource allocation decisions in this complex problem setting. It
allows the optimized allocation policies to be implemented easily in real life.

Moreover, we addressed different settings for the decision making pro-
cess of the different agents. Specifically, we considered employing re-transfer
policies to schedule patients that were temporarily admitted to a care unit
that is not clinically specified to the originally indicated unit in order to
reduce possible interference between patient flows. We showed that a con-
siderable improvement in patient throughput can be achieved by an un-
changed resource allocation by re-transferring both type I and IV patients
and proposed a first adaptive mechanism which reduced back-up capacity
usage and the variability of the simulation results. In the following chapters,
however, we will not consider re-transfer policies employed by the care unit
agents in order not to optimize resource allocation or admission schedules
that lead to frequent patient re-transfers. Re-transfer policies should rather
be implemented aiming at increasing operational flexibility for patient ac-
commodation in situations of local resource shortage.

An additional advantage of the agent-based simulation presented in this
chapter in comparison with other, for example mathematical, modeling ap-
proaches is its flexibility. The implemented model for patient pathways
allows for an uncomplicated adjustment of the simulated pathways through
adjusting the respective pathway parameters. In a mathematical model
changing the structure of the modeled processes is not straightforward.
Moreover, the detailed and modular level of modeling facilitates the adjust-
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ment of the simulation to particular hospital settings through adjusting the
scheduling rules, the number and type of agents and agents’ decision policies.
This detailed representation of a specific hospital setting would not be as
straightforward using a simple discrete-event simulation approach. Further-
more, the generic setup of the simulation allows to easily incorporate more
complex medical decision making policies for selecting patients in periods of
resource scarcity.

An interesting extension to the analysis presented in this chapter would
be to explore possibilities for hospital management to steer the patient mix
through the resource allocation decision. In our experiments, we studied
the effect of different allocations on the resulting patient mix. In a first
attempt to control the patient mix, the presented optimization approach
could be applied to evaluate a large range of possible resource allocations
and determine the resource configuration(s) that realize(s) a predetermined
patient mix.

A limitation of the simulation in its current implementation are the static
waiting lists for elective surgery which are assumed to be sufficiently long,
so elective patients are always available for admission. This assumption is
valid for the Netherlands and several other European countries where the
waiting list for cardiac surgery are long. Moreover, specialists can keep a
relatively constant number of patients on the waiting lists by either changing
the criteria for admission or by referring patients to other specialists or
hospitals which are both used in practice Groot [37].

Given the practical case study, the validation of our model is a com-
plex issue. The current practice and historical data provide only a single
instance, and it is difficult to identify appropriate performance indicators for
a wide range of settings. Additional to historical data, to which the patient
throughput and flow achieved by the simulation corresponded well, we eval-
uated the simulation and its elements in numerous meetings with domain
experts and planners at the CHE. In our discussions the agent-based simu-
lation and the obtained results were well received. Because of the realistic
modeling and the promising results, the simulation will be used at the CHE
for further analysis and optimization of patient flow control.
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Chapter 3

Prediction of hospital

resource usage

In this chapter we focus on predicting future resource usage based on cur-
rent occupancy information and planned patient admissions. We evaluate
two approaches for resource-usage prediction: forward simulation using the
simulation described in Chapter 2 and supervised learning using neural net-
works. We assess the two approaches with respect to a benchmark predic-
tion heuristic derived from the hospital case study. Moreover, we analyze
the underlying resource-usage probability distributions and the applicabil-
ity of different prediction statistics to be used for decision support. The
first approach will be used further throughout the thesis. This chapter has
contributed to the publication of Chapter 5 which will appear as [49].

3.1 Introduction

Prediction is concerned with the estimation of future and unknown events
based on current and past observations. Specifically, our goal is to predict
the resource usage at a hospital unit one or more days in advance. Prediction
is especially important for decision-making support in patient flow logistics
because of its highly dynamic and time-dependent character, i.e. decisions
taken now may influence the possible decisions to be taken in the future.
Here, today’s patient admission, transfer and resource allocation decisions
influence the current and future resource usage at the different units in the
hospital which in turn restricts possible future decisions. Prediction of fu-
ture hospital resource usage can assist resource management and patient
admission control in order to improve hospital operations. With respect to
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resource management, where allocations are based on past experience, pre-
dicting future resource need can help deploying resources more efficiently in
order to meet the current and future demand. Regarding patient admission
control, predicting the effect of an admission decision on the resource occu-
pancy can help anticipate future bottlenecks that possibly require back-up
capacity usage or cause the blocking of patient flow and increase patient
waiting times. Therefore, prediction of future resource usage is important
for assisting resource management and patient admission planning in hospi-
tals.

Predicting the future resource usage in a hospital setting is a complex
problem, especially since the resource usage at a hospital unit is highly dy-
namic and uncertain. The fluctuations in resource occupancy are due to
patient admissions and transfers occurring continuously over time, patients’
length of stays being stochastic and mostly unknown beforehand, unex-
pected patient transfers caused by complications and emergency patients
arriving in urgent need for care, cf. Chapter 2. Often, resources like at the
ICU are shared by different types of patients each with different resource
needs for their treatment processes. Moreover, patient pathways often in-
volve several hospital units that need to be taken into account.

In this chapter we evaluate techniques for predicting the future resource
usage given the current resource occupancy and the planned patient admis-
sions at the prediction moment. We consider two settings for determining
future bed occupancy: (1) unconstrained admission control where patient
admissions are mainly determined by the actual demand for care and the
available resource capacity and (2) constrained admission control where a
predefined admission scheme imposes an additional constraint on the max-
imal number of patient admissions, cf. Chapter 1. The resource occupancy
is modeled as a probability distribution to be predicted which enables to
represent numerous possible realization scenarios. Moreover, our modeling
approach is very flexible as it allows derive manifold descriptive statistics to
be used for decision support in a hospital logistics setting. The prediction
approaches we evaluated are forward simulation and supervised learning
using artificial neural networks (ANNs). Forward simulation involves the
simulation of future time intervals given the current situation for a num-
ber of scenarios. Using a validated simulation as is the case here, forward
simulation can provide precise predictions of the future at the expense of
increased simulation time. In order to reduce the computational effort asso-
ciated with forward simulation we analyze whether supervised learning can
provide sufficiently accurate predictions. ANNs have been chosen as super-
vised learning technique as they are able to learn arbitrary dependencies
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from measured data (in the presence of noise) provided infinite complex-
ity of the network structure [7]. Greater complexity of an ANN, however,
also entails an increase of the computing time. We study three widely-
applied network structures to evaluate the ANNs’ predictive power for the
resource-usage prediction problem and compare the obtained predictions to
a benchmark heuristic derived from the hospital case study. Moreover, we
extensively analyze the predicted resource-occupancy distributions in terms
of their shape, location and variability and discuss appropriate predictive
statistics and distribution approximations. In our analysis, we present the
obtained predictions in an explorative fashion. To the best of our knowledge,
this is the first forecasting approach using simulation and distributions for
hospital resource occupancy prediction.

The remainder of this chapter is organized as follows. First, we discuss
related work on resource occupancy prediction in hospital settings in Sec-
tion 3.2. Then, the underlying problem formulation and model are described
in Section 3.3. Forward simulation is outlined and evaluated in Section 3.4,
which is followed by a description of our supervised learning approach in
Section 3.5. Finally, we provide our conclusions in Section 3.6. In the re-
mainder the terms forecasting and prediction will be used interchangeably.

3.2 Related work

Earlier work on prediction models for hospital utilization have been pre-
sented both in the mathematical operations research and the computational
intelligence literature. A mathematical prediction model for admission con-
trol is presented in Groot [37] that uses flow-based linear equations derived
from simplified deterministic patient pathways. This approach is not appli-
cable in the problem setting considered in this thesis that is characterized
by complex stochastic patient pathways. The prediction approaches pre-
sented in this chapter account for the complexity and stochasticity present
in the problem domain and use online occupancy information to model ar-
bitrary non-linear dependencies. In Vissers [97] a long-term care demand
model is presented which considers the resource usage resulting from demo-
graphic changes in the hospital’s catchment area and is based on average
LoS calculations. However, the model is not applicable here as decision sup-
port on resource management and admission control in our problem setting
requires resource utilization predictions on the level of individual hospital
care units. Our work can derive predictions both at care unit and hospi-
tal level and incorporates complex stochastic patient pathways. The work
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in Kolesar [58] and Ridge et al. [80] propose queueing models for evaluat-
ing the resource usage at a single hospital unit. However, these models are
not suitable for the setting considered in this thesis as the different units’
resource occupancies are mutually dependent due to the complex patient
pathways that involve multiple hospital units. Moreover, our prediction
models are flexible and adjustable to other hospital and pathway settings.
Also, they allow for evaluating short-term fluctuations of resource usage
resulting from an admission scheme as well as the long-term behavior of
the system. A time-series approach is developed in Tandberg and Qualls
[91] for predicting patient arrivals, their acuity and the patients mean LoS
at an emergency department. However, their results indicate that time-
series forecasts of length of stay and patient acuity perform poorly and are
not likely to contribute useful information for resource allocation decisions.
Therefore, we consider more sophisticated forecast techniques as forward
simulation and artificial neural networks in this chapter. The mathematical
prediction model for patient admission control presented in Vissers et al.
[99] applies to simplified deterministic patient treatment processes which is
extended to probabilistic LoS in Adan et al. [1]. However, their model is
restricted to patient pathways with deterministic routing and is therefore
not applicable in the setting studied in this thesis. Moreover, with the fo-
cus being on tactical decision support for admission scheduling, their model
is limited to the evaluation of the mean resource usage resulting from an
admission decision. The approaches presented in this chapter consider the
underlying resource-occupancy distribution and we investigate appropriate
prediction measures that use information on the shape and dispersion of the
distribution. In the analytical model presented in Kusters and Groot [60] a
normally-distributed bed occupancy distribution is predicted based on the
mean and variance of the current occupancy, the number of patient transfers
and future (planned or uncertain) patient arrivals. However, the distribu-
tion may not be applicable to settings where the normality assumption does
not hold. Our prediction approaches are distribution-free methods that also
consider alternative patient transfers due to bed shortage at a hospital unit,
which significantly influences resource usage in the system of hospital units
considered in this thesis.

In the computational intelligence literature several neural network ap-
proaches have been presented, e.g. [61, 62, 102], to estimate patient LoS
based on clinical variables. The proposed models use broad categories of
LoS which limits the applicability of these prediction approaches for deci-
sion support in hospital patient flow logistics.
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3.3 Model for admission control and occupancy

prediction

In the following section we briefly recapitulate the model for admission con-
trol used in the agent-based simulation, described in detail in Chapter 2,
and describe our model for prediction of resource usage at a hospital unit.

3.3.1 Admission control in agent-based simulation

As described in Section 1.1.3, we consider a discrete time period denoted by
T , with equidistant prediction moments denoted by ti ∈ T with ti−1 < ti
for i = 1, 2, . . . , n − 1. Formally, an admission scheme for the time interval
[ti, ti+h] is denoted by a[ti,ti+h] and is given by a[ti,ti+h] = (agtk , g ∈ Θ, tk ∈
[ti, ti+h]) with agti ∈ N0 referring to the maximum number of patients of
group g ∈ Θ to be admitted to the hospital on day ti. Let ati = (agti , g ∈ Θ)
be the admission scheme on day ti specifying the (maximal) number of
planned patient admissions for all groups of patients on day ti.

For the OR scheduling and the care unit agents in the simulation de-
scribed in Chapter 2 the introduction of an admission scheme imposes an
upper limit on the possible number of patient admissions of the correspond-
ing patient types with the actual admission decisions being determined on
the basis of the scheduling policies presented in Table 2.2 on page 46. Thus,

a
III(IC)
ti

and a
III(MC)
ti

affect the admission of type III patients on day ti while
aIti , a

II
ti and aIVti limits the patient admissions of type I, II and IV patients

on day ti+1 since a lead time of one day is employed in the simulation,
cf. Section 2.3.5.

As explained in Chapter 1, Section 1.1.3, the actual admission of patients
in the simulation depends not only on the respective admission scheme agti ,
but also on the admission policy of the responsible agent (described in Sec-
tion 2.3.3), the number of available resources at the respective unit and the
demand for care of patient group g. Thus, agti can be interpreted as an upper
bound for the number of actual admissions. This implies that an admission
scheme imposes an additional constraint on the patient admissions depend-
ing on the value of agti , i.e. the lower the value of agti the more influence agti
has on the actual patient admissions compared with the other three control
factors.

In the following we distinguish between two situations: unconstrained
and constrained admission control. In the first case, the number of planned
admissions is set to sufficiently high values such that the admission scheme
imposes no additional constraint on the actual patient admissions. For the
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constrained case, the admission schemes are determined online using a local
search algorithm. The two problems are described in detail in Section 3.4.

3.3.2 Resource occupancy prediction

The approach presented in this chapter strives to predict the future resource
occupancy on the basis of a constant resource allocation, ru, u ∈ U , and a
fixed way of scheduling the patient flows according to the policies described
in Section 2.3.5 in Chapter 2.

The prediction horizon refers to the number of period in the future for
which the prediction is made. The prediction horizon is denoted by h with
h ∈ N0 and is expressed in units of days. At the beginning of day ti we
are interested in the predicted resource occupancy at the different hospital
care units during the period [ti, ti+h] depending on the admission scheme
a[ti,ti+h]. This approach is also depicted in Figure 3.1. Since the resource
usage at a unit fluctuates during a day, we model the daily resource usage
as a probability distribution. Let F u

tj ;a[ti,ti+h]
be the cumulative predicted

resource-occupancy distribution function at unit u on day tj ∈ [ti, ti+h]
determined at time ti given admission scheme a[ti,ti+h].

We analyze the predicted resource usage in terms of the occupancy prob-
ability distribution. In addition, we consider the quantiles of the resource-
occupancy probability distribution as descriptive statistics to describe the
main features of the distributions and use them to control patient admis-
sions. The quantile values have been chosen as they provide key information
on the underlying probability distribution. Moreover, quantiles are less sus-
ceptible to long-tailed distributions and outliers than for example the mean
or other moment-related statistics [45]. In the following, the q-quantile
of F u

tj ;a[ti,ti+h]
is denoted by F−1;u

tj ;a[ti,ti+h]
(q). The q-quantile value denotes

the cut-off point where the number of resources used on day ti is below
F−1;u
tj ;a[ti,ti+h]

(q) in q percent of the time. An example for a resource-occupancy

distribution and corresponding quantile is presented in Figure 3.2. Here,
F−1;u
tj ;a[ti,ti+h]

(0.9) equals 13 which means that in 90% of the time on day ti 13

or less beds are used and only in 10% of the time more than 13 beds are occu-
pied (depicted by light-gray bars). Thus, using the q-quantile as descriptive
statistic for decision support on admission control enables to control the risk
of over-/under-utilization of resources caused by an admission scheme.
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Figure 3.1: Example for the resource-occupancy distributions resulting from different
admission decisions over time
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Figure 3.2: Histogram of an example bed usage distribution with 90%-quantile

3.4 Prediction by forward simulation

In the following section the method of forward simulation is described which
is used for what-if simulations, i.e. simulations performed to examine the
effect of an admission scheme on the future bed usage.

3.4.1 Approach

Forward simulation refers to the simulation of future time intervals given the
current hospital admissions and an admission scheme for a sample of scenar-
ios. Formally, forward simulation starting at time ti consists of N scenarios

simulation runs of the period [ti, ti+h] given admission scheme a[ti,ti+h]. For-
ward simulation can thus be considered as Monte Carlo-sampling of the
unknown underlying bed usage probability distribution. During a forward
simulation run the following steps are performed:



80 Chapter 3. Prediction of hospital resource usage

1. Clone current system state at time ti denoted by sti

2. Perform simulation steps given admission scheme a[ti,ti+h] using

N scenarios different random seeds

3. Reset system state sti

The system state, sti , is specified by the admission information of the pa-
tients that are already admitted to the different hospital units. The admis-
sion information of a patient comprises the patient’s group and the time the
patients have already spent at the unit they are currently admitted to.

3.4.2 Predicting the resource-usage probability distribution

Using forward simulation we obtain sample data on the resource usage re-
sulting from an admission scheme, given the system state. From the obtained
data we determine the empirical cumulative distribution function (ECDF)
which is used as an estimator for the unknown underlying occupancy distri-
bution, F u

tj ;a[ti,ti+h]
, u ∈ U . Let F̂ u

tj ;a[ti,ti+h],Nscenarios be the discrete ECDF

of resource occupancy at unit u which is derived from the sampled bed us-
age data at u during day tj obtained from forward simulation of N scenarios

different scenarios. Since the resource occupancy may fluctuate consider-
ably during the day, we monitor the hourly occupancy in the simulation.
The hourly occupancy is then used to calculate the number of hours that x
resources were occupied at unit u on day tj in forward simulation scenario
n = 1, . . . , N scenarios given a[ti,ti+h], denoted by bux,tj ,n;a[ti,ti+h]

.

Consider, for example, the resource occupancy at the CTS-HC in the
CHE case study, cf. Section 2.3.5. If on Monday all beds are empty until
the surgeries end and four type I patients arrive at about 18:00, this yields
bCTS-HC
0,ti,1;a[ti,ti+h]

= 18, bCTS-HC
4,ti,1;a[ti,ti+h]

= 6 and bCTS-HC
x,ti,1;a[ti,ti+h]

= 0 for x = 1, 2, 3.

F̂ u
tj ;a[ti,ti+h],Nscenarios can be calculated using the following non-parametric

maximum likelihood estimator [53]:

F̂ u
tj ;a[ti,ti+h],Nscenarios(y) =

1

N scenarios · 24

Nscenarios∑

n=1

∑

x≤y

bux,tj ,n;a[ti,ti+h]
, (3.1)

with y ∈ N0 and tj ∈ [ti, ti+h].

Thus, the ECDF is a consistent and unbiased estimator of the underlying
unknown occupancy distribution [45].
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The estimated q-quantile corresponding to F̂ u
tj ;a[ti,ti+h],Nscenarios is de-

noted by F̂−1;u
tj ;a[ti,ti+h],Nscenarios(q). In the CTS-HC example, the resulting

90% quantile equals 4.

3.4.3 Experimental evaluation

In the following section, we analyze the accuracy and precision of the ECDF
estimator, F̂ u

a
tj ,N

scenarios
(y), depending on the number of forward simulation

scenarios N scenarios. Moreover, we evaluate the ECDF estimators in an
explorative fashion and compare the resulting distributions and predictions
to models used in the literature.

Our evaluation is based on occupancy data that was generated using the
simulation described in Chapter 2. We used different prediction horizons
and varied the underlying resource allocations and admission schemes as
outlined below.

Setup agent-based simulation

The simulation instance used for the evaluation is based on the case study
performed at the Catharina hospital Eindhoven (CHE), the Netherlands, re-
ported in detail in Section 2.3.5. The instance specifies the patient pathway
parameters, the involved care units u ∈ U and the decision policies of the
respective care unit agents concerning patient (re-)transfers. In the evalu-
ation presented in this chapter, we explicitly distinguish between type III
patients admitted to IC and MC, denoted by III(IC) and III(MC), respec-
tively. As described in Chapter 2, type III(MC) patient flow is simulated
in an abstract way such that the number of beds occupied by MC patients
is sampled at the start of every day which directly determines the number
of beds that are available for type I and II patients. Comparable to the
situation at the CHE, the limited resource availability at the MC unit re-
quires the rerouting of type I and II patient flows to higher care level units.
As admission scheduling also controls the resource availability at the MC
for the other patient flows, type III(MC) admissions are explicitly included
in the admission scheme. Thus, Θ = {type I, type II, type III(IC), type
III(MC), type IV}.

The occupancy data was generated using 50 independent simulation runs
of 16 weeks including 4 weeks of warming-up and a prediction horizon, h,
ranging between 0 and 7 days. Moreover, we varied the resource allocation
in the simulation. We considered the current CHE resource allocation, rCHE ,
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given in Table 2.1, p. 45 and considered linear variations thereof that are
denoted by rCHE±20% with

rCHE±20% = (brCHE

u · (1± 0.2) + 0.5c, u ∈ U). (3.2)

Unconstrained admission control In this situation the admission
schemes were determined based on the resource allocation employed in
the simulation instance. The scheme was determined based on preliminary
simulation runs as given in Table 3.1. The number of patient admissions of
type I and II is limited by the available OR and postoperative care capacity,
cf. Chapter 2. An upper limit of twice the number of allocated resources
appeared more than sufficient for type III and IV patients, respectively.

ati Value

aIti min{rCTS-HC, rCTS-OR}
aIIti rCTS-PACU

a
III(IC)
ti

2 · rIC

a
III(MC)
ti

2 · rMC

aIVti 2 · rIC-HC

Table 3.1: Admission scheme for unconstrained admission control in the evaluation

Constrained admission control To assess the prediction performance in
the case of constrained admission control, we employ an explorative method
to generate many interesting states in the simulation. Specifically, we use
a local search algorithm to randomly generate admission schemes for which
we predict the resulting occupancy distributions and to choose one of the
candidate admission scheme to be employed in the subsequent period in the
simulation. This allows for a large variety of occupancy distributions that
we use for our analysis of our prediction approach.

The admission schemes employed in a simulation run during the time
period [ti, ti+h], i = 1, 2, . . . are iteratively determined using a hill-climbing
search algorithm with the objective to achieve a maximal patient through-
put, given a balanced patient mix, being a popular method for hard, practi-
cal problems [82] which is the case here. Candidate admission schemes are
generated by randomly adjusting the currently employed admission scheme.
The occupancy data was collected given the currently employed admission
scheme as well as the evaluated candidate admission schemes.

The hill-climbing search algorithm that we used in our experiments is
described in pseudo-code notation in Algorithm 1. The initial admission
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scheme at time t0 is determined based on the employed resource allocation,
ru, u ∈ U , and the patient arrival processes as given in Table 3.2. Sim-
ilarly to the unconstrained admission control case, the number of patient
admissions of type I and II is initially determined by the available OR and
postoperative care capacity. For type III and IV patients the initial number
of admissions is set to 2 and 3, respectively, which corresponds to the mean
arrival rates, cf. Section 2.3.5.

At time ti, the currently employed admission scheme, a[ti−1,ti+h−1], is
used as default solution based on which the method generateNeighbors

generates candidate schemes by randomly in- or decreasing the number of
patient admissions in the default admission scheme. The in- or decrement
is sampled randomly from a uniform distribution such that the number of
patients to be admitted does not exceed the number of resources allocated
to the unit to accommodate the patients. In order to refine the search, the
bounds for in- and decreasing the number of patient admissions and the
number of generated candidate solutions are decreased exponentially in the
course of the hill-climber run. The hill-climbing algorithm is terminated
after a predefined number of iterations.

at0 Value

aIt0 min{rCTS-HC, rCTS-OR}
aIIt0 rCTS-PACU

a
III(IC)
t0 2

a
III(MC)
t0 3

aIVt0 3

Table 3.2: Initial admission scheme for constrained admission control

The method evaluateScheme evaluates an admission scheme using for-
ward simulation. The method returns a vector of predicted q-quantiles for
the bed usage at the different care units. A candidate scheme a′[ti,ti+h]

has

to satisfy the resource constraint given by

F̂−1;u
tj ;a′

[ti,ti+h]
(q) ≤ ru,∀u ∈ U, j = i, . . . , i+ h. (3.3)

In order to achieve a balanced patient mix the hill-climbing algo-
rithm maximizes the minimal number of patient admissions of the scheme,
MPA(a[ti,ti+h]), is evaluated which is given by

MPA(a[ti,ti+h]) = min
g∈Θ

i+h∑

k=i

agtk . (3.4)
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Initial experiments showed that using the total number of patient admis-
sions as objective function to be maximized resulted in a biased selection of
type II admissions where the corresponding pathways feature few postop-
erative complications and comparatively short LoS. In general, such ad-
mission schemes are undesirable and unrealistic for hospitals where this
would lead to excessive waiting lists for more ”complex” patients. Therefore,
MPA(a[ti,ti+h]) was chosen as objective function which provides for a more
balanced patient mix in the simulation. If no candidate solution satisfies
the resource constraint (3.3), the hill-climbing algorithm uses the default
admission scheme as a solution. Since the optimization is performed online
during simulation, a sub-optimal default solution chosen now solely affects
the current time step and is likely to be improved in following step of the
optimization. The parameter settings were determined in preliminary simu-
lation experiments and were set to 4 iterations of the hill-climbing algorithm.
The adjustment parameters and the number of solutions to be generated is
are decreased exponentially with a rate set to 0.25. During preliminary ex-
periments these values appeared to allow for a sufficiently extensive local
search in a reasonable runtime.

The data presented in the following sections contains the randomly gen-
erated candidate and employed admission schemes as well as the resulting
resource-occupancy distribution.

Accuracy and precision of the ECDF estimator

In general, the accuracy of a prediction is the degree of closeness of the
estimates to the true value. Using the Dvoretzky-Kiefer-Wolfowitz (DKW)
inequality [31], we can determine the number forward simulation scenarios
needed to obtain a prediction of the underlying bed occupancy distribu-
tion with predefined accuracy. Specifically, the DKW inequality bounds the
probability that F̂ u

tj ;atj,N
scenarios

(y) differs from F u
tj ;a[ti,ti+h]

(y) by more than

a given constant ε > 0 for any y ∈ N. Formally, the DKW inequality states
that

Pr(sup
y

|F̂ u
a
tj ,N

scenarios
(y)− F u

tj ;a[ti,ti+h]
(y)| > ε) ≤ 2e−2Nscenariosε2 ∀ε > 0,

(3.5)
where e−2nε2 ≤ 0.5 If we want to ensure that the possible error of F̂ u

a
tj ,N

scenarios

is at most ε = 1
10 , with at least 90% confidence, we get for N scenarios that

2e−2Nscenarios/100 ≤ 1− 0.9 ⇔ N scenarios ≥ 50 ln 20 ≈ 150.
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Algorithm 1: Pseudo-code description of hill-climbing local search
algorithm for constrained admission control

Input: Scheme a[ti−1,ti+h−1]

Result: Scheme a[ti,ti+h]

//initialization

for j = i to i+ h− 1 do1

a
default
tj

= atj ;2

a
default
ti+h

= ati+h−1
;3

//optimization

nextEval = −∞ ;4

nextSolution = a
default
[ti,ti+h]

;5

repeat6

A = generateNeighbors(nextSolution, currentIteration);7

forall a′ ∈ A do8

F̂−1
tj ;a′(q) = evaluateScheme (a′);9

if F̂−1;u
tj ;a′ (q) ≤ ru ∀ units u ∈ U, j = i, . . . , i+ h then10

if MPA(a′) > nextEval then11

nextSolution = a′;12

nextEval = MPA(a′);13

until termination ;14

return nextSolution;15

Note, that using F̂ u
a
tj ,N

scenarios
we do not need to make any assumptions on

the unknown underlying distribution F u
tj ;a[ti,ti+h]

.

