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Introduction

Let F' be an algebraic function field of one variable with the finite field F, as its full field
of constants. Let g be the genus of F' and denote by N(F') the number of Fy-rational
places of F'. The Hasse-Weil bound gives an upper bound for N(F') in terms of g and
£. This bound is not optimal, when the genus is large compared to the cardinality of
the finite field, see [9, [13]. To study the asymptotic behaviour with increasing genus, let
Ny(g) be the maximal number of Fy-rational places that a function field over F, of genus
g can have. It was shown by Drinfel’d and Vl1adut [3], that

A(¥) := lim sup Nelg) <VIE-1.
g—oo g

If ¢ is a square (an even power of a prime), then the above inequality is in fact an
equality; i.e., A(f) = V{ — 1, see [9, 22].

If £ is not a square, not much is known about the exact value of A(¢). Using class field
towers, Serre [17, (18] showed that there exists a constant ¢ > 0, which is independent of
¢, such that A(¢) > c¢-log/ > 0 for all /.

Using degenerations of Shimura modular surfaces, Zink [24] showed that

2(p* — 1)

A(p?) >
(r°) =2 P

if p is a prime number.
In [§], van der Geer and van der Vlugt gave an ezplicit example of a tower & = (Ey,)n>0
over the finite field with eight elements, with limit

which attains Zink’s lower bound for p = 2. Their tower is given as follows: Ey = Fg(x¢)
and E;11 = Ei(zi4+1) for i > 0, where

T4+ Tip1 =2+ 1+ 1/ (0.1)

Zink’s lower bound was generalized by Bezerra, Garcia and Stichtenoth [2] to arbitrary
cubic finite fields. This was done by providing an explicit tower of function fields F =
(F)n>0 over the finite field Fy, where £ = ¢ for an arbitrary prime power g, with limit

N(Fn) 2 2(q2 - 1)

oo g(Fa) T g2 (02
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This tower is recursively given as followsﬂ Fo = Fy(xo) and Fiy1 = Fi(xiy1) for i > 0,
where

oy -l =1-m+ pm) (0.3)
Z
We call the tower F, which is defined by Equation the Bezerra—Garcia—Stichtenoth
tower (BGS tower for short). The case ¢ = 2 corresponds to the van der Geer—van
der Vlugt tower, see Equation . The case ¢ > 2 is substantially different. In this
case the extensions Fjy1/F; (i > 0) are not even Galois. The BGS tower (the van der
Geer—van der Vlugt tower for ¢ = 2) is the only known example of an explicit tower over
a nonsquare field with such a large limit.

The main aim of this thesis is to give a simpler and more transparent proof for the
limit of the BGS tower.

In Section [T} we recall shortly basic definitions and properties of towers and introduce
some notation.

In Section [2| we start by proving some basic facts about the BGS tower. The proof of
Inequality splits naturally into two problems:

(i) to give a lower bound for the numbers N (F,);
(ii) to give an upper bound for the genus g(F},), for all n > 0.

The first problem is relatively easy: one shows that sufficiently many rational places of
the field Fy split completely in all extensions F,/Fy. In Section [2| we give a simpler
proof of this fact than the proof given in [2], see Theorem This is done by providing
a functional equation, which shows in a more natural way, why the given places split
completely in all extensions. In this section we also introduce the pyramid corresponding
to the tower and point out the main difficulties in determining the limit of the BGS tower.

The hard part in proving Inequality is the second problem, namely to give upper
bounds for the genus g(F},), for all n > 0. Here one has to find an upper bound for the
degree of the differents in the extensions F;,/Fy. Since there occurs wild (and in the case
q # 2 also tame) ramification in F, /Fj, the precise determination of different degrees
requires careful and long calculations. The original proof of Inequality given by
Bezerra, Garcia and Stichtenoth is rather long and very technical, cf. [2| Sec. 4]. In
Section |3| we replace the complex calculations in their work by structural arguments,
thus giving a much simpler, shorter and more transparent proof for the limit of the BGS
tower.

These arguments are of course not just developed to be used to simplify the proof of
the BGS tower, they also apply to other towers. So we use them for instance in Section [4]
to compute the limit of the Galois closure of the BGS tower. The Galois closure of the
BGS tower is again a tower over Fy, where ¢ = ¢3. We show that the limit A(E) of the
Galois closure £ satisfies

2(¢* - 1)

MNE) >
()_ q+2

Lthe presentation of this tower in [2] is slightly different, see Section [2| below
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Note that this bound for the limit of the Galois closure coincides with the bound given
by Inequality for the limit of the tower itself.

One of the main tools used while determining the limit of the BGS tower and of its
Galois closure is a lemma from ramification theory. This “key lemma” was proved in [4]
in the case of function fields. In Section [5| we give a proof of this result using the theory
of higher ramification groups, which is valid for more general fields.

It was shown in [21], that several classes of codes over finite fields with square cardi-
nality, including the class of transitive codes and the class of self-dual codes, attain the
Tsfasman—V1ddut-Zink bound. In Section [6] the same problem is considered over cubic
finite fields. Starting from the BGS tower, a new Galois tower £’ is constructed, which
has the same limit as the BGS tower. The notion of r-quasi transitive codes is introduced
(in analogy to quasi-cyclic codes), and, using the tower &', asymptotic lower bounds are
obtained for the class of r-quasi transitive codes over cubic finite fields. Also, using this
tower, asymptotic lower bounds are obtained for the class of transitive isoorthogonal
codes over cubic finite fields.

v
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1 Preliminaries

Let us first fix some notation. We consider function fields F//K where K is the full
constant field of F'. In most cases, K will be a finite field K = [, or its algebraic closure
K = TF;. We denote by P(F) the set of places of F//K. For a place P of F/K, we will
denote the normalized discrete valuation of F// K associated with P by vp. For a rational
function field K (x) we will write (x = a) for the place which is the zero of z — a (where
a € K) and (x = 00) for the pole of z. For a place P of F'/K of degree 1 and an element
x € F, we will denote by z(P) € K U {oo} the value (=residue class) of the function x
at the place P.

For a finite separable extension E of F' and a place @ € P(E) we will denote by Q|r
the restriction of @ to F' (i.e. Q|r = @ N F). We will write Q|P, if the place Q € P(E)
lies over the place P € P(F'). In this case, we will denote by e(Q|P) and d(Q|P) the
ramification index of Q|P and the different exponent of Q|P, respectively.

A tower F of function fields over Fy is an infinite sequence F = (Fy, F1, Fs,...) of
function fields F;/F,, having the following properties:

(i) Fo C 1 C Fy C

(ii) The field Fy is the full constant field of F;, for i = 0,1,2,.

(iii) For each i > 1, the extension F;/F;_; is finite and separable.
)

(iv) g(F;) — oo as i — oo.

For a tower F over Fy, it can be shown, that the following limit exists (see [0]):

i M)
= i e

This real number \(F) is called the limit of the tower F. Clearly,
0 < AF) < A(l) <VI-1.
A tower F over Fy is said to be
asymptotically good, if A\(F) > 0,
asymptotically bad, if A(F) = 0.
asymptotically optimal, if \(F) = A(L).

It is sometimes useful, to consider the asymptotic behaviour of the genus and the
asymptotic behaviour of the number of rational places separately. Hence we define:



e The genus v(F) of F over Fy

. g(F)
F) := lim .
W)= i
e The splitting rate v(F) of F over Fy
L N(F)
)= i

It can be shown (see [7]), that these limits exist (y(F) can be co) and
0<~(F)<oo, 0<v(F)<N(Fy < oo.

The tower F is asymptotically good if and only if v(F) < co and v(F) > 0, and in this
case, A(F) = v(F)/v(F).

Let F = (Fo, F1, Fs,...) and € = (Ey, E1, E9, .. .) be towers of function fields over Fy.
Then the tower F is called a subtower of £, if for each F,,, there exists an F,,, such that
F,, C E,. If F is a subtower of £, we write F < £. We have the following Proposition:

Proposition 1.1. Let F and £ be towers over Fy. Suppose F < &; i.e. F is a subtower
of £. Then
(i) A(F) = A(E).

(i) If € is asymptotically good (resp. optimal), then F is asymptotically good (resp.
optimal).

(ii) If F is asymptotically bad, then £ is asymptotically bad.
Proof. See [0]. O

Let F = (Fy, F1, F,...) be a tower of function fields. A place P of Fj is said to be
ramified in the tower F, if the place P is ramified in the extension F;/Fy for some ¢ > 1.
The set

V(F/Fy) :={P € P(Fp)|P is ramified in F}

is called the ramification locus of F over Fy. This set plays an important role while
determining the genus of the tower F.

A rational place P of Fy is said to split completely in the tower F, if the place P splits
completely in all extensions F;/Fy. The set

Z(F/Fy) :=={P € P(Fp)|deg P = 1 and P splits completely in F}

is called the splitting locus of F over Fy. 1t is clear that v(F) > |Z(F)|, where |Z(F)|
denotes the cardinality of the set Z(F).



2 The Bezerra—Garcia—Stichtenoth tower

Let ¢ be a prime power and ¢ = ¢>. Consider the BGS tower F = (Fy, F1, F»,...) of
function fields over the finite field Iy, which is defined recursively by the equation

q_ 91 _ 1 _ .
yl—y?™ " =1—xz+ e (2.1)
i.e., Fy = Fy(xp) is the rational function field and Fj;1 = Fj(z;4+1), where
q q—1 1 .
Tipg —Tiq =1—zi+—= fori>0. (2.2)
€,
In [2], the defining equation of this recursive tower was originally given as
1—§ #9+3—1
y_r+e-1 (2.3)

yd T

After performing the transformation # = =1, § = y~1, it is clear that Equation (2.1)
and Equation (2.3|) define the same tower.

2.1 Some basic properties of the BGS tower

Let us compile and prove some basic facts about the BGS tower. When we will be
concerned with the genus of the BGS tower, for simplicity, we consider the same tower
over the algebraic closure F, of Fy, since the degree and the ramification behaviour of
the extensions under consideration will not change under this constant field extension.
Define the set

Ri={acF,|a? -9t =1}

Lemma 2.1. (i) The ramification indices in the first step of the tower (i.e. in the
extension Fy(xo, 21)/Fe(x0)) are as in Figure[2.1]

(ii) The places (zg = 0),(xg = 00) and (r9g = «), with « € R, are the only places of
Fo(xo) that are ramified in the extension Fy(xq,x1)/F(z0).

