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Abstract: An Edgeworth expansion for the sum of a fixed function g of normed uni form spacings 
is established under a natural moment assumption and an appropriate version of Cramer's condi­
tion. This condition is shown to hold under an easily verifiable and mild assumption on the func­

tion g. This is done by proving Cramer's condition for statistics of the general type f(X) under 
quite weak assumptions on the random variable X and the function f: IR"'--. IRk. 
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1. Introduction 

Let U1, U2, ••• be a sequence of independent uniform (0, l) random variables. For 
n=I,2, ... , Ui:n::;:;U2 : 11 :5···:5U11 , 11 denotetheordered U1> U2, ••• ,Uw Let U0 , 11 =0 
and U11 + 1 :n = l. Uniform spacings are defined by 

( 1. I) 

Let g: [O, oo )--+ IR be a fixed nonlinear measurable function and define statistics T,, 
by 

n+I 

T11 = I: g((n + I)D111 ), n = 1, 2, .... 
}=I 
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(1.2) 
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Statistics of this form can be used for testing uniformity. 
There has been considerable interest into the asymptotic distribution theory for 

statistics of type (1.2). An excellent survey of first-order limit theory for statistics 
of the form (1.2) was given by Pyke (1972) according to whom a study of the rate 
of convergence for sums of functions of uniform spacings is of interest. 

We will use the following well-known characterization, which has been applied 
by Le Cam (1958) in order to prove first-order limit theorems. Let Yj, j = 

I, 2, ... , be independent exponential random variables with expectation 1. Let, for 
n= 1, 2, ... , 

11+ I 

w,, = L g(Yj) (1.3) 
j;J 

and 
11+ I 

S11 = L (Yj-1). 
j;l 

(1.4) 

Then 

(1.5) 

i.e. T,1 has the same distribution as a sum of independent random variables given 
another sum of independent random variables. 

With the aid of (1.5) Does and Klaassen (1984a,b) proved Berry-Esseen bounds 
of the order n - 112 for the normal approximation for statistics based on uniform 
spacings under natural moment assumptions. In Does and Helmers (1982) 
Edgeworth expansions were established for statistics of the form (l.2) under a 
natural moment assumption and an integrability condition on the simultaneous 
characteristic function of ( Y - 1, g( Y)). In the present paper it is shown that the lat­
ter integrability condition can be replaced by a much weaker and more natural 
Cramer-type condition. This condition holds under an easily verifiable and mild 
assumption on the function g, as is stated in Theorem 2.1. Cramer's condition for 
statistics of the general type f(X), where X is a random variable taking values in 
IR 111 and f: IR 111 ---> IRk is a measurable function, is studied in Lemma 3 .1. 

2. An Edgeworth expansion 

Let Y be an exponential random variable with expectation l and let g be a fixed 
real-valued measurable function defined on IR+. Introduce, whenever well-defined, 
a function g by 

g(y) = (g(y)-µ- r(y- l))(a2 - r 2)- 112, y> 0, (2.1) 

where 
µ =Eg(Y), (2.2) 

and 
r = Cov(g( Y), Y). (2.3) 
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Note that a 2 = r 2 iff g is linear and hence T,, is degenerate. 

We shall establish an asymptotic expansion with uniform remainder o(n · 1) for 

the distribution function 

Fn(x) = P((n(a 2 - r 2))". 112 (T,, - (n + l)µ) :o;x), x E IR. (2.4) 

Let Q denote the characteristic function of (Y-1, g(Y)), i.e. 

n(s,t)=Eeis(Y-1l+i1g(Y), ( ) IR' °"' S, t E -. (2.5) 

Let et> and <I> denote the distribution function and density of the standard normal 

distribution and let II · II denote the Euclidian norm in IR 2 , i.e. l\(s, !)ii= (s2 + t 2) 1/ 2, 

for (s, t) E IR 2 . 

Theorem 2.1. Let F,, be as in (2.4) (lf (I. 2), (2.2) and (2. 3)) and let g: [O, oo )-> IR 

be a measurable function such that 

(2.6) 

and for an interval (c, d) C (0, oo) on which g is almost eve1:vwhere differentiable 

with derivative g', 

g' is not essentially constant on (c, d); 

then 
(2.7) 

lim n sup lr~1 (x)- Fn(x)I = 0, 
n·-~co xelk 

(2.8) 

where 

F,,(x) = cf>(x)- </>(x){ n- 112 (), K 3(x2 - 1) +a)+ n - 1 (}4 K 4(x3 - 3x) 

+ {2 K~(x5 - !Ox3 + l 5x) + H - 4aK3 + b)x+ ~ aK3x 3)} 

with 
(2.9) 

K3 =Eg 3( Y), K4 = Eg 4 ( Y)- 3 - 3{ (£g2( Y)( Y- 1)} 2, 

a= -fEg(Y)(Y-1)2, (2.10) 

b= 3{£g(Y)(Y-1)2 }2 -2£g2( Y)( Y- 1)2 + 4Eg 2(Y)(Y- l) + 6. 