The precision of a prediction relates to the exactness of the operation
used to obtain the estimates. To assess the precision of the ECDF for dif-
ferent number of forward simulation scenarios we determine the empirical
confidence interval of the maximum likelihood estimator using Greenwood’s
formula [36]. In Figure 3.3 an example empirical cumulative distribution
function is shown with upper and lower limits or bounds of the 95% con-
fidence interval. The precision of the estimator is defined in terms of the
maximum norm of the length of the estimates’ 95% confidence intervals. The
maximum norm assigns to a real-valued bounded function f the nonnegative
number

||f ||∞ = max{|f(x)| : x ∈ domain of f}.

We define the maximum norm of the length of the 95% confidence interval
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of F̂ u
a
tj ,N

scenarios
as the maximum norm of the difference between the 97.5%

and 2.5% confidence bounds, i.e.

||ci||∞ = max
x≥0

{|2z0.025

√
V̂ ar[F̂ u

a
tj ,N

scenarios
(x)]|}, (3.6)

where zq denotes the q-quantile of the standard normal distribution with

z0.025 = −z0.975 = −1.96. V̂ ar[F̂ u
a
tj ,N

scenarios
(x)] denotes the sample variance

of F̂ u
a
tj ,N

scenarios
(x) according to [36].

Using this precision metric, we get a worse-case bound on the overall
precision of the calculated estimator. Thus, a small ||ci||∞ value, i.e. a small
confidence interval, yields a high precision of the bed usage distribution
estimator. In order to determine the number of forward simulation scenarios
needed to obtain accurate prediction results we calculated the mean ||ci||∞
value of the F̂ u

a
tj ,N

scenarios
estimates for the IC, MC, HC-IC and CTS-HC

units and the CTS-ward for varying N scenarios values.

Unconstrained patient admission scheduling The results for the pre-
cision of the ECDF estimator for the IC are shown in Figure 3.4. The
number of simulation runs, N scenarios, varies between 10 and 103 and the
prediction horizon is set to h = 0, . . . , 7. From Figure 3.4 we can conclude
that the confidence bounds of the ECDF converge polynomially for increas-
ing N scenarios. Moreover, the figure shows the small impact of the length of
the prediction horizon h on the precision of the estimator. For h = 0 the es-
timator shows slightly less variability compared to prediction horizons with
h ≥ 1 days. This result can be attributed to the randomness of patient ad-
missions in this situation. Patient arrivals are solely limited by the patients’
actual demand for the types of care provided by the units and the available
resource capacity which fluctuates over time. The resource availability for
h = 0, however, shows less variability since the resource occupancy is partly
determined by prior patient admissions and transfers, with an average LoS
of more than 1 day, which is why less variability is present in the h = 0
data compared to the h ≥ 1 data. In a sensitivity analysis we analyzed
the effect of the resource allocation at the hospital units on the estimates’
||ci||∞ values which showed that an in-/decrease in resource capacity of 20%
resulted in a maximal relative difference of less than 10−3 for the IC. Thus,
the convergence appears to be robust for different resource allocations. The
convergence and sensitivity results are comparable for the other units which
are therefore omitted here.
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Figure 3.3: ECDF with lower (2.5%) and upper (97.5%) confidence bounds (CB) deter-
mined by (3.6) for Nscenarios = 10, 50, 100, 1000 with corresponding ||ci||∞ values

Constrained patient admission control The precision of the ECDF
estimator for constrained admission control is shown in Figure 3.5 for vary-
ing N scenarios and a prediction horizon ranging between h = 0 and 7 days
on a log-log scale. The convergence of the ECDF is comparable to the un-
constrained admission control case with polynomially converging confidence
bounds for increasing N scenarios. In contrast to the unconstrained case,
however, an increasing prediction horizon h in constrained admission con-
trol causes larger confidence intervals. For the CTS-ward data, the increase
in variability is marginal, while for the MC and IC a larger increase is to
be noted which remains almost constant for h ≥ 1. For the CTS-HC and
IC-HC data, a prediction horizon of h > 0 also causes larger confidence
intervals, however, no consistent in- or decrease in variability is to be seen
which may be attributed to the small size of the care units, the complex pa-
tient routing and arrivals of type I and IV patients as well as the variability
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Figure 3.4: Average ||ci||∞ value for varying Nscenarios and h = 0, . . . , 7 on a log-log
scale for the IC

of the corresponding patient pathways, cf. Section 2.3.5.

Determining the number of forward simulation runs

On an Intel Pentium 4 2.4GHz machine with 2GB RAM a single forward
simulation run takes about 13.944 and 4.34 seconds on average for h = 7
days for N scenarios = 1000 and N scenarios = 300, respectively. At the same
time, the overhead of computational time needed for copying the current
state information at the different units, resampling patient paths, etc. re-
mains constant. For N scenarios = 300, the ||ci||∞ values of the different
units for the (un-)constrained admission control case are about 0.02 which
means that the estimates have minimal variability. For N scenarios = 1000,
the ||ci||∞|| values of the different units for the (un-)constrained admission
control case are about 0.01. In consideration of the decrease of less about
8 · 10−3 of the already small ||ci||∞ values, the computational effort of the
additional simulation runs greatly outweighs the gain in precision. There-
fore, the number of forward simulation runs is set to N scenarios = 300 on
which the following results are based.

Analysis of the empirical distribution functions of hospital bed
occupancy

Next, we contemplate the shape of the resource-usage probability distribu-
tions obtained from forward simulation for unconstrained and constrained
patient admission control. In addition to the basic resource allocation, we
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Figure 3.5: Average ||ci||∞ values (y-axes) for Nscenarios = 10, 20, . . . , 1000 (x-axes)
and h = 0, . . . , 7 on a log-log scale for (a) CTS-HC, (b) IC, (c) MC, (d) HC-IC and (e)
CTS-ward; the legend in (e) also applies to (a) - (d)

also performed a sensitivity analysis to study the robustness of the obtained
distributions.
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Figure 3.6: Histograms of resource-occupancy ECDF for unconstrained admission con-
trol for (a) basic allocation, (b) basic allocation +20% and (c) basic allocation -20% at
IC

Unconstrained patient admission control Figure 3.6, 3.7, 3.8, 3.9 and
3.10 show histograms of the resource-usage ECDF at IC, MC, IC-HC, CTS-
HC and CTS-ward during the period ti, . . . , ti+7 days for the considered
resource allocations.

For all allocations shown in Figure 3.6 the resource-usage distribution
tends to be right-skewed with the mass of the distribution being concen-
trated on the left of the figures. Analogous observations can be made for
Figure 3.7, 3.8 and 3.10. Especially for the small units, the MC, IC-HC and
CTS-HC, the discreteness of the distribution support and values due to the
arrival schemes provides for a large range of distribution shapes, e.g. bino-
mial, Poisson and almost uniform distributions where all possible values of
resource occupancy are almost equally likely. For the CTS-ward the distri-
bution shapes are more or less symmetrical.

To assess the dispersion of the measured ECDFs, we consider the 90%
quantile ranges, defined as the difference between the 5% and 95% quantiles.
Table 3.3 contains the 90% quantile ranges averaged over the data samples.
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Unit allocation h = 0 h = 1 h = 2 h = 3 h = 4 h = 5 h = 6 h = 7
rCHE 3.1964 3.4286 3.4286 3.4286 3.4286 3.4286 3.4286 3.4286

CTS-HC rCHE+20% 4.1071 4.2857 4.2857 4.2857 4.2857 4.2857 4.2857 4.2857

rCHE−20% 2.3571 2.5357 2.5714 2.5714 2.5714 2.5714 2.5714 2.5714
rCHE 3.5625 4.2857 4.3036 4.4107 4.415 4.4286 4.4321 4.4464

IC rCHE+20% 4.6607 6.3036 6.8036 6.9464 7.0536 7.125 7.1786 7.3214

rCHE−20% 4.0714 5.25 5.5357 5.6071 5.6357 5.6786 5.6964 5.6964
rCHE 3.7321 3.9643 3.9821 3.9821 4.0 4.0 4.0 4.0

MC rCHE+20% 4.1786 4.6964 4.8393 4.8036 4.8571 4.875 4.893 4.905

rCHE−20% 2.9107 3.0 3.0 3.0 3.0 3.0 3.0 3.0
rCHE 2.5893 3.1429 3.1071 3.2143 3.2321 3.25 3.2589 3.2679

IC-HC rCHE+20% 2.9464 3.8214 3.8929 3.8929 3.9464 3.9821 3.9821 3.9875
rCHE−20% 1.9821 2.6429 2.6786 2.6875 2.7143 2.7286 2.7407 2.764

rCHE 8.0536 9.1429 9.5179 9.6875 9.9821 10.5179 10.9107 11.1071

CTS-ward rCHE+20% 9.9107 11.0357 11.3482 11.7232 11.8875 12.1161 12.3839 12.4107
rCHE−20% 6.0625 6.8929 7.25 7.4196 7.9821 8.5536 9.0536 9.2946

Table 3.3: Average 90% quantile range of ECDF at different units for different resource allocations
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Figure 3.7: Histograms of resource-occupancy ECDF for unconstrained admission con-
trol for (a) basic allocation, (b) basic allocation +20% and (c) basic allocation -20% at
MC

The average quantile ranges show that for a given resource allocation the
dispersion of the ECDF increases for increasing h. For the large units,
i.e. the IC and CTS-ward, the ECDF show very small dispersion relative to
the number of allocated resources whereas the ECDFs of small units show
a larger dispersion that can be attributed to the discreteness of the possible
values and the large variability of LoS at the units, cf. Section 2.4.1. Except
for the CTS-ward, the dispersion remains almost constant for h > 0.The
overall increase in dispersion of the ECDF is to be expected since predic-
tion precision generally decreases with increasing time horizon, especially
for complex and dynamic forecasting problems as with resource-usage pre-
diction. This is also the reason for the larger values of ||ci||∞ for increased
prediction horizon h discussed earlier in this section.

In Table 3.4 the variability of the predicted q-quantile values is shown
for a prediction horizon h ranging between 1 and 7 days. The variability of
the predicted forecasts is defined as the mean absolute difference between
the q-quantile predictions for tk determined at tk−h. From Table 3.4 we can
conclude that the variability of quantile predictions is small for the different
units and quantile values. The largest difference in predicted q-quantile
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Figure 3.8: Histograms of resource-occupancy ECDF for unconstrained admission con-
trol for (a) basic allocation, (b) basic allocation +20% and (c) basic allocation -20% at
IC-HC

Unit q h = 1 h = 2 h = 3 h = 4 h = 5 h = 6 h = 7

70% 0.9184 1.0 1.0 1.0306 1.0816 1.102 1.102
IC 80% 0.7551 0.8571 0.8571 0.9187 0.9187 0.9796 0.9796

90% 0.4898 0.6122 0.6327 0.6735 0.6827 0.6939 0.6939

70% 0.2041 0.2137 0.2245 0.2245 0.3061 0.2857 0.2653
IC-HC 80% 0.3061 0.3265 0.3265 0.3469 0.3469 0.3673 0.4082

90% 0.2653 0.2653 0.2653 0.2653 0.2653 0.2653 0.2653

70% 0.6122 0.6122 0.5714 0.5918 0.5918 0.5918 0.5918
MC 80% 0.5714 0.602 0.6122 0.6327 0.6327 0.6327 0.6327

90% 0.102 0.102 0.102 0.102 0.102 0.102 0.102

70% 1.0306 1.1959 1.2939 1.4184 1.6837 1.7143 1.8571
CTS-ward 80% 1.1837 1.4898 1.499 1.6122 1.755 1.7747 1.8163

90% 1.1837 1.5122 1.6102 1.7143 1.8796 1.8980 1.9571

Table 3.4: Variability of predicted q-quantiles at different units over time

over time can be observed for the CTS-ward where the predictions differ
on average by less than 2 beds. For the IC, IC-HC and MC the greatest
difference in predictions is limited to about 1, 0.4 and 0.63 beds, respectively.
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Figure 3.9: Histograms of resource-occupancy ECDF for unconstrained admission con-
trol for (a) basic allocation, (b) basic allocation +20% and (c) basic allocation -20% at
CTS-HC

The variability relative to the number of allocated resources decreases for
increasing value of q. For the IC occupancy data, the maximal relative
variability amounts to 12.2%, 8.9% and 5.3% for q equal to 0.9, 0.8 and 0.7,
respectively. For the IC-HC, the variability decreases from maximally 10.2%
to 5.3% and for the CTS-ward the decrease amounts to 6.6%, 5.1% and
4.7% for q equal to 0.9, 0.8 and 0.7, respectively. The maximal variability
for the MC quantile predictions decreases from 20% to about 2% relative
to the number of allocated resources. Here, the largest variability occurs
which can be explained by the random patient arrivals in our simulation,
cf. Section 2.4.1 and the small number of the possible occupancy values.

Constrained patient admission control Figure 3.11, 3.12, 3.13, 3.14
and 3.15 show histograms of the density functions for the ECDF of bed usage
at the IC, MC, IC-HC, CTS-HC units and the CTS-ward resulting from 300
forward simulation scenarios with a prediction horizon of h = 0, . . . , 7 days.
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Figure 3.10: Histograms of resource-occupancy ECDF for unconstrained admission con-
trol for (a) basic allocation, (b) basic allocation + 20% and (c) basic allocation -20% at
CTS-ward

The rows in the figures correspond to different system states at time ti and
the columns correspond to the different days in the interval [ti, ti+7] with the
admission decisions indicated at the top. The figures show that empirical
bed usage distributions can differ considerably depending on the state and
the admission decisions over time. Overall, the distribution shapes vary
from skewed to almost symmetrical distributions with varying peakedness.
For the CTS-ward even bimodal distributions can be observed which can
be explained by canceled surgeries and thus prolonged admission as a result
of the blocking of postoperative care units. Therefore, a summary statistic
such as the mean, median and standard deviation may not be representative
for the different admission schemes and decision moments.

From the depicted distributions it becomes apparent that the predic-
tions differ considerably over time and depend on the employed admission
schemes. As the data includes a large variety of admission schemes and
their predicted resource occupancy, including admission schemes that do
not maximize the objective (3.4) or fulfill the resource constraint (3.3), the
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Figure 3.11: Histograms of resource-occupancy ECDF at IC resulting from different
states and admission schemes

variability of the obtained resource-occupancy quantiles and thus the dis-
persion of the distributions is large. Moreover, as the admission schemes are
adjusted continuously during simulation to maximize (3.4) and satisfy (3.3)
according to Algorithm 1, a comparison of the predicted quantiles over time
is not feasible.

The prediction horizon to be used will typically depend on the lead
time of an admission decision, i.e. a long decision lead time would typically
induce a long prediction horizon in order to account for resource shortage
resulting from the decision. If the decision lead time is short, however, a
shorter prediction horizon may be advisable due to the inherent variability
of resource occupancy over time.

Comparison to utilization distributions in the literature

In the literature a Normal distribution is sometimes assumed for the resource
usage due to the independent and identically distributed discrete random
effects at a unit, cf. Kusters and Groot [60]. Our empirical simulation results
show that the bed usage distributions are often non-symmetrical, especially
for small units like the MC and in the case of constrained admission control.
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Figure 3.12: Histograms of resource-occupancy ECDF at MC unit resulting from differ-
ent states and admission schemes

Moreover, applying the Shapiro-Wilk test of normality on the data obtained
from the simulations the nullhypothesis of normality is rejected in more than
85% of the samples at a significance level of 5%. Using normal distributions
for sampling LoS and arrival data would probably promote the normality
of the resource-usage data. However, normally distributed LoS and arrival
times are not realistic in this problem setting as LoS times are typically right-
skewed1 and arrival times are typically Poisson [63, 96]. Thus, in general
the normality assumption will not hold.

However, if the mean is used as an estimate for resource occupancy re-
sulting from an admission scheme or for capacity planning purposes, the
normality assumption may be reasonable. Especially in the case of uncon-
strained admission control and larger care units, the distributions depicted
above appear symmetrical. The mean of a normal distribution then provides
a meaningful estimate to be used for optimizing the admission or capacity
planning decisions for the bulk of cases. On the other hand, if quantile val-
ues are of interest for the optimization, the normality assumption may lead

1Note that in our simulation we employ Lognormal distributions.
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Figure 3.13: Histograms of resource-occupancy ECDF at IC-HC resulting from different
states and admission schemes
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Figure 3.14: Histograms of resource-occupancy ECDF at CTS-HC resulting from differ-
ent states and admission schemes

to significantly different estimates due to the tails of the normal distribution
that are not present in the samples shown in the figures above.
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Figure 3.15: Histograms of resource-occupancy ECDF at CTS-ward resulting from dif-
ferent states and admission schemes

3.5 Prediction by supervised learning

In the face of the increased computational effort associated with predic-
tion by forward simulation, we evaluated the possibility of using supervised
learning techniques to approximate the resource-usage probability distri-
bution. In general, in supervised learning we are given a set of example
pairs (xj , yj), xj ∈ X, yj ∈ Y, j = 1, 2, . . . and the aim is to find a function
f : X → Y in the allowed class of functions that best matches the examples.
In other words, we wish to infer the mapping that underlies the data.

In this section, the resource-usage probability distribution at a care unit
is to be predicted based on (aggregated) available system state information.
In case of unconstrained admission control the units’ resource occupancy
is used as input. In case of constrained admission control the admission
scheme is used in addition to the resource occupancy. The function is to
be learned from the data obtained from forward simulation discussed in
Section 3.4. The learned models are benchmarked against a basic heuristic
derived from hospital practice. As concluded in Section 3.4, the variability
and predictability of the resource occupancy decreases with increasing pre-
diction horizon h. Therefore, we initially evaluated the supervised learning
approach for h = 1.
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We want to remark that the previous approach will be used in the re-
mainder of the thesis, so readers can skip this section at first reading.

3.5.1 Approach

Similarly to the forward simulation approach presented in Section 3.4,
our prediction approach by supervised learning focusses on predicting the
resource-occupancy probability distribution. Thus, our aim is to learn a
function for the resource-usage ECDF F u

tj ;a[ti,ti+h]
for each unit u ∈ U .

Predicting solely the value of a descriptive statistic like the mean or a
quantile value would significantly decrease the complexity of the predic-
tion problem and thus increase the performance of the supervised learner.
However, due to the broad variety of encountered probability distributions
in Section 3.4.3, selecting an appropriate descriptive statistics to be used
for decision support is unclear as the choice would typically depend on the
focus of decision support, the encountered ECDF shapes, etc. Predicting
the resource-occupancy ECDF is a more generally applicable approach as
it allows to derive mean occupancy values, quantile values or any other
descriptive statistics of interest depending on the scope of decision support.

Based on preliminary results approximating F̂ u
a
tj ,N

scenarios
using an ap-

propriate class of distribution functions and learn the parameters of this
class using an artificial neural network (ANN) was found to be superior to
other approaches like approximation using high-degree polynomials. Our
approach avoids encountered oscillatory behavior especially for the distri-
bution tails and guarantees that the resulting ECDF predictions to comply
with the properties of cumulative distribution functions.

To assess the quality of the resource-occupancy distribution approxima-
tion and prediction, we consider the corresponding quantile values. This
allows for an intuitive interpretation of the approximation and prediction
error.

Artificial neural networks

Artificial neural networks (ANNs) capture nonlinear relationships between
input and outputs through a more general and flexible functional repre-
sentation than traditional statistical methods and are commonly used for
regression [7].

Elements and structure of ANNs A brief introduction to ANNs and
the specific networks applied in our prediction approach will be provided
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below. For a more detailed description the interested reader is referred
to [7] or [82].

An ANN is composed of an number of nodes, or neurons, that are con-
nected by links. Each link has a numeric weight associated with it. Some of
the neurons are connected to the external environment and are designated
as input or output neurons. During learning the weights are modified in
order to align the network’s input and output behavior with the input and
targets provided by the environment. Thus, a neuron has a set of input
and output links from and to other neurons. Each neuron performs a local
computation given the weighted sum of its inputs using a transfer function.
Examples for transfer functions are sigmoid or linear functions.

There is a variety of network structures. The main distinction is between
feed-forward and recurrent networks. In feed-forward ANNs, links are uni-
directional and there are no cycles where in recurrent networks any link
structure is possible. In this chapter we will focus on feed-forward ANNs as
they are well understood [7].

In an ANN, neurons are typically arranged in layers which means that
each neuron is only linked to neurons in the next layer and that there are
no links between neurons of the same layer or links to skip a layer. A
further distinction is to be made between input, output and hidden layers.
Figure 3.16 illustrates an example for a feed-forward neural network with
one hidden layer. The neurons belonging to the input layer compute their
output directly from the network’s input. The output of the output layer
can be the parameters of a class of distribution functions to be predicted.

Models for ANNs employed in this chapter In this chapter we study
three regular models for ANNs that are widely-used in applications. Specif-
ically, we consider feed-forward multi-layer perceptrons (MLPs), radial ba-
sis function networks (RBNs) and generalized regression neural networks
(GRNNs) [7].

The nodes of MLPs each compute the biased weighted sum of their in-
puts which is used as input for the transfer function to determine the nodes’
output. The nodes are arranged in a layered feed-forward structure. The
network thus has a simple interpretation as a form of input-output model.
MLPs can model functions of almost arbitrary complexity to any desired
accuracy given an infinite number of neurons and hidden layers [7]. Impor-
tant issues in MLP design include determining the number of hidden layers
and the number of neurons in these layers [7]. For training the network,
i.e. setting the values of the neurons’ weights and bias to minimize the er-
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Figure 3.16: A fully-connected feed-forward neural network architecture with one hidden
layer and multiple outputs

ror made by the network, example inputs are run through the network and
the network’s output is compared to the example output. The best-known
learning algorithm for MLPs is back-propagation that updates the weights
by recursively dividing the observed error among the contributing neurons
of the preceding layer and adjusting the weights [7].

RBNs consist of two layers: a hidden radial basis layer and a linear out-
put layer. Since radial basis functions are nonlinear, one hidden layer can be
used to model any nonlinear function if the hidden layer contains sufficient
radial basis nodes [7]. The linear output layer returns a weighted sum of the
radial basis function outcomes. As RBNs can model any nonlinear function
using a single hidden layer some design-decisions about numbers of layers
can be omitted. The linear transformation in the output layer can be opti-
mized fully using traditional and fast linear modeling techniques [7]. RBNs
can thus be trained very quickly: first, the centers and deviations of the
radial basis neurons must be set, then the linear output layer is optimized.
However, RBNs tend to require many times more neurons than comparable
MLPs. Therefore, RBNs tend to be slower to execute and consume more
space than MLPs [7].

GRNNs are a type of neural networks that use a kernel-based ap-
proach [86] to approximate the underlying probability distribution function
of the inputs. The GRNN architecture comprises a radial basis layer and
a special linear output layer. The output is determined using a weighted
average of the outputs of the training cases, where the weighting is related
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to the distance of the input case from the training cases so that cases that
are ”nearby” contribute most heavily to the calculation. GRNNs are often
used for function approximation and have the advantage to train almost
instantly. However, since the networks actually contain the entire set of
training cases, the execution of GRNNs is space-consuming and slow. For a
more detailed description of GRNNs and the concept of kernel-based density
estimation the interested reader is referred to [7] and [86].

Distribution approximation

In order to reduce the complexity of supervised learning of an ECDF, we
approximate the ECDF by an appropriate class of probability distributions
and learn the corresponding distribution parameters.

We will approximate the ECDF by a Gaussian mixture (GM) distri-
bution as the GM distribution can represent a wide range of different dis-
tribution shapes that are present in the simulation data as described in
Section 3.4.3.

A GM distribution is defined as the convex sum of k ≥ 1 Gaussian
distributions. The cumulative distribution function is given by

FGM (y; k, θ) =
k∑

l=1

αl · φµl,σ
2
l
(y), y ∈ N, (3.7)

with θ = (αl, µl, σl, l ∈ {1, . . . , k}). φµl,σ
2
l
denotes a Gaussian cumulative

distribution function with mean µl and variance σ2
l and αl denote the convex

mixing coefficients with
∑k

l=1 αl = 1. The parameter estimates of θ, θ̂, are
determined using the Expectation-Maximization algorithm [30].

Model selection We select the model that minimizes the absolute error
between approximated and measured empirical resource-usage quantiles av-
eraged over all the data samples, i.e. the mean absolute error (MAE) of the
distribution approximation, given by

MAE(k, θ̂) =
1

#samples

∑
|F̂−1;u

tj ;a[ti,ti+1]
(q)− F−1

GM (q; k, θ̂)|.

Consider for example the data and GM distributions represented in Fig-
ure 3.17. Here, the histogram depicts the occupancy data for a certain day at
the CTS-ward with the fitted GM density functions for k = 1, . . . , 4 depicted
by the marked lines. For a robust analysis, we consider multiple quantiles
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between 70% and 95%. The corresponding quantile values are given in Ta-
ble 3.5. The visually more appropriate fit obtained for k = 4 components of
the GM distribution results in the same quantile estimations as the k = 2, 3
fit with the k = 1 model consistently overestimating the measured quantile
values due to the larger spread. The k ≥ 2 models overestimate the 70% and
85% quantiles but provide an exact estimation for the remaining quantile
values. In this situation, the GM distribution with k = 2 would be chosen
as data representation since the quantile fit equals the estimates obtained
by GM approximations with more components while the number of distri-
bution parameters is reduced to 5 parameters versus 8 and 11 parameters
for k = 3 and 4, respectively.
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Figure 3.17: Histogram of a example ECDF for CTS-ward with fitted GM distributions
with k = 1, . . . , 4 components

Method q = 70% q = 75% q = 80% q = 85% q = 90% q = 95%

ECDF 32 33 33 33 34 34
GMD with k = 1 34 35 36 37 38 40
GMD with k = 2 33 33 33 34 34 34
GMD with k = 3 33 33 33 34 34 34
GMD with k = 4 33 33 33 34 34 34

Table 3.5: q-quantiles determined by ECDF and fitted GM distributions with k =
1, . . . , 4 for the example depicted in Figure 3.17
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3.5.2 Input features

As explained above, we use a separate ANN for the different units in the
care unit network to predict the parameters of the future resource-usage
probability distribution. The input of the prediction is composed of the sys-
tem’s state and the admission scheme. Similar to the forward simulations
described in Section 3.4, the system state is determined by the patients cur-
rently admitted to the different units and their patient groups. Specifically,
we use aggregated patient admission information at the corresponding unit
and directly preceding units according to the relevant patient flows. The
latter was included in order to account for possible future patient flow. The
employed input information is summarized in Table 3.6 for the different
units.

The time that the patients have been admitted to the current unit is
not included in the unit state description as preliminary experiments have
shown that the ANNs had difficulties in finding a smooth functional relation
between state & admission scheme and the resource-occupancy distribution
parameters due to the large possible state space.

Unit State information

CTS-HC no. type I & IV patients admitted to CTS-HC at ti
IC OR scheme for type II patients at ti,

no. type I patients admitted to CTS-HC at ti,
no. type I, II, III, IV patients admitted to IC at ti

IC-HC no. type I patients admitted to CTS-HC at ti,
no. type I, IV patients admitted to IC-HC at ti

MC OR scheme for type II patients at ti,
no. type I patients admitted to CTS-HC at ti,
no. type I, II patients admitted to MC at ti

CTS-ward no. preoperative type I and II patients admitted to CTS-ward
at ti,
no. postoperative type I and II patients admitted to CTS-
ward at ti,
OR scheme for type I, II patients at ti,
no. type I patients admitted to CTS-HC at ti,
no. type I, II patients admitted to IC at ti,
no. type I patients admitted to IC-HC at ti,
no. type I, II patients admitted to MC at ti

Table 3.6: State information supervised learning for different units h = 1
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Since the admission scheme for unconstrained admission control given in
Table 3.1 remains unaltered throughout a simulation run, the inclusion of
the admission scheme did not yield any performance improvements of the
trained ANNs and was therefore omitted during training and evaluation.