(iii) In the extension Fy(xo,z1)/Fe(x1), ramification indices and different exponents are
as in Figure [2.2]

(iv) The places (x1 = 00) and (v1 = a), with a € R are the only places of Fy(x1) that
are ramified in the extension Fy(xo,z1)/Fe(x1).
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(ro=a),a € R

Figure 2.1:
P Py
(21 = 00)
Sa
e=gq
d=q
(r1 =a),a € R
Figure 2.2:

(v) In the function field Fy(xq,x1) we have the following principal divisors:
(z0) = qPo — ¢ P,
(rg—1) Z Sy
YER
(xo — ) = Py + (¢ — 1)Qu — q¢Pno, for a € R,
=Y Q- Px—(q— 1P,

YER



(w1 —1) =Y Py~ Pu—(qg— 1P,
YER

(r1 —a) = ¢Sq — Pxo — (¢ — 1) Py, for a € R.

(vi) Let r > 1 and let Q be a place of Fy.. For 0 < j <r—1, the following holds for the
values of the functions x;, ;411 at the place Q:

- if x; = 00, then xj41 = 00,

- ifxj =0 then xj41 = oo,

- if x; = o with o € R then either xj41 =0 or xj41 = 1,
- ifx; =1 then xj41 = « for some a € R.

- if xj41 = 00 then either x; =0 or x; = 00,
- ifxjp1 =1 then x; = « for some a € R,

- if xj41 = 0 then x; = « for some o € R,

- if xj1 = o with o € R then xj = 1.

Proof. We only show the assertions concerning the different exponents of the wildly
ramified places in items (i) and (iii). All other assertions follow easily from the defining
Equation of the tower.

Let P be a place of Fy(zq, 1) lying over the place (zo = o) of Fy(xg). Since, by
Equation , e — 2 =1—xo+ 1/x871, it follows that vp_(z1) < 0 and

q-vp(21) = vp, (2§ — 2§ = vp (1 — 20+ 1/2{ ") = vp, (20) = —e(Px | (z0 = 0)).

Since e(Px | (20 = 0)) < [Fo(z0,71) : Fo(wg)] < g, we obtain e(Py | (zg = o0)) = ¢

(hence vp, (v0) = —¢) and vp_ (21) = —1. So the function 1/z1 is a prime element at
P,. The minimal polynomial of 1/x1 over Fy(zg) is
1 1
o(T)=T7+ — T — —
1—:1704—1/:118 1—.%0-}-1/:138

and therefore, by [20, Prop. I11.5.12],

1

=) =4¢
1—z0+1/xd !

d(Px | (w0 = 00)) = vp, (0"(27)) = v, (

In a similar way one shows that d(FPp | (o =0)) =2¢—2 and d(S, | (vr1 =) = ¢
for a € R, using the fact that xg - 21 and (z¢ — 1) are prime elements at the places Py
and S,, respectively. ]

Lemma 2.2. For all i > 0, we have

(i) The place (xog = ) is totally ramified in the extension F;/Fy, with ramification
index e = ¢'. The unique place of the function field F;, which lies over the place
(xog = o) of Fy, is a simple pole of x;.



(ii) The field F; is algebraically closed in F;, and [F; : Fy] = ¢.

Proof. (i) By induction: The case i = 0 is trivial. Assume that the assertion is true for
some i. Let @ be a place of the function field Fjy; lying over the place (zg = o0) of
Fy. Let P, P, and P, be the restrictions of @ to the subfields Fy(z;), F; and Fy(x;, zi41),
respectively. By induction hypothesis, P is the pole of x; in Fy(z;) and e(P; | P) = 1.
By Lemma (i), (iii) and (vi), P, (and hence also @) will be a pole of x;; with
e(Py | P)=gqand e(Py | (zj+1 = o0)) = 1. The assertion now follows from Abhyankar’s
Lemma (see [20, Ch. III.8]).

(ii) Clear by (i). O

Remark 2.3. For ¢ > 2, the steps in the BGS tower are not Galois, as follows from the
ramification behaviour of the place (zg = ) for & € R in the extension Fy(xo, x1)/Fs(xo).

Lemma 2.4. The ramification locus of F over Fy (i.e., the set of places of the function
field Fy, which are ramified in some extension F, /Fy) is finite and is given by

V(F/Fy) = {(x0 =0), (xg = 00),(xo = 1)} U{(x0 = a) | « € R}.

Proof. Let P € V(F/Fy). Then, for some n > 1, there exists a place @ € P(F),)
lying over P, such that @ is ramified in the extension F,,/F,_;. By Abhyankar’s
Lemma, the restriction of @ to the subfield Fy(x,,—1, x,) will be ramified in the extension
Fo(xpn—1,2n)/Fe(zn—1). Therefore, by Lemma (ii), we have z,—1(Q) = 0,00 or «,
with o € R. The assertion now follows from Lemma (vi). O

2.2 The corresponding pyramid and the main difficulties

As above, we consider the BGS tower F = (Fy, Fi, Fb,...) over the algebraic closure Fy
of Fy. Let » > 1. In order to estimate the genus of the function field F}., it is necessary
to investigate the ramification behaviour in the extension F,./Fy more thoroughly. Let
Q@ be a place of F,, which is ramified in the extension F,/Fy. Let P be its restriction
to Fy. We want to determine the ramification index e(Q|P) and the different exponent
d(Q|P). We classify the ramified places of F,/Fy as follows: Consider the sequence
S(Q) = (20(Q), 71(Q), - . ., 2-(Q)), where z;(Q) € F,U{co} denotes the value (=residue
class) of the function z; at the place Q. By Lemma[2.4and Lemmal[2.1] (vi) , the sequence
S(Q) belongs to one of the following types:
Type I) S(Q) = (00,00,...,00).
Type 1II) S(Q)=(0,00,00,...,00).
Type III) S(Q) = (..., 1, aks1,..., 1, ap,,0,00,00,...,00) with a; € R (i.e.,
the first entries of S(Q) alternate between 1 and elements of the set R,
followed by 0, 0o, 00, ..., 00).
For Type I, it is seen from Figure Figure and Abhyankar’s Lemma that
e(Q|P) = ¢" and d(Q|P) = (¢"** — ¢)/(q — 1). Similarly, for Type II, e(Q|P) = ¢"
and d(Q|P) =2(¢" — 1).



Now we investigate places of Type III. In fact, this is the hard part of the paper
[2]. For 0 <i < j <r,let F = Fy(x;,it1,...,2;). In particular, F" = F,. For
0<i <751 <rand0 <9 <j2 <71, we have

FJ1 ig a subfield of F272 < 45 < iy and 71 < Jo.

The arrangement of the subfields F/ (0 <i < j <r) of F}, is depicted in Figure

FO,T
/N
FOrl Flr
N S \
Flrl

F0’2‘ \21/
SN e

FO 1 Fl 2 . ) Fr—l,r

w Nl N fed e

Figure 2.3: Arrangement of subfields F%J

Let @ be a place of F,, which is ramified in the extension F,/Fy and which is of
Type III. Denote by Q% the restriction of the place @ to F%/. Our aim is to estimate
the ramification index e(Q|Q"°) and the different exponent d(Q|Q""). We assume that
20(Q) = 1 (the case z¢(Q) € R is analogous). Then there is some ¢ with 1 <¢ < r such
that

o 1,(Q) =
b ml(Q) lax3( )_0537"'11}15—1(@) = at-1, with aq,a3,..., 001 € R,
o 7(Q) = 12(Q) = ... = w2(Q) = 1,

o 7;(Q) = oo for i >t.

In order to study the ramification index and different exponent of @ over (zg = 1), we
investigate the behaviour of () in all steps of the “pyramid” in Figure However,
ultimately we are only interested in the ramification behaviour along the left side of the
pyramid; i.e., along the line FC in Figure 2.4

From Lemma (i) we immediately read off e(Q“**1|Q%*) and d(Q“* ™1 Q%") for 0 <
i <r— 1, since the extension F**!1/F¥ corresponds just to the first step of the tower.
Similarly, from Lemma (iii), we obtain e(Q~1¢|Q") and d(Q*~1|Q%) for 1 < i < r.
This situation is depicted in Figure For extensions, where the restriction of the
place @ is wildly ramified, the different exponents are provided within square brackets.
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zo=1 T = z9 =1 xp_o =1 Tt = Q1 xy =0 T4l = OO T2 = OO Tr—1 = OO Ty = 00

Figure 2.5:

As shown in Figure we divide the pyramid corresponding to the field FO" into
three parts:

(i) the triangle EGB, which is the pyramid corresponding to the field F%,
(ii) the triangle F'H D, which is the pyramid corresponding to the field F'=1"
(iii) the rectangle ADCB.

From Figure and Abhyankar’s Lemma one obtains easily the ramification indices
and different exponents of @ in part (i), i.e. in the pyramid corresponding to the field
F, = Fy(xg,1,...,7), as shown in Figure

Likewise, the ramification behaviour of @) in part (ii), i.e. in the pyramid corresponding
to the field FI=4" = Fy(z4_1, 24, . . . , 7,) follows from Figureand Abhyankar’s Lemma,
and is depicted in Figure 2.7]

It remains to determine the ramification behaviour of the place @ in part (iii) of
the pyramid of F”, which is depicted in Figure However, in composita, where
the place is wildly ramified in both directions, Abhyankar’s Lemma cannot be applied.
These problematic composita are indicated in Figure by dotted squares. Thus it is
hard to determine the ramification behaviour along the line BC' in Figure and the
major part of [2] is concerned with this situation. This is in fact also the main problem
of this thesis.

Before studying these problematic composita in more detail, let us first investigate in
the next section the rational places.
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2.3 Some rational places splitting completely in the tower

Next, we investigate some rational places of F{y, which split completely in all extensions
FZ/F() Let

1
a(T):=T9—T7 and b(T):=1-T+ TaT"

and let
o(T) =T —T 4+ 1.