We note that Condition (2.6) is obviously necessary for the expansion (2. 9) to be 

well-defined. 

Instead of Condition (2.7) on the function g, Does and Helmers (1982) used an 

integrability condition on the simultaneous characteristic function of ( Y - 1, g( Y)), 

i.e. 

\'"° \'"° lQ(s,t)i1'dsdt<oo, forsomep::=::l, 
•' -- 00 ., CXl 

(2.11) 

to validate the expansion (2.9). Integrability conditions like (2.11) are commonly en­

countered in problems of establishing asymptotic expansions for conditional 
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distributions (see e.g. Michel (1979)). An assumption equivalent to (2.11) is that 
there exists an integer k such that the k-th convolution of ( Y - l, g( Y)) has a bound­
ed density (cf. Bhattacharya and Rao (1976), Theorem 19.l). According to the 
Riemann-Lebesgue lemma (cf. Theorem 4.1 in Bhattacharya and Rao (1976)) this 
implies that le(s, t)lk-> 0 as ll(s, t)jj-> oo. Consequently (2.11) is much stronger than 

Jim sup le(s, t)I < 1. 
ll(s, /)ll->ex> 

(2.12) 

From the proof of Theorem 2.1 it is clear that (2.6) and Cramer's condition (2.12) 
suffice for (2.8) to hold. Lemma 3.1 shows that (2.7) implies (2.12). The fact is that 
this lemma gives conditions for the validity of Cramer's condition for statistics of 
the general type f(X), where X is a random m-vector and f: IR 111 -> rRk is a 

measurable function. 
Lemma 3 .1 extends Lemma 1.4 of Bhattacharya (1977) with a new and simpler 

proof. Another way to prove Cramer's condition for a statistic of type j(X) is to 
show the stronger property that its distribution has a nonzero absolutely continuous 
component with respect to Lebesgue measure. This problem is treated in Sadikova 
(1966), Yurinskii (1972) and Bhattacharya and Ghosh (1978). The conditions of 
Lemma 2.2 of Bhattacharya and Ghosh (1978) are a little bit more restrictive than 
the conditions of Lemma 3.1, but the conclusion of their Lemma 2.2 is much 
stronger. 

In Section 3 of Pyke (1965) some examples of functions g are given. These func­
tions are related to g1(x)=x,., r>O, n=l, g2(x)=lx- ll, g3(x)=logx and 
g4(x) =x- 1• The functions g1, g2 and g3 are all included in Theorem 2.1. Note that 
g4 does not satisfy (2.6). 

l f we standardize the statistic T,, ( cf. ( 1.2)) exactly then it should be possible to 
verify that under the assumptions of Theorem 2.1 relation (2.8) holds, with Fn 
replaced by the distribution function of (T,, -ET,,)(Var Tn)- 112 and Fi, by the right­
hand side of (2. 9) with a= b = 0. One may prove this by a refinement of Lemma 3 .4 
from Does and Klaassen (l 984a). 

We note that, although we have proved our results for a fixed function git seems 
to be possible to generalize Theorem 2.1 to functions gj11 ; i.e. functions depending 
on thej-th spacing and sample size n. A Berry-Esseen theorem for this more general 
case was proved in Does and Klaassen (l984b). 

3. Proof of Theorem 2.1 

Without loss of generality we may replace g by g (cf. (2.1)), because this does not 
affect F,, and the assumptions of the theorem. In other words we assume thatµ= 0, 
a 2 = 1 and r=O (cf. (2.2) and (2.3)). Let Xn denote the characteristic function of 
n-112 T,,; i.e. 
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XnU) = \"" eiix dF;,(x), 
•· - 00 

(3. I) 

with F,, as in (2.4). By Esscen's smoothing lemma (see e.g. Feller (1971 ), Lemma 

XVI 3.2) it suffices to prove that 

f11s:11log11 lxn(t)l~r,(t)I dt=o(n-1), (3.2) 

where Xn is the Fourier-Stieltjes transform of F,, (cf. (2.9)); i.e. 