3.5.3 Experimental evaluation

The data used for the training and evaluation of the supervised learning
approach presented in this section is obtained using the simulation setup
described in Section 3.4.3. The admission schemes are determined by Ta-
ble 3.1 and Algorithm 1 for (un-) constrained admission control.

Setup of GM approximation

Based on the data samples obtained from forward simulation as described
in Section 3.4.3 the parameter estimates, θ̂, of the GM distribution func-
tion are determined for k ∈ {1, . . . , 4} using the Expectation-Maximization
algorithm [30] that is implemented in the Matlab Statistics toolbox v7.0.
As explained in Section 3.5.1, the final model selection is based on the
mean absolute error between the measured and approximated quantile val-
ues, MAE(k, θ̂).

Setup of ANNs

As explained in Section 3.5.1 our goal is to predict the GM parameters of
the future resource-occupancy distribution given the state and (where ap-
plicable) information on planned patient admissions. Denote the predicted
distribution parameters by θ̃. The ANN models were created, trained and
evaluated using the Neural network toolbox implemented in Matlab v6.0.1.
Specifically, the MLPs were built with two hidden sigmoid layer with each
30 neurons and a positive linear output layer. The mean squared error was
used as performance measure for training the ANNs, defined as the average
squared error between the network’s output, θ̃, and the target values θ̂ over
all the example pairs, i.e.

MSE (θ̃) =
1

#samples

∑
(θ̂ − θ̃)2.

The MLPs were trained using the Levenberg-Marquardt algorithm, a variant
of the back-propagation algorithm, for up to 100 epochs and the deviation
of the radial basis neurons of the RBNs and GRNNs was set to 0.8 in order
to achieve a close data fit. The RBNs and GRNNs have been designed to
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have as many hidden neurons as there are input vectors. The size of the
ANNs, as well as the error goals and deviation of the radial basis functions
were determined after preliminary experiments considering also constraints
imposed by the available memory of the Intel Pentium 4 2.4GHz machine
on which the experiments were performed.

As the patient flow at the CTS-PACU and CTS-OR is fully determined
by the admission scheme, the prediction for these units is straightforward.
For the remaining units, i.e. IC, IC-HC, MC, CTS-HC and CTS-ward, an
ANN is to be learnt for each unit separately.

Measuring performance

We evaluate the learned ANNs using the mean absolute difference between
the q-quantiles obtained from the predicted GM model parameters, θ̃, and
the empirical q-quantiles obtained from simulation data. Since the actual
quantile value to be used for decision support will depend on the specific
problem setting and the goal of the hospital management, we evaluated the
prediction methods for different quantile values ranging from 0.75 to 0.95 in
steps of 0.05. The error, MAE(q, θ̃), is defined as

MAE(q, θ̃) =
1

#samples

∑
|F̂−1;u

tj ;a[ti,ti+1]
(q)− F−1

GM (q; k, θ̃)|.

Benchmark prediction method

To assess the performance of the ANN prediction method described above,
we compared the predictions of the ANNs with the forecasts obtained from
a basic prediction heuristic that was inspired by the case study. The bench-
mark heuristic is based on the resource allocation, ru, at unit u and deter-
mines the forecasts, x̂u(q), for the q-quantile by

x̂u(q) = bq · ruc ∀i, h > 0. (3.8)

This heuristic was chosen especially with regard to small units where the
range of possible occupancy values is small.

Additionally, we considered multivariate linear regression models as
benchmark prediction methods. However, the obtained predictions did not
result in feasible GM distribution parameters, i.e. positive variances σ2

l and
mixing coefficients αl ∈ [0, 1], cf. Section 3.5.1.
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Results

Below we present the main findings obtained from analyzing the results of
the distribution approximation and the different prediction methods consid-
ered in this section. The numerical results for the GM distribution fit are
given in appendix A, Section A.1, Table A.1 and Table A.2. The numerical
prediction results obtained using 10-fold cross-validation can be found in
Table A.3 and Table A.4.

Distribution approximation Based on the MAE(k, θ̂)-based selection
method, the overall minimal MAE in the unconstrained admission control
case was obtained by a one-component GM distribution for the IC-HC data
and two-component GM distributions for the IC, MC, CTS-HC and CTS-
ward occupancy data. For the constrained admission control data a one-
component model best fit the IC-HC and MC data while two-component
GM distributions were chosen for the IC, CTS-HC and CTS-ward.

Fitting a GM distribution to the occupancy data of small units, i.e. MC,
IC-HC and CTS-HC, yields low-quality approximations, especially for the
95%-quantile, which is due to the discrete possible occupancy values and the
absence of distribution tails in the ECDF. We also fitted Poisson, Gamma,
Weibull and uniform probability distributions to the data which resulted in
similar or larger MAE(k, θ̂) values compared to the best GMD fit, except for
the Poisson distribution which provided better estimates for small quantile
values (q ≤ 0.75) than the GMD fit. However, ANN predictions for Poisson
parameters did not appear to improve the results obtained using predicted
GM distribution parameters. Therefore, GM distributions were chosen also
for MC, IC-HC and CTS-HC occupancy data.

Supervised learning

Basic evaluation This evaluation is based on forward simulation data
obtained for the basic allocation at the case study hospital, cf. Section 2.3.5.

In the unconstrained admission control setting, the performance of the
different ANNs differs per unit and quantile value. In the majority of cases,
GRNNs perform best, with a prediction that differs less than 1 beds for
all the units considered, with a small standard deviation of the prediction
performance of below 5% with the second best performance obtained from
RBNs. For the IC, RBNs outperform the other prediction methods for quan-
tile values up to 0.8. For higher quantile values GRNNs perform (slightly)
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better than RBNs, followed by MLPs and the benchmark heuristic with con-
siderable difference in MAE. The different ANNs differ between 0.6 and 2.6
beds in their forecasting error, whereas the benchmark results in an error
of more than 4 beds compared to the measured quantile value. Considering
the CTS-ward data, GRNNs consistently outperform the other ANNs and
benchmark heuristic. The error ranges between 1.3 to 7.6 beds between
the different prediction methods. For the MC data, GRNNs yield the best
predictions for the 0.7 and 0.85 and higher quantiles, for which the bench-
mark prediction method performs somewhat better. For the IC-HC, MLPs
provide the best forecast for the 70% quantile, GRNNs perform best for
the 75% to 85% quantiles and RBNs perform best for the 90% and higher
quantile values although the difference between the different ANN predic-
tions is small with at most 0.45. A high deviation between prediction and
measured quantile is noticeable for the 95% quantile of 0.85 which amounts
to more than 20% of the resource allocation. This deviation, however, can
also be explained by the less accurate fit of the GM distribution with one
component. For the CTS-HC, the RBNs perform best for the quantiles of
0.85 and smaller and the GRNNs perform best for the larger quantile values.

Overall, MLPs result in the worst prediction performance among the
ANNs. This suggests that on the one hand this class of ANNs may not
able to approximate the fluctuations in resource occupancy in a stochastic
and dynamic problem setting as considered here. On the other hand, the
back-propagation learning algorithm may not be able to set the weights
and biases of this class of ANNs well enough to obtain good predictions.
RBNs yield the best predictions for the CTS-HC and comparatively good
predictions for the IC, the IC-HC and MC, but result in poor predictions
for the CTS-ward with an error of consistently of more than one bed. In the
case of unconstrained admission control the benchmark heuristic performs
well for small units due to the discreteness of the possible occupancy values,
but performs poorly for the units with more beds.

The overall prediction performance can potentially be improved by
ensembling different ANNs for different quantile values of interest to the
hospital management. Especially for the IC, MC, CTS-HC and IC-HC, a
naive ensemble that consists of the best ANN for the corresponding quantile
yields a maximal relative error of 7.8%, 16%, 1.8% and 15.9%2, respectively.
Compared to a minimal prediction error of 25% for a single case if the pre-
diction deviates from the actual measured occupancy quantile by one bed,
for the small units CTS-HC, IC-HC and MC, the standard ANNs consid-

2Leaving the 95% quantile out of consideration.



110 Chapter 3. Prediction of hospital resource usage

ered in this chapter show good potential for improved resource occupancy
prediction. Overall, the performance of the ANN predictions decrease for
decreasing unit size.

For constrained admission control, the GRNNs show the best prediction
performance among the ANNs with a very small standard deviation of per-
formance for all units considered. For the IC, the RBNs perform second
best followed by MLPs and the benchmark heuristic for all quantile values.
The different ANN models differ an error of about 2 beds. The same holds
for the CTS-ward data, with a considerable difference in the prediction per-
formance among the different methods: the ANNs differ at most about 4
beds, the benchmark produces forecasts that differ by about 9 beds from the
measured occupancy quantiles. For the MC data, the benchmark performs
slightly better than RBNs for the 70% quantile and outperforms MLPs for
quantile values of 85% and higher. For the IC-HC, the benchmark heuristic
performs second best for all quantile values. The difference in performance
of the different methods for MC and IC-HC data amounts to about 0.5 and
1 bed, respectively. For the CTS-HC data, the RBNs outperform the MLPs
consistently, however, the MLPs are for some quantile values inferior to the
benchmark predictions.

Since the GRNNs outperform the other prediction methods for all units
and quantile values an ensemble of ANNs does not improve the prediction
performance.

Relative to the resource allocation, the GRNNs result in a maximal rel-
ative deviation from actual occupancy quantiles of less than 20%, i.e. 2.4%,
5.4%, 13.5%, 19.9% and 18.7%2 for the CTS-ward, IC, MC, CTS-HC and
IC-HC, respectively. Again, the performance decreases with decreasing unit
size.

Visual inspection of the predicted quantile values for the different data
sets reveals a considerable variability in resource occupancy, especially for
the constrained admission control data with the different admission schemes.
In Figure 3.18 some example samples for the CTS-ward data and the cor-
responding measured and predicted 90%-quantile values are depicted. The
quantile values determined on the basis of the occupancy samples are de-
picted by the black solid line with a large range of fluctuation. The GRNN
predictions follow the measured quantile fairly closely with partly more ex-
cessive fluctuation than the predicted values. RBN predictions fluctuate
less and the MLP predictions remain almost constant with some upward
deflections. Due to the variability of the true ECDF the allocation-based
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benchmark heuristic renders predictions that consistently differ from the
exact occupancy by more than one bed.

0 5 10 15 20 25 30 35 40
25

30

35

40

Samples

Q
ua

nt
ile

 v
al

ue
s 

fo
r 

q 
=

 0
.9

 

 

GRNN allocation benchmark RBNECDF MLP

Figure 3.18: Example for predicted 90%-quantile values obtained from the different
ANNs and benchmark method for the CTS-ward data

Sensitivity analysis and generalization In a sensitivity analysis
we evaluate the performance of the ANN prediction approach for varying
resource allocation through (non-)linear scaling of the basis allocation with
a percentage of 20%. The linearly scaled allocations are obtained using (3.2)
and the non-linear scaling determined by reversely scaling the IC and CTS-
ward capacity by ±20% and ∓20%, respectively. In order to generalize the
prediction ANNs, the input features were extended to include the allocation
information, ru, u ∈ U , cf. Table 3.6. The numerical results are given in
Table A.5 and Table A.6 in appendix A.1.

In the unconstrained admission control setting, the overall performance
decreases compared to the results for the basic resource allocation. Two
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effects are to be seen: for the CTS-HC, IC-HC and MC, the prediction
performance remains comparable with moderate decrease for some quantile
predictions where the allocation is varied only by linear scaling. For IC and
CTS-ward, however, the loss in prediction performance is somewhat greater
for the smaller quantile values but remains comparable for the larger quantile
values (q ≥ 0.85).

Also under varying resource allocations, a naive ensemble of GRNNs
and RBNs can improve the prediction performance of the ANN-based ap-
proach. Specifically, an ensemble of GRNNs and RBNs for q = 0.7,≥ 0.85
and q = 0.75, 0.8, respectively, for the IC data results in a maximal devi-
ation of 0.8 beds and a relative error of 7,3%. Moreover, an ensemble of
benchmark heuristic (for q = 0.75, 0.8), RBNs (for q = 0.85) and GRNNs
(for q = 0.7 and q ≥ 0.9), provide for a slight increase in prediction perfor-
mance of about 2% for the MC. For the CTS-HC, an ensemble of RBNs (for
q ≤ 0.85) and GRNNs achieves a maximal prediction improvement of 13,5%.

For constrained admission control, varying the resource allocation also
decreases the prediction performance for the resource occupancy. In general,
the performance decrease is greater for the MLPs, RBNs and benchmark
heuristic than for GRNNs, which performed best among the ANNs for all
units. For the CTS-HC and IC-HC data, the prediction performance of
GRNNs remains comparable. The largest decrease in performance occurs
for GRNNs and the IC data with on average 42%, however the relative error
of GRNNs remains below 10% of the mean number of allocated resources.
The decrease of performance of the best predictor, the GRNNs, for the MC
and CTS-ward data is limited to about 6%, respectively.

In conclusion, the ANN predictions appear to provide robust and accu-
rate predictions for the occupancy quantiles for the (un-)constrained admis-
sion control settings, respectively, also under (non-)linearly scaled resource
allocations. Moreover, the predictions in the unconstrained admission con-
trol case can be further improved through naive ensembling of different
ANNs depending on the quantile values and unit data.

3.6 Conclusions

In this chapter we investigated two approaches for predicting future hospital
resource occupancy: forward simulation and supervised learning using arti-
ficial neural networks (ANNs). Since the resource occupancy at a hospital
unit behaves like a stochastic process, we model the daily resource usage
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as a probability distribution and base the forecasts on the current resource
occupancy and the planned patient admissions for one or more days in the
future. To the best of our knowledge, this is the first simulation-based pre-
diction approach for hospital resource-occupancy distributions. Due to the
complex and stochastic patient pathways and the actual patient flow being
the result of resource availability, the occupancy distribution is typically
unknown and we determine the distribution by maximum likelihood estima-
tion of the empirical distribution function. Furthermore, we showed that
the empirical distribution polynomially converges for an increasing number
of samples and determined the number of samples required for accurate and
precise resource-occupancy distribution predictions.

In order to reduce the computational effort associated with forward
simulation we evaluated whether ANNs could be used to approximate the
resource-usage distribution. We considered three regular neural network
models that were trained using sample data obtained from forward simu-
lation. Our numerical results showed the potential of the ANN prediction
approach for this setting. Given a minimal relative error of 25% if the
prediction deviates from the observed value by 1 bed for one instance, the
maximal relative error of at most 20% of the resource allocation obtained by
our approach is promising. The best performing ANN, the GRNNs, resulted
in a mean absolute prediction error of at most 1 bed. In a stochastic and
dynamic problem domain as the hospital setting considered in this thesis,
these results support the applicability of the approach and shows the poten-
tial for decision support. Furthermore, we have shown that the ANNs can
outperform a basic benchmark prediction heuristic. Moreover, the trained
prediction models provide good predictions under varying resource alloca-
tions, provided the allocation information is included as input feature. This
generalization not only demonstrated the robustness of the proposed predic-
tion methods, but also showed the feasibility of the prediction approach in
situations where the resource allocation varies over time. The performance
of the ANN distribution predictions could be further improved by naive en-
sembling of different ANNs depending on the quantile value and unit data.
Further research on ANNs is needed to extend the ANN-based prediction
approach to situations with greater fluctuations of resource allocation. This,
however, is beyond the scope of this thesis.

The extremely hard interdependencies of the underlying stochastic pro-
cesses, i.e. the stochastic patient pathways, admission and transfer processes,
require large networks with the ANN prediction approach studied in this
chapter. Consequently, considerable learning data and learning time is re-
quired which induces a trade-off between the ANNs’ usefulness and the com-
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putational efficiency of this approach. In the remainder of this thesis, we will
apply forward simulation to an effectual extent to enhance decision-making
in resource management discussed in the subsequent chapters of this thesis,
albeit at the cost of additional computation time.

Moreover, we extensively analyzed the resource-occupancy distributions
obtained from forward simulation. Based on our analysis we could con-
clude that the normality assumption sometimes assumed in the operations
research literature often does not hold statistically in the system under ex-
amination. However, the effect of the normality assumption on the hospital
operations will depend on the control variables under consideration.

Whereas in this thesis we use prediction information for patient ad-
mission control and hospital resource management management, predicted
resource-occupancy distributions could also provide valuable decision sup-
port for hospital management that is beyond the scope of this thesis. For
example, the predictions can indicate the risk of future resource shortage
based on which ambulance services or general practitioners could be alerted
to send patients to other hospitals for the critical period of time. Moreover,
hospital managers could prepare for potential peak capacity, e.g. by explor-
ing possibilities of additional staffing beforehand to be available if necessary.
The versatile application is also due to the flexible modeling approach taken
in this chapter which allows the calculation of manifold statistics to be used
for decision support.



Chapter 4

Multi-objective optimization

for hospital resource

management

Allocating resources to hospital units is a major managerial issue as the re-
lationship between resources, utilization and patient flow of different patient
groups is complex. Furthermore, the problem is dynamic as patient arrivals
and pathways are stochastic. In this chapter we present an approach for
simultaneously optimizing the allocation of multiple types of resources to
different hospital units taking multiple conflicting objectives into account.
Specifically, we apply a multi-objective evolutionary algorithm (MOEA) for
the optimization. We demonstrate the applicability of this approach to a
real-world problem setting and show that the optimized allocations effec-
tively improve resource allocations used in hospital practice. Parts of this
chapter have been published in [48].

4.1 Introduction

Hospital resource management is concerned with the efficient and effective
allocation of hospital resources, i.e. operating rooms and beds, when and
where they are needed. Matching the resource allocation to the demand for
care is a stochastic problem as resource usage at a hospital unit behaves
like a stochastic process. This is caused by emergency patients arriving
in urgent need for care, acute complications of admitted patients that re-
quire unexpected patients’ transfers and stochastic patients’ length of stays
(LoS). Furthermore, multiple patient pathways need to be considered when
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assigning resource capacity to a hospital care unit as pathways often share
resources, e.g. the Intensive Care unit (ICU). Thus, hospital resource man-
agement is a complex and highly dynamic problem.

Goals for the optimization of hospital resource management are amongst
others a high patient throughput, i.e. the number of patients discharged
from the hospital after treatment, low resource costs, infrequent and short-
time usage of back-up capacity and a small number of canceled surgeries.
We represent these performance measures in three objective functions that
have been shown to be conflicting, cf. Chapter 2, Section 2.4.3. In order
to allow hospital management to make an effective trade-off between these
different objectives we apply a multi-objective (MO) optimization approach
that considers the different objectives simultaneously.

As discussed in Chapter 2, an analytical evaluation of a resource allo-
cation is not feasible due to the stochastic patient pathways and the actual
patient flow being the result of resource availability. Furthermore, changing
the structure of the patient pathways or the underlying probability dis-
tributions is non-trivial in an analytical model. Therefore, the simulation
described in Chapter 2 is required to be used for the evaluation of a resource
allocation. Moreover, we need to consider each unit in the hospital model as
many patient pathways involve multiple units. Therefore, it is essential to
coordinate the resource allocations at the different stages in these processes
in order to prevent local mismatches between patient flow and available beds,
cf. Chapter 2, Section 2.4.3. Thus, the decision space comprises allocations
for each unit in a hospital. Generating optimal solutions in large, com-
plex search spaces is usually intractable. Thus, an efficient approximation
method, that is able to deal with multiple, competing objectives and large,
complex search spaces is required. Among the heuristic methods capable
of dealing with large search spaces, multi-objective evolutionary algorithms
(MOEAs) are promising candidates as their population-based search is ca-
pable of generating a set of solutions in one optimization run and they have
been shown to be very powerful for MO optimization [14, 20, 32].

Thus, hospital resource management is a complex and dynamic problem
that requires state-of-the-art techniques from MO research. Specifically, we
apply the SDR-AVS-MIDEA algorithm [15], a multi-objective estimation-
of-distribution (MOEDA) algorithm. In contrast to MOEAs that maintain
a population of candidate solutions and use blind variation operators such
as crossover and random mutation throughout the search, MOEDAs analyze
the population by estimating a probability distribution in the solution space.
To stimulate the search for a broad range of optimal solutions SDR-AVS-
MIDEA uses mixture distributions to cluster the objective space. Addition-
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ally the algorithm contains techniques to prevent premature convergence of
the EDA. The results obtained by our approach are threefold: (1) we show
that the concurrent optimization of multiple units’ allocations and objec-
tives effectively improves current resource allocation practice without large
investments in additional capacity or homogenization of the resulting patient
mix, (2) we demonstrate the applicability of SDR-AVS-MIDEA in combi-
nation with a large-scale simulation using a real-world problem instance
obtained from the CHE case study, cf. Section 2.3.5, and (3) we analyze the
SDR-AVS-MIDEA settings that provide for good results in reasonable time
for this MO problem.

The remainder of this chapter is organized as follows. First, we describe
related previous work in Section 4.2. Then, we provide a model for the
resource allocation problem in Section 4.3. Next, our approach is presented
in Section 4.4. We end this chapter with our conclusions.

4.2 Related work

Work on hospital resource management can be found in the operations re-
search and operations management literature. The work in [60, 99] provide
theoretical results for hospital bed utilization which is applied for determin-
ing efficient resource allocations. This model is not applicable to our problem
setting as decision policies and alternative patient routing is not considered
in the mathematical model. Moreover, our approach is more flexible and
can easily be adopted to other hospital settings. Multiple studies focus on
aggregated bed allocation policies, e.g. [40, 89, 97], or resource allocations
at single units, e.g. [55, 80]. Aggregated allocation policies are not suited for
decision support on resource management in our problem setting as we are
interested in allocations on a unit-level. In addition, our approach allows
for an in-depth analysis of resource allocations also on the level of different
hospital units. Furthermore, their work solely addresses the allocation of
hospital beds whereas we consider the concurrent optimization of different
types of hospital beds and concerted OR time slot allocation. Earlier work
on single unit allocation optimization problems has focussed specifically on
the ICU. Ridge et al. [80] present a simulation model based on a case study
that is used for the optimization of the ICU bed allocation and propose a
reservation policy for emergency patients. In Kim et al. [55] the issue of
pooling beds for different specialties at the ICU is addressed. Single unit
optimization approaches are not suited for decision support in this problem
setting for which it appeared that the optimization of single unit resource
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allocations influences multiple patient flows and may create mismatches be-
tween the demand for care and the available resources at other care units,
cf. Chapter 2. Therefore, the concurrent allocation of resources to multiple
pre- and postoperative care units and OR time slots need to be considered
to improve the overall performance. In VanBerkel [93] surgical patient flows
are simulated to evaluate different resource allocation decisions at the OR
and dedicated care facilities. While their simulation is applied for what-if
analysis of the different allocations, we present a optimization approach to
determine the resource allocation considering multiple conflicting objectives.
In [9], the MO optimization problem is addressed. The model, however, is
restricted to deterministic patient treatment processes which is not applica-
ble in our problem setting. In our approach, we consider multiple complex
stochastic treatment processes that can be flexibly adjusted to other set-
tings.

4.3 Model for hospital resource management

In this section we present the decision variables and define the perfor-
mance measures under consideration. Moreover, we briefly introduce multi-
objective optimization and a few important definitions.

4.3.1 Decision variables & model parameters

In this chapter we focus on the number of allocated resources, i.e. hospital
beds and OR time slots, as free decision variables in the simulation de-
scribed in Chapter 2. A free decision variable refers to a control variable
that impacts the performance of the simulation. Denote by r the vector
containing the resource allocations to the different hospital units u with
r = (ru, u ∈ U).

The following model parameters, i.e. the variables whose values char-
acterize the problem instance, are of importance for the hospital resource
allocation problem:

• the patient pathway parameters, described in Section 2.3.4 and the
involved care units u ∈ U ;

• the decision policies of the respective care unit agents concerning pa-
tient (re-)transfers, described in Section 2.3.3;

• the unit costs, cu, associated with a resource allocated at hospital unit
u ∈ U ;
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• the values of the lower and upper bounds, rmin
u , rmax

u , for the resource
capacity to be allocated to unit u ∈ U .

The unit costs, cu, are used to calculate the total costs of a resource allo-
cation r which is determined by equation (2.2) on page 53. The values of
rmin
u and rmax

u are typically imposed by the layout of a hospital unit, the
available equipment, staff and funds.

4.3.2 Performance evaluation

As shown in Section 2.4.3 a trade-off is needed between multiple conflict-
ing objectives to optimize resource allocation in hospitals, i.e. high patient
throughput at low resource costs and low back-up capacity usage. Because
the objectives behave like stochastic variables depending on the simulated
patient flow, the objectives are to be optimized under uncertainty. Due to
the model complexity which requires simulation for model evaluation, our
approach to solve the hospital resource management problem is to consider
different realizations of the simulation for the same model parameter setting
and determine the arithmetic mean of the simulation outcomes as perfor-
mance for that parameter setting. We denote the different mean outcomes
resulting from running the simulation applying resource allocation r by

G0(r): the mean total patient throughput under allocation r as defined in
Chapter 2,

G1(r): the mean total resource costs as defined in Chapter 2, equation (2.2),
and

G2(r): the mean total weighted back-up capacity usage under allocation
r where the weighting factors correspond to the cost factors cu, u ∈
U\{CTS −OR} given in Table 2.4 on page 54.

In the following section we formalize the multi-objective optimization prob-
lem for the hospital management problem and present few important multi-
objective definitions.

4.3.3 Multi-objective optimization problem

In general, it is difficult to express weights to combine the three objectives in
Section 4.3.2 in a single scalar objective function to be optimized. The bal-
ancing of the different objectives is potentially difficult due to different views
of the parties involved. For example, hospital managers would typically up-
rate the patient throughput and the resource costs, while hospital staff might
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emphasize the back-up capacity usage in their weighting. Given these differ-
ent views, we propose a multi-objective (MO) optimization approach where
the different objectives are optimized simultaneously. It is important to note
that MO problems distinguish themselves from single-objective problems in
that no single optimal solution exist but a set of alternative solutions that
cannot be ordered in terms of their objective function values.

For optimizing resource management, G0(r) has to be maximized, while
G1(r) and G2(r) have to be minimized. This is equivalent to minimizing
−G0(r), G1(r) and G2(r). An allocation at a unit u has to satisfy the
constraint imposed by the upper and lower allocation bounds, rmin

u and
rmax
u . This results in the following MO optimization problem:

minG(r) = (−G0(r), G1(r), G2(r)) (4.1)

subject to
∀u ∈ U ru ∈ N ∩ [rmin

u , rmax
u ]. (4.2)

In the following we will provide some relevant definitions for MO optimiza-
tion that will be used in the remainder of this chapter.