We consider the following sets S, A, B € Fy:
S:={yeF|p(y)=0},
A:={yeF,|a(y) €S} and B:={yeF,|b(y)e S}
Lemma 2.5. (i) A=B.
(i) |S]=¢q+1.
(iii) Fory €S, la~'(7)|=q and |A] =q-(q+1).
(iv) ACF,.
Proof. We have the following identity, which can be verified by direct calculation:
T p(a(T) =TT - p(b(I)) = (T — )T+ 41 (2.4)
(i) Follows directly from Equation (£2.4)), since for w € F,\{0}, we have

weAsplaw)) =0< pbw) =0 we B.

(ii) Clear, since the polynomial ¢(T') is separable.

(iii) Clear, since the polynomials 79 — T9! — ~ (for v € S) are separable and since
|S| =g+ 1 by (ii).

(iv) Let n € A. Then ¢(a(n)) = 0. So, by Equation ([2.4]), we have

(n—1)7+atl L1 =0.

Therefore
(n— 1)q2+q+1 -1

Since ¢ = ¢3, it follows that n — 1 € F, and hence 1 € F,.

11



Theorem 2.6. Forw € A, the place (xg = w) of Fy splits completely in the tower F [Fy.
So there are at least q(q+ 1) places of Fy, that split completely in the tower. Hence, the
splitting rate

= lim 7N<FT)
v(F) = lim [F, : Fy|

satisfies

v(F) = qlqg+1).

Proof. Let w € A. By Lemma the equation a(£) = b(w) has exactly ¢ roots & in [Fy
and all of these roots are again in the set A and hence also in Fy. The theorem follows
now by induction. O

12



3 A simplified proof for the limit of the BGS tower

As mentioned above, the main difficulty in computing the limit of the BGS tower is
to determine the ramification in composita, where the place is wildly ramified in both
directions, since in this case Abhyankar’s Lemma cannot be applied. A similar situation
is considered in [4], where simpler proofs for the limits of the towers in [0l 8] are given.
The main ingredient is a “key lemma” [4, Lemma 1], which also plays a crucial role in
[5], where limits of the Galois closures of these towers are obtained. The main idea in
[4] is contained in the following Proposition (see [5, Rem. 1.9 and Prop. 1.10]).

Proposition 3.1. Let F/K be a function field, where K is a field of characteristicp > 0,
let E1 and Es finite Galois p-extensions of F' and let E = Fy - E5 be the composite field
of Eh and FEy. Let Q) be a place of E. Let Q1, Q2 and P be the restrictions of Q to Eq,
Es and F, respectively. If the different exponents d(Q;|P) satisfy

d(QilP) = 2(e(Qi| P) = 1) fori=1,2,
then d(Q|Q;) = 2(e(Q|Q;) — 1) fori=1,2.

It would be desirable to use this Proposition also for the BGS tower, in order to
simplify the computations. Unfortunately, since the extensions in this case are not
Galois, Proposition [3.1] cannot be applied directly. However, Proposition [3.1] can be
modified to obtain a simplified proof for the limit of the BGS tower. For this purpose,
we make the following

Definition 3.2. Let K be an arbitrary field of characteristic p > 0, let F'/K be a
function field and let F be a finite separable extension of F'. Let @) be a place of ' and

P Dbe its restriction to F. We say that the place @ has property () for the extension
E/F,if

(x1) d(Q[P) = 2(e(Q|P) — 1).
(x2) There exists a finite separable extension H of F such that

— the place P is unramified in the extension H/F', and

— the extension HE/H is a Galois p-extension.

The definition is justified by the fact that in Proposition instead of requiring the
extension E;/F' to be a Galois p-extension, it is sufficient to make the weaker assumption
that it has property (x) for the place @Q;. It turns out that this is indeed the case in
all relevant cases in the BGS tower (see Lemma below). So although the critical
extensions in part (iii) (see Figure are not Galois p-extensions, they have property
(%) for the corresponding places.

We first prove the following generalization of Proposition
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Proposition 3.3. Let F/K be a function field of characteristic p > 0, Ey and Ey finite
separable extensions of F', E = FEq - Es the composite field of F1 and Eo. Let Q be a
place of E and Q1, Q2 and P be the restrictions of Q to E1, Es and F, respectively.
Suppose, that the places Q; have property (%) for the extensions E;/F (i = 1,2). Then
the place Q has property (%) for the extension E/E; for i =1,2.

Proof. The place @; has property (x) for the extension E;/F. So, let H; be an extension
of F, s.t. the place P is unramified in H;/F and H;FE;/H; is a Galois p-extension. Let
Hs be the corresponding extension of F' for Q2 and Fy/F. Let H = Hy - Hy be their
compositum. Since the place P is unramified in H;/F and Hy/F, it is unramified in the
extension H/F. Moreover, since the lifting of a Galois extension with Galois group G is
again Galois and its Galois group is a subgroup of G, H E;/ H will be a Galois p-extension
for i = 1,2. So, the extension H of F' satisfies the conditions in Definition for both
@1 and @ simultaneously.

Now lift everything by taking the compositum with H (see Figure. Since the place

Figure 3.1: Lifting by H

P is unramified in the extension H/F, by Abhyankar’s Lemma the places Q1, Q2 and @
will be unramified in the extensions E1H/E;, EoH/FE, and EH/FE respectively. Hence,
going up with H will not change the ramification behaviour. Since E;H/H is a Galois
p-extension for ¢ = 1,2, Proposition can now be applied, so d(Q|Q;) = 2(e(Q|Q;)—1)
for i = 1,2. Moreover Q; is unramified in the extension E; H/E; and EH/E;H is a Galois
p-extension for i = 1,2. So the place @) has property (%) for the extensions E/FE; and
E/E;. O

Remark 3.4. Let F'/K be an algebraic function field of characteristic p > 0 and let E be
a finite separable extension of F'. Let Q be a place of E and let P be its restriction to F'.
Suppose that the place @ has property () for the extension E/F. Denote by Eg and Fp
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the completions of the fields F and F' at the places QQ and P, respectively. Then it is easy
to see that the extension E’Q/ﬁp is a Galois p-extension and d(Q|P) = 2(e(Q|P)—1). So
an alternative approach would be to consider the completion of the fields in the tower at
relevant places and then to use a generalization of Lemma[3.1] to local fields, to determine
the ramification behaviour in the tower. A proof of Lemma for more general fields
is given in Section

We have to show, that all critical subextensions in Figure have property (x). By
rewriting Equation (2.2)), we immediately get the following
Lemma 3.5. (i) Fit! = Fi’j(q:j+1) = F4(1/xj41) for 0 <i < j, and the minimal
polynomial of 1/xj1 over F*7 is given by
1 1
T

TQ+ . _
1—xf+wﬁ”' 1—x,+uﬁ*

€ FYI[T).

(i) F=W = Fbi(z;_1) = FY(1/x;_1) for 1 <i < j, and the minimal polynomial of
1/z;_1 over FI is given by
T — (2 —297'—1)-T— 1€ FY[T).
Hence, by Lemma [3.5] each step of the pyramid in Figure can be given in the form
F(y)/F, where the irreducible polynomial of y over F is of the form 7%+ a - T + b, with
a,b € F. We have the following

Lemma 3.6. Let F/F, be a function field, and let E=F(y) be an extension of F obtained
from F by adjoining a root of the polynomial TP" + a - T + b, with a,b € F*. Let P be
a place of F. If (p" — 1) | vp(a), then condition (x2) of Definition [3.2] is satisfied; i.e.,
there exists an extension H of F, s.t. the place P is unramified in the extension H/F
and EH/H is a Galois p-extension.

Proof. Let H be the splitting field of the polynomial 77" + a - T over F (hence the
extension H/F is Galois). Denote by Z the set of roots of TP" +a - T. All roots of the
polynomial TP" + a - T + b are of the form y + a with o € Z C H. It follows, that the
lifting of E/F by H is a Galois extension. In fact, also the extension EH/F is Galois,
since it is the splitting field of TP" +a-T and T?" +a-T + b over F.

Let o be an automorphism of EH/H. Then o(y) = y + «, for some o € Z and
oP(y) =y+p-a=y. SooP =id, hence EH/H is a p-extension.

F contains a primitive (p™ — 1)-th root of unity. H/F is a Kummer extension of
degree d, where d | (p" — 1) and H is obtained from F' by adjoining a nonzero root of
the polynomial TP" + a - T. By the theory of Kummer extensions (see [20, Ch. IIL.7]),
the condition (p™ — 1) | vp(a) implies that the place P is unramified in the extension
H/F . O

Remark 3.7. In fact, EH is the Galois closure of the extension E/F.
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Remark 3.8. The construction in Lemma [3.6] is a special case of the following more
general situation: Let a(7") € F[T] be an additive separable polynomial; i.e., a(7) is
of the form a,T?P" + anTpn_1 + -4+ a1TP + aoT, with a; € F, ag # 0. Consider the
extension F = F(y) of F obtained from F' by adjoining an element y, which is a root of
the polynomial a(T") — u, where u is an element of F. Let H be the splitting field of a(T')
over F'. Then the extension FH/FH will be a Galois p-extension. However, in general
it is not easy to give sufficient conditions for a place to be unramified in the splitting
field of an additive polynomial.

Returning to the tower, let @ be a place of F,. (r > 1) which is ramified in the extension
F,./Fy and which is of Type III; i.e., 2;(Q) = 0 for some 1 < ¢t < r (see Figure .
Then the restrictions of the place () to the extension steps on the boundaries AB and
AD have property () for the corresponding extensions. More precisely, we have

Lemma 3.9.

a) For 0 <i<t—1, let M* = F' = Fy(x;, 2441, ...,2) and P = Q|psi. The fields
M? correspond to the fields along the line AB in Figure . Then, for0 <i<t—2,
the place P has property (x) for the extension M®/MT1.

b) Fort <i<r,let N' = F'=b = Fy(x;_1,24,...,2;) and R* = Q|xn: The fields N*
correspond to the fields along the line AD in Figure 2.8 Then, fort+1<i<r,
the place R' has property (x) for the extension N'/N~1.