X.11(1) = 1· 00 
eit.\ d.F,,(x) 

• 00 

1'12\1 a.. K3 . l b , (K4+4aK1) 4 /(? 6] 
=e ) +1111l--1-,1t· --1-+ . / --· t . 

\._ n - 6n ' - 811 24n 72n 
(3.3) 

Since 
11 · 1cx11U)-l)lsEln 112 T,,lsn· 112 (n+l)Elg((11+l)D 111 )I 

= n 112 \'11+ I lg(y)I (1-~)11-1 dys e2n1!2 ·1·00 jg(y)le .1· dy, 
. 0 n+ 1 . 0 

for any t, x 11 (0) = f,,(0) = 1 and X. 11 has a bounded continuous derivative with respect 

to t, it is easily verified (see also (2.50) of Bickel and Van Zwet (1978)) that 

.\ rs:n '111·11x,,(t)-f11Ct)I dt=O(n 311). (3.4) 

According to Lemma 3 .1 of Does and Klaassen (l 984a) we can choose a regular 

version of the conditional distribution of n 111 W11 given n l!l S11 =x (cf. 

( 1. 3)-(1. 5)), such that for this version 

XnU) = Eei111 ' 'T,, = E(ei111 '' w,, In . 111S,,=0). (3.5) 

Let 1/111 be the characteristic function of (n- 112 511 , n 112 W,,); i.e. 

l/ln(s, t)= [Q(sn-112, /11-112)]11+ 1, (3.6) 

with Q as in (2.5). 
With the aid of Plancherel's identity (see e.g. Theorem 4.1 of Bhattacharya and 

Rao (1976)) we check that for all t (cf. Does and Klaassen (1984a), formulas (3.15) 

and (3.16)), 

1·
00 l1//11(s, t)I ds= \

00 le(sn- 112 , tn- 12 )i"+ 1 ds 
•· 00 ,. -oo 

s11112 \'"" lo(s, tn i12)l2ds=2rr11112 \"'"e 1ydy=nn112 . 

• ·- 00 • () 

(3.7) 

Let hn be the density of /1 - 112 S11 . In view of Lemma 3 .1 of Does and Klaassen 
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(1984a), (3.5) and (3.7), Fourier inversion of 

1/111(s, !)= \"' eis.'.{E(ei111 ''w,,ln112511=x)h11(x)} dx 
.. - 00 

(3.8) 

yields 

x11 (t) = (2nh 11 (0))- 1 \ 
00 

1;1 11 (s, t) ds. 
,-00 

(3.9) 

An argument like in (3.7) shows that for any r5 and t, 

I I 11' I -Jn)jn-1 I l/f 11 (s, t) ds~ nn - sup Q(S, In - . 
, is: ?:t5n 1 2 :5 1 ~ (5 

(3.10) 

To show that (3.10) is exponentially small we use the following lemma. 

Lemma 3.1. Let X be a random variable taking values in IR 111, the distribution of 
which is absolutely continuous on some Borel set B with P(X E B) > 0. Let 
f: 1R 111 -> IRk be a measurable function, which is Lebesgue almost everywhere dif­
ferentiable on B with the k x m matrix/ as diJ.ferential. If all y E iRk \ { 0} satisfy 

P((./(X))l y =0IxEB)<1, (3.11) 
then 

lim sup jEeiu'J\X)I <I (3.12) 
j!V;' --.;. 00 

holds. 

Proof. See Appendix. 

By taking m = I, k = 2, j(x) = (x, g(x)) and B = (c, d) in Lemma 3. I and in view 
of Condition (2.7) it follows that (2.12) holds for g replaced by g and that hence 
(3. l 0) is exponentially small. 

The theory of asymptotic expansions for the density of a sum of independent and 
identically distributed random variables (see e.g. Feller ( 1971 ), Theorem XVI 2.2) 
implies 

hn(O) =-1-1_·' (1- 2-) + O(n _312). 
(2n) " 12n 

With the definition (cf. Does and Helmers (1982), formula (3.5)) 

Wn(s, t)=e <s'+i')l2[1- Gn\ 12 (E,g3(Y)t 3+3Eg2(Y)(Y- l)t2s 

+ 3Eg( Y)(Y-1)2ts2 + 2s3) +-1-((Ef\ Y)- 3)t 4 
24n 

+4Eg\Y)(Y- l)t 3s+6{Eg2(Y)(Y-1)2 - l}t 2s2 
+ 4Eg( Y)( Y - 1 )3 ts 3 + 6s4) 

(3.13) 
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1 
- -(Eg3(Y)t 3 +3Eg2(Y)(Y- l)t 2s 