MO optimization definitions

In the context of MO optimization the following concepts are of relevance:

Pareto dominance A solution r (Pareto) dominates a solution r′ if
∀ objectives i : Gi(r) ≤ Gi(r

′) and ∃ objective i : Gi(r) < Gi(r
′),

where Gi(·) denotes the ith objective of G

Pareto optimal A Pareto optimal solution r is a solution that cannot be
improved in one objective without worsening at least one other objec-
tive, i.e. @ solution r′ that Pareto dominates r

Pareto optimal set The set PS of all Pareto optimal solutions, i.e. the set
of trade-off optimal solutions

Pareto optimal front The set PF of all objective function values corre-
sponding to the solutions in PS , i.e. PF = {G(r)|r ∈ PS}

In Figure 4.1 an example of a Pareto front is depicted where two ob-
jective functions, objective1 and objective2, are to be minimized. The fea-
sible solutions to the problem are represented by the circled points with
the solutions on the Pareto front being highlighted in dark grey. Points
A and B lie on the Pareto front as objective1(A) > objective1(B) and
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objective2(A) < objective2(B). Point C, on the other hand, is not on
the Pareto Front because it holds that objective1(x) < objective1(C) and
objective2(x) < objective2(C) for x = A and B.
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Figure 4.1: Example of a 2-dimensional Pareto front

4.4 Evolutionary multi-objective optimization

In this section, we will present our approach for solving the complex multi-
objective optimization problem of allocating resources to a network of care
units in a hospital setting. First, we will briefly introduce evolutionary al-
gorithms. Subsequently, we will outline our approach and finally describe
the specific algorithm used in this thesis. For a more in-depth introduc-
tion on evolutionary algorithms the reader is referred to e.g. Russell and
Norvig [82]. A thorough discussion on multi-objective optimization using
evolutionary algorithms can be found in Deb [25].

4.4.1 Brief description of evolutionary algorithms

Evolutionary algorithms (EAs) are a search technique that mimics the nat-
ural process of biological evolution. The basic idea is that there is a search
space that contains some solutions to be found by the EA. The EA starts
with distributing multiple solutions into the search space. A solution is also
called an individual and the set of solutions at a given moment in time is
called a population. The search is an iterative process that generates new
individuals from existing individuals of a given population, i.e. variation
operators like crossover and/or random mutation are applied to existing in-
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dividuals. Every new iteration of an EA is called a generation. Finally,
natural selection, i.e. survival of the fittest, determines which individuals of
the current population participate in the new population based on quality
such that the higher the quality of a solution the higher the chance to sur-
vive. Here, the quality of an individual in the population is evaluated by
a scalar valued fitness measure. This iterative process is also depicted in
Figure 4.2.

Figure 4.2: Flowchart of an evolutionary algorithm

In the multi-objective (MO) optimization problem considered in this
thesis, the EA is applied such that the search space is determined by the
parameter space of the optimization. The goal of the EA is then to find
the individuals with the best fitness which is determined by the objective
functions in the MO optimization problem. It has been found that using EAs
is a highly effective way of finding multiple solutions for MO optimization
problems due to their population-based approach [25].

4.4.2 Approach

In our optimization approach we apply an estimation-of-distribution al-
gorithm (EDA) which is a class of EAs. Specifically, we use an iterated
distribution-estimation evolutionary algorithm (IDEA) for the optimization
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of the complex multi-objective resource allocation problem. The main op-
erator of variation in IDEA is the estimation of a probability distribution
based on the selected solutions and the subsequent drawing of new solutions
from this distribution.

Similarly to EAs, the first population of candidate solutions in an EDA
is generated at random and a collection of solutions is selected with better
fitness. Then, new candidate solutions are generated by estimating a prob-
ability distribution from the selected solutions and by randomly drawing
samples from this distribution. The new population is evaluated based on
their fitness and the better individuals are kept. This process is iterated in
every generation until a predefined termination criterion is met:

1. select a collection of solutions

2. estimate a probability distribution from the selected solutions by learn-
ing the parameters of a predefined parameterized representation of the
probability distribution

3. generate a collection of new solutions by sampling from the estimated
probability distribution

4. replace some of the solutions in the current generation by the new
individuals

Using this variation operator, IDEAs aim to induce and exploit the structure
of an optimization problem. It has been shown that IDEAs are capable of
learning dependencies between problem variables and that they scale up ef-
ficiently for some problems where classic EAs do not scale up efficiently [11].

Specifically, we apply an IDEA for MO optimization that integrates an
Standard Deviation Ratio (SDR) trigger and Adaptive Variance Scaling
(AVS), called SDR-AVS-MIDEA, that was presented in [15]. The algorithm
was shown to be an efficient optimization technique for MO optimization
problems. A more detailed description of SDR-AVS-MIDEA is given in
Section 4.4.3.

The resource allocation vector, r, is optimized using SDR-AVS-MIDEA.
The fitness of r is obtained by applying the corresponding allocation in
multiple runs of the agent-based simulation described in Chapter 2, cf. Fig-
ure 2.1, and taking the mean of the outcome measures, cf. Section 4.3.2. A
graphical representation of this approach is also given in Figure 4.3.



124 Chapter 4. Multi-objective hospital resource management

Agent-based 
simulation

SDR-AVS-MIDEA

Performance 
of allocation r 

for fitness 
evaluation

Resource 
allocation r

Figure 4.3: Representation of optimization approach using the agent-based simulation
described in Chapter 2 and SDR-AVS-MIDEA

4.4.3 Description of SDR-AVS-MIDEA

The SDR-AVS-MIDEA algorithm is summarized in pseudocode in Algo-
rithm 2 [15], and will be described below.

Algorithm 2: Pseudo-code description of the SDR-AVS-MIDEA al-
gorithm

Initialize population of n (random) solutions1

Cluster objective space into k clusters of size nsubpop and assign solutions to2

subpopulation k using nearest-neighbor heuristic
repeat3

Select best bτnc solutions by diversity-preserving-selection4

Generate n− bτnc new solutions:5

estimate a normal distribution for each subpopulation; if SDR triggers
AVS, apply AVS scheme to scale corresponding covariance matrix and
draw samples from resulting distribution
Replace non-selected solutions with new solutions and assign solutions6

to nearest cluster
Compute SDR trigger & AVS scheme for obtained population7

until termination ;8

SDR-AVS-MIDEA is a multi-objective IDEA. Specifically, SDR-AVS-
MIDEA employs a Gaussian mixture distribution, cf. equation (3.7) on
page 103. The mixture distribution is built by clustering the objective space
of size into k clusters of size nsubpop and estimating a normal distribution
for each cluster. The solutions in cluster k are referred to as subpopulation
k. In order to stimulate the search for a broad Pareto-front the clusters are
kept separated in the objective space throughout the optimization as will be
explained below. New solutions per subpopulation are generated according
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to the IDEA principle by sampling from the estimated distribution.

The algorithm applies truncation selection, i.e. the best bτnc solutions
are selected to be preserved from one generation to the next. Here, τ de-
notes the percentile for truncation selection. In order to stimulate a broad
Pareto-front, diversity-preserving-selection is applied. The meaning is as fol-
lows. For each solution the domination count is determined, i.e. the number
solutions that dominate the respective solution. The lower the domination
count, the better the solution. If the number of solutions with a domination
count of 0 exceeds the bτnc solutions to be selected, all solutions with dom-
ination count equal to 0 are preselected. For the final selection, first a single
solution is selected with an extreme value in an arbitrary objective. Then,
solutions are added to the final selection by iteratively selecting the solution
with the largest distance to the nearest neighbor in the final selection.

To reduce the risk of premature convergence by vanishing variance of
the estimated distributions, adaptive variance scaling (AVS) is applied as
proposed in [16]. A brief outline of AVS is given below, for a detailed de-
scription the reader is referred to [16]. The rationale behind AVS is that the
smaller the variance, the smaller the area of exploration for the algorithm.
Specifically, SDR-AVS-MIDEA maintains a variance multiplier cAVS. Let
Σ denote the covariance matrix of the mixture distribution. Then, upon
sampling new solutions the distribution is scaled by cAVS, i.e. the covariance
matrix used for sampling from the underlying distribution is cAVSΣ instead
of Σ. This means that if the best fitness value improves in one generation,
then the current size of the variance allows for progress. Hence, a further
enlargement of the variance may allow for further improvement in the next
generation. Then, cAVS is scaled by ηINC > 1. If the best fitness does not
improve, the range of exploration may be too large to be effective and the
variance multiplier should be decreased by a factor ηDEC ∈ [0, 1].

In addition, standard-deviation ratio (SDR) triggers are used as proposed
in [16]. In SDR-AVS-MIDEA a threshold θSDR is used that triggers the
further enlargement of the variance multiplier if the best fitness in a cluster
is improved in the last iteration and the average improvement is found to
be more than θSDR standard deviations away from the distribution mean of
the corresponding cluster. For a detailed description of the SDR scheme the
interested reader is referred to [16].
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4.5 Experiments and settings

In this section we describe the experiments that were performed to evalu-
ate the proposed optimization approach. First, we determine the required
subpopulation size nsubpop and the required number of evaluations to ob-
tain high-quality results at reduced computational costs for the optimiza-
tion problem at hand. Then, we present the optimization results obtained
for the previously determined SDR-AVS-MIDEA settings and analyze the
optimized resource allocations and their implications on hospital practice.

4.5.1 Basic algorithmic setup

The settings of the parameters in SDR-AVS-MIDEA are based on the guide-
lines reported in [17] and the best results reported in [15]. The percentile
for truncation selection is set to τ = 0.3, the variance multiplier decreaser
of AVS, ηDEC, equals 0.9 and ηINC = 1/ηDEC. The SDR threshold is set
to θSDR = 1.0. As in [15], a so-called ”elitist archive” is maintained to re-
tain non-dominated solutions found during optimization. Using the ”elitist
archive” the objective space is discretized in each objective, here a dis-
cretization length of 10−3 is used. Then, an individual found during the
optimization is added to the set of non-dominated solutions, only if the cor-
responding cube in the objective space does not yet contain a solution. The
employed discretization length was found to provide sufficient granularity for
the final Pareto-front approximations [15]. Preliminary experiments showed
that k ≥ 4 clusters are required in order to obtain a broad Pareto-front. Due
to the time-consuming fitness evaluation using simulation, a maximum of
1600 generations is allowed for the optimization of different allocations. The
number of solutions per subpopulation, nsubpop, and the required number of
evaluations are determined in Section 4.5.3 taking the convergence of the
obtained results into account.

In the EDA representation, an individual corresponds to the parameters
of a resource allocation, r = (ru, u ∈ U), i.e. an individual specifies the
number of resource allocated to the different units u ∈ U . As explained
in Section 4.3.1 the resource allocation at unit u ∈ U is bounded by rmin

u

and rmax
u . The corresponding parameter values were obtained from domain

experts from the CHE. These values are given in Table 4.1.

Measuring performance

Convergence For measuring convergence performance we consider the
subset of all non-dominated solutions, called approximation set, that is con-
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CTS-
OR

CTS-
HC

CTS-
PACU

IC IC-
HC

MC CTS-
ward

rmin
u 0 0 0 5 2 2 20
rmax
u 6 6 6 20 6 10 50

Table 4.1: Resource bounds obtained from CHE case study

tained in the final population that results from running SDR-AVS-MIDEA
and denote this set by S. In running the EA we are interested in finding
a good and diverse approximation of the set of Pareto-optimal solutions,
PS . We assess the convergence performance of S using DPF→S(S) [15] as
performance indicator. This performance indicator computes the average
distance from over all points in the Pareto-optimal front PF to the nearest
point in a given a approximation set S, i.e. the Pareto front of outcomes
obtained from a single run of SDR-AVS-MIDEA, given by

DPF→S(S) =
1

|PS |

∑

r′∈PS

min
r∈S

{d(r, r′)}, (4.3)

where d(r, r′) denotes the Euclidean distance between the objective val-
ues G(r) and G(r′) of the solutions r and r′, respectively. The DPF→S(S)
indicator represents an intuitive trade-off between the diversity of the ap-
proximation set S and its proximity, i.e. the closeness to the optimal Pareto
front PF . A smaller value of DPF→S(S) is preferable. The minimum of 0 is
achieved if and only if the approximation set and the set of Pareto-optimal
solutions are identical.

Hospital resource management is a complex real-life optimization prob-
lem with a very large search space. Therefore, the set of globally Pareto-
optimal solutions, PS , is typically not known beforehand. For the specific
parameter setting used in this chapter, it was possible to calculate the global
Pareto front by brute-force optimization using the simulation to evaluate the
more than 7.6 · 106 possible resource allocations, determined on the basis of
the resource bounds given in Table 4.1. With an average simulation runtime
of 1.6 seconds using the simulation settings described in Section 4.5.2, the
runtime of the brute-force optimization amounts to about 141 days. The
calculation was only made possible due to the exceptional access to a high-
performance computing system with more than 500 quad-core nodes running
at speeds between 2.26 GHz and 2.5 GHz.

Thus, in general a brute-force approach is infeasible for the problem at
hand, especially in a hospital setting where no high-performance computer
cluster is available. This especially also holds for analyzing even more com-
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plex optimization approaches (as in Chapter 5) or for extended hospital
models. Therefore, we use a more generally applicable approach and ap-
proximate PS by 10 independent runs of SDR-AVS-MIDEA with a large
number of generations and a large population size. This approach is also
applied in Chapter 5 where the set of possible parameter values is uncount-
able which makes a brute-force optimization approach impossible. A similar
approach has also been proposed in [14]. Due to the time-consuming fitness
evaluation using simulation, we use a maximal number of generations equal
to 1600 and the subpopulation size determined by the guideline in [17], i.e.

nsubpop ≥ 10 ·#parameters0.7 + 10, (4.4)

which results in a subpopulation size of 50 for the optimization problem at
hand. In Section 4.5.4 we show that the proposed approximation approach
yields very good results of SDR-AVS-MIDEA at considerably more tractable
computational costs in this setting. Therefore, the DPF→S(S) values in
the remainder of this thesis will be computed with respect to the obtained
approximation of PS .

Benchmarking In addition to the convergence, we evaluate the perfor-
mance of the optimized allocations with respect to benchmark allocations
obtained from the CHE case study. Here, we consider the basic allocation,
given in Table 2.1 on page 45 and linear variations thereof, denoted by rCHE±i

with rCHE±i = (brCHE

u · (1± i) + 0.5c, u ∈ U) with i = 10%, 20%, 30%.

4.5.2 Setup agent-based simulation

To evaluate the quality of a resource allocation we run 10 simulation runs
of 16 weeks including 12 weeks of warming-up. Preliminary experiments
have indicated that warming-up of 12 weeks were necessary in order to
avoid early convergence of the optimization towards minimal allocations
due to the empty hospital in the start of a simulation run. The warming-
up period is not measured in the simulation outcomes. As we showed in
Chapter 2, Section 2.4.2, the simulation outcomes are almost linear in the
duration of a simulation run. Therefore, in favor of computationally feasible
MO optimization using SDR-AVS-MIDEA in combination with a large-scale
simulation a short duration of the simulation can be used and the obtained
results will perform strongly also for longer time periods. This setting results
in a runtime of about 1.6 seconds for the evaluation of a resource allocation.

During the optimization the simulation uses the same random seeds dur-
ing execution in order to allow for a fair comparison. In order to assess
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whether the solutions obtained from SDR-AVS-MIDEA possibly overfit the
resource allocation problem for the fixed seeds, we additionally validated the
optimized solutions by evaluating the allocations using 50 different random
seeds in the simulation.

4.5.3 Setting the subpopulation size and number of evalua-

tions

Using the subpopulation sizes determined by (4.4) with a maximum of 1600
generations results in a runtime of SDR-AVS-MIDEA of approximately 10
hours. Specifically, we used up to 40 nodes running at speeds between
1.4Ghz and 2.2Ghz. The largest part of this runtime is used for evaluating
the fitness of the solutions using the simulation. Although this order of
runtime is a substantial reduction compared to the brute-force optimization,
it is still infeasible if the proposed optimization approach is to be applied in
a hospital setting where typically no high-performance computer cluster is
available and the optimization has to be performed regularly on a single PC.
Therefore, we study the number of computational resources that is required
to obtain solutions that are reasonably close to the Pareto-optimal solutions
and show sufficient diversity after a reasonable runtime.

Determining the required subpopulation size

Using (4.4) the subpopulation size is determined as 50 which we varied for
our evaluation on the basis of the following considerations. Firstly, (4.4) was
determined based on single-objective optimization research and no guide-
line is available for multi-objective optimization. Moreover, it is unknown
whether a mixture distribution over a front in multi-objective optimization
can decrease the required subpopulation size since the diversity preserving
selection in SDR-AVS-MIDEA and the Pareto front consisting of multiple
clusters each containing multiple solutions counteract diversity loss [12].
Therefore, we varied the subpopulation size between 10, 30 and 50. These
values were chosen such that a broad spectrum of subpopulation sizes is
evaluated.

Using the DPF→S(S) performance indicator, convergence graphs can be
computed for the different subpopulation sizes. The average convergence
graph shows the value of theDPF→S(S) indicator as a function of the number
of generations. In Figure 4.4 such a convergence graph is shown for the
allocation problem at hand. For all subpopulation sizes a steep decline of
DPF→S can be noted in the first 100 generations, after this the decrease in
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DPF→S is reduced. Moreover, the subpopulation size determined by (4.4)
achieves a better and faster convergence compared to the smaller population
sizes.

The final value of DPF→S differs considerably with a value of about 5 and
7 for nsubpop = 30 and 10, respectively. For nsubpop = 10 a non-monotonic
decrease can be noted. Here, truncation selection with τ = 0.3 provides for
only three solutions to be selected in each cluster that are used to estimate
the normal distribution to sample new solutions from. This limited number
of solutions slows down the convergence of the solutions to the Pareto-front
in this setting.
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Figure 4.4: Convergence graph for varying subpopulation sizes

Based on these findings the question arises what impact the final DPF→S

values for the different subpopulation sizes have on the quality of the ob-
tained solutions with the order of obtained G0, G1 and G2 values being
(up to) several hundreds. To address this issue we analyzed the obtained
Pareto-fronts for the different population sizes. In Figure 4.5 the results for
the optimized resource allocations are presented for the different subpopu-
lation sizes. The Pareto-fronts are depicted with G1 and G0 values plotted
on the horizontal and vertical axes, respectively, for predefined intervals of
G2 values. In our convergence evaluations, the exact values for back-up
capacity usage are of minor importance and a categorization of minimal
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(corresponding to G2 ∈ [0, 25)), very small (G2 ∈ [25, 50)), small, medium,
etc. is therefore sufficient for the representation of the optimization results.
Moreover, this two-dimensional representation allows for improved visibil-
ity.In the analysis, we confined the results to G2 values below 200 as a higher
back-up capacity usage is not desirable for many hospitals.

The different subpopulation sizes show a noticeable visual difference be-
tween the obtained Pareto-fronts for nsubpop = 10, 30 and 50, especially for
G2 < 100. The difference for nsubpop = 30 and 50, however, seems small.
The optimization with a nsubpop = 50 appears be able to push the obtained
front somewhat further towards solutions with higher G1 value and G2 value
than the optimization with smaller population size. Moreover, it appeared
that a larger number of non-dominated solutions and their diversity along
the front is achieved for nsubpop = 50. Thus, nsubpop = 30 appears to suf-
ficiently push the population into regions with smaller G1 and G2 values.
For the overall Pareto front, however, the subpopulation size determined
by (4.4) appears to be preferable and provides a greater number of trade-off
points which is desirable for the decision maker. We observed that the set of
non-dominated solutions obtained for nsubpop = 50 contains about 60% more
points. Therefore, depending on the desired range and available number of
optimized solutions a smaller nsubpop value may be considered for the MO
optimization problem at hand.

Determining the required number of evaluations

Since the distance between the Pareto fronts obtained for different nsubpop

values appears relatively small and the convergence graphs show a slower
convergence after an increasing number of generations, also the question
arises whether decreasing the number of evaluations may result in compa-
rable fronts to be obtained at reduced computational costs.

To answer this question we can take two approaches:

1. determine the number of generations needed to obtain comparable
convergence performance, i.e. the DPF→S value for nsubpop = 50 and
30 equals the DPF→S value obtained for nsubpop = 10 value after 1600
generations,

2. determine the number of generations which have the same number of
evaluations for nsubpop = 30 and 50 as for nsubpop = 10 and 1600 gen-
erations, i.e. applying truncation selection, the number of evaluations
is determined by

# evaluations = k ·nsubpop+(1− τ) · k ·nsubpop ·# generations, (4.5)
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Figure 4.5: Pareto fronts for varying subpopulation sizes after 1600 generations with G1

and G0 values depicted on the x- and y-axes, respectively

and we then have to equate the equations for the different population
sizes and take the appropriate values of the number of generations for
nsubpop = 30 and 50.

Taking the first approach, the final performance of 7.02 for nsubpop = 10
is achieved for nsubpop = 30 and 50 after 80 and 35 generations, respec-
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tively. The corresponding Pareto-fronts are shown in Figure 4.6. Compared
to the results obtained after 1600 generations for nsubpop = 30 and 50, the
different Pareto-fronts are closer to each other and the range of the Pareto
fronts is decreased which constitutes a loss in performance. Thus, the con-
siderably reduced number of generations did not allow the algorithm to
push the Pareto-front to a comparable extent. Moreover, the number of
available points in the set of non-dominated solutions is considerably re-
duced (especially for G2 > 25). Based on the obtained Pareto front data,
we observed that the number of non-dominated solutions is decreased by a
factor of about 2 and 5 compared to the results obtained after 1600 gener-
ations for nsubpop = 30 and 50, respectively. Compared to the results ob-
tained for nsubpop = 10 after 1600 generations, we noticed that the fronts for
nsubpop = 30 and 50 contain only about half the number of points. Thus, we
can conclude that this approach results in a reduced number of generations
that is too small for obtaining comparably large and broad Pareto-fronts.

Following the second approach, the number of evaluations involved in
running SDR-AVS-MIDEA using k = 4 clusters, a selection percentile τ =
0.3 and nsubpop = 10 for 1600 generations amounts to 44840 which corre-
sponds to about 532 and 319 generations for nsubpop = 30 and 50, respec-
tively. The results obtained following the second approach are depicted in
Figure 4.7. The fronts obtained for nsubpop = 30 and 50 and reduced num-
ber of allowed generations exhibit comparable shapes and locations as for
the same subpopulation sizes after 1600 generations. Again, using a sub-
population size of nsubpop = 50 SDR-AVS-MIDEA appears be able to push
the obtained front somewhat further towards solutions with higher G1 value
and G2 value than the optimization with nsubpop = 30 and we can observe
noticeable differences to the front resulting from nsubpop = 10 and 1600
generations. Moreover, the number of available points in the sets of non-
dominated solutions appear to compare well for the different subpopulation
sizes. Compared to nsubpop = 10, we observed from the data sets that the
front obtained for nsubpop = 30 contains almost the same number of points,
for nsubpop = 50 the size of the set of Pareto-optimal solutions is increased
by about 24%. In comparison to the sets of non-dominated solutions ob-
tained for nsubpop = 30 and 50 after 1600 generations, a decrease of about
19% and 38% can be observed. Therefore, we can conclude that the number
of generations needed to obtain comparable optimization results can be re-
duced by a factor of 5 in this setting. This result enables the multi-objective
optimization to be performed on a single PC in about three days. Although
a shorter runtime would be preferable this runtime is still reasonable consid-
ering the fact that the optimization is solely to be rerun when considerable
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Figure 4.6: Pareto fronts after 1600, 80 and 35 generations for subpopulation sizes of
10, 30 and 50 with equal DPF→S value; the x- and y-axes depict G1 and G0 values,

changes in the underlying patient pathways have occurred.

Intermediate conclusions Due to the fast convergence of SDR-AVS-
MIDEA for the optimization problem at hand, a considerable reduction in
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Figure 4.7: Pareto fronts after 1600, 532 and 319 generations for subpopulation sizes
of 10, 30 and 50 with equal number of evaluations; the x- and y-axes depict G1 and G0

values, respectively

runtime can be achieved by reducing the number of allowed generations for
the bigger subpopulation sizes which result in similar Pareto fronts at the
expense of minor losses in the number of non-dominated solutions compared
to the initial setup of the MO optimization. The resulting runtime allows the
optimization to be performed in hospital practice within reasonable time. If
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the region of interest to the decision maker is restricted to smaller values of
G1 and G2, a further considerable reduction in runtime can be obtained by
decreasing the subpopulation size which also involves a further loss in the
size of the Pareto-optimal sets.

4.5.4 Optimization results

In order to provide a large range of the optimized allocations, the following
optimization results are obtained by 10 optimization runs of SDR-AVS-
MIDEA using nsubpop = 50 and a maximum of 532 generations. To cross-
validate our results, we also evaluated the obtained optimized allocations
using the simulation with 50 different random seeds. Also, we compare
our results to the global Pareto-optimal solutions obtained by brute-force
optimization.

Analysis of obtained Pareto fronts

The results in Figure 4.8 show that the benchmarks determined from cur-
rent hospital practice and variations thereof are dominated by the optimized
allocations obtained by our approach. The crossvalidation evaluations are
comparable the EDA results obtained for 10 fixed random seeds and also
dominate the benchmark allocations. Although the difference in perfor-
mance between the optimized and benchmark allocations appears rather
small in Figure 4.8, the reader should note that the results are based on
simulation runs of 4 weeks which means that a small difference achieved in
this period is increased considerably when considering the performance on
a yearly basis.

In order to provide an overall picture of the optimized resource alloca-
tions, a three-dimensional plot of the obtained performance is presented in
Figure 4.9. Since the crossvalidation results are comparable to the optimiza-
tion results obtained for 10 random seeds, solely the optimization results
obtained from the EA are shown. The depicted Pareto-front is concave for
G2 values up to 150, for larger G2 values the front curves into a convex
shape. We can see that most of the Pareto-optimal solutions have G2 values
of less than 50 or more than 150 with G1 values between 60 and 120. For
G2 values between 50 and 250 less solutions are found by SDR-AVS-MIDEA
which is to be attributed to the combinatorial nature of the optimization
problem. Also, the layers that can be observed for G2 values up to 50 can be
ascribed to the discreteness of the resource management problem. However,
solutions with a G2 value of 200 and higher may not be desirable for many
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Figure 4.8: Pareto fronts obtained from multiple optimization runs including crossvali-
dation results and benchmark allocations from CHE case study

hospitals.
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Comparison to brute-force optimization results In order to provide
an overall impression of the globally Pareto-optimal resource allocations,
a three-dimensional plot of the obtained performance obtained by brute-
force optimization is presented in Figure 4.10. We observe that the depicted
Pareto-front is comparable in shape to the Pareto-front obtained by SDR-
AVS-MIDEA being concave for G2 values up to 150 and curving into a
convex shape for larger G2 values. We can also see that the brute-force
optimization results in a larger number of available Pareto optimal solutions,
especially for G2 values between 100 and 250 and for extreme G0, G1 and
G2 values.