Proof. From Figure we see immediately that for all extensions M7 /M7t (0 < j <
t —2) and N¥/N*=1 (t + 1 < k <) (i.e. extension steps along the lines AB and AD)
the restriction of the place @ is either totally ramified with ramification index e = ¢ and
different exponent d = 2¢ — 2, or unramified (e = 1,d = 0). In either case d = 2(e — 1).
So it remains to show that (x3) holds.

a) Note that M* = M+ (z;) = M1 (1/z;). By Lemma 3.5 (i), 1/z; is a root of the
polynomial

79— (2l —ad | —1).-T—1e M7

By Lemma [3.6] it suffices to show that

—1
(q — 1) ’ VUpit+1 (xgH — a;g+1 — 1).

Let $7 = Qlg,(z,)> for 0 < j <t —1. Note that e(P""[S™!) = ¢ — 1 (see Figure .
Since we have zf ;| — xlq_;l — 1 € Fy(wit1), it follows that
Vs q _qfl_l — (PSS L v q _qfl_l
pit1 | Ti1 — T = ¢( | ) - g (T — T
-1
=(q—1) vgin (mgH — x?ﬂ — 1),

(¢—1)

. q q—1
Vpit1 (miH — T — 1).
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b) Let W/ = Qlf,(a;)> for t < j < r. We have Nt = N=Y(z;) = N“1(1/x;). B
Lemma (i), 1/z; is a root of the polynomial
1

1 .
T + — T — — € NI
1— i+ 1/2)7] 1— 2+ 1/z]7]

By Lemma we have to show that

(¢—1)

1
URi*1< — )
1—xi 1+ 1/x?711

If i > ¢+ 1, this is clear, since in this case l—il/qu € Fy(x;_1) and e(RHWi™1) =
Ti—1
q — 1 (see Figure [2.7)). So

(o) =D :
VRi-1 — =\q — 'Uwifl( — )
1—x,1+ 1/.%';-1_11 1—o,1+ 1/37;-1_11

If i = t+1, then e(R"HWi~!) = 1. However in this case W1 = Qlf, (2, 1) = (xi-1=0)
is the zero of x; 1 in Fy(z;_1). So

1
’L)Rz‘fl( — )
1—o,1+ 1/373_11

i 1
= el® M (w1 = 0) vy ([ = r) = 10— 1)
i— i—1

which is divisible by ¢ — 1. O
Theorem 3.10. With notation as above, we have

d(Q | Q|F4(z0,...,xt)) = 2(€(Q | Q‘F@(mo,...,mt)) - 1)

Proof. Follows directly by Lemma iterated application of Proposition and tran-
sitivity of different exponents and ramification indices in towers. O

Theorem 3.11.

i U)o ala+2)
") = R S e =)

Proof. The degree of the different of F,./Fj is given by

degDiff (F,/Fo)= » Y dP|P)= > > dP'|p).

PeP(Fy) P'eP(F}) PeV(F/Fy) P'€P(F;)
P'|P P'|P

e The place (zg = 00) of Fp is totally ramified in every extension in the tower. Let Uy
be the unique place of F, lying over it. Uy is of Type I (see Section , SO
qr—l—l

e(Us|(z0 = ) = " and  d(Uso|(xo = 00)) = T_lq
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e The place (zp = 0) of Fj is totally ramified in every extension of the tower. Let Uy be
the unique place of F;. lying over it. Uy is of Type 11, so

e(Uol(zo = 0)) =" and d(Up|(xo = 0)) = 2(¢" — 1).

e To estimate the contribution to degDiff (F,./Fp) of places of F, lying over places of
Fpy in the set @ := V(F/Fy)\{(zo = 0), (xg = o0)}, let

Iy = (P e B(F) | Pl = (2 = 0)}.

Since for any P € I',, the ramification index is given by e(P|(z, = 0)) = ¢l¥/2) (where
|t] denotes the greatest integer not exceeding t), we have

S

[Fs : FZ($8)] =q° = qLS/2J ’ ‘F5|’ S0 |F | o %

It follows that

.
> D APIP) =3 > > dF'|PlR)
Ped prER(F,) =1 per, P'eP(Fy)

P/|P p/|ﬁ

Yy Y ( (P | Plr,) - (P’|f>>+d<P’|ﬁ>)

s=1 per, P'€P(F;)
P'|P

:ZZ > (=2 PP+ 206(P1P) - 1))
s=1 r, P'eP(Fy)
P'|P

AP WRILES 3 SIRLNE
s=1 per,  P'eP(Fy) s=1 per,
P'\p
r r+2+qr+1

:;Fs|'q'qr_8:qr+l ZqLS/QJ T+1 ZqLS/QJ q—l

=1

So, the degree of the different satisfies

. qr+1 r+2+qr+1
deg Diff (F}./ Fp) < ? +2((] -1)+ —1
_ 'r+2 4 4qr+1 o 2qr o 3(] 4+ 92 - qr+2 4 4qr+1 o 2q'r
qg—1 - g—1 '

Using Hurwitz genus formula, we get
¢+ 4 2g"

29(F,) — 2 = —2¢" + deg Diff(F, / Fy) < .
q [R—
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Therefore,

As an immediate consequence we obtain the main result of [2]:

Theorem 3.12. The limit of the BGS tower F/Fy, where { = ¢3, satisfies

_ N(F.) _ 2(¢* = 1)
e g(F) = q+2

Proof. Using Theorem and Theorem [3.11], we obtain

v(F) | 2 - 1)
Y(F) T q+2
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4 The Galois closure of the BGS tower

Next, we want to investigate the Galois closure of the BGS tower. The Galois closure of
a tower is defined as follows (see also [5]):

Let F = (F)n>0 be a tower of function fields over Fy. Let E; be the Galois closure of
the extension F;/Fy, for i = 0,1,2,.... Then the infinite sequence of function fields

&= (Ey, Er,...)

is called the Galois closure of F over Fy.
Note that Ey = Fy. We have the following Proposition (see [5, Prop. 2.1]):

Proposition 4.1. Let F be a tower of function fields over Fy, which has a nonempty
splitting locus (i.e. Z(F) # @). Then

(i) The Galois closure € of F is a tower over Fy; i.e. the field Fy is algebraically closed
m E; foralli=0,1,2,....

(ii) Z(€/Fo)=Z(F/Fo).
(i) V(E/Fo) = V(F/Fo).
Proof. See [0]. O

Let F be a tower over Fy, and suppose that its Galois closure £ is again a tower over
F;. Then F will be a subtower of £, and by Proposition we have

AE) < MF).

Now, let F = (Fy, F1, Fy,...) be the BGS tower over Fy, as defined above by Equa-
tion Let & = (Ep, E1, Ea,...) be the Galois closure of F over Fy. Note that
Ey = Fy = Fy(zp). Since the tower F has a nonempty splitting locus over Fy, by Propo-
sition it follows that £ is also a tower over Fy. Furthermore, V(E/Fy) = V(F/Fp)
and Z(E/Fy) = Z(F/Fp).

We are interested in the limit of the Galois closure £ of the BGS tower. In order to
determine the limit of the tower, we again consider the splitting rate v(€) and the genus
~v(€) of the tower separately. The first problem is easy:

Since Z(E/Fy) = Z(F/Fp), from Theorem we see that there are at least ¢(q + 1)
places of Ey, that split completely in the tower £. Hence, we have the following Propo-
sition:

Proposition 4.2. Let &€ = (Ey, E1, Es,...) be the Galois closure of the BGS tower.
Then the splitting rate v(E) of € satisfies

v(€) = lim 7N(EZ)

1—>oo[ i - 0]

> |Z(E/Fy)| = q(q + 1).
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Next, we want to investigate the genus v(€) of the tower £. Again, to estimate the
genus of the function field E; with ¢ > 1, we study the ramification behaviour in the
extension F;/Ej in detail. Since we are interested in the ramification behaviour, we will
consider for simplicity the same tower over the algebraic closure K = [y of Fy.

Let ® D Ej be a fixed algebraically closed field. Let » > 1. Then

E, = Ul(Fr)U2(Fr) e 'US<FT)7

where 01,09 ...,05 are the embeddings of F,. into ® over Fy (see Figure . Let @

E,
E) oo(Fy) /Us(Fr)
oi(F)  oa(Fy) SR ()
o1(F1) oo F os(F1)
N
0 0

Figure 4.1: E, = 01(F,)o2(F}) -+ - 05(Fy),

be a place of E,, which is ramified in the extension E,/Ey. Let P = Q|g,. Above,
we considered the ramification behaviour of the place P in the extensions o;(F;)/Fp,
1 < j < s in detail. Now, our aim is to determine the ramification behaviour of the
place P in the compositum FE, of o1(F}),09(F}),...04(F;). Clearly, P € V(E/Ep). B
Lemma [2.4] and Proposition [£.1] the ramification locus of £ is given by

V(E/Eo) = V(F/Fy) = {(z0 = 0), (z0 = 00), (z0 = 1)} U{(x0 = @) [ a € R},

where R = {a € F; | a9 —a? ! = 1}. We will consider the three cases P = (zg = 0), P =
(xo =00) and P € {(z0 = 1)} U{(x0 = ) | « € R} separately.

Proposition 4.3. For r > 1, let Q be a place of E,, such that P = Q|g, = (zo = 0).
Then d(Q|P) = 2(e(Q|P) — 1).
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Proof. For 0 < ¢ <r, 1 <j <s,let Qi = Q]Uj(pi). In Section 2| we have seen that
the place P is totally ramified in the extension o;(F;)/Fy, it is a place of type II, Q; ;41
is a pole of 0j(xit1), e(Qji+1]1Qj:) = ¢ and d(Qji+1]|Qji) =2¢ —2 for 0 < i < r —1,
1 < j < s. This situation is depicted in Figure

Ql,r Q2,r Qs,r
N z
q(2¢-2) q(2¢—2)
Q1,2 Q2,2 o o o Qs2
\ \q@q—m /

q(29—2) q(29—2)

Q11 Q21 Qs

q(29—2
q(2¢—2) q(29—2)
P

Figure 4.2: P = (xg = 0)

It was shown in Lemma that the place @ i+1 has property (x) for the extension
0j(Fit1)/o(F;), for 0 < i <r —1,1 < j < s. By repeated application of Proposi-
tion |3.3| and transitivity of different exponents and ramification indices in towers, we see
immediately, that d(Q|P) = 2(e(Q|P) — 1). O

Next we consider the the ramification behaviour of the place P = (xg = o0) in the
extension E,/Ej.