72n 

+ 3Eg(Y)(Y- I)-rs-+ 2s· t--W +s-) - , ., ,., I , .,j 
2n 

and (3.13), we find after some computations (cf. (3.3)) 

X11(t)=(2nh 11 (0)) 1 \'"' !jl11 (s, t)ds+O(n 32 (1 +t 6)e·· 122), 

' - 00 

uniformly in t. 
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(3.14) 

(3.15) 

Hence, in view of (3.2), (3.4), (3.9), the exponential bound on (3.10), (3.13), 

(3.14) and (3 .15), it suffices to show that for some t5 > 0, 

\,, ':s,i,:snlog
11

ltl··I1 \ :s,,1112 {\Jf11(s,t)-lji,,(s,t)}dsldt=o(n- 1). (3.16) 

Application of Theorem 9.12 of Bhattacharya and Rao (1976) (with V=l, s=4, 

k = 2 and a= (0,0)) yields 

.\I:sl1l:sE11'' ltl I tsl:san', l\Jln(S, t)-ifin(S, t)idsdt=o(n 1), (3 .17) 

for some c: > 0 and b > 0. By the same theorem (with a= (0, I)) we obtain 

\
. 1 · 1 . a I 

. n ':sii :sl ,\i'.:S<ln' 2 t .\ au[l/f 11 (S, U)-lji,,(s, u)j duds dt=o(n 1). (3. 18) 

Moreover, the classical theory of Edgeworth expansions for sums of independent 

and identically distributed random variables yields 

. I . I I 1-\ . {\Jf11 (s,O)-lji11 (s,O)}ds dt=O(n- 3121ogn). (3.19) 
• n 2 :5 I 1 I :S I f • lsl :5 Jn 1 2 

Combining (3.16)-(3.19) we see that it remains to show that 

t11 1 2 :5!1:511log11 tsl:5<>11'' f I \Jin(;, t) I+ I lji 11
(;, t) lJ dsdt=o(n 1

). (3.20) 

But this is easily seen to be a simple consequence of formula (3.14), Lemma 3.1 and 

Condition (2. 7) (cf. the argument after Lemma 3.1 ). This completes the proof of 

Theorem 2.1. 

Remark 3.1. As in the classical proof of Edgeworth expansions for sums of indepen­

dent and identically distributed random variables, one needs a condition to 

guarantee that for all c:>O, 

\' IXn(/)I d ( ··I) -- t=O n . 
,,c11 1 '~sl1!:511logn t 

(3.21) 

In view of (3. 9), (3 .13), (3 .6) and an argument like (3 .10), condition (3 .21) is implied 
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by and presumably almost equivalent to 

\. 11 I I ( ··12,tn-112)111 ldt=o(n-112). (3.22) 
, w' ''" 11 ,,;n log 11 

/ :~p Q sn 

The natural Cramer-type condition to ensure this reads as follows: 

sup suplQ(s,t)l<l, for any 1:>0. (3.23) 
jl! ?:I: SE IF 

Under (2.6) this is easily checked to be equivalent to (2.12). 

Appendix 

Without loss of generality we assume B = rR 111 • Let { u1 } be a sequence in rRk with 
II u111--> oo and 

Jim jEeiuj/(XJI =Jim sup jEeiu'/(X)I · (A.I) 
)~ oo lull·~ 00 

Let w1 be the maximum of the absolute values of the coordinates of u.i and assume, 
by selecting subsequences if necessary, that w1 

1 u1 converges to some y E IRk \ {O}. 
Let z E IR 111 and define 1:1 = wi- 1 z. Then 1:1--> 0, as)-+ oo, and since X has a density on 
ll". 111 , the Y'1 (IR 111 )-continuity of translations implies 

Because f is almost everywhere differentiable this yields 

Eeiu;J(X) = Eeiu,'f(X) + iy 1/iX)~ + o( I). 

(A.2) 

(A.3) 

With Z a N(O, Im) random variable, I111 the m x m identity matrix, X and Z in­
dependent, we obtain from (A.3), 

Jim IEeiv,'/(XJI =Jim IEeiu)/(,\)+iy'/(XJzl 
j--;.oo j-+oo 

= lim IEeiv) /(,\Je -1!(/(XJJ' yl1'12I 
j--·)o 00 

=::;Ee -111/IXJJ' yf12_ (A.4) 

Combining (A.I) and (A.4) we see that (3.12) can be violated only if there exists a 
y E rRk \ { 0} such that (j(X ))Ty is degenerate at 0. In view of (3. I I) this can not be 
the case. 
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