For a better comparison, the two-dimensional Pareto fronts obtained by
brute-force optimization and the proposed evolutionary MO optimization
using SDR-AVS-MIDEA are depicted in Figure 4.11. We can observe that
the Pareto front obtained by the evolutionary MO optimization approach
closely approximates the brute-force optimization Pareto front. Only for
G2 values larger than 100 a noticeable difference can be seen. For smaller
G2 values, our approximation yields good to very good results, especially
for G1 values up than 150. In accordance with the observation above, the
brute-force Pareto front runs further for very small or large G1 values. As
opposed to the 141 days needed to perform brute-force approach, the MO
optimization using SDR-AVS-MIDEA can be run in 3 days on a regular PC
which makes our approach practically feasible.

Intermediate conclusions We can conclude that the proposed MO op-
timization approach efficiently improves the benchmark allocations obtained
from current hospital practice. Moreover, the crossvalidation results show
the robustness of the obtained results. In comparison to the brute-force op-
timization results, the optimized allocations obtained by SDR-AVS-MIDEA
yield a very good performance, especially for resource costs below about 140
and smaller G2 values. Furthermore, the SDR-AVS-MIDEA results can be
obtained in a fraction of the time needed to perform the brute-force opti-
mization which makes the proposed MO approach practically feasible in a
real-life hospital setting.

Analysis of optimal allocations and resulting patient flows

Due to the large number of optimized solutions and corresponding param-
eter values, we analyze the obtained resource allocations and the resulting
patient flows using descriptive summary statistics. Figure 4.12 and Fig-
ure 4.13 show boxplots of the optimized allocation parameters and the re-
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Figure 4.11: Pareto fronts obtained from multiple optimization runs including crossval-
idation results and benchmark allocations from CHE case study

sulting throughput of the different patient groups, respectively. A boxplot
graphically depicts five summary statistics. In each box the central mark
corresponds to the median, the edges of the box depict the 25% and 75%
quantiles. The whiskers indicate extreme values in the sample not consid-



142 Chapter 4. Multi-objective hospital resource management

ered outliers1, if applicable the latter are plotted individually by a cross.
Figure 4.12 shows that the optimized allocations comprise the entire range
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Figure 4.12: Boxplots of optimized allocation parameters

of possible allocation values, cf. Table 4.1. The different parts of the boxes,
however, show the bulk of the allocation parameters ranges well within the
resource bounds. As summarized in Table 4.2, only a small proportion the

Allocation pa-
rameters

CTS-
OR

CTS-
HC

CTS-
PACU

IC IC-
HC

MC CTS-
ward

r∗u = rmin
u 2.44% 1.17% 1.49% 5.66% 1.91% 12.67% 2.4%

r∗u = rmax
u 6.12% 9.98% 25.51% 0.35% 9.91% 0.82% 1.95%

Table 4.2: Proportion (%) of optimal solutions r∗ that take a parameter value r∗u equal
to the allocation bounds rmin

u and rmax
u , u ∈ U

optimized solutions feature parameter values that equal the upper and lower
resource bounds, respectively. A concurrently minimal allocation at CTS-
OR, CTS-HC and CTS-PACU occurs in only 0.3% of the allocations. No
optimal allocation features an overall minimal allocation. The optimal allo-
cations trend towards larger CTS-PACU units which can be attributed to the
patients being relatively unsusceptible to complications requiring ICU care

1In a boxplot, points are considered as outliers if they lie outside 1.5 times the in-
terquartile range, defined as the difference between the 25% and 75% quantile.
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and that the CTS-PACU is dedicated to type II patients, cf. Section 2.3.5.

Moreover, the whiskers in Figure 4.12 indicate a right-skewed tendency of
the IC, MC and CTS-ward allocation parameters, which means that the op-
timal solutions typically feature ”small” allocations at these care units. The
distributions of CTS-HC and CTS-PACU parameters are rather left-skewed,
whereas the CTS-OR and IC-HC parameters appear to be symmetrically
distributed. Also, the small range of IC-HC allocation parameter values is
notable. These results indicate that considerable performance improvements
by changing and coordinating the resource allocations at the different units
can be achieved without large additional investments in expensive capacity,
especially at the ICU.
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Figure 4.13: Boxplots of patient throughput resulting from optimized resource alloca-
tions

Figure 4.13 depicts the patient throughput resulting from the optimized
resource allocations for the different patient groups. The current CHE re-
source allocation provides for on average 140, 40 and 70 CTS patients (type
I+II), type III and type IV patients, respectively, cf. Table 2.5. Compared
to this patient mix, the optimized solutions obtained by our approach still
feature heterogeneous patient mix as the type III and IV patient throughput
are positive and an omission of type I+II patient flow occurs in less than
1% of the allocations. In general, the resulting patient flows tend towards a
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slightly reduced patient flow of type I + II patients, an increased proportion
of type III patients and comparable type IV patient throughput. The bulk
of optimized solutions feature positive resource allocations at CTS-PACU
and CTS-HC provide for a heterogeneous throughput of type I+II patients
as these resource allocations play a decisive roll in the corresponding patient
admissions, cf. Section 2.4.

A patient throughput that is within 10% of the patient throughput for
type I+II, III and IV patients given the current CHE allocation is achieved
by 15.85%, 12.41% and 63.83% of the allocations, respectively. Moreover,
about 2% of the allocations feature an overall patient mix that differs no
more than 10% from the basic mix.

We can observe that similarly to the CHE case study, the proportion
of patient types in the achieved total patient throughput differs noticeably,
with the greatest throughput being achieved for type I+II patients. Also, a
large range in patient throughput, especially for type I+II patients, can be
noted which can be attributed to the stochastics of the corresponding pa-
tient pathways and the complex interactions between patient flows. Patient
pathways of type I and II are especially susceptible to the overall resource al-
location as they involve almost all units in the system among which multiple
units are shared among the different patient types. For type III patients the
stochastic arrival process affect the throughput, but also the large range of
the resource allocations plays an important role as the resource availability
is taken into account for admission decisions, cf. Section 2.3.

Intermediate conclusions We can conclude that the number of re-
sources allocated to the different units mostly do not need to be maxed out
in the optimal allocations. Rather the coordination of resource allocations
considered our approach at the different units provides for optimal perfor-
mance. Moreover, the proposed MO optimization approach provides for
a heterogeneous patient mix that differs somewhat from the patient mix
at the case study hospital which can be attributed to the dependency of
patient flows on the resource allocation in the system.

4.6 Conclusions

In this chapter we addressed the multi-objective optimization for hospital
resource management using evolutionary algorithms. In our model we con-
sidered the simultaneous allocation of multiple types of hospital beds and
OR time slots in a network of care units. Due to the complexity of the
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application domain, we used a state-of-the-art evolutionary MO technique,
SDR-AVS-MIDEA. The fitness of the solutions was determined using the
large-scale simulation described in Chapter 2. To the best of our knowledge
this is the first approach in hospital resource management that combines MO
optimization using an evolutionary algorithm with a realistic and validated
simulation model that considers multiple types of hospital resources. In our
experiments we analyzed the convergence behavior of SDR-AVS-MIDEA for
different population sizes and determined the minimally required runtime
which allows for the otherwise computationally too expensive optimization
to be performed on a single PC. Moreover, our results showed that the
benchmark allocations obtained from the CHE case study could be con-
siderably improved using the optimized allocations. This improvement is
possible through the concurrent optimization of resource allocations at the
multiple hospital units which provides for a match between demand for care
and available capacity on the care network level. Furthermore, the resource
allocations obtained by our approach feature a heterogeneous patient mix
and the majority of optimized solutions does not require large investments
for additional capacity.

Our results showed that the optimized resource allocations provide for
a heterogeneous patient mix. As the patient flows strongly depend on the
resource allocation, the different trade-off optimal solutions result in consid-
erably different patient mixes. For controlling the patient throughput, the
decision maker should therefore take this criterion into consideration when
choosing an optimized resource allocation to be implemented in practice.
Several optimized allocations found by the EDA both feature a patient mix
that is comparable to the CHE mix among and Pareto dominate the current
CHE allocation.

The proposed approach is very flexible as the model parameters can be
easily adjusted to different pathway and hospital settings. We demonstrated
that a complex and realistic simulation in combination with state-of-the-
art EDA can make an important contribution and achieve an improvement
for complex real-world MO problems as in hospital patient flow logistics.
Moreover, optimized allocation parameters can be obtained within feasible
computation time and the results yield very good approximations to the
globally Pareto optimal solutions.

In this chapter we tackle the multi-objective stochastic optimization
problem of hospital resource management by optimizing the mean value of
each of the three objective functions. This is a commonly applied approach
for decision-making under uncertainty. As the underlying probability dis-
tribution of the different objective functions is unknown a priori, we used
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a complex simulation to evaluate the performance of the different resource
allocations. In this problem setting numerous factors contribute to the un-
derlying distributions of the resulting outcome measures. This supports the
assumption that total patient throughput, resource costs and back-up ca-
pacity usage follow a normal distribution. Considering the mean value of the
underlying distributions in the optimization then provides for the resource
allocation decisions being optimized for the bulk of the cases.

The evolutionary multi-objective optimization approach presented in
this chapter can do well in a relatively stable environment. This condition,
however, may not generally hold in hospitals. Due to the stochastic patient
arrivals and pathways, as well as the disruptive nature of patient transfer
scheduling, cf. Chapter 1 and Chapter 2, the resource usage behaves like a
stochastic process, cf. Chapter 3. Therefore, the approach presented in this
chapter will be extended in Chapter 5 to enable the adaptive allocation of
resource to switch and track changes in the environment dynamically.



Chapter 5

Policy optimization for

adaptive hospital resource

management

In this chapter, we extend the evolutionary multi-objective optimization for
hospital resource management presented in Chapter 4 to facilitate adaptive
resource allocations. We propose a policy optimization approach where the
resource allocation is determined using policies, i.e. parameterized functions
that return an allocation decision given the current situation. The parame-
ters of the different allocation policies are optimized using a multi-objective
evolutionary algorithm (MOEA). Moreover, we present a way of performing
anticipation in online dynamic multiobjective optimization using allocation
policies to tackle the problem of time-dependence, i.e. decisions taken now
have consequences in the future. The policies designed in this chapter enable
the adaptive allocation of resources and the offline optimization of the policy
parameters. Moreover, the policies are designed to make the solutions un-
derstandable to hospital professionals which is important for implementing
the adaptive policies in practice. We demonstrate that these techniques can
be applied to a real-world problem setting and show that the results out-
perform the optimized resource allocations obtained in Chapter 4. The use
of anticipation in the allocation policies is found to lead to substantial im-
provements. A preliminary version of Chapter 4 and this chapter appeared
as [48]. A publication on the basis of the anticipation approach presented
in this chapter with contributions of Chapter 3 will appear as [49].



148Chapter 5. Policy optimization for adaptive hospital resource management

5.1 Introduction

In the previous chapter we presented an evolutionary multi-objective opti-
mization for hospital resource management. The allocations considered in
Chapter 4 allocate a fixed number of resources to the different hospital units
which is typically employed by hospitals and is also current practice at the
CHE case study hospital. Such a static allocation of resources is particularly
suitable for hospital environments that are relatively stable. This condition,
however, may not hold in clinic settings where the demand for care fluc-
tuates over time. Often, stochastic patient arrivals and pathways as well
as the highly disruptive scheduling of patient transfers cause the resource
usage to behave like a stochastic process as the analysis in Chapter 3 has
shown. Moreover, multiple stochastic patient pathways have to be taken
into consideration that often share resources. Thus, adjusting the resource
capacity to match the changing demand for care is a highly complex and
dynamic problem.

Due to the dynamics of the problem, the optimization typically needs
to be performed online, i.e. as time goes by. The difficulty involved in
practical online dynamic optimization is the inherent time-dependence. This
means that an allocation decision taken now has consequences on the future.
Solving this problem myopically, i.e. considering only the current situation,
can lead to inferior results over time. Consider, for example, the removal
of an ICU bed due to low utilization of the allocated beds. Removing an
ICU bed may cause a bottleneck at a postoperative care unit where patients
have to remain longer than planned which in turn may cause cancelations
of future surgeries. Moreover, multiple conflicting objectives need to be
taken into consideration at the same time, cf. Chapter 4. Thus, the multiple
objectives and the time-dependence are important to be taken into account
which further complicate the optimization.

For adaptive hospital resource management, we present an optimization
approach where the resource allocation is determined using policies, i.e. pa-
rameterized functions that return an allocation decision given the current
situation. The policies’ parameters are optimized using a multi-objective
(MO) evolutionary algorithm (MOEA). MOEAs have been shown to be very
powerful for MO optimization problems [14, 20, 32]. Moreover, MOEAs are
an efficient approximation technique for complex real-world problems where
the objectives are not clear mathematical functions, but rather a complex
simulation, as in the situation considered in this thesis. The advantage of
using policies to solve stochastic dynamic optimization problems is that only
one strategy has to be optimized that can be applied to a set of scenarios
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in the simulation. In cooperation with domain experts from the case study
hospital, cf. Section 1.3.1, we designed policies that enable adaptive resource
allocations that are implementable in hospital practice. Therefore, the poli-
cies can be easily understood by health care professionals which is important
for the understanding in practice and real-life implementation.

Thus, adaptive hospital resource management is a complex and dy-
namic problem that requires state-of-the-art techniques from dynamic MO
research. Specifically, we introduce a combination of policy optimization
and the evolutionary multi-objective approach presented in Chapter 4 using
the SDR-AVS-MIDEA algorithm [15]. We demonstrate the applicability of
the our policy optimization approach using the CHE simulation instance,
cf. Section 2.3.5, and show that the more dynamic resource allocations can
further improve the optimized resource allocations in Chapter 4. To better
tackle time-dependence, we also present an approach to anticipation in on-
line dynamic MO optimization using allocation policies. For this purpose
we apply the forward simulation prediction approach presented in Chapter 3
and show that better results can be obtained taking the future resource oc-
cupancy into account.

The remainder of this chapter is organized as follows. First, we briefly
discuss related previous work in Section 5.2. Then, we extend the model
for hospital resource management presented in Section 4.3 to adaptive re-
source allocations in Section 5.3. Next, the adaptive allocation policies are
presented in Section 5.4. The experiments are reported in Section 5.5. We
end this chapter with our conclusions.

5.2 Related work

Dynamic MO optimization has been addressed in few earlier studies in the
field of evolutionary algorithms, especially considering stochastic environ-
ments. Moreover, the current literature consists mostly of first definitions
and algorithms. The approach presented in [32] is developed for seldom ran-
dom changes of the environment and requires optimization from scratch if a
change in the environment is detected. However, this approach is not suit-
able to be applied in the problem setting considered in this thesis because
the stochastic and complex patient pathways provide for frequent changes
in resource occupancy and thus resource requirements. Our approach uses
policy optimization and therefore does not need to be re-optimized for each
situation. Moreover, it can handle also frequent changes of the environ-
ment because the strategies describe what to do in any situation. In [20]
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the performance of the Non-dominated Sorting Genetic Algorithm version 2
(NSGA2) is evaluated in a stochastic setting for artificial objective functions.
The changes of the objective functions, however, are unrelated to the choices
made for the problem variables. In our work, we use objective functions for
a real-world application where time-dependence is an important source of
dynamism and the previous approaches are therefore not applicable.

Currently, there is no literature on performing anticipation in the opti-
mization of multiple dynamically-changing objectives yet.

Related work on hospital resource management in the operations research
and operations management literature is equivalent to the earlier work
discussed in Chapter 4. However, none of the approaches presented in the
literature has yet considered adaptive resource allocations which is the focus
of this chapter.

5.3 Model

As argued above, the adaptive hospital resource management problem is a
dynamic multi-objective optimization problem. In this section, we describe
the key concepts of dynamic multi-objective optimization and the policy op-
timization approach taken in this chapter. For an outline of multi-objective
optimization and the relevant key-concepts the reader is referred to Sec-
tion 4.3.3.

5.3.1 Dynamic multi-objective optimization

As described in the domain and patient flow model in Chapter 1, Sec-
tion 1.1.3, we consider discrete equidistant decision moments denoted by
ti ∈ T with ti−1 < ti for i = 1, . . . , n − 1. Typically, ti would be in steps of
days for adaptive resource management. Furthermore, we denote the pre-
diction horizon of future resource usage by h ∈ N0 with 0 ≤ h ≤ n − 1,
cf. Chapter 3.

Similarly to Chapter 4, we consider the number of allocated resources
as free decision variables in the optimization problem at hand. Let r(ti) =
(ru(ti), u ∈ U) denote the number of resource allocated to unit u at time
ti ∈ T .

Similarly to the model for fixed resource management presented in Sec-
tion 4.3, the dynamic optimization of the resource allocation during period
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T can be formalized mathematically as

min
r(tk)

{∫ tn−1

t0
Gtk(r(tk)) dtk

}
(5.1)

subject to

∀u ∈ U ∀ti ∈ T : ru(ti) ∈ N ∩ [rmin
u , rmax

u ], (5.2)

where the function Gtk is multi-objective,

Gtk(r(tk)) = (−G0,tk(r(tk)), G1,tk (r(tk)), G2,tk (r(tk))).

G0,tk , G1,tk and G2,tk refer to the mean total patient throughput, resource
costs and back-up capacity usage up to time tk that result from simulating
r(tk), k = 0, . . . , n − 1 in the agent-based simulation, cf. Chapter 2 and
Section 4.3.2. The integral in (5.1) represents the optimization over time.
Here, we take the integral of a multi-objective function to be the multi-
objective function of the integrals, i.e. (5.1) is defined as

min
r(tk)

{∫ tn−1

t0
−G0(r(tk)) dtk,

∫ tn−1

t0
G1(r(tk)) dtk,

∫ tn−1

t0
G2(r(tk)) dtk

}
. (5.3)

Solving this problem online means that at any point in time ti, the ob-
jectives Gj,ti cannot be evaluated for any tk beyond the current time ti,
i.e. tk > ti. Myopically minimizing (5.3) amounts to solving the following
multi-objective problem repeatedly for ti ∈ T

min
r(ti)

{−G0,ti(r(ti)) , G1,ti(r(ti)) , G2,ti(r(ti))} . (5.4)

Following this myopic approach two important problems arise. First, in a
real-world setting, the variables to optimize are decision variables. This
means that at any point in time only one solutions, i.e. one point on the
corresponding Pareto front corresponding to a resource allocation, can be
selected as the decision to be taken. How to select solutions over time is still
an open issue in dynamic multi-objective optimization.

Second, decisions may have future consequences. This means that a
value of the optimal solution at time tk may depend on previous decisions
r(tj), tj < tk. If only the current situation is taken into account, the decision
that leads to a Pareto optimal solution for the current time period is optimal.
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Considering the entire time span T , however, an optimal solution may be
suboptimal from a myopic point of view.

To tackle these problems we present a policy optimization approach in
combination with a MOEA as advocated in [13] which will be explained
below.

5.3.2 Policy optimization approach

Policies are parameterized functions that return a decision for any given sit-
uation, denoted here by s. Specifically, we use allocation policies, π(ti, s) =
(πu(ti, s), u ∈ U), that determine the number of resources, ru(ti), allocated
to hospital unit u ∈ U at time ti ∈ T given the current situation situation s
such that

ru(ti) = πu(ti, s) ∀u ∈ U, ∀ti ∈ T. (5.5)

The focus of the optimization is on finding the best combination of policy pa-
rameters within a fixed policy equation structure to minimize the objective
functions described in Section 5.3.1.

Adaptive policies

The simulation is the run with the policy and whenever an allocation decision
is required, the policy is evaluated that returns the decision to be taken.
The policy defined above is adaptive as the outcome depends on the current
situation s and thus automatically adapts to s. For example, for a hospital
care unit with currently ru(ti) allocated beds, an adaptive allocation policy
can state that if the utilization is below a value utilmin , a bed should be
removed from the unit to reduce the resource costs. This allocation policy
thus adapts to the current utilization during simulation.

Offline optimization of online allocation decisions

The proposed adaptive policy optimization approach allows the resources
(i.e. decision variables) to switch and track changes in the environment
(i.e. the optimization problem) dynamically. The advantage of this approach
for solving stochastic dynamic optimization problems is that only one policy
has to be optimized that can be applied to multiple simulation scenarios or
runs instead of determining an optimal allocation decision at every decision
moment ti ∈ T . Also, our approach does not require further optimization
during the simulation run. Therefore, the policy optimization approach al-
lows us to perform the multi-objective optimization in an offline fashion
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using the agent-based simulation described in Chapter 2, cf. Figure 2.1.
Thus, MO techniques can be applied in a straightforward fashion to solve
this dynamic problem which yields an additional advantage. Moreover, if
the policies are designed properly, the policies can be easily understood by
domain experts which is important for the final implementation in practice.

Anticipation in policy optimization

As we argued above, resource allocation decisions taken now may have future
consequences. This means that an optimal allocation decision now may
depend on the previous decisions ru(tk), tj < tk. In order to take the future
into account, prediction information needs to be considered in the decision
making. Here, prediction information can be a statistical model that is
learned from past observations, cf. Section 3.5 or simulation if available. In
this chapter, we will use the latter prediction approach due to its higher
accuracy and apply forward simulation as discussed in Section 3.4.

In order to obtain anticipation in offline policy optimization, the policies
need to be designed to be anticipatory. This means that inside the policy,
the time interval [ti, ti+h] needs to be taken into account. Our approach is to
consider prediction information over [ti, ti+h] in the policy which provides
for the returned allocation decision to be determined on the basis of the
values predicted in this time interval. An adaptive policy that incorporates
prediction information is in the remainder referred to as anticipatory policy.

Consider the allocation policy example outlined above. Prediction in-
formation may indicate that within [ti, ti+h] multiple patient transfers from
other care units are to be expected which provide for a high resource occu-
pancy and thus utilization. Using this prediction information in the policy
then provides to refrain from the capacity reduction as would otherwise be
done due to the current low utilization.

When evaluating an anticipatory policy at the current time ti, forward
simulation is used to predict the resource occupancy during the time inter-
val [ti, ti+h]. During [ti, ti+h] an adaptive policy needs to be used to make
allocation decisions. Using an anticipatory policy involves a possibly indefi-
nite recursive calling between forward simulation and the policy, depending
on the prediction horizon h. If h is large, then a sufficiently good approx-
imation of the future could be achieved through applying the anticipatory
policy during [ti, ti+h′ ] with ti+h′ < ti+h and a policy that does not incorpo-
rate prediction information during [ti+h′ , ti+h] provided that the influence
of time-dependence is not too strong.
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5.4 Adaptive policies for hospital resource man-

agement

The adaptive policies described below were developed in cooperation with
domain experts from the CHE case study hospital, cf. Chapter 1, Sec-
tion 1.3.1. Therefore, the policies can be easily understood by health care
professionals making the practical implementation of the optimized solutions
much easier.

In the following, the adaptive allocation policies studied in this chapter
are presented. Moreover, a mechanism for exchanging resources among hos-
pital care units is described that enables the implementation of an adaptive
resource allocation in practice.

5.4.1 Adaptive state-dependent allocation policies

As argued above, we propose adaptive allocation policies that return an
allocation decision for the units in the network, given the problem variables
or state. For determining the state we consider two cases:

non-anticipatory policy: the state is determined by the current occu-
pancy information available at the decision moment,

anticipatory policy: the state incorporates information on the predicted
resource usage during [ti, ti+h] given the current resource occupancy.

Below, the state representation, the policy and its usage for dynamic
resource allocation are described.

State description

The state description of the two cases outlined above are given below.

Current resource occupancy information In this situation, the state
at unit u, snow

u (ti), is based on the occupancy information available at de-
cision moment ti and is determined by the resource utilization rate at u,
i.e. the ratio between the occupied capacity1 at the start of day ti and the

1Note that due to the possible usage of back-up capacity the (predicted) occupied
capacity may exceed the allocated resources, thus the (predicted) utilization rate may be
greater than 1 for some units u ∈ U .
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resource capacity, ru(t
−
i ), just before the adjustment at ti, denoted by t−i .

Formally, we have snow

u : T ′ → R+
0 , u ∈ U, with

snow

u (ti) =
#occupied resources at unit u at start of day ti

ru(t
−
i )

. (5.6)

For some postoperative care units, the state at the start of day ti defined
by (5.6) may not be representative for the resource occupancy during the
remainder of day ti. Consider for example the CHE case study. At the
CTS-PACU, the beds are available only for a couple of hours during the day
and are opened just before the first surgeries are expected to be completed,
cf. Section 2.3.5, Table 2.1 on page 45. At the CTS-HC not all beds may
be occupied, e.g. if a type I surgery has been canceled on day ti−1 due
to a type IV admission but the type IV patient has been transferred to
another unit prior to t−i . However, according to the OR scheme all beds
will be occupied during day ti. Instead of determining the state by (5.6), we
propose to use a flow-based heuristic to determine the state for these units.
The heuristic determines the utilized capacity for day ti as the number of
occupied resources at time t−i minus the expected patient outflow plus the
expected inflow (determined by the OR scheme) for day ti divided by the
current resource allocation. In the CHE case study, the utilized capacity
for the CTS-PACU can be further simplified such that the utilization is
determined by the fraction of the OR scheme for type II patients and the
current resource allocation.

Predicted resource occupancy information The state at unit u deter-
mined using prediction over the time period [ti, ti+h], s

now+h
u (ti) with h ∈ N0,

is determined by the predicted mean resource utilization rate1 at u during
the period [ti, ti+h], i.e. the ratio between the mean predicted number of
occupied resources averaged over the period [ti, ti+h] and the resource ca-
pacity, ru(t

−
i ), just before the adjustment at ti. The average predicted num-

ber of occupied resources is determined by the predicted density function,
f̂u
tk;a[ti,ti+h]

derived from the predicted empirical cumulative probability dis-

tribution function F̂ u
tk ;a[ti,ti+h]

, k = i, . . . , i+h, cf. Section 3.3. Then, snow+h
u

is determined by

snow+h
u (ti) =

1
h+1

∑i+h
k=i

∫∞
0 yf̂u

tk;a[ti,ti+h]
(y)dy

ru(t
−
i )

(5.7)

Due to the temporary resource availability at the CTS-PACU, the cor-
responding resource occupancy distribution is a two-heaped distribution.
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Thus, the mean is not representative for the resource usage during the period
[ti, ti+h]. Therefore, the predicted state for the CTS-PACU is determined
by the flow-based heuristic described in the previous paragraph.

State-dependent allocation policy

The proposed state-dependent policy for the resource allocation problem
at hand is designed for the state being determined both by the current as
well as the predicted occupancy information. In the latter case, we refer to
the state-dependent policy as anticipatory policy. Below, the generic state
information used at time ti for unit u is therefore denoted by · in s.u(ti),
ti ∈ T, u ∈ U .

A state-dependent allocation policy, denoted by (πu(ti, s
.
u), ti ∈ T, u ∈

U), is determined by five parameters: a base resource allocation, rbaseu , two
adjustments, rdecru and rincru , and two utilization thresholds, UT decr

u ,UT incr
u

with UT decr
u ≤ UT incr

u . We use an iterative step-function π : T ×R+
0 → N|U |

given as

πu(ti, s
.
u) =





max{rmin
u , ru(t

−
i )− rdecru } , if s.u(ti) < UT decr

u

ru(t
−
i ) , if s.u(ti) ∈ [UT decr

u ,UT incr
u ]

min{rmax
u , ru(t

−
i ) + rincru } , otherwise

(5.8)
for t1, . . . , tn−1 and

πu(t0, s
.
u) = rbaseu , (5.9)

with πu(ti, s
.
u) ∈ [rmin

u , rmax
u ] ∀ti ∈ T, u ∈ U . In (5.8) the current resources

allocation, ru(t
−
i ), is decreased by rdecru if the resource utilization rate is

below the threshold UT decr
u . If the utilization rate is above UT incr

u , ru(t
−
i )

is increased by rincru . Otherwise, the current allocation remains unchanged.
Note that the policy specifies the allocation at the different units indepen-
dently.