Proposition 4.4. Forr > 1, let Q be a place of E,, such that P = Q|g, = (xo = 0).
Then

q
d(Q|P) < . e(@IP).

Proof. Let F_1 = Fy(x_1), where

1—1‘,14—% :xg—xg_l;
x
ie. starting at By = Fy = K(xg), construct one step of the dual tower of F. By
Lemma (iii), there exists a place R of K(x_1,x0)/K (zo) lying over the place P =
(xg = 00) of K(xg), such that e(R|P) = ¢ — 1. Let S be a place of the composite field
E,.F_; lying over the place R and let Q" be the restriction of S to the subfield E, (see
Figure .

For 0 <i<r, 1<j<s,let Q; =Q,, ). As we have seen in Section |2 the place
P is totally ramified in the extension o;(F})/Fp, it is a place of type I, @}, is a zero
of oj(ziy1), e(Q},;411Q%,;) = ¢ and d(Q’;;1]Q%;) =g for 0 <i<r—1,1<j <s. This
situation is depicted in Figure [£.4]
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F—lEr S

Q/
F_4 R
Fy P
Figure 4.3:
1,r QQ T ,s,r
\\ \ %(q)
,1,2 Qz 2 ¢ o o ;,2
o\ @
/1 1 QQ 1 /

\\ qa(q)

Figure 4.4: P = (z¢ = o0)

Now lift everything by F_; (see Figure . The restriction of the place S to
F_10j(Fit1) has property (x) for the extension F_10;(Fi41)/F-10;(F;) for 0 <i <r—1,
1 < j < s (this follows by Abhyankar’s Lemma and the same reasoning as in the proof
of Lemma [3.9). By repeated application of Lemma and transitivity of different
exponents and ramification indices in towers, we obtain d(S|R) = 2(e(S|R) — 1).

By using transitivity of different exponents and ramification indices in towers, we get

d(R|P)e(S|R) + d(S|R) — d(S|Q') _ (g = 2)e(S|R) + 2(e(S|R) — 1)

d(Q'|P) = 510 < ans
q-e(S|IR)—2 _q-e(SIR) _ q-e(S|R) 4
e(51Q") = e(S|Q") ~ (¢—1)e(S|R)/e(Q'|P) 1 (Q'[P)

(see Figure [4.6]).
@ and Q' are places of E, lying over the place P of Ej and since E,/Ey is a Galois
extension, they will have the same ramification behaviour. Consequently,

AQIP) = d(Q|P) < Le(@P) = Le(@IP)

1
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UQ(F’;)

Figure 4.5:

S

d=2(e—1) \
Q'

Ifxp/

Figure 4.6:

Next, let @ be a place of E, and let P = Q|g, be its restriction to Ep. Assume that
Pef(zo=1}U{(zo=0a)|ac R}

In Section |2, we studied the ramification of the place @ in the extension o;(F;)/Fp.
Suppose that the restriction of @ to o;(F;) is ramified over Fy. It is a place of type III.
Furthermore, for some index ¢, with 1 <t < r, we have:

e The restriction of @ to oj(F;—1) is unramified over Fy.

e The restriction of @ to o;(F}) is tamely ramified over o;(F;—1), with ramification
index ¢ — 1.

e For t < i < r, the restriction of @ to o;(F;) has property (x) for the extension
0j(F;)/oj(Fi—1) (this follows from Lemma [3.9| and repeated application of Propo-

sition .

To determine the ramification behaviour of the place @ in the extension E,./Ey we
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have to consider the compositum of the o;(F,) with 1 < j < s, where the restriction
of the place @ has the properties above for each of these extensions o;(F;)/Fy. So the
following Lemma will be helpful:

Lemma 4.5. Let F be a function field over Fy and let Fy and Fy be finite separable
extensions of F. Let F' = F1Fy be the compositum of Fy and Fy. Let Q be a place
of F', and let Py, P, and P be its restrictions to Fy, Fy and F, respectively. Suppose
that the ramification behaviour of Py and Py over P are of the form above, i.e. they
are first unramified, then tamely ramified with ramification index q — 1 and then fol-
lows a sequence of extensions with the restriction of Q; having property (x). Then the
ramification behaviour of Q@ over P is also of the same form.

Proof. This is clear by Abhyankar’s Lemma and Proposition See Figure (consider
the sequence of intermediate fields along the arrow in the Figure). Note that by abuse
of language, we consider extensions, where the restriction of the place @ is unramified
also as extensions where the restriction of () has property (). O

Figure 4.7:
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Proposition 4.6. Let Q be a place of E,, such that P = Q|g, € {(zo = 1)} U{(x0 =
a) | o€ R}. Then

q
4QIP) < —2e(QIP).

Proof. By repeated application of Lemma [£.5] and by transitivity of different exponents
and ramification indices in towers, we see that there are intermediate fields Ey C K C
L € Ey, such that d(Q | Ql1) = 2¢(Q | Ql)—2, e(Ql1 | Qlic) = q—1 and e(Qlxc | P) = 1,
see Figure [£.8]

E, Q
d=2e—2
L QL
e=q—1
K Qlx
e=1
Ey P
Figure 4.8:
Then
d(Q|P) =d(Qlr | Qk)e(Q | Qlr) +d(Q | Q[L) = (¢ —2)e(Q | QlL) +26(Q | Q1) — 2

=0-eQ1Ql) ~2< (1 - 1e(@ ] Qlr) =

-(QIP).
0

Theorem 4.7. Let € = (Ey, E1, Ea,...) be the Galois closure of the BGS tower. Then
the genus v(E) of € satisfies

i 9D ala+2)
7(5) - 7‘1—>oo [Er : Eo] = 2(q - 1)

Proof. Let ® := V(F/Fy)\{(zo = 0), (zy = 00)}. Using Proposition [4.3] Proposition [4.4]
and Proposition we see that the degree of the different of E,/FEy satisfies

degDiff (E,/Eo)= > Y d@QIP)= > > dQIP)

PeP(Eo) QeP(Er) PeV(E/Ep) QeP(E,)
QP QP
= > d@IP)+ > d@PP)+ > > dQ[P)
QEP(E;) QEP(E;) Pe® QeP(E,)
Q|(z0=0) Q|(zo=00) QP
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= ) 2e@P) -+ Y e(QIP) + Y Z e(Q|P)
QEP(E;,) QcP(E;,) Ped QGIP’(ET
Q|(z0=0) Ql(zo=00) QP
<2 Y eQP)+ - 1 > e@lp) +Z oD QP
QcP(E;,) QcEP(E;,) pea ¢ QGIP(ET)
Q|(z0=0) Ql(zo=00) QP

q q
=2-|E,: E ——E B ——|P| - |Ey: E
[ 0]+q_1[ 0]+q_1\ - 0]

¢ +4q-2
=1
Using Hurwitz genus formula, we get

[Er . Eo]

29(E,) — 2 = —2[E, : Ey] + deg Diff(E, /Ey) <

Therefore,

. g(Br)  _qlg+2)
i [E, : Eo| = 2q=1)

O]

Theorem 4.8. Let F/Fy, with £ = ¢° be the BGS tower and let £ = (Eo, E1, Fa,...) be
its Galois closure. Then & is a tower over Fy; and its limit \(E) satisfies

. N(E) _2(2-1)
NE) = lim 2y 2 =52

v

Proof. Using Proposition [£.2] and Theorem [£.8] we obtain
v(€)

_ 2(¢* — 1)
TG PR

O

Remark 4.9. In [2, Sec. 5], as a variation of the BGS tower, a new tower B is given.
This tower B consists of alternating Kummer and Artin-Schreier extensions and contains
the BGS tower as a subtower. It is shown, that the limit A(B) of this new tower satisfies

2(q> - 1)
AB) 2 = o

It can be seen easily, that the tower B is a subtower of the Galois tower £ constructed
above. Hence the result about the limit of the tower B follows directly from Theorem [£.8]
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5 The key lemma

We have seen above that the main difficulty in computing the genus of a tower is to
resolve the ramification behaviour in composita, where the place is wildly ramified in
both directions, since in this case Abhyankar’s Lemma cannot be applied. The “key
lemma” is a very useful tool in such situations. In the case of function fields, a proof
of this lemma was given in [4]. Below, we give a proof of this result using the theory
of higher ramification groups, which is applicable in a more general setting. For a more
detailed exposition of the theory of higher ramification groups, we refer to [16].

Let F be a field, and let v : F — Z U {oco} be a discrete valuation of F' with value
group Z. Let O and P denote the corresponding valuation ring and place of F’; i.e.,

O = {a € Flv(a) > 0} and P ={a € F|v(a) > 0}.
We will always assume that the residue class field Fp := O/P is perfect, and
char Fp =p > 0.

We consider a Galois extension E/F whose Galois group G = Gal(E/F) is elementary-
abelian of order p?. Let Q be a place of E lying above P and denote by G; = G;(Q|P)
the i-th ramification group of Q|P,i=0,1,2....

Proposition 5.1. Suppose that for some s > 1,
G=Go=G1=...=Gs 2 Gsy1 = {id}.

Let E' be an intermediate field of E/F with [E" : F| = p and let P’ be the restriction of
Q to E'.

E Q
F P
Figure 5.1:

Then e(Q|P") = e(P'|P) = p, and the different exponents are as follows:
d(QIP) = (s +1)(p* — 1), and
d(Q[P') = d(P'|P) = (s + 1)(p — 1).
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Proof. By Hilbert’s Different Formula (see [20, Ch. IIL.8]),

d(QIP) =) (ordG; — 1) = (s + 1)(p* — 1).
i=0
Now let U := Gal(E/E’) and let U; = U;(Q|P’) denote the higher ramification groups
of Q|P'. Then
U;=UnNG,; for all i >0,
hence

Up=Ui=-=Us 2 Ugy1 = {id}.

It follows that
dQIP") = (s+1)(p—1).

By transitivity of different exponents,
d(Q|P) = d(Q|P') + p - d(P'|P),
hence
(s+1)@*—1) =(s+1)(p—1)+p-dP'|P).
So )
d(P'|P) = I;(S +1)(p*—p)=(s+1(p-1).

Proposition 5.2. Suppose that for somet > s > 1,
G:GOZ...:GS2G3+1:...:Gt2Gt+1:{’id}.

Let U := G411, and denote by H < G another subgroup of G of order p. Let E’
and Eo := E, and let P' := Q|p and Py = Q|g,.

IV\S“ /\
\/ \/

Figure 5.2:

Then the different exponents are as follows:

dQ|P) = (s + )(p* = 1)+ (t = s)(p — 1)

AQIP) = (t+1)(p—1)
AQIR) = (s + 1)(p— 1)
A(P|P) = (s + 1)(p— 1)
APIP) = (s +1+ =) p—1)
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Proof. d(Q|P) is clear from Hilbert’s Different Formula.
Let U; = U;(Q|P’) resp. H; = H;(Q|Py) denote the ramification groups of Q|P’ resp.
Q|Fy. Then
U=G,NU=Ufori=0,...,t, and Uy, = {id}.

Hence
d(Q|P") = (t+1)(p - 1).
Also, Hi=G;NH =H fori=0,...,s, and H; = {id} for i > s+ 1. Hence

d(QFo) = (s+1)(p—1).

By transitivity,
d(QIP) = d(Q|P') + p- d(P'|P),

hence
(s+ 1)@ =D+t —s)p—1)=(t+1)(p—1)+p-d(P'|P).

So we obtain
APIP) =+ ((s+ D0 = 1) = (s + Dlp= 1) = (s+ D - D).

On the other hand,
d(Q|P) = d(Q|Fo) +p - d(F|P),

hence
ARIP) =+ ((s+ 1 = 1) + (=)o~ 1) = (s+ Do - 1)
— (400 -+t =) -1)

=+ -1+ -1,

Proposition is summarized in Figure [5.3))

=(s+1)(p— 1/ \ (t+1)(p—1)
s+1+t3p1\ /s+1p1

Figure 5.3:
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Remark 5.3. Note that this gives a proof of the Hasse-Arf theorem in this situation;
i.e., s =t mod p.

We consider the situation as above; i.e., E/F is an elementary-abelian extension of
degree p?. Furthermore, P is a place of F' and Q is a place of E lying above P. Assume
that E, Ey are intermediate fields of E/F with [E) : F| = [Ey : F] = p and E; # Es.
Denote by P; the restriction of @ to E; for i = 1,2, and suppose that e(P|P) =
e(P2|P) = p.

Theorem 5.4. Situation as above. Assume that
d(P|P)=ri(p—1) and d(P2|P) =719(p—1)
with 71 > 1o (w.l.o.g.). Then the following holds:

(i) If 11 > ro, then Q|P is totally ramified and the different exponents of Q|P; are
d(Q|P1) = r2(p— 1),
d(Q[P) = (ro+p(r1 —r2))(p—1) = (ri+ (p = 1)(r1 —72))(p — 1)
(ii) If r1 = ro, then there is an integer r with
0<r<mnrm and r#1

such that
d(Q|P1) = d(Q|P2) =r(p—1).

Proof. (i) First note that in this case Q|P is totally ramified (otherwise, e(Q|P) =
e(Q|P2) = 1 and we would get two different values for d(Q|P) = d(P;|P)). So we are
in the situation of Proposition with Py = P, and P’ = P,. Using notation as in
Proposition [5.2] we obtain

t .
rn=s+1+ i and ro =s+ 1.
p
It follows from Proposition [5.2| that d(Q|P1) = d(P|P) = r2(p — 1), and
t—s
=Ty —Tg,
SO
t=s+p(r;—ra).
Therefore
t+1=s+1+p(r1 —r2) =12+ p(ri —r2)
and

d(Q|P2) = (r2 +p(r1 —7r2))(p — 1)
=(r+@-1(r1 —r2))p—1).
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(i) If Q|P; is unramified then we set r = 0. If Q|P; is ramified, we are either in the
situation of Proposition [5.1] or of Proposition [5.2

In Proposition [5.1| we get that d(Q|Py) = d(Q|P2) = d(P;|P), and we set r := 11 = ro.

In Proposition We have that r1 =ro = s+ 1+ t%’ and we set r := s+ 1; it is clear
that 1 <r < rq. O

As an immediate corollary, we get
Corollary 5.5. With the fields E, E1, Es and F' and the places Q, Py, P, and P as above,
assume that d(P;|P) = 2(e(FP;|P) — 1), fori=1,2. Then
A(QIP;) = 2(e(QIP) 1), fori=1,2

Proof. 1f Pi|P or P,|P is unramified, the statement is trivially true. Otherwise, we have
e(P1|P) = e(P|P) = pand d(P1|P) = d(P»|P) = 2(p—1). So by Theorem|[5.4] (ii), either
Q| P; is unramified, or Q|P; is totally ramified (i.e. e(Q|P;) = p) and d(Q|F;) = 2(p—1),
for i = 1,2. In either case, d(Q|FP;) = 2(e(Q|P;) — 1) for i = 1,2. O

As an easy consequence of the transitivity of different exponents in towers we get the
following Lemma:

Lemma 5.6. Let the field F' and the place P of F be as above and let E be a finite
separable extension of F'. Let M be an intermediate field of E/F. Let Q be a place of
E lying above P and let R be the restriction of Q to M. If d(Q|R) = t(e(Q|R) — 1) and
d(R|P) = t(e(R|P) — 1) for some positive integer t, then d(Q|P) = t(e(Q|P) — 1).

Proof.
d(Q|P) = d(R|P) - e(Q|R) + d(Q|R) = t(e(R|P) — 1) - e(Q|R) + t(e(Q|P) — 1)
= t(e(QR) - e(R|P) — 1) = t(e(Q|P) — 1).

As a partial converse of Lemma [5.6] we have the following Lemma:

Lemma 5.7. Situation as in Lemma . Suppose furthermore, that [E : F] =p",n>1
and the extensions E/M and M/F are Galois. If d(Q|P) = 2(e(Q|P) — 1), then

d(QIR) = 2(e(QIR) —1) and d(R|P) = 2(e(R|P) — 1).
Proof. See [0, Prop. 1.8]. O

Now we can easily prove the “key lemma”:

Proposition 5.8. Let the field F' and the place P of F be as above. Let Fy and Eo be
finite Galois p-extensions of F and let E = E1 - E5 be the composite field of E1 and Es.
Let Q) be a place of E lying over P and let P1 and Py be the restrictions of Q) to E1 and
Es, respectively. If the different exponents d(P;|P) satisfy

A(PIP) = 2(e(PIP) — 1) fori = 1,2,
then d(Q|P;) = 2(e(Q|P;) — 1) fori=1,2.
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Proof. Let G = Gal(E1/F) be the Galois group of the extension E;/F. Since G is a
p-group, we can find normal subgroups Gg, G1,Go, ... G, of G, s.t.

G=GyD>GD...0G, ={id}

and (G; : Gijy1) = p for 0 < i < r. Taking the corresponding fixed fields, we obtain
a refinement of the extension Ej/F into cyclic extensions of degree p, i.e. we have

intermediate fields
F=Ty,clyc...CcT.=Fy,

where T;11/T;, with 0 < ¢ < r, is a cyclic extension of degree p. Moreover, using

Lemma we see that d(Q|r1,., | Qlr;) = 2(e(Q|1s, | Q) — 1) for 0 < i < 7.
Similarly, the extension Eo/F can be refined to a sequence of cyclic extensions of

degree p, with d = 2(e — 1) in each step. Now repeated application of Corollary and

Lemma [5.6] gives the result. O
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6 Asymptotic lower bounds for some classes of codes over
cubic finite fields

It was shown in [2I], that several classes of codes over finite fields with square cardi-
nality, including the class of transitive codes and the class of self-dual codes, attain the
Tsfasman—Vl1adut—Zink bound. This was done by considering geometric Goppa codes
obtained from a new Galois tower over a finite field with square cardinality. This Galois
tower has only a single completely splitting place, but the tower is still asymptotically
optimal. The code is constructed by evaluating functions at all places lying above this
single completely splitting place. The transitive action of the Galois group on these
places gives rise to a transitive automorphism group of the constructed codes.

In this section, we will consider the same problem over cubic finite fields. The starting
point will be the BGS tower over cubic finite fields. Using the techniques from the
previous sections, we will construct a Galois tower having the same limit as the BGS
tower, but with less completely splitting places. This is accomplished by first collecting
several completely splitting places above a small number of rational places of a subfield
of the tower. Then the Galois closure of the BGS tower over this subfield is considered.
The ideal case would be to be able to collect all rational places coming from completely
splitting places over a single rational place of a subfield and still to get a Galois closure
over this subfield with a good limit. This seems to be quite difficult. Hence we only
go down to a subfield of degree g, which enables us to collect all rational places coming
from completely splitting places over a total of ¢ + 1 places. We show that the Galois
closure £’ of the BGS tower over this subfields has the same limit as the BGS tower (see
Theorem below).

In analogy with the definition of r-quasi cyclic codes, we introduce the notion of r-quasi
transitive codes (see Definition . Using the approach in [21], we obtain asymptotic
lower bounds for this class of codes, over cubic finite fields. We also obtain an asymptotic
lower bound for transitive isoorthogonal codes over cubic finite fields. The main tool is
the tower £’. This section closely follows [21].

6.1 Another Galois tower

Let F = (Fy, F1, Fy,...) be the BGS tower over Fy, as defined by Equation ie.
Fy = Fy(xzp) is the rational function field and F;11 = Fj(x;41) where
q q—1 _ 1 .
T T, =l-—z+— fori>0.