For the policy-based allocation approach proposed in this chapter, the
constraint of the optimization problem specified by (5.2) can thus be re-
placed by

∀u ∈ U : rbaseu ∈ N ∩ [rmin
u , rmax

u ], (5.10)

∀u ∈ U ∀ti ∈ T ′ : s.u(ti) ∈ R+
0 , (5.11)

∀u ∈ U : rdecru , rincru ∈ [0, 5] (5.12)

∀u ∈ U : UT decr
u ∈ [0, 1], UT incr

u ∈ [UT decr
u ,UT decr

u + 1]. (5.13)
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As large adjustments are not desirable for hospital management, a max-
imal adjustment of 5 beds was chosen. Based on preliminary runs, an upper
bound of 2 for UT incr

u appeared to be more than sufficient.

5.4.2 Bed exchange mechanism

In the adaptive allocation policy described in Section 5.4.1, a large supply
and stock of beds is assumed which enables the concurrent in- and decrease in
resource capacity at the different units. In reality, however, bed availability
is restricted by the available staff, in particular the number of personnel
needed per bed at a specific unit. Staff schedules need to be fixed at least
several weeks in advance. The use of stand-by personnel is not common
in the hospital domain. Therefore, a direct implementation of the policy
described in Section 5.4.1 is often not practically feasible. To enable adaptive
resource allocation in hospitals, we propose an exchange mechanism that is
based on fixed personnel resources. The resources are exchanged among the
hospital units to meet the current local need at the different units.

Here, πu(ti, s
·
u) denotes the number of resources required by unit u at

time ti, determined by (5.8) based on the state s·u(ti). The fixed personnel
resources are determined by (5.9), i.e. the base allocation rbaseu , u ∈ U . The
resource allocation at time ti, ru(t), is set by the mechanism below and not
by (5.8).

For exchanging beds we distinguish different care levels based on the in-
tensity of care and monitoring provided at a hospital care unit, cf. Chapter 1,
Section 1.1.1. Here, the classification of hospital units into L care levels is
focussed on the staffing requirements of the resources and the mandatory
level of training of the personnel such that the corresponding staffed re-
sources are comparable and interchangeable within a care level. Therefore,
the care level of a unit is also linked to the unit costs of the resources,
i.e. a high care level of a care unit corresponds to high unit resources costs.
We denote the set of hospital care units classified with care level l by Ul

with l = 1, . . . , L where the staffing requirements and training level of the
personnel decreases for increasing value of l.

From the application domain four rules arise for feasible bed exchanges:

R1 Due to staff training and physical requirements (e.g. access availability
to the isolated electric power system in the hospital), beds can only
be exchanged within the same or between adjacent care levels.

R2 Due to the staff assigned to a bed, shifting one bed from level l to level
l + 1 yields ρl beds at l + 1 for l = 1, . . . , L− 1.
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R3 Due to the personnel required to operate a bed, only a multiple of ρl−1

beds can be shifted from level l to level l − 1 for l = 2, . . . , L (i.e. the
reverse of R2).

R4 In order to prevent upgrading of resources to a higher care level, an
upper bound is imposed on the number of resources that can be shifted
from level l to level l − 1 which is implied by the initial allocation
rbaseu , u ∈ U . The bounds are given by

∑

u∈U1

(rbaseu − ru(t
−
i )) (5.14)

and
∑

u∈Ul

(rbaseu − ru(t
−
i )) + ρl−1 ·

∑

u∈Ul−1

(rbaseu − ru(t
−
i )) (5.15)

for level 1 and l = 2, . . . , L, respectively. Applying this rule implies
that the possible resource exchanges are limited by the initial resource
allocation taking the current allocation into account. For levels l > 1
also the adjacent higher care level is taken into account as higher level
beds may be allocated at the lower care level according to rule R2.

Thus, rules R1 and R4 determine the general conditions for adjusting the
resource allocation while rules R2 and R3 regulate the ’exchange rate’ for
shifting beds between different care levels.

A high-level outline of the mechanism is provided in Algorithm 3. The
input of the bed exchange mechanism comprises the different units and their
care levels, the resource need at the different units given by (5.8). Based on
the required number of resources, determined by (5.8), the number of excess
resources, El, in care level l at time ti is determined by

El =
∑

u∈Ul

max{0, ru(t
−
i )− πu(ti, s

·
u)}, l = 1, . . . , L. (5.16)

Similarly and taking rule R4 into account, the required number of resources
at level l is given by

R1 = min{(5.14),
∑

u∈U1

max{0, πu(ti, s
·
u)− ru(t

−
i )}}, (5.17)

and

Rl = min{(5.15),
∑

u∈Ul

max{0, πu(ti, s
·
u)− ru(t

−
i )}}, l = 2, . . . , L. (5.18)
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Algorithm 3: Pseudo-code description of the bed exchange mecha-
nism
Input: Sets of hospital units, Ul, of level l = 1, . . . , L

πu(ti, su)∀u ∈
⋃

l Ul, given by (5.8)
El, l = 1, . . . , L, determined by (5.16)
Rl, l = 1, . . . , L, determined by (5.17) and (5.18)

Result: ru(ti)∀u ∈ U

foreach care level l = 1, . . . , L do1

if El > 0 and Rl > 0 then2

Shift min{|El|, |Rl|} beds to unit(s) of level l and decrease El and Rl3

accordingly;
if El > 0 and Rl+1 > 0 then4

Shift min{|El|, b|Rl+1|/ρlc} beds to unit(s) of level l+ 1 and5

decrease El and Rl+1 accordingly (applying rule R1 + R2);
if Rl > 0 and El+1 > 0 then6

Shift min{|Rl|, b|El+1|/ρlc} beds to unit(s) of level l and decrease Rl7

and El+1 accordingly (applying rule R1 + R3);
foreach unit u ∈

⋃
Ul that was not yet considered do8

Allocate ru(t
−

i ) resources;9

If the accumulated resource requirement exceeds the bounds given by (5.14)
and (5.15), the corresponding number of required resources are decreased
proportionately to πu(ti, s

·
u).

According to the mechanism described in Algorithm 3 the different care
levels are iteratively considered in ascending order. First, beds are shifted
within level l. Then, level l + 1 resources are shifted to level l if necessary.
Subsequently, resources are exchanged between level l + 1 and l. All ex-
changes are performed only if additional resources are required by a care
unit of the considered care level, i.e. if πu(ti, s

·
u) > ru(t

−
i ), u ∈ Ul and

l = 1, . . . , L. The care units are considered in ascending order of their care
level l due to the decreasing resource costs. In general, the resource costs
contribute at least partially to the fact that fewer resources with high as-
sociated costs are available in a hospital than resources with low resource
costs. This is also the reason why back-up capacity for low cost resources
is more readily available than for expensive hospital resources. Therefore,
it is desirable for hospital management that units with a low value of l are
considered first to exchange resources. Care units within a care level are
selected in a random order for resource exchange in order to provide equal
chances to the different units to adjust their capacity.

The actual shifting of resources is performed as follows. Two care units
u and v with πu(ti, s

·
u) > ru(t

−
i ) and πv(ti, s

·
v) < rv(t

−
i ) are selected ran-
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domly in the corresponding care level(s). If the number of resources u is
willing to shift exceeds the number of resource required by v, then only the
number of resources required by v is shifted and the remaining resources of
u are considered for resource exchange with another unit. Depending on the
specific rules and settings of the hospital where the exchange mechanism is
to be applied, resources from a higher level may be split between units or
combined from multiple units of the lower care level if rules R2 or R3 apply.

Through the mechanism, the implementation of (5.8) is extended with
the above adjustments at time ti ∈ T , depending on the interaction with
other units. This complex interaction mechanism answers to reality, how-
ever, it further complicates the optimization of resource management.
Therefore, a state-of-the-art technique is needed for this optimization.

5.5 Experiments and settings

In this section we describe the settings and the experiments that were per-
formed to evaluate the proposed policy optimization approach. First, we
provide the basic setup of SDR-AVS-MIDEA and the agent-based simula-
tion, cf. Chapter 2. Then, we determine the required subpopulation size
and the number of evaluations to obtain high-quality optimization results
at reduced computational costs for the policy optimization problem where
current resource occupancy information is used. Then, we present the opti-
mization results obtained for the non-anticipatory approach and analyze the
optimized allocation policy parameters and the implications of their usage
for hospital practice. Finally, we will analyze the results obtained for the
anticipatory resource allocation policies, the optimized parameters and their
resulting patient throughput.

5.5.1 Basic algorithmic setup

The MOEA we use is the SDR-AVS-MIDEA [15]. The algorithm was shown
to be an efficient optimization technique for MO optimization problems.
A detailed description of SDR-AVS-MIDEA is given in Section 4.4.3. The
settings of the variation, selection, replacement parameters, the number of
clusters, the maximally allowed number of generations and the discretization
length used in the elitist archive in SDR-AVS-MIDEA used in this chapter
are consistent with the settings presented in Section 4.5.1 and will therefore
be omitted here.

Since the set of globally Pareto-optimal solutions, PS , for the adaptive
resource management problem is unknown a priori and a brute force opti-
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mization approach is infeasible due to the uncountable set of policy param-
eters, we have to approximate PS . Similarly to Section 4.5, we approximate
PS by 10 independent runs of SDR-AVS-MIDEA with a large number of
generations and a large population size, which is determined by (4.4) on
page 128. Specifically, the maximal number of generations is set to 1600
and (4.4) results in a the subpopulation size of 130 given the 35 parameters
to be optimized for the adaptive policies. Using PS , we use the convergence
measure, DPF→S , as defined in equation (4.3) on page127, to determine the
minimally required subpopulation size, nsubpop, and number of evaluations
in Section 5.5.3 and consider the corresponding Pareto fronts.

In the EDA representation, the individuals correspond to allocation pol-
icy parameters which are summarized in Table 5.1. Specifically, the genotype
contains a parameter Tu ∈ [0, 1] for u ∈ U that is used to determine UT incr

u

by UT incr
u = UT decr

u + Tu. This parametrization results to 35 real-valued
parameters to be optimized using SDR-AVS-MIDEA for the different pol-
icy types. The bounds, rmin

u and rmax
u , for the resource allocations were

obtained from domain experts from CHE and are given in Table 4.1 on
page 127.

Parameters Description Bounds

rbaseu The base allocation at unit u ∈ U [rmin
u , rmax

u ]
rdecru The decremental adjustment at u ∈ U [0, 5]
rincru The incremental adjustment at u ∈ U [0, 5]

UT decr
u The utilization threshold under which the

current allocation is decreased by rdecru

[0, 1]

UT incr
u The utilization threshold above which the

current allocation is increased by rincru

[0, 2]

Table 5.1: Summary of the adaptive resource allocation policy parameters for care units
u ∈ U

5.5.2 Setup agent-based simulation

To evaluate the fitness of an adaptive policy, we run 10 simulation runs of
4 weeks after 12 weeks of warming-up. This setting results in a runtime
of about 1.9 and 2.1 seconds per evaluation for the state-dependent poli-
cies and the exchange mechanism, respectively. For predicting the future
resource occupancy we used 300 forward simulation scenarios as determined
in Section 3.4.3 which results in a runtime of about 40 seconds per evalu-
ation. In the simulation, the adaptive policies are applied at the start of
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every adjustment period, which here is every day. Moveover, adjustments
are performed only after the initial warming-up period. Based on prelimi-
nary results warming-up was found to be necessary in order to avoid early
convergence to minimal allocations due to the empty hospital in the start
of a simulation run.

For the evaluation of the exchange mechanism presented in Section 5.4.2,
the simulation instance obtained from the CHE case study is used for setting
the model parameters, cf. Chapter 2, Section 2.3.5. In accordance with
domain experts from the CHE the classification of care units resulted in
three care levels corresponding to the following care units: level 1 is the
intensive care (IC), level 2 comprises the IC-HC, MC and the CTS-HC. The
CTS-PACU unit is not considered for exchanging beds, since the beds are
only staffed for a limited period of time and could thus not be allocated to a
unit whose beds are open 24/7. Level 3 is the CTS-ward. The exchange rate
between levels is determined by the ratio between the relative unit resource
costs in the CHE case study, cf. Table 2.4 on page 54. Here, one level 1 bed
equals two level 2 beds and one level 2 bed in turn equals two level 3 beds. In
order to assess the effects of dynamically changing the resource allocation on
the simulation performance, we consider the case of unconstrained admission
control, cf. Chapter 3, Section 3.3.

For each policy, the simulation uses the same 10 random seeds to allow
for a fair comparison. Similarly to the evaluation in Chapter 4, we perform
crossvalidation of the optimized solutions by evaluating the solutions using
50 independent simulation runs to assess a possible overfit of the solutions
for the fixed random seeds.

5.5.3 Setting the subpopulation size and the required num-

ber of evaluations

The guideline (4.4) on page 128 provides for a subpopulation size nsubpop =
130. Running SDR-AVS-MIDEA with nsubpop = 130 for 1600 generations
results in a runtime of approximately 30 hours for adaptive policy opti-
mization2 on a high-performance computer cluster using 40 nodes running
at speeds between 1.4Ghz and 2.2Ghz. Similarly to Chapter 4, the largest
part of this runtime is used for evaluating the fitness of the adaptive poli-
cies using the simulation. Taking the considerations concerning the sine-
objective guideline (4.4) and diversity-preserving selection in SDR-AVS-
MIDEA, cf. Section 4.5.3, we varied the subpopulation size. Moreover, the

2Not including prediction in the state calculation.
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currently achieved runtime is not feasible if the proposed approach is to be
applied in a hospital setting where the optimization has to be performed reg-
ularly on a single PC. Therefore, we determine the number of computational
resources that is required in order to obtain solutions that are reasonably
close to the Pareto-optimal solutions and show sufficient diversity after a
reasonable runtime. In order to a broad spectrum of subpopulation sizes,
we varied nsubpop between 30, 80 and 130.

Similarly to the convergence results presented in Section 4.5.4, the cor-
responding Pareto-fronts are depicted with G1 and G0 values plotted on
the horizontal and vertical axes, respectively, for predefined intervals of G2

values with G2 ∈ [0, 25], [25, 50], etc. Then, we discuss the results obtained
form the different policies proposed in Section 5.4.

Determining the required subpopulation size

The initial size of the subpopulations was set to 130 as determined by (4.4).
For our evaluations this population size was varied between 30, 80 and 130
for the adaptive policies and the exchange mechanism, respectively. These
values were chosen such that a broad spectrum of population sizes is eval-
uated similar to the scale used in Section 4.5.4. The convergence graphs
corresponding to the different subpopulation sizes are shown in Figure 5.1
and Figure 5.2 for the state-dependent policies and the bed exchange mech-
anism, respectively. For all policies and subpopulation sizes a steep decline
of DPF→S is to be noted in the first 100 generations, after this the decrease
in DPF→S is reduced. In the first 100 generations about 90% of the conver-
gence of SDR-AVS-MIDEA is achieved. Moreover, the subpopulation sizes
determined by (4.4) achieve a better and faster convergence compared to
the smaller population sizes for all policy types.

For the state-dependent policies, a considerable difference in convergence
can be noted between the different subpopulation sizes. The final DPF→S

value after 1600 generations for nsubpop = 30 and 80 amounts to about 6.4
and 3.1, respectively. Compared to the convergence results in Section 4.5.4,
the policy optimization with nsubpop = 130 converges slightly faster with a
DPF→S value of less than 1 being achieved after about 800 generations which
for the allocations in Chapter 4 takes about 100 generations longer for with
nsubpop = 50. Also, SDR-AVS-MIDEA converges faster for subpopulation
sizes nsubpop = 30 and 80 than for the optimization in Chapter 4. Moreover,
we observed from the data of the obtained Pareto optimal state-dependent
policies that the number of non-dominated solutions retained in the elitist
archive obtained for nsubpop = 130 decreases to about 65% and 84% for
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nsubpop = 30 and 80, respectively.

While the exchange mechanism requires the same number of parameters
to be optimized as the state-dependent allocation policies, the additional
interaction between the units to determine the resource allocation slows
down the convergence, especially for the smaller subpopulation sizes. Also,
it makes finding good solutions harder. The final value of DPF→S remains
at a high level for subpopulation sizes of 30 and 80. For nsubpop = 30
the final convergence performance is slightly worse compared to the state-
dependent policy optimization, whereas for nsubpop = 80 the final value of
DPF→S is more than twice as high as for the state-dependent policies. This
indicates that due to the increased complexity of the exchange mechanism
a larger subpopulation size is necessary than for the state-dependent policy
optimization. Also, the number of non-dominated solutions obtained for
smaller subpopulation sizes for the exchange mechanism is further reduced
than for the state-dependent policies. Compared to the solutions obtained
for nsubpop = 130, the number of non-dominated solutions is reduced to
about 63.2% and 77.5% for nsubpop = 30 and 80, respectively.
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Figure 5.1: Convergence graphs for state-dependent allocation policies for varying sub-
population sizes

Similarly to the discussion in Section 4.5.4, the question arises what impact
the final DPF→S values for the different subpopulation sizes have on the
quality of the obtained solutions. To address this issue we analyzed the
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Figure 5.2: Convergence graphs for exchange mechanism for varying subpopulation sizes

obtained Pareto-fronts for the different population sizes. In Figure 5.3, and
Figure 5.4 the results for the state-dependent policies and the exchange
mechanism are presented for the different subpopulation sizes.

For both the state-dependent allocation policies and the exchange mech-
anism the difference in location of the obtained Pareto fronts between the
different population sizes regarding is small. Solely, the range of the Pareto-
fronts differs and the front obtained for nsubpop = 130 tends to extend
to solutions with larger G1 and G0 values which are not reached using
nsubpop = 30 or 80. For the state-dependent policies, the solutions using
nsubpop = 130 extend further towards solutions with G1 values larger than
140 for G2 > 100. For the exchange mechanism, only the Pareto-front ob-
tained using nsubpop = 130 include points with G1 values greater than 150
which are not reached for the smaller population sizes.

Therefore, the choice of the subpopulation size mainly affects the result-
ing range of the Pareto-front in the G1 dimension and the number of non-
dominated solutions contained in the elitist archive of SDR-AVS-MIDEA.
While the constricted range for the state-dependent policies mainly affects
areas with large G1 and G2 values, the solutions obtained for the exchange
mechanism for smaller nsubpop are limited to points with G1 values smaller
than 150. As the exchange mechanism outperforms the state-dependent
policies and allocations optimized in Chapter 4 in this area, as we will see
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in Section 5.5.4, nsubpop = 130 is imperative for the policy optimization of
the exchange mechanism while a smaller subpopulation size can be sufficient
for state-dependent policy optimization depending on the desired range and
number of available non-dominated solutions.

Determining the required number of evaluations

Since the distance between the Pareto fronts obtained for the policy opti-
mization appear small and the convergence graphs show a slower conver-
gence after an increasing number of generations, we also evaluate whether
decreasing the number of evaluations may result in comparable fronts to
be obtained at reduced computational costs. Similarly to Section 4.5.3, we
evaluate two approaches:

1. determine the number of generations needed to obtain comparable
convergence performance, i.e. the DPF→S value for nsubpop = 130 and
80 equals the DPF→S value obtained for nsubpop = 30 value after 1600
generations,

2. determine the number of generations which have the same number of
evaluations to be performed for nsubpop = 130 and 80 as for nsubpop =
30 and 1600 generations.

Using the first approach, the final DPF→S value of 6.4 for nsubpop = 30 is
achieved for nsubpop = 80 and 130 after 105 and 28 generations for the
state-dependent policies, respectively. Considering the exchange mecha-
nism, about 30 generations are required for nsubpop = 130. The results ob-
tained following this approach show that the resulting Pareto fronts for the
adaptive policies are very close to each other. However, we observed that the
fronts contain considerably less non-dominated solutions than the approxi-
mated Pareto fronts obtained by the joint fronts over multiple runs of SDR-
AVS-MIDEA. As an example, the Pareto-fronts for the state-dependent
policies for the different number of generations and subpopulation sizes are
shown in Figure 5.5. Based on the data of Pareto optimal solutions we ob-
served that the number of non-dominated solutions for nsubpop = 80 and 105
generations is decreased by almost 50% compared to the solutions obtained
for nsubpop = 30 and 1600 generations. For nsubpop = 130 and 28 generations,
the number of non-dominated solutions amounts to only a third compared
with nsubpop = 30 after 1600 generations. In comparison to the results for
1600 generations, the fronts for nsubpop = 80 and nsubpop = 130 contain
about 30% and 20% of the non-dominated solutions. Thus, we can conclude
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Figure 5.3: Pareto fronts for state-dependent allocation policies for varying subpopu-
lation sizes after 1600 generations; x- and y-axes depict the corresponding G1 and G0

values, respectively

that the first approach results in a number of generations that is too small
for obtaining comparably large and broad Pareto-fronts.
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Figure 5.4: Pareto fronts for exchange mechanism for varying subpopulation sizes after
1600 generations; x- and y-axes depict the corresponding G1 and G0 values, respectively

Using the second approach, the number of evaluations involved in run-
ning SDR-AVS-MIDEA using nsubpop = 30 for 1600 generations amounts to
134,520 which corresponds to about 600 and 370 generations for nsubpop = 80
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Figure 5.5: Pareto fronts for state-dependent policies after 1600, 105 and 28 genera-
tions for subpopulation sizes of 30, 80 and 130, respectively; x- and y-axes depict the
corresponding G1 and G0 values, respectively

and 130, respectively. Comparably to the results in Section 4.5.3, we ob-
served that this second approach results in a equivalent location of the ob-
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tained Pareto fronts and an increase in the number of non-dominated solu-
tions for nsubpop = 80 and 130, respectively. In comparison to the sets of
non-dominated solutions obtained for nsubpop = 80 and 130 after 1600 gen-
erations, a decrease of about 35% can be observed, respectively. Therefore,
we can conclude that the number of generations needed to obtain compa-
rable optimization results can be reduced by a factor of 4 in the policy
optimization.

The reduced number of evaluations results in a runtime of about 13 days
when the multi-objective policy optimization is to be performed on a single
PC. Since this optimization approach takes more than four times longer
than the optimization presented in Chapter 4, the question arises whether
optimized adaptive allocation policies result in an improved performance.
To answer this question we analyzed and compared the obtained Pareto
optimal solutions which is presented in the following section.

Intermediate conclusions Due to the fast convergence of SDR-AVS-
MIDEA for the policy optimization problem, a considerable reduction in
runtime can be achieved by reducing the number of generations with small
losses in the number of non-dominated solutions compared to the initial
setup of the optimization. For state-dependent policies, a further consider-
able reduction in runtime can be obtained through a smaller subpopulation
size if the region of interest to the decision maker is restricted to smaller
G1 and G2 values which also involves a further decrease in the size of the
Pareto-optimal sets. For the exchange mechanism, however, a decreased
subpopulation size limits the obtained Pareto front to G1 values below 150
which is unfavorable to the applicability of the mechanism as will be dis-
cussed below.

5.5.4 Optimization results non-anticipatory policies

In order to provide a large range of optimized allocations, the following
optimization results are obtained by 10 optimization runs of SDR-AVS-
MIDEA using nsubpop = 130 and 370 generations. To crossvalidate our
results, we also evaluated the obtained optimized allocation policies with 50
different random seeds. In this section we first evaluate the optimization
results obtained for the non-anticipatory allocation policies and analyze the
optimized parameter settings. For benchmarking the performance of the
non-anticipatory policy optimization approach, we also include the results
optimized in Chapter 4 as a benchmark.
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Analysis of the obtained Pareto fronts

Figure 5.6 shows the Pareto fronts obtained for the different allocation poli-
cies and the static allocations optimized in Chapter 4. The results show
that the state-dependent policies outperform the exchange mechanism for
G1 values below about 140, depending on value of G2. For larger G1 values,
however, the exchange mechanism provides for greater patient throughput
within the same bounds for the back-up capacity usage.

Considering also the static allocations optimized in Chapter 4, the state-
dependent policies outperform the static solutions, followed by the exchange
mechanism for values of G1 below 100 to 125, depending on the G2 setting.
For G1 values between about 100 and 140, depending on the values of G2,
the bed exchange mechanism performs second-best after the state-dependent
adjustments and surpasses the state-dependent policies for G1 values of ap-
proximately 130 and higher. The reason why the exchange mechanism shows
a high performance for larger G1 values is that the mechanism requires larger
base resource allocations in order to be able to shift resources between the
units. For lower resource costs the interaction between the hospital units
provides that required allocation adjustments cannot be sufficiently under-
taken using solely resources that are already allocated to the system of care
units which explains the decline in performance.

Although the visual difference between the different policies appears
rather small in Figure 5.6, the reader should note that the results are based
on simulation runs of 4 weeks which means that a small difference achieved
in this period will become more apparent when considering the performance
over a longer time period.

The crossvalidation evaluations are comparable to the EDA results for
the state-dependent allocation policies as depicted in Figure 5.7. For the ex-
change mechanism, the crossvalidation results even show a somewhat higher
performance than the results obtained by the EDA (Figure 5.8). Thus, the
exchange mechanism is likely to perform better yet in a practical setting.

Analysis of optimized policy parameters

For analyzing the optimized parameters of the different adaptive policies
and static allocation parameters determined in Chapter 4, we use boxplots
to visually summarize the results and statistically assess the differences be-
tween the solutions using the analysis of variance (ANOVA) technique for
multiple response variables (MANOVA) and multiple ANOVA for individual
dependent variables [50].
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Figure 5.6: Pareto fronts for adaptive policies including static allocations optimized in
Chapter 4; x- and y-axes depict the corresponding G1 and G0 values, respectively
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Figure 5.7: Pareto fronts for state-dependent allocation policies including crossvalidation
results; x- and y-axes depict the corresponding G1 and G0 values, respectively

Using MANOVA, we can conclude that the different base allocation pa-
rameters as a group are significantly different for the optimized static al-
locations in Chapter 4 and the adaptive policies proposed in this chapter
(at a level of significance α = 0.05). The respective parameters are shown
using grouped boxplots in Figure 5.9. Based on visual inspection we note
that the base allocations for the exchange mechanism are higher than the
state-dependent base and static allocations for the IC, IC-HC and MC and
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Figure 5.8: Pareto fronts for exchange mechanism including crossvalidation results; x-
and y-axes depict the corresponding G1 and G0 values, respectively

comparable for the CTS-OR and CTS-HC. For the CTS-PACU and CTS-
ward, the base allocation for the exchange mechanism appears to be smaller
than for the optimal fixed allocation and state-dependent base allocations,
respectively. Moreover, the range of base allocations for the exchange mech-
anism appears smaller. Using the ANOVA technique, the higher base al-
location of the exchange mechanism appears to be significant, also for the
CTS-OR. For the CTS-PACU the difference is not significant (p = 0.06).
The larger base allocation is a logical consequence of the resource exchange
mechanism. Since a larger allocation is a precondition for enabling resource
exchange between different units and care levels according to Algorithm ??,
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Figure 5.9: Boxplots of optimized base allocation parameters, rbaseu , including static
allocations optimized in Chapter 4

this steers the search using SDR-AVS-MIDEA towards larger allocations.
Specifically, a significantly larger base allocation of level 1 and 2 resources
is also essential for facilitating resource adjustments to all three care levels
since upgrading of resources is not permitted, cf. Section 5.4.2. The smaller
base allocation for the state-dependent policies can also be explained by the
unrestricted possibility to add and remove resources when indicated by the
allocation policy.