Let w = af — 247! Then

Fg(’w) gFg(lﬂo) :FO QFl c....
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The place (w = o0) of Fy(w) is totally ramified in the extension Fy(xg)/F¢(w) and

[Fe(zo) : Fo(w)] = g
Consider the tower
‘7:/ = (Fg(w)y]l‘?g(ﬂj‘o) = F07 Flv o ')7

and let & = (Fy(w), Eo, E1, Es, . ..) be the Galois closure of ' over Fy(w); i.e., E; is the
Galois closure of the extension F;/Fy(w), for i =0,1,2,....
Let ® D Fy(w) be a fixed algebraically closed field. Let » > 0. Then we obtain E, as

E, = Ul(Fr)U2(Fr) e 'Us(Fr)a

where 01,09 ...,04 are the embeddings of F, into ® over Fy(w)

As defined in Section let S = {y € F;|p(y) =0}. From the results in Section
we see that S C F, and the places (w = «) of Fo(w) with a € S split completely in
the tower F'. Hence, by Proposition it follows &’ is also a tower over F,. Further-
more we see that Z(E'/Fy(w)) = Z(F'/Fe(w)) 2 {(w = ) € P(Fy(w)) | « € S} and
V(E'JFy(w)) = V(F'/Fi(w)). We immediately get the following corollary:

Corollary 6.1. The splitting rate v(E') of the tower &' satisfies
> |Z(&' [Fy(w))| = |S] = ¢+ 1.

Next we want to estimate the genus of E; for ¢ > 0. We consider, as usual, the same
tower over the algebraic closure Fy; of Fy. let R := {a € Fy | a4 — %! = 1}. The
ramification in the extension Fy(xq)/Fy(w) can be easily computed (see Figure [6.1)):

e The place (w = 00) of Fy(w) is totally ramified in the extension Fo(xo)/Fy(w), the
place of Fy(xg) lying over (w = o0) is the pole of zg in Fy(xg). We have

e((wo = oo)|(w = 00)) = g and d((xo = o0)|(w = 0)) = ¢.
e There are two places of Fy(zg) extending the place (w = 0) of Fy(w). One is

the zero of x¢ in Fy(xg) and the other one is the zero of zg — 1 in Fy(zp). The
ramification indices are given as

e((xo =0)|(w=0)) =¢—1and e((xg = 1)|(w =0)) = 1.

e All other places of Fy(w) are unramified in the extension Fy(zq)/F¢(w).

e The places of Fy(zg) lying over the place (w = 1) of Fy(w) are the places (zg = a),
with o € R.

Combining this with Lemma we see that the ramification locus of F’ over Fy(w)
is given as V(F'/Fy(w)) = {(w = 0), (w = o0), (w = 1)}, and by Proposition we
obtain

V(E'[Fy(w)) = V(F [Fe(w)) = {(w = 0), (w = 00), (w = 1)}.
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(xg = 00) (xo=0) (zo=1) (xo =a) witha € R

d=gq e=q—1 e=1
(w = o) (w=0
Figure 6.1
, . . . . . . . . . .
a(@) a(20-2) *) ) *)
() q(2¢—2) Ll Iql Ll
. . . . . . . . .
a(a) q(2¢—2) 1 51 1
(zp = 00) (o =0) (xo=1) (xp=a) witha € R
o \ / \ /
(w = 00) (w=0)
Figure 6.2:

Combining the information about the ramification in the extension Fy(z¢)/F,(w) with
the results about the ramification behaviour in the BGS tower from Section |2, we see
that the ramification in the tower F” is as depicted in Figure where a dotted segment
indicates that this segment might be repeated several times.

Remark 6.2. Note that the place (w = 00) of Fy(w) is totally ramified in each step of
the tower F’. This will be used in the sequel.

Let » > 0, let @ be a place of E, and let P = Q\F[(w). Let P’ = Q|f.. Suppose
that P = (w = 1). Then either P’ is unramified over Fy(w), or for some index ¢, with
1 <t <r, we have:

e The restriction of P’ to F;_; is unramified over Fy(w).

e The restriction of P’ to F; is tamely ramified over F;_;, with ramification index
q— 1.

e For ¢t < i <, the restriction of @ to F; has property (x) for the extension F;/F;_.

If P = (w = 0), then the ramification behaviour of the place P’ over P is also of
the form described above (first tame ramification with ramification index g — 1, then
extensions, where the restriction of P’ has property (x)).
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So in either case (if P = (w = 1) or P = (w = 0)) we can apply exactly the same
reasoning as in Proposition to conclude that

q

dQIP) <

c(QIP).
Now, suppose that P = (w = o). By lifting everything by Fy(x_1), where

q—1

1—xz_1+ r=w=af—x
=
T

we can apply exactly the same reasoning as in Proposition [£.4] to conclude that

q
UQP) < —Loe(@IP)
(see Figure [6.3).
Fy
Fe) o) Bie)  Fen) B
NS
Fo(w)
Figure 6.3:

Theorem 6.3. The genus v(E') of & satisfies

N = lim g(ET) q+2
V(&) = Tl—>oo (B, : Fy(w)] = 2(g—1)°

Proof. We have seen above that for all Q € P(E,), such that P = Q N Fy(w) €
V(&' /Fy(w)) we have
q

d(Q|P) <

-e(QIP).
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So the degree of the different of E, /FEy satisfies

degDiff (B/Fw) = > > @)= Y Y da@lp)

PEP(F(w)) QEP(Er) PEV (&' [Fy(w)) QEP(E;)
QP Q|P
< XY heem=ty 0 > Y «elp)
PEV (& [Fo(w)) QeP(Er PeV (&' JFy(w)) QEP(E,)
QP QIP
_ 4 ' T _3q
e [V(E/Fe(w))| - [Er : Fo(w)] = - — B Fo(w)]
Using Hurwitz genus formula, we get
qg+2

29(E,) — 2 = —2[E, : Eo) + deg Diff(E, /Ey) < r[E . Ey).

Therefore,
lim < .
o (B, By 2(g— 1)

Theorem 6.4. The limit \(E') of the tower £ satisfies

— 1 N(Er) > 2((]2 — 1)
o g(By) T gt

Proof. Using Corollary [6.1] and Theorem we obtain

uE) 2t =1)

MED = v(&") q+2

O]

Remark 6.5. While constructing the tower above, we first went down to a subfield
Fy(w), in order to collect all rational places coming from completely splitting places over
a total of ¢ + 1 places. Letting furthermore

z=wit —w+1,

it is even possible to collect all such places over a single place, namely the place (z = 0)
of Fy(z). However in this case, estimating the genus of the Galois closure of the tower
over Fy(z) seems to be more difficult. The techniques used above do not suffice.
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6.2 Finite permutation groups and quasi transitive codes

Let us start by recalling some basic facts about group actions and finite permutation
groups. We restrict to the finite case, since this is the case needed in the sequel. For a
more detailed exposition, see [10] 14, 23].

Let G be a group acting on a finite set A. We will denote the permutation of A
associated to the element x € G by 7, and for a € A we write a” := m,(a).

For a € A, we denote by G, the stabilizer (isotropy group) of a in G and we denote
the orbit of @ under G by a®. It can be shown that for a € A, we have

0% = (G : Ga) (6.1)

The group G is said to act transitively on the set A, if there is just one orbit under the
action of G on A; ie., if for all aj,as € A there is a g € G, such that af = as. The
action of G on A is said to be half-transitive or %—fold transitive, if the orbits of the
action of G on A all have equal length. By Equation [6.1] it is easy to see that G acts
half-transitively on A, if and only if |G,| is the same for all a € A. If G, = {id} for all
a € A, then the action of G is said to be semiregular. Note that by Equation [6.1] an
action G is semiregular if and only if G acts half-transitively on A and |a“| = |G| for
some (and hence for all) a € G.

Lemma 6.6. Let G be a finite group with a semireqular action on a finite set A. Suppose
that the action of G on A has r distinct orbits and let m = |G|. Then there exists an
enumeration

A= (al,la a1,2,---,01m, A21,022,-..,02m, ---, Ar1,Ar2,... 7a7“,m)7

of the elements of A with the following property:
For all integers i,j with 1 <1i,j < m, there exists an element o € S, and an element
g € G, such that o(i) = j and
CL“Z,k = Qh,o(k)>

forall1 < h<r,1<k<m. In particular,

af; = a1, G3;=02j5, ..., G =0
Proof. For an element a € A, consider the map p, : G — a% defined by pa(g) = a9 for
g € G. Obviously, this map is surjective. Since the action of G is semiregular, p, will
be injective, and hence a bijection from G to a®. Let G = {g1 = id,go,...,gm}, and
let aq,a9,...,a, be elements from distinct orbits of G. For 1 < h <r, 1 <k <m, let
ahk = Pay,(gr) = aj*. Letting g = g; 'g; we see that aj . = (ajF)9 ‘9 = a,glkg" %
the above statements follow easily. Note that in the proof it is crucial that the action of
the group is semiregular. O

and

Next, let us recall some basic definitions from coding theory and define the notion
of a quasi transitive code. For details about quasi cyclic codes, we refer to [11]. For
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details about codes in general, see for instance [12] [15]. Let F; be the finite field with ¢
elements. For a linear code C over Fy, we will denote by n(C), k(C) and d(C) the length,
the dimension and the minimum distance of the code, respectively.

Definition 6.7. A code C over Fy is said to be transitive, if its automorphism group
Aut(C) is a transitive subgroup of Sy; i.e. if for all integers i,5 with 1 <, j < n, there
exists a permutation m € Aut(C), such that 7(i) = j.

Definition 6.8. Let r and m be positive integers. Let C be a (linear) code of length
n :=r-m over Fy. Let T denote the standard cyclic shift operator on Fj;. The code C is

said to be a r-quasi cyclic code or a quasi-cyclic code of index r, if it is invariant under
Tr.

Note that a quasi-cyclic code of index 1 is a cyclic code. Obviously, every r-quasi
cyclic code of length n = r - m over [, is permutation equivalent to a code, which is
invariant under the operator V;. on F}}, which maps

(61’1, 61’2, e ,CLm, 0271, 0272, Ce ,Cg}m, ey Cr,l, Cng, e 7Cr,m)

to
(Cl,mu Cl,lu e 7cl,m—17 c?,m, 02,1) R 02,777,—17 R Cr,ma CT,17 R Cr,m—l)-
As a generalization of quasi-cyclic codes, we make the following definition:
Definition 6.9. Let r and m be positive integers. Let C be a (linear) code of length
n :=1r-m over Fy. The code C is said to be a r-quasi transitive code or a quasi-transitive

code of index r, if there exists a transitive subgroup U of S,,, such that for all o € U,
the code C is invariant under the operator V,, which maps

(61,17 €1,2,--+,Cm, €21,C22,---5,C2m, -+ Cr1,Cr2,... 7cr,m)

to

(cl,cr(l)v Cl,0(2)s -1 Clo(m)s €2,0(1))C2,6(2)s - +31C2,0(m)s -+ Cro(1): Cro(2))--- 7cr,o(m))‘

In other words, if C is a r-quasi transitive code of length r-m, then for all integers i, 7,
with 1 < 7,7 < m, there exists a permutation 7 € Aut(C), such that 7(i +km) = j+km
foral 0 <k<r—1land n(t+km)=mn(t)+kmforall 1 <t<m,0<k<r—1.

6.3 Asymptotic lower bounds for quasi transitive codes

Next, we use the tower £ considered above to construct arbitrarily long quasi transitive
codes over cubic finite fields with good error correcting parameters. Hence we obtain
asymptotic lower bounds for the class of quasi transitive codes. We closely follow the
approach in [21].
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Theorem 6.10. Let £ = ¢>. Lett € {1,2,...,q+ 1} and let R,§ > 0 with

Then there ezists a sequence (C;) ;>0 of linear codes C; over Fy such that
1. Cj is a t-quasi transitive code for all j > 0,
2. n(Cj) — o0 as j — oo,
3. limj_o0 k(Cj)/n(Cj) > R and lim;j_,o d(C;)/n(C;) > 9.

Proof. Let € > 0. The proof proceeds by constructing arbitrary long t-quasi transitive
codes C over Fy, such that £(C)/n(C) > R — € and d(C)/n(C) > §. Consider the tower
& = (Fy(w), Eg, E1, Ea, . ..) constructed above. Choose an integer n large enough, so

that
1

t- ln+1
Let N := [E, : Fy(w)] and, as above, let S = {y € Fy | 79"! — 441 = 0}. We have seen
above, that the places (w = «) with « € S split completely in the tower E’. Let U be a
subset of S with |U| = ¢. Define the following divisors of E;:

D:= Z P and Go:= Z Q.

PeP(E,) QEP(Ey)
w(P)eU w(Q)=00

<e. (6.2)

Then deg D =t - N and by Remark

[Ey : Fo(w)] - N
[F : Fo(w)] — It

deg G <

Using Inequality we see that (deg Gy)/(t- N) < e. Choose r > 0, such that
deg Gy

1-6>r >1-§—e (6.3)
Consider the geometric Goppa code C := Cr(D,rGg). Then n(C) = t- N and by standard
estimates for the parameters of geometric Goppa codes (see [20, Ch. I1.2]), Inequality [6.3]
and Theorem we obtain

EC)  k(C) _r-degGo 1 1g(En) 1 q+2
— > _ - 1§ —e—_= —R_
W0 " ENZ TN TN @ N 0T ey B
and 4 J q
© _die)_, redesGy
n(C) t-N t-N

The Galois group I' := Gal(E,, /F,(w) acts on the places in the support of D. Moreover,
for a place P in the support of D, the stabilizer I'p of P in I' is just the decomposition
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group of P over P NFy(w). Since the place P NFy(w) splits completely in the extension
E,/F¢(w), we have I'p = T'_1(P | P NFy(w)) = {id}. So the action of I" on supp D
is semiregular and each orbit has length |T'|. So this action has a total of deg D/|I'| =
(Nt)/N =t orbits.

Since the divisor rGy is invariant under the action of I', the semiregular action of I'
on supp D yields an action of I on C = Cz(D,rGy). So by using Lemmal6.6] we see that
the code C is (permutation equivalent to) a t-quasi transitive code. ]

For ¢ = 7,¢ = 7 the graph of the Gilbert-Varshamov bound and the bounds obtained
above for various values of t is given in Figure [6.4

1 I I I I I I I I I
GV ——
" (=8 eeenn
08 F N =
TN t=1 ——
0.6 i
R
0.4 i
0.2 i
0 | : |
0.8 0.9

Figure 6.4: ¢ =17
Note that 1-quasi transitive codes are just transitive codes. By letting ¢ = 1 in the
above theorem, we immediately get the following corollary:

Corollary 6.11. Let { = ¢3. Let R,6 >0 with R=1—§ — 2(qqt21). Then there exists a

sequence (Cj)j>0 of linear codes C; over Fy such that

1. Cj is a transitive code for all j > 0,
2. n(C;) — 00 as j — oo,

6.4 An asymptotic lower bound for transitive isoorthogonal codes

In this section we will, following [21], develop asymptotic lower bounds for the class of
transitive isoorthogonal codes over cubic finite fields. This will again be accomplished
by use of the tower £ above.
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Let us start by recalling some basic definitions from coding theory. For more details,
we refer to [12), [I5]. Let C be a linear code over [y of length n. There is a canonical
non-degenerate bilinear form on IFj} x F}, defined by

n
<a,b>:= Zaibi
=1

for a = (a1,as,...,a,) and b = (b1, bo,...,b,) € F}'. The dual code C* of the code C is
defined as

Ct:={zcF}|<z,ec>=0forall ceC}.
The code C is called self-dual, if C = C*+. The code C is called self-orthogonal, if C C C*.
Let a = (a1,az,...,a,) € F} with ay,a,...,a, # 0. We define

a-C:={(a1-c1,a2-cay...,an cp)l(c1,co,...,cp) €CH CTFY.

The codes C and a - C are said to be equivalent. Obviously, equivalent codes have the
same parameters. The code C is called isodual if C is equivalent to its dual code C*.
The code C is said to be isoorthogonal if C is equivalent to a subcode of C*.

In [19], sufficient conditions for self-duality and self-orthogonality of geometric Goppa
codes are given. We will use these conditions and the tower £ considered above to
obtain arbitrary long sequences of transitive isoorthogonal codes over the cubic finite
field F, with good error correcting parameters. First we recall some results from [19].

Theorem 6.12. Let F/Fy be an algebraic function field over the finite field Fy. Let
Py, Py, ... P, be pairwise different rational places of F/Fy. Put D = Py + Po+ ...+ Py,
and let G be a divisor of F/Fy, such that supp G Nsupp D = @. Suppose there is a
canonical divisor W, such that

1. W+ D >2G,
2. vp(W)=—1, fori=1,2,...,n.

Then, the geometric Goppa code Cr(D,QG) is isoorthogonal; i.e., there exists an a €
(FA\{O})™ such that
a- C,C(Da G) - Cﬁ(D> G)J_

The vector a can be given as follows: let n be a differential of F, such that (n) = W.
Then

a = (resp,n,resp,1n,...,resp, M),

where resp,n denotes the residue of the differential n at the place P;.
Proof. See [19]. O

Now let £ = ¢® and consider the the tower & /F, constructed above. Recall, that the
ramification locus of the tower is given as

V(&' [Fe(w)) = {(w = 0), (w = 00), (w=1)}.
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For n > 0, let

ZP,AQ;L):ZPandA = > P

PcP(E,) PcP(E,) PcP(E,)
P|(w=0) Pl(w=00) Pl(w=1)

For n > 0, let e(()n), ego) and e( ™ be integers, so that

Cong, /5, (uy(w = 0)) = e AT Conp, ) (w = 00)) = e - AL

o0

and

Cong, /r,(w)((w = 1)) = e A,

Similarly, for n > 0, let d(()n)7 d?..’}) and dgn) be integers, so that
Diff (E,, /Fo(w)) = d{ - AL + d(® - A® 4 (. A,
Theorem 6.13. Let £ = ¢> and let 0 < R < 1/2,6 > 0 with

q+2
2(q—1)

Then there exists a sequence (Cj)j>0 of linear codes C; over Fy such that

R=1-6—

1. Cj is a transitive isoorthogonal code for all j > 0,
2. n(Cj) — o0 as j — o0,
3. limj_ k(Cj)/n(Cj) > R and limj_.o d(Cj)/n(Cj) > 6

Proof. Let S = {y € Fy | 44t! —~ +1 = 0} C F,. We have seen above, that the places
(w = ) with a € S split completely in the tower E’. Fix an element £ € S. Then the
place (w = &) of Fy(w) splits completely in the tower £'. Define the following divisor of

E,:
D= Y P
PeP(Ey)
Pl(w=¢)
Consider the differential
o dw
n:= P 3

The divisor of n in E, is given by

W = () = —(w — &) — 2(w)Er + Diff(E,, /Fy(w))

e AW~ N P 2e - AW +af” - AFY 4+ d - AL +af - AT

PeP(E,)
Pl(w=¢)

d™ - Al 4 (e — 2™ 4 ay . AW 4 @™ A — pt)
= a, AT 45,4 4 ¢, A — D,
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where a,, = dén), b, = eé? -2 egg) + déﬁ) and ¢, = dgn). Note that vp(W(”)) = —1 for
all P € supp D™ and W™ 4 D) — anA[()n) + bnAgZ) + angn).
For integers a,b,c with 0 < a < a,/2,0 < b < b,/2 and 0 < ¢ < ¢,/2, consider the
divisor
HY = aAl? + AW 4+ cA,
and define the geometric Goppa code
- CL(D(n) H(n) )

a,b,c » *a,b,c

We have
2H, 0 = 2a A" + 2040 + 2cA™ < 0, AT 4 b, 4D 4 ¢, A" = W™ L pOV),

so by Theorem we see that the code Cgbﬂ is isoorthogonal for all a,b,c with
0<a<ap/2,0<b<b,/2and 0 < c < ¢,/2. The Galois group of E,/F;(w) acts
transitively on all places in the support of D™ which consists just of all places of E,
lying over the place (w = &) of Fy(w). Furthermore, the divisors A(()"), Ag) and Agn) are
invariant under the action of the Galois group of E,/F¢(w). Therefore the code C7', _ is
transitive. Using the same argument as in the proof of Theorem [6.10] we see that ‘such

sequences of codes can be found. O
Remark 6.14. Let £ = ¢3. Let t € {1,2,...,g+ 1} and let 0 < R < 1/2,§ > 0 with

3+tlg—1)

:1— —
a ’ 2t(q—1)

Then one can show that there exists a sequence (C;) ;>0 of t-quasi transitive isoorthogonal
linear codes C; over Fy with n(Cj) — oo as j — oo such that lim;_. k(C;)/n(C;) > R
and lim;_.o, d(C;)/n(C;) > 0.
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