Allocation pa-
rameters

CTS-
OR

CTS-
HC

CTS-
PACU

IC IC-
HC

MC CTS-
ward

rbaseu = rmin
u 4.2% 1.17% 2.16% 4.48% 5.26% 2.89% 1.15%

rbaseu = rmax
u 5.63% 8.37% 26.97% 0.65% 6.72% 1.85% 1.09%

Online alloca-
tion

ru(t) = rmax
u n.a. 54.81% 32.12% 35.07% 18.99% 7.19% 13.92%

Table 5.2: Proportion (%) of optimal solutions that take a base allocation parameter
value rbaseu equal to the allocation bounds rmin

u and rmax
u and frequency of maximal alloca-

tion online during simulation through resource adjustments for state-dependent resource
allocation policies
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Table 5.2 and Table 5.3 summarize the proportion of obtained solutions
that feature extreme base allocation parameter values or maximal alloca-
tions during simulation for the state-dependent policies and the exchange
mechanism, respectively. We can thus conclude that only a small propor-
tion of the optimized policies use a minimal base allocation. Moreover, we
observed that a minimal allocation at CTS-OR, CTS-HC and CTS-PACU
occurs for only 0.8% and 0.1% of the state-dependent policies and the ex-
change mechanism, respectively.

The maximal allocation is used but rarely as base allocation in the opti-
mized state-dependent policies, except for the CTS-PACU where a maximal
allocation is used in more than 1 out of four policies. The exchange mech-
anism features fewer optimized solutions with maximal base allocations for
CTS-OR and CTS-PACU and a comparable frequency for the CTS-HC,
but more solutions with maximal base allocations at IC, IC-HC, MC and
CTS-ward which can be attributed to the adjustment restrictions and the
possibilities for resource exchange, cf. Section 5.4.2 and Section 5.5.2. Dur-
ing simulation, the state-dependent policies frequently use the maximally
allowed resource allocation, especially at the CTS-HC and IC. Applying the
exchange mechanism, the maximal allocation is used significantly less often.
Since the use of the maximally allowed resources involves large investments
for hospital management, the exchange mechanism can thus be implemented
more easily in practice.

Allocation pa-
rameters

CTS-
OR

CTS-
HC

CTS-
PACU

IC IC-
HC

MC CTS-
ward

rbaseu = rmin
u 6.61% 3.36% 0.67% 3.36% 1.12% 5.38% 0.89%

rbaseu = rmax
u 4.26% 8.07% 3.36% 2.8% 16.93% 8.52% 6.73%

Online alloca-
tion

ru(t) = rmax
u n.a. 1.58% n.a. 0% 0.57% 0.52% 0.01%

Table 5.3: Proportion (%) of optimal solutions that take a base allocation parameter
value rbaseu equal to the allocation bounds rmin

u and rmax
u and frequency of maximal

allocation online during simulation through resource adjustments for exchange mechanism

Moreover, we analyzed the frequency of performed resource adjustments
using the different adaptive allocation policies. From Table 5.4 we can con-
clude that the resource allocations under state-dependent allocation poli-
cies are relatively variable and that the added interaction and constraints
for shifting resource capacity from one care level to another, considerably
decreases the frequency of resource adjustments under the exchange mecha-
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nism. Thus, the exchange mechanism can be implemented in practice more
easily as fewer resource adjustments also require less flexibility of the staff.

Frequency CTS-
HC

IC IC-
HC

MC CTS-
ward

state-dep. policy 14.8% 6.63% 14.08% 17.99% 15.07%
exchange mech. 4.96% 0.06% 4.75% 5.71% 0.93%

Table 5.4: Frequency (%) of resource adjustments performed for adaptive resource allo-
cation policies
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Figure 5.10: Boxplots of optimized resource adjustment parameters, rdecru and rincru

where parameters of state-dependent policies and exchange mechanism are depicted by
grey and dark-grey bars, respectively

In Figure 5.10 the in-/decremental adjustment parameters are summa-
rized using grouped boxplots for the optimized state-dependent policies and
exchange mechanism policies. We can observe that the incremental adjust-
ment parameters for the state-dependent policies appear higher than for
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the exchange mechanism, while the decremental adjustments are smaller.
This finding is also confirmed to be significant using ANOVA, except for
the incremental adjustment at MC (p = 0.07, α = 0.05). This result can
be expected because the exchange of resources has an impact on the en-
tire network of care units and a great variation in resource allocation can
be disturbing. Since an in-/decrease in resource capacity depends on the
resource availability at the other units, the policies provide for smaller ad-
justments in order to prevent an imbalance of resource occupancy in future
time periods. This is implicitly learned and measured by the EA during the
simulation period. Together with the exchange being the result of the re-
source availability at the different units in case of the exchange mechanism,
this means that the allocated resource capacity is significantly more volatile
if state-dependent policies are employed.

The thresholds used in the adaptive policies for the exchange mechanism
and their range are significantly higher for the CTS-ward and the IC-HC
than for the state-dependent policies, whereas the opposite holds for the
thresholds and their range for the IC and MC. This means that the policies
for resource availability at CTS-ward and IC-HC tend to reduce resource
capacity rather than to increment it. For the IC and MC, more frequent
adjustments are provided through the smaller range of utilization thresholds.

Figure 5.11 depicts the patient throughput resulting from the opti-
mized allocation policies for the different patient groups. We can conclude
that both the adaptive allocation policies feature a heterogeneous patient
mix. The state-dependent policies consistently achieve the highest patient
throughput for all patient types. Compared to the mix achieved through the
static resource allocations optimized in Chapter 4, the exchange mechanism
solely achieves a greater throughput for type III and IV patients. For type
I+II patients, the average throughput over all the obtained Pareto optimal
exchange mechanism solutions is smaller than for the static allocations, but
also shows a higher lower bound. The actual throughput depends on the
chosen Pareto optimal solution.

We can observe that due to the larger variability in the number of allo-
cated resources, the variability in patient throughput is the highest for the
state-dependent allocation policies. Since the exchange mechanism parame-
ters feature a smaller range of base allocations and smaller and fewer adjust-
ments, the range of patient throughput achieved by the exchange mechanism
is comparatively small.
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Figure 5.11: Boxplots of patient throughput resulting from optimized adaptive allocation
policies including static allocations optimized in Chapter 4

Intermediate conclusions We can conclude that the state-dependent
allocation policies and the exchange mechanism differ considerably in their
policy parameters and the resulting online allocation. While the state-
dependent policies provide for frequent maximal allocations, the additional
constraints imposed on the resource allocations in the exchange mechanism
provide for fewer and smaller resource adjustments. Due to the large in-
vestments required for increasing the available resources, the frequency of
maximal allocations is an important factor to be taken into account when
choosing an adaptive allocation policy. Moreover, the proposed MO pol-
icy optimization approach provides for a heterogeneous patient mix that is
considerably higher for the state-dependent policies due to the high flexi-
bility in allocating resources. However, the increased variability in resource
allocations also provides for more variability in the resulting patient mix
compared to the exchange mechanism and the static allocations optimized
in Chapter 4. The actual throughput depends on the chosen Pareto optimal
solution.
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5.5.5 Optimization results anticipatory allocation policies

Furthermore, we evaluated the impact of anticipation in the optimization of
resource allocation policies. Predicting the future resource occupancy using
forward simulation involves increased computational costs. Running a single
generation takes about one hour where the policy evaluations are performed
in parallel on 24 nodes of the high-performance computer cluster used for
the experiments in this chapter. This is also the reason why the results
presented in this section are restricted to 4 runs of SDR-AVS-MIDEA for
100 generations. The small number of evaluations in combination with the
increased complexity of the optimization provide for the smaller number of
non-dominated solutions obtained for this approach. As the convergence
behavior for state-dependent policies depicted in Figure 5.1 show that 90%
of the overall convergence are achieved within the first 100 generations, the
results can be considered as sufficiently indicative.

Does the inclusion of prediction information improve the perfor-
mance of state-dependent policy optimization?

For the allocation problem in the above setting, the direct use of predicted
future occupancy information in the state calculation appeared not to im-
prove the results obtained by using current occupancy information and daily
resource adjustments. The corresponding two-dimensional Pareto-fronts are
depicted in Figure 5.12. This result indicates that the optimization using
state-dependent allocation policies as defined in Section 5.4.1 in combination
with SDR-AVS-MIDEA is able to exploit the best allocation possibilities for
the treatment and arrival processes in the model. A possible explanation
could be that the design of the allocation policies is well aligned with the
problem at hand. The design then potentially provides for the inherent
anticipation of time-dependence effects in the optimization of the policy pa-
rameters. Due to the fact that the simulation is run for a certain period
of time, time-dependence effects are incorporated in the fitness evaluation.
Thus, the optimization of adaptive policies using SDR-AVS-MIDEA and the
simulation already appears to be an effective approach that inherently takes
future consequences of an allocation decision into account.

When could prediction information improve the performance of
state-dependent policy optimization?

The added-value of anticipation becomes substantial if the model of the
patient arrival processes is extended such that an increased availability of
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Figure 5.12: Pareto fronts for state-dependent policies with an adjustment period of 2
days using current and predicted future occupancy information without adaptive patient
arrivals (x- and y-axes depict the G1 and G0 values, respectively)

resource capacity entails an increase in demand of this type of care or treat-
ment. This extension models the notion of an enlarged attraction of patients
that follows a physical capacity enlargement or an increase in competence
or reputation of a hospital division or specialty. We assume an adaptive
demand model such that an additional bed at the admitting unit increases
the corresponding current mean daily demand by factor 2, while a removed
bed decreases the demand by the inverse. Demand for type I + II patient
admissions is not affected since we assume sufficiently long waiting lists for
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type I and II patients, cf. Chapter 2. Thus, this demand model affects the
number of probes for type III and IV patient admissions requested by others.
Consider for example probes for type III patient admissions by ambulance
services. Ambulance services may be more likely to request the admission
of an emergency patient if the IC capacity of a hospital is increased since
the capacity increase also enhances the chances that the requested admis-
sion is accepted. An increase in type IV patient admission requests might
be resulting from more frequent referrals from general practitioners or rec-
ommendations from health insurance companies due to a decreased waiting
time for elective surgery if more capacity is available.

In order to limit a possible imbalance in the patient mix, the demand
was limited by 20 times the initial mean demand, cf. Section 2.4.1. The
admission policy remains unchanged as described in Table 2.2 on page 46.

Analysis of the obtained Pareto fronts In Figure 5.13 the Pareto
fronts computed over all runs are shown for optimizing the adaptive policy
without and with predicted state information. Because the interpretation of
three-dimensional Pareto fronts can be hard, the results are also presented
by computing the Pareto front for only the first two objectives, similarly
to the representation above. The third objective, G2, is categorized into
three ranges [0, 25], [25, 50] and [50, 75] resulting in the presentation of three
Pareto fronts in Figure 5.14 for increased levels of back up capacity usage.

The difference between the results is substantial. Without prediction
included in the policy, better results than the current real-world results can
still be obtained. With prediction however, the MOEDA picks up on the
fact that increased availability of resource capacity entails an increase in
demand for care of this type of treatment. The performances of the state-
dependent policies with and without prediction are comparable for small
resource costs (G1 ≤ 70). For larger resource costs the use of predicted
occupancy information in the state-dependent policy considerably improves
the throughput. An increase in the total throughput of 200% and more can
be observed. The increased frequency in demand for care that is established
by the optimized policies using prediction also results in more efficient usage
of beds in the sense that there are now few to no results for higher rates
of backup-capacity usage. Policies that lead to high use of backup capacity
are dominated by polices that have low backup-capacity usage because a
high throughput is possible even with low backup capacity usage. This can
partly be attributed to the fact that an available bed can be occupied by a
new patient much faster due to the increased admission requests. To obtain
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such results, however, prediction of future resource usage is required. The
crossvalidation results are comparable with the EDA results with a slight
decrease in patient throughput for high resource costs and little back-up
usage (G1 ≥ 120 and G2 ≤ 25).
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Figure 5.14: Pareto fronts for state-dependent policies with an adjustment period of 2
days using current and predicted future occupancy information including crossvalidation
results; x- and y-axes depict the G1 and G0 values, respectively

Analysis of optimized policy parameters and resulting patient
flows In Figure 5.15 grouped boxplots of the base allocation parameters
are depicted for the (non-)anticipatory policies and the extended patient
demand model. We can observe that the parameters for the anticipatory
policies are considerably higher for the CTS-ward, the IC and the CTS-OR.
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For the CTS-HC and CTS-PACU, the bullk of the base allocations for the
anticipatory policies is lower than for the non-anticipatory policies and for
the remaining units the base allocations appear comparable. For the CTS-
ward, IC, CTS-PACU and CTS-OR the differences are significant which is
determined using multiple ANOVA tests at α = 0.05.

Using ANOVA, we observed that the in- and decremental adjustment pa-
rameters do not significantly differ between the (non-)anticipatory policies.
Rather, a significant discrepancy can be noted in the utilization thresholds
that determine whether the current allocation should be adjusted. Specif-
ically, the lower and upper thresholds, UT decr

u and UT incr
u , for MC, CTS-

PACU and CTS-HC are significantly smaller for the anticipatory policies,
while the adjustment thresholds are significantly higher for the IC-HC and
IC which are the care units for which patient demand is coupled to the
available capacity. Thus, anticipation here improves the decision making
through setting better thresholds and while providing for comparable re-
source adjustments.
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Figure 5.15: Boxplots of optimized base allocation parameters, rbaseu , for (non-) antici-
patory policies

The patient mix resulting from applying the anticipatory policy is sum-
marized using boxplots in Figure 5.16. We can observe that in general the
resulting patient flows tend to a higher number of treated type III and IV
patients and a slightly decreased type I+II throughput. The patient mix is
still heterogeneous as an omission of type I+II patients occurs for only 0.8%
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Figure 5.16: Boxplots of patient throughput resulting from optimized anticipatory allo-
cation policies

of the policies. A throughput that is comparable to the CHE case is achieved
by only about 2% of the policies which can be attributed to the extended de-
mand model. Moreover, the throughput for all patient types shows a larger
variation for the anticipatory policies compared to the state-dependent poli-
cies where no prediction information is used in the state calculation. Also,
the skewed distribution of the type III and IV patient throughput is to be
noted.

Intermediate conclusions We can conclude that the use of anticipatory
policies does not affect the in-/decrement of the allocation. Rather antic-
ipation provides for better aligned adjustment thresholds which result in
a considerably improved performance. Moreover, the proposed MO opti-
mization approach provides for a heterogeneous patient mix that features a
higher proportion of type III and IV patients in the overall mix which can
be attributed to the coupling model and admission policies for the different
patient types in the system. It should be noted that the adaptive demand
model and the obtained results may be somewhat exaggerated for the CHE
situation. However, the extension reflects hospital reality where resource
availability affects the frequency of admission requests and our results illus-
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trate the possible contribution of anticipation in dynamic multi-objective
decision making.

5.6 Conclusions

In this chapter we presented a multi-objective optimization approach for
adaptive hospital resource management. We present a policy optimization
approach for which we designed policies that allow for the dynamic alloca-
tion of resources in a network of care units. Due to the complexity of the
allocation policies and the dynamic application domain, we used a state-of-
the-art evolutionary MO technique, SDR-AVS-MIDEA. The design of the
policies that are evaluated online in the simulation allows an offline evalu-
ation of the policies determined using the realistic and complex simulation
described in Chapter 2. In our experiments we analyzed the convergence be-
havior of SDR-AVS-MIDEA for different population sizes and determined
the minimally required number of evaluations in the optimization which
reduces the runtime of a policy optimization run by factor 4. Moreover,
our results showed that adaptive policies can improve the optimized alloca-
tions presented in Chapter 4, and the design of policies allows the policies
to be easily understandable for hospital experts which facilitates the im-
plementation in hospital practice. The exchange mechanism presented in
this chapter enables the actual implementation of the adaptive policies in
practice without great changes in the current way of working or large in-
vestments in additional resource availability. Furthermore, we showed that
policies that incorporate predicted information of future consequences of an
allocation decision result in further improvements in the extended patient
demand model. The improvements in performance are made possible by
the design of the policies. SDR-AVS-MIDEA then is powerful enough to
detect and exploit the additional possibilities. In the original model, using
SDR-AVS-MIDEA in combination with the adaptive allocation policies and
the simulation already appear to be an effective approach that inherently
takes future consequences into account due to the time dependence effects
incorporated in the simulation. Our results demonstrate that proper design
in combination with state-of-the-art EAs given a sufficient population size
can make an important contribution and achieve an improvement for com-
plex real-world dynamic MO problems as in hospital resource management.
An additional advantage of our policy types is that offline MO techniques
can be used to optimize the parameters of the allocation policies. Further-
more, the resource allocation policies obtained by our approach feature a
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heterogeneous patient mix. The actual patient mix depends on the Pareto
optimal solution which may be an important issue for hospital management
to consider when choosing an allocation policy to be implemented.

The proposed approach is very flexible as the model parameters can be
easily adjusted to different hospital settings and a single allocation policy
can be applied to the different scenarios in the simulation. Moveover, the
policies were developed in cooperation with domain experts which provides
for the policies being easily understood by hospital professionals which is of
importance for the implementation and understanding in hospital practice.

It should be noted that when implementing the anticipatory policies in
hospital practice, forward simulation is still required for the decision pro-
cess because the prediction information is used as input for the allocation
policy. Although the optimization of the policy parameters is the most time-
consuming factor, which only has to be performed once, forward simulation
needs to be performed at the beginning of each working day in order to de-
cide upon the allocation decision to be taken. For this aim, the simulation
would need to be synchronized with the current state at the real-life hospital
units. Alternatively, learning techniques like neural networks, as considered
in Section 3.5, may be employed to reduce the required computational re-
sources.

Including prediction in the dynamic allocation policies for resource man-
agement is beneficial in the case where the model allows for adaptation of
patient arrivals to the available resource capacity. The rationale behind this
assumption is that increasing the available capacity provides for a higher
chance of emergency admission and/or shorter waiting times for elective
admissions that attract additional patients. A hospital might be contacted
more frequently concerning emergency admissions by ambulance services due
to an increased chance of admission. Also, shorter waiting times at hospitals
have a pull effect on patient demand as patients increasingly include waiting
times in their choice of health care service provider. Moreover, health insur-
ance companies offer mediating services and try to find alternative hospitals
with short waiting times to accelerate the patients’ admission for clinical
treatment. Furthermore, an increased resource capacity may contribute to
raise the reputation of a hospital specialty.

It should be noted that the coupling of the arrival processes to the re-
source capacity is modeled in an abstract way. A meticulous model of the
adaptive patient demand for a specific hospital setting would typically in-
volve a large-scale economic analysis of the relevant patient groups in a
multi-hospital setting which is beyond the scope of this thesis. For this
reason, the effect in our model may be somewhat exaggerated, which was
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done for the purpose of illustrating the contribution of anticipation in solv-
ing the dynamic optimization problem. For this reason, the final results
for adaptive resource allocation policies using predicted information may be
overly optimistic for the CHE problem where the coupling of the arrival pro-
cesses and the resource allocation is probably weaker and less instantaneous.
Further modeling of the underlying coupling in a multi-hospital setting is
needed to assess the extent of improvement through anticipation. However,
our results illustrate that our approach successfully allows to tackle the
time-dependence problem for dynamic optimization problems under multi-
ple objectives using our designed allocation policies.



190Chapter 5. Policy optimization for adaptive hospital resource management



Chapter 6

Discussion and conclusions

Planning decisions concerning patient flow logistics in hospitals are often
taken in a decentralized way. This means that different specialized hos-
pital units decide autonomously on e.g. patient admissions and schedules
of shared resources. In this thesis we presented methods and techniques
that provide decision support in this setting. In our approach we com-
bined techniques from multi-agent systems and computational intelligence
which allowed us to consider the dynamics of the problem while reflecting
the distributed decision-making practice in hospitals. Specifically, we have
designed and analyzed computational methods for (adaptive) hospital re-
source management, the prediction of future resource occupancy and the
application thereof.

Our agent-based model captures multiple hospital care units and their
decision policies, multiple patient groups with stochastic treatment processes
and uncertain resource availability due to overlapping patient treatment
processes. We have developed a simulation for the agent-based model and
demonstrated its usefulness for decision support in this setting. Moreover,
we applied learning and optimization techniques from computational intel-
ligence (CI). We studied the use of CI prediction methods to predict future
hospital resource occupancy resulting from admission and allocation deci-
sions and analyzed the underlying probability distribution. Moreover, the
applied CI techniques allowed us to design and evaluate improved (adaptive)
decision policies for the agent-based model. We showed that the benchmark
allocations obtained from the case study could be considerably improved
using the multi-objective evolutionary optimization approach presented in
this thesis. Furthermore, we showed that adaptive decision policies and
the inclusion of predicted resource usage resulted in further improvements.
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Moreover, the decision policies can be implemented in hospital practice in
a straight-forward manner because the agent-based model closely resembles
the real-world situation.

In the remainder of this chapter, we reflect on the applicability of our
approach in a real-life hospital setting, as well as on future research possi-
bilities.

6.1 Applicability, assumptions and limitations

The computational approach taken in this thesis allows a detailed, flexible
and realistic way of modeling the hospital domain. The modeling of the hos-
pital domain considered in this thesis comprises the complex and stochastic
patient pathways and the decentralized decision-making of the different hos-
pital units. The underlying patient pathways and decision policies can be
easily adjusted which is only possible to a limited extent in the mathemat-
ical models in the existing literature on hospital patient flow logistics. The
dependency of the patient flow on the available resource capacity at the
different parts in the network of care units, the decision and reservation
policies for specific patient types at the care units, etc. render a realistic
representation of the decision-making in this domain which has not been
incorporated in earlier approaches. A computational approach thus enables
a realistic description of the problem and domain characteristics which fa-
cilitates better tailored solutions for patient flow logistics issues and thus
promotes the applicability of the optimized solutions in hospital practice.

Furthermore, our approach enables us to consider the dynamics of
patient flow logistics as opposed to the static problem settings typically
addressed in the fields of operations research and operations management.
Since decisions in hospital flow logistics are typically time-dependent, i.e. a
decision taken now may influence the future, incorporating the problem
dynamics is essential for realistically evaluating the performance of the de-
veloped techniques. Moreover, our approach allows us to consider online
decision-making through which resource allocation decisions can be flexibly
adjusted to better respond to changes in the environment. This adaptabil-
ity and the design of the developed methods allow the proposed policies
to outperform static solutions. In the design of the policies we harnessed
the current hospital practice which also employs planning flexibility, which
further facilitates the implementation of the proposed methods in practice.

However, there are also some critical remarks to be made. While the
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model of the patient pathways and scheduling policies of the care units in
Chapter 2 incorporates hospital reality to a great extent, some assumptions
should be reflected upon. The probability distribution for modeling the
patient LoS in our model implicates that no prior information is available
when a patient transfer is to be expected. In reality the patient’s clinical
condition may provide an indication on the remaining LoS of the patient. In
discussion with CHE domain experts, however, this possibility was excluded
for the patient groups considered in the case study. Therefore, a probability
distribution is deemed appropriate to model patient LoS in a general setting.

Also, while our model considers the dependency of the patient routing
on the resource availability, it accounts for the dependency of the length
of stay on the available resource capacity only to a limited extent. As we
argued above, in practice the length of stay of a patient is affected by the
patient’s clinical condition, but also by the available resource capacity and
the demand for care, especially at the intensive care unit. In the adaptive
re-transfer mechanism, patients that have been admitted to a care unit that
is not intended for by the respective pathways may be retransferred at a
later point of time if the resource utilization is ”high”. In other respects,
however, we abstracted away from this dependency based on the following
considerations. In general, the criteria for initiating a patient transfer due to
the need of the occupied bed may differ between hospitals and possibly even
between units and care professionals within the same hospital. This supports
the applicability of a probability distribution for modeling the length of stay
as a realistic representation in a general hospital setting. Specifically, in the
case study that was used as an instantiation for the simulation experiments
conducted in this thesis, the intensive care unit had the possibility to use
back-up capacity or to require additional resource capacity depending on
the allocation policy to overcome resource shortage.

The coupling of patient arrival processes to the resource capacity as-
sumed in Chapter 5, that leads to an increase in care demand for increasing
resource availability, corresponds to hospital reality, but it was not possi-
ble to accurately model the coupling after the CHE case study. Deriving
a model of the elasticity of patient demand for the relevant patient groups
would involve extensive modeling of patient preferences, incentives offered
by health insurance companies or government, the competitive (regional)
landscape and the economic context of the health care market which is be-
yond the scope of this thesis. Potentially, our model slightly exaggerates
the coupling effect to illustrate the valuable contribution of anticipation in
online multi-objective decision making. For the implementation of the de-
veloped anticipatory allocation policies in a real-life hospital setting, the
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modeling steps outlined above are required in order to realistically represent
the respective situation.

Furthermore, the detailed modeling possibilities may require great effort
for analyzing the corresponding hospital data. In a hospital setting this ef-
fort can be considerable since the quality of the data, as encountered in the
case study performed in the course of this thesis, is often poor. Moreover,
expert knowledge may be necessary in the modeling, e.g. for modeling the
underlying routing probabilities for the patient pathways or the transfer and
scheduling policies employed by the different care units. Although for apply-
ing the presented methods process modeling is only required once, a regular
review of the models is advisable since changes in treatment protocols, for
example, may affect the treatment processes and thus the performance of
the planning techniques in practice. The publications on modeling in the
health care management science area that appeared to an increasing extent
in the past years may be of substantial assistance and promote automatic
modeling possibilities in hospital information systems.

In our approach we assumed that allocated resources are always avail-
able and fully staffed. In hospital reality, however, this may not always be
the case, for example due to illness of the staff. Then, hospital management
typically advances personnel shifts from later periods of time to fill the
current gap in the staff schedule, which is currently done at the case study
hospital. In consequence, a gap in the available staff will arise at a later
moment of time which causes a reduced resource capacity. Applying the
exchange mechanism proposed in this thesis, however, would present a far
better solution. According to the mechanism, capacity could be shifted
to the respective unit by another unit in order to compensate the reduced
resource availability in a resource neutral way if available. The exchange
mechanism thus allows for implementable flexible resource adjustments and
has the additional advantage of being robust to changes in the environment.

Moreover, the dynamic changes of the resource allocation induced by the
techniques presented in this thesis may also require procedural changes for
the hospital staff. This may require the staff to flexibly change their place
of work at another unit. Although our techniques were designed to account
for the present flexibility of the hospital, the implementation in practice
may provide for adjustments being performed more consistently and thus
imply an increased frequency of adjustments compared to current practice.
In order to achieve the more frequent changes to the planning and resource
allocation, the willingness of the medical staff to comply to this increased
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flexibility is a precondition. Since trained personnel is scarce, this issue
may be important for the actual implementation of the techniques and
appropriate incentives for the staff may need to be introduced concurrently.

The resource allocation policies for flexible hospital resource management
in this thesis were designed assuming frequent changes of the allocated
resource capacity. In situations where a low personnel flexibility does not
allow for frequent adjustments, the proposed allocation policies may need to
be adjusted. One possibility would be to refine the step-function employed
in this thesis using shorter utilization rate intervals and corresponding ad-
justments. Also, non-linear functions could be considered for determining
the required resource adjustments. Another possibility would be to employ
the proposed exchange mechanism as the resource adjustments are consid-
erably less frequent than for the adaptive policies.

Another critical issue related to our approach is the computationally expen-
sive simulation and optimization in the different settings presented in this
thesis. Although the prediction using forward simulation and its application
in admission control can be performed in reasonable time on a single PC, the
multi-objective optimization for resource management requires considerably
more computational resources which have a high-performance IT infrastruc-
ture commonly not available in hospitals. Reducing the complexity of the
optimization would be necessary if the optimization needs to be performed
frequently due to model changes. This issue will be discussed in further
detail in the following section on possible future work.

6.2 General conclusions and possibilities for fu-

ture research

In order to develop decision support techniques for hospital patient flow
logistics that can be implemented in hospital practice, a realistic modeling
of the domain is mandatory. Due to the complexity and dynamics of de-
centralized hospital organizations with stochastic treatment processes that
typically involve multiple, partly shared care units, often the only option
is simulation. Due to the variety of processes and the hospitals’ individual
ways of working, benchmark models from existing literature are typically
not available to the modeler. Therefore, the simulation model should be
validated to practice which often implies great effort. Moreover, using a
realistic model also entails the need for solution techniques that are able
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to handle the complexity and uncertainty. Our research results support
the usefulness of the computational methods presented in this thesis as an
effective means for improving current hospital planning and providing flex-
ible decision support for patient flow logistics. Especially the flexibility to
respond to varying situations in practice is an important aspect to be taken
into account when designing implementable techniques. Furthermore, we
would like to emphasize the importance to consider the network character
of hospital organizations and not focus on single units. Since treatment
processes typically involve multiple units, the optimization of single units
potentially results in a deteriorated situation for other units and possibly
the system as a whole.

Extending the findings reported in this thesis, some interesting possibil-
ities for future research arise which will be outlined below.

For practical purposes the runtime of the multi-objective optimization
in Chapter 4 and Chapter 5 should be further reduced in order to be able
to perform the optimization in a more commonly available IT infrastructure
in a shorter time. Ideally, the optimization should be performed within a
day on a single PC enabling the re-optimization of the allocation policies
if changes in the hospital environment appear to significantly change the
performance of the optimized policies. Through our analysis concerning the
required population size and number of allowed generations in the EDA, a
decrease in runtime of the optimization of at least 75% could be achieved. A
further reduction of the runtime of which the largest proportion is needed for
evaluating a solution using (forward) simulation could be reduced through
employing learning techniques such as neural networks to approximate the
outcomes of the simulation.

Also the robustness of the multi-objective optimization solutions is an in-
teresting area for future research. Since the objective functions considered in
this thesis are stochastic and depend on the realization of the patient flows,
the proposed approach should be extended by taking also the variability of
the performance measures into account in the optimization. One way to
achieve this might be to include the standard deviation of the performance
measures as additional objectives to be minimized in the optimization. How-
ever, this would increase the complexity of the optimization problem and
lead to an increased runtime of the multi-objective optimization. Another
approach might be to take the the objective functions’ probability distri-
butions into account in the optimization. For this aim, multi-dimensional
confidence intervals could be of use to be incorporated in the optimization.
However, as these have not been defined and researched so far in the exist-
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ing literature, future work is needed in order to develop a proper means of
performing stochastic multi-objective optimization.

The joint optimization of patient admission control and resource alloca-
tion is also an interesting extension of the work presented in this thesis. We
presented a first approach for dynamic admission control that is based on
a fixed resource allocation and aims at maximizing the patient flow while
considering the available capacity. An interesting question is how to com-
bine policies for adaptive admission control and resource management to
align the admission and allocation decisions. This means that patient ad-
missions would anticipate on the future availability of resources while the
resource allocation policy would take the planned future patient admissions
into account for the allocation decision. Additionally, incorporating staff
planning to match the staffing needs to the resource allocation could fur-
ther enhance decision support and could provide interesting possibilities for
future research.

Another interesting extension would be to apply the computational
methods with the policy-based allocation optimization approach to other
resource allocation problems. Here, potential application areas are char-
acterized by heterogeneous and stochastic resource usage which involves
multiple resources. One possibility would therefore be to apply the tech-
niques to patient logistics in other health care settings, e.g. outpatient clinic
settings with heterogeneous multi-resource treatment processes.

The computational approach presented in this thesis was ultimately de-
signed for decision support in real-life hospital settings. Therefore, it would
be interesting to perform a pilot study at a Dutch hospital. In the pilot-
study, the requirements for implementing and interlinking the simulation,
prediction methods and adaptive decision policies with existing hospital in-
formation systems and further automation should be assessed. It would
be interesting to investigate how online feedback from reality could be in-
corporated in the developed methods, for example the supervised learning
techniques for predicting future resource occupancy. Furthermore, the issue
could be addressed how the hospital decision maker should choose among the
set of Pareto optimal solutions obtained by applying the resource allocation
techniques proposed in this thesis. Possibly some user-specific constraints
or preferences, e.g. concerning the patient mix, could help define regions of
interest in the Pareto front to reduce the magnitude of possible solutions
and facilitate the final selection. Also, the patient mix that is achieved by
the different allocations could be an important decision criterion. Moreover,
it should be evaluated how useful practitioners consider the proposed meth-
ods to be in practice. In a preliminary study, the needs for flexibility of the
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staff were evaluated with regard to the personnel’s willingness to work at
different units and other organizational constraints. The study showed that
additional hospital-specific staffing constraints may need to be considered
when shifting resources between units which limits the organization’s flex-
ibility to respond to fluctuations in supply and demand for hospital care.
Although the exchange mechanism presented in this thesis accommodates
with this issue through less frequent resource adjustments, it would be inter-
esting to assess and incorporate further staffing requirements in the adaptive
allocation approach.



Appendix A

Tabulated numerical results

A.1 Prediction of hospital resource usage

In this section the numerical results of the supervised learning approach
presented in Chapter 3 are presented.
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Unit, k 0.7 0.75 0.8 0.85 0.9 0.95

CTS-HC k = 1 0.8302 0.6317 0.77 0.9651 0.1278 1.9008
CTS-HC k = 2 0.7079 0.6317 0.6722 0.5643 0.6635 0.8659
CTS-HC k = 3 0.6484 0.5897 0.7214 0.6071 0.696 0.9214
CTS-HC k = 4 0.65 0.5825 0.7222 0.6127 0.7246 0.9611

IC k = 1 0.1836 0.2774 0.3426 0.5748 0.7651 0.871
IC k = 2 0.1837 0.2787 0.3221 0.3779 0.4345 0.3226
IC k = 3 0.1446 0.2767 0.3795 0.3948 0.3945 0.3324
IC k = 4 0.126 0.2379 0.3795 0.3948 0.4129 0.385

IC-HC k = 1 0.4881 0.381 0.1294 0.146 0.5579 1.0389
IC-HC k = 2 0.6151 0.5746 0.4238 0.423 0.5452 0.946
IC-HC k = 3 0.6333 0.5841 0.4405 0.454 0.646 0.9397
IC-HC k = 4 0.6437 0.5992 0.4484 0.4492 0.827 0.946

MC k = 1 0.6873 0.6817 0.7333 0.696 0.6508 1.0278
MC k = 2 0.6484 0.5357 0.5341 0.5683 0.2881 0.7071
MC k = 3 0.6929 0.577 0.6492 0.6643 0.3373 0.7325
MC k = 4 0.6833 0.5913 0.6968 0.6825 0.3373 0.7802

CTS-ward k = 1 2.1579 2.6921 3.2714 4.1035 4.95 6.3667
CTS-ward k = 2 0.477 0.4937 0.4563 0.4651 0.4995 0.5635
CTS-ward k = 3 0.5008 0.5278 0.5087 0.5214 0.5325 0.5625
CTS-ward k = 4 0.504 0.55 0.5283 0.546 0.5659 0.5524

Table A.1: MAE (k, θ̂) of measured and estimated q-quantile values for the different units
for unconstrained admission control
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Unit, k 0.7 0.75 0.8 0.85 0.9 0.95

CTS-HC k = 1 0.924 0.8166 0.973 1.0581 0.9344 1.515
CTS-HC k = 2 0.7985 0.746 0.7713 0.7592 0.7645 0.9359
CTS-HC k = 3 0.7431 0.7179 0.877 0.8522 0.915 1.0252
CTS-HC k = 4 0.855 0.8125 0.958 0.8861 0.977 1.1466

IC k = 1 0.4263 0.4307 0.495 0.5436 0.5913 0.6348
IC k = 2 0.2893 0.2855 0.2959 0.3169 0.3232 0.3218
IC k = 3 0.2798 0.3091 0.3491 0.3588 0.351 0.3251
IC k = 4 0.2755 0.2944 0.3236 0.3477 0.3502 0.332

IC-HC k = 1 0.4185 0.3976 0.2542 0.1964 0.4982 0.894
IC-HC k = 2 0.631 0.6601 0.5881 0.5667 0.6185 0.9173
IC-HC k = 3 0.647 0.6839 0.6131 0.6012 0.6958 0.9173
IC-HC k = 4 0.6536 0.6869 0.6137 0.6036 0.8131 0.9363

MC k = 1 0.2417 0.2398 0.2439 0.2678 0.3113 0.368
MC k = 2 0.2796 0.3037 0.334 0.3699 0.3737 0.3757
MC k = 3 0.2657 0.2962 0.3424 0.3865 0.377 0.3874
MC k = 4 0.2693 0.3 0.3461 0.3841 0.369 0.3787

CTS-ward k = 1 1.431 1.7732 2.1411 2.6125 3.2601 4.1113
CTS-ward k = 2 0.5250 0.4631 0.4911 0.5173 0.553 0.5911
CTS-ward k = 3 0.5208 0.4821 0.5387 0.553 0.5899 0.5738
CTS-ward k = 4 0.5321 0.4935 0.55 0.5827 0.6155 0.5833

Table A.2: MAE (k, θ̂) of measured and estimated q-quantile values for the different units
for constrained admission control
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Unit 0.7 0.75 0.8 0.85 0.9 0.95

MLP

CTS-HC 0.9619 0.7667 0.9206 0.8421 0.9452 1.7119
IC 0.9825 0.946 1.8637 1.8627 1.8294 2.5508
IC-HC 0.5032 0.6833 0.9342 0.7659 0.75 1.0405
MC 0.6865 1.0611 0.8325 0.5984 0.1984 0.9849
CTS-ward 2.0913 2.03 2.2778 2.2484 2.5016 2.7921

RBN

CTS-HC 0.5389 0.5849 0.6286 0.7627 0.7532 0.8246
IC 0.096 0.2056 0.3468 0.4984 0.854 0.7167
IC-HC 0.6619 0.7302 0.6476 0.5762 0.6127 0.8468
MC 0.6469 0.4183 0.4437 0.5349 0.1373 0.0238
CTS-ward 1.3444 1.3437 1.3977 1.3698 1.4302 1.4714

GRNN

CTS-HC 0.8397 0.5976 0.6571 0.7754 0.7397 0.7127
IC 0.123 0.2849 0.4754 0.4944 0.8635 0.6468
IC-HC 0.5548 0.6365 0.6357 0.5698 0.6167 0.8913
MC 0.6349 0.4151 0.2659 0.4016 0.1373 0.033
CTS-ward 0.7643 0.7579 0.8048 0.85 0.8675 0.9627

Allocation-based benchmark heuristic

CTS-HC 1.4294 0.9333 0.9905 1.1540 1.2357 1.2357
IC 4.0444 3.0992 3.1421 2.1492 2.1873 1.4508
IC-HC 1.0508 0.654 0.9349 0.9849 1.0413 1.0492
MC 0.7103 0.4183 0.2635 0.4706 0.9103 1.0238
CTS-ward 7.5595 5.9445 5.35 4.0 2.9944 2.4794

Table A.3: MSE(θ̃) of measured q-quantile values and output of the different trained
ANNs for unconstrained admission control averaged over 10-fold crossvalidation for basic
scenario
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Unit 0.7 0.75 0.8 0.85 0.9 0.95

MLP

CTS-HC 1.3401 1.1069 1.3466 1.3150 1.3830 2.2510
IC 1.6667 1.6 1.5339 1.7435 1.678 1.5637
IC-HC 1.028 1.012 1.022 1.094 1.5083 1.6375
MC 1.2795 1.246 1.2321 1.1933 1.0746 1.7317
CTS-ward 4.4119 4.3476 4.7714 4.7238 5.0833 5.5012

RBN

CTS-HC 1.1628 1.1522 1.1668 1.1911 1.2332 1.3231
IC 2.0702 2.1012 2.1304 2.1423 2.0988 2.0673
IC-HC 0.872 0.9548 1.1077 1.1774 1.2405 1.2571
MC 0.5911 0.6174 0.6406 0.646 0.6254 0.6839
CTS-ward 3.547 3.6173 3.6899 3.7363 3.7482 3.8078

GRNN

CTS-HC 0.7911 0.7976 0.7976 0.7935 0.7126 0.7158
IC 0.5274 0.497 0.553 0.5736 0.5976 0.5548
IC-HC 0.6304 0.6565 0.5792 0.5869 0.7494 1.0702
MC 0.4188 0.4638 0.5045 0.5375 0.5339 0.5348
CTS-ward 0.6917 0.6673 0.7018 0.6935 0.7708 0.8381

Allocation-based benchmark heuristic

CTS-HC 1.4494 1.1765 1.1773 1.2016 1.2462 1.2502
IC 2.55 2.6185 2.5565 2.697 2.5357 2.6423
IC-HC 0.9196 0.9048 1.0577 1.0946 1.1542 1.1649
MC 0.5871 1.2259 1.1964 1.1272 0.9875 0.8879
CTS-ward 4.1946 5.0333 5.4988 6.7786 8.2744 9.6625

Table A.4: MSE(θ̃) of measured q-quantile values and output of the different trained
ANNs for constrained admission control averaged over 10-fold crossvalidation for basic
scenario
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Unit 0.7 0.75 0.8 0.85 0.9 0.95

MLP

CTS-HC 1.6475 1.2673 1.2028 1.7685 1.7252 2.7143
IC 1.4820 1.5087 2.0693 2.1720 2.2233 2.7628
IC-HC 0.7690 1.0526 1.0098 1.0725 1.1545 1.7651
MC 0.6865 1.0611 0.8325 0.5984 0.1984 0.9849
CTS-ward 5.3982 5.2185 5.6587 5.4915 5.9027 6.2755

RBN

CTS-HC 0.6593 0.6978 0.7573 0.8090 0.7758 0.7463
IC 0.1890 0.2635 0.4090 0.5488 0.8658 0.7955
IC-HC 0.5926 0.6048 0.6500 0.6323 0.6971 0.9497
MC 0.6469 0.4183 0.4437 0.5349 0.1373 0.0238
CTS-ward 4.1690 4.2150 4.2943 4.4313 4.6598 4.8233

GRNN

CTS-HC 0.7895 0.7345 0.8130 0.9022 0.7758 0.7463
IC 0.1712 0.2775 0.4122 0.4890 0.8065 0.7483
IC-HC 0.5685 0.5765 0.6354 0.5762 0.6071 0.9148
MC 0.6349 0.4151 0.2659 0.4016 0.1373 0.033
CTS-ward 0.8255 0.8320 0.8190 0.8715 0.9105 1.0060

Allocation-based benchmark heuristic

CTS-HC 1.3825 1.0940 1.1830 1.1895 1.2438 1.2443
IC 3.6262 3.4895 2.7050 2.1220 1.7640 1.4213
IC-HC 0.8704 0.8895 1.0511 0.9865 1.0101 1.0567
MC 0.7103 0.4183 0.2635 0.4706 0.9103 1.0238
CTS-ward 7.6892 6.4115 5.8425 5.2928 4.8935 4.8233

Table A.5: MSE(θ̃) of measured q-quantile values and output of the different trained
ANNs for unconstrained admission control averaged over 10-fold crossvalidation for sen-
sitivity analysis
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Unit 0.7 0.75 0.8 0.85 0.9 0.95

MLP

CTS-HC 1.8510 1.5020 1.4945 2.2290 2.2238 3.1978
IC 1.8634 1.8543 1.8714 1.8822 2.1349 2.1134
IC-HC 0.9004 1.3093 1.2278 1.2438 1.4077 2.0502
MC 1.3788 1.3517 1.3363 1.2680 1.8095 1.7668
CTS-ward 4.6840 5.1228 5.0103 5.4613 5.9035 6.2632

RBN

CTS-HC 1.4355 1.4088 1.4185 1.4293 1.4920 1.5920
IC 2.5862 2.6110 2.6240 2.6309 2.6713 2.6292
IC-HC 0.9990 1.0227 1.0307 1.0635 1.2532 1.4563
MC 0.7243 0.7425 0.7585 0.7413 0.7370 0.7390
CTS-ward 6.5132 6.5318 6.4865 6.1525 6.2917 6.4733

GRNN

CTS-HC 0.7519 0.7504 0.7543 0.7931 0.6880 0.7578
IC 0.8858 0.8874 0.9423 0.9790 1.0174 0.9859
IC-HC 0.6003 0.6578 0.5854 0.5525 0.8218 1.0723
MC 0.5058 0.5220 0.5368 0.5498 0.5698 0.5628
CTS-ward 0.7335 0.7418 0.7413 0.7717 0.8162 0.8427

Allocation-based benchmark heuristic

CTS-HC 1.5043 1.2255 1.2502 1.2530 1.2818 1.2840
IC 3.1950 3.1313 2.6679 2.4841 2.1528 2.2210
IC-HC 0.9108 0.9029 1.0279 1.1716 1.0055 1.2065
MC 0.7858 1.1248 1.0872 1.1710 1.0473 0.9055
CTS-ward 5.6738 5.2247 5.1383 5.3555 5.6928 6.1680

Table A.6: MSE(θ̃) of measured q-quantile values and output of the different trained
ANNs for constrained admission control averaged over 10-fold crossvalidation for sensitiv-
ity analysis
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Summary

A Computational Approach to Patient Flow
Logistics in Hospitals

Scheduling decisions in hospitals are often taken in a decentralized way.
This means that different specialized hospital units decide autonomously on
e.g. patient admissions and schedules of shared resources. Decision support
in such a setting requires methods and techniques that are different from
the majority of existing literature in which centralized models are assumed.
The design and analysis of such methods and techniques is the focus of this
thesis. Specifically, we develop computational models to provide dynamic
decision support for hospital resource management, the prediction of future
resource occupancy and the application thereof.

Hospital resource management targets the efficient deployment of re-
sources like operating rooms and beds. Allocating resources to hospital
units is a major managerial issue as the relationship between resources, uti-
lization and patient flow of different patient groups is complex. The issues
are further complicated by the fact that patient arrivals are dynamic and
treatment processes are stochastic.

Our approach to providing decision support combines techniques from
multi-agent systems and computational intelligence (CI). This combination
of techniques allows to properly consider the dynamics of the problem while
reflecting the distributed decision making practice in hospitals. Multi-agent
techniques are used to model multiple hospital care units and their deci-
sion policies, multiple patient groups with stochastic treatment processes
and uncertain resource availability due to overlapping patient treatment
processes. The agent-based model closely resembles the real-world situa-
tion. Optimization and learning techniques from CI allow for designing and
evaluating improved (adaptive) decision policies for the agent-based model,
which can then be implemented easily in hospital practice.
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In order to gain insight into the functioning of this complex and dynamic
problem setting, we developed an agent-based model for the hospital care
units with their patients. To assess the applicability of this agent-based
model, we developed an extensive simulation. Several experiments demon-
strate the functionality of the simulation and show that it is an accurate
representation of the real world. The simulation is used to study decision
support in resource management and patient admission control.

To further improve the quality of decision support, we study the predic-
tion of future hospital resource usage. Using prediction, the future impact
of taking a certain decision can be taken into account. In the problem set-
ting at hand for instance, predicting the resource utilization resulting from
an admission decision is important to prevent future bottlenecks that may
cause the blocking of patient flow and increase patient waiting times. The
methods we investigate for the task of prediction are forward simulation
and supervised learning using neural networks. In an extensive analysis we
study the underlying probability distributions of resource occupancy and
investigate, by stochastic techniques, how to obtain accurate and precise
prediction outcomes.

To optimize resource allocation decisions we consider multiple criteria
that are important in the hospital problem setting. We use three conflict-
ing objectives in the optimization: maximal patient throughput, minimal
resource costs and minimal usage of back-up capacity. All criteria can be
taken into account by finding decision policies that have the best trade-off
between the criteria. We derived various decision policies that partly allow
for adaptive resource allocations. The design of the policies allows the poli-
cies to be easily understandable for hospital experts. Moreover, we present
a bed exchange mechanism that enables a realistic implementation of these
adaptive policies in practice. In our optimization approach, the parameters
of the different decision policies are determined using a multiobjective evolu-
tionary algorithm (MOEA). Specifically, the MOEA optimizes the output of
the simulation (i.e. the three optimization criteria) as a function of the policy
parameters. Our results on resource management show that the benchmark
allocations obtained from a case study are considerably improved by the op-
timized decision policies. Furthermore, our results show that using adaptive
policies can lead to better results and that further improvements may be
obtained by integrating prediction into a decision policy.



Samenvatting

Een Computationele Aanpak voor Patiënten-
logistiek in Ziekenhuizen

In ziekenhuizen worden planningsbeslissingen vaak op een decentrale
manier genomen. Dit wil zeggen dat verschillende gespecialiseerde zieken-
huisafdelingen autonoom beslissen over, bijvoorbeeld, de opname van pati-
ënten en roosters voor resources waar meerdere afdelingen gebruik van
maken. Beslissingsondersteuning voor ziekenhuisplanning vereist daarom
methoden en technieken die, anders dan in de bestaande literatuur, geen
centrale modellen veronderstellen. In dit proefschrift richten we ons op
het ontwerp en de analyse van zulke methoden en technieken. Specifiek
ontwikkelen we computermodellen voor dynamische beslissingsondersteun-
ing met betrekking tot het capaciteitsmanagement, het voorspellen van
toekomstig beddengebruik en de toepassing hiervan in de besluitvorming.

Capaciteitsmanagement heeft als doel een efficiënte inzet van capaciteiten,
zoals operatiekamers en ziekenhuisbedden. De toewijzing van capaciteiten
aan ziekenhuisafdelingen is een belangrijk en moeilijk probleem voor het
bestuur van een ziekenhuis omdat capaciteiten, hun benutting en de betref-
fende patiëntstromen complex met elkaar samenhangen. Bovendien wordt
het probleem nog verder gecompliceerd door dynamische aankomsten van
patiënten en stochastische behandelprocessen.

In onze aanpak combineren we technieken uit multi-agent systemen en
computationele intelligentie (CI). Met behulp van deze combinatie van tech-
nieken kunnen we rekening houden met zowel de dynamiek als de decen-
trale manier van besluitvorming in ziekenhuizen. We gebruiken multi-agent
technieken voor het modelleren van meerdere ziekenhuisafdelingen en hun
beslissingsstrategieën, meerdere patiëntgroepen met stochastische en deels
overlappende behandelprocessen. De stochasticiteit introduceert onzeker-
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heden in de beschikbaarheid van capaciteiten. Dit agent-gebaseerde model
is een realistische beschrijving van de werkelijkheid. Met behulp van CI
technieken voor optimalisatie en leren kunnen betere (adaptieve) besliss-
ingsstrategiën ontworpen en geëvalueerd worden voor het agent-gebaseerde
model, die makkelijk in de praktijk gëımplementeerd kunnen worden.

Om een beter inzicht in dit complexe en dynamische probleem te krijgen,
hebben we een agent-gebaseerd model voor de ziekenhuisafdelingen en hun
patiënten ontwikkeld. Op basis van dit model hebben we een uitgebreide
simulatie ontwikkeld om de toepasselijkheid van het agent-gebaseerde model
te beoordelen. De functionaliteit en praktische relevantie worden gedemon-
streerd met behulp van verschillende simulatie experimenten. Daarnaast
wordt de simulatie gebruikt om beslissingsondersteuning op het gebied van
capaciteitsmanagement en opnameplanning te onderzoeken.

We bestuderen ook het voorspellen van de toekomstige bedbezetting om
de kwaliteit van de beslissingsondersteuning verder te verbeteren. Met be-
hulp van predictie kan rekening worden gehouden met het effect van een
bepaalde beslissing op de toekomst. Voor dit probleem is het voorspellen
van de bedbezetting belangrijk om toekomstige capaciteitsknelpunten te
voorkomen die opstoppingen van de patiëntstromen en langere wachtrijen tot
gevolg kunnen hebben. In onze aanpak evalueren we twee voorspellingstech-
nieken: voorwaartse simulatie en leren onder toezicht met behulp van neu-
rale netwerken. In een uitgebreide analyse bestuderen we de onderliggende
kansverdelingen van de bedbezetting en onderzoeken we met behulp van
stochastische technieken hoe nauwkeurige en preciese voorspellingen gedaan
kunnen worden.

Bij beslissingen over capaciteitsallocatie in ziekenhuizen moet vaak met
meerdere doelen rekening gehouden worden. In de optimalisatie aanpak
beschouwen we drie doelen: maximale patiëntendoorstroom, minimale ca-
paciteitskosten en het minimale gebruik van reserve capaciteit. Deze doe-
len worden gelijktijdig geoptimaliseerd door het vinden van beslissingsstra-
tegieën die de verschillende doelen op vergelijkbare wijze tegen elkaar afwe-
gen. We presenteren meerdere beslissingsstrategieën die voor een deel adap-
tieve allocatie beslissingen faciliteren. De strategieën zijn ontworpen met
het oog op de begrijpbaarheid door medische specialisten. Bovendien in-
troduceren we een bedden schuifmechanisme waarmee de adaptieve strate-
gieën realistisch in de praktijk gëımplementeerd kunnen worden. Voor de
optimalisatie van meerdere doelen worden de parameters van de besliss-
ingsstrategieën met behulp van een multi-doel evolutionair algoritme (multi-
objective evolutionary algorithm – MOEA) bepaald. Specifiek optimaliseert
het MOEA de simulatieuitkomsten (dwz. de drie doelen) als functie van de
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strategie parameters. Onze resultaten tonen aan dat standaardallocaties,
die in de praktijk gebruikt worden, aanzienlijk verbeterd kunnen worden
door de geoptimaliseerde beslissingsstrategieën. Bovendien geven de experi-
menten aan dat adaptieve allocatie strategieën en het gebruik van predictie
informatie binnen de strategieën tot verdere verbeteringen leiden.
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