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Abstract— The performance of bit-interleaved coded modula-
tion (BICM) with shaping (i.e., non-equiprobable bit probabili-
ties) is studied. For the AWGN channel, the rates achievable with
BICM and shaping are practically identical to those of coded
modulation or multilevel coding, virtually closing the gap that
made BICM suboptimal in terms of information rates.

I. INTRODUCTION

For non-binary transmission in the AWGN channel, three
main coding constructions that achieve information rates
close to the channel capacity are known: coded modulation
(CM), bit-interleaved coded modulation (BICM), and multi-
level coding (MLC). CM dates back to the pioneering work
of Ungerböck [1], and merges coding and modulation in a
single entity. In contrast, BICM separates them, and maps a
simple binary code onto a non-binary modulation [2], [3], [4].
MLC makes use of multiple binary codes, one for each bit in
the binary label of the modulation symbol [5], [6].

CM yields the highest information rates. It is closely fol-
lowed by MLC (for equiprobable modulation symbols the rates
coincide) and, with a larger loss, by BICM. In terms of error
exponents, the situation is somewhat reversed, with CM again
the best, but now BICM beats MLC at low rates. Whereas
previous analyses of BICM in the literature assume that the
modulation symbols are used equiprobably, in this work we
lift this assumption and consider shaping, whereby the bit or
symbol probabilities are arbitrary. We will see that BICM with
shaping achieves both information rates and error exponents
very close to those of CM, thus closing the gap which made
MLC better in terms of information rates. Practical coding
schemes based on BICM with shaping have been studied in
[7], illustrating that the gains predicted by our theoretical
analysis are achievable in practice.

II. PRELIMINARIES

Consider a memoryless channel with input X and output
Y , respectively belonging to the sets X and Y . A block code
M⊆ XN is a set of |M| vectors (or codewords) x of length
N (the number of channel uses), i. e. x = (x1, . . . , xN ) ∈
XN . Let M ∆

= |X | denote the cardinality of X and m
∆
=

log2M the number of bits required to index a symbol. The
output y

∆
= (y1, . . . , yN ) is a random transformation of the
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input with transition probability distribution PY |X(y|x). For
memoryless channels PY |X(y|x) admits the decomposition

PY |X(y|x) =

N∏
k=1

PY |X(yk|xk) (1)

With no loss of generality, we limit our attention to contin-
uous output and identify PY |X(y|x) as a probability density
function. We adopt the convention that capital letters repre-
sent random variables, while the corresponding small letters
correspond to realizations of the variables.

At the source, a message m drawn with equal probability
from a message set {1, . . . , |M|} is mapped onto a codeword
x. We denote this encoding function by φ, i. e. φ(m) = x. The
corresponding transmission rate R is given by R ∆

= 1
N log |M|.

At the receiver, the decoder determines the codeword decoding
metric, denoted by q(x,y), for all codewords, and outputs the
message m̂ whose metric is largest,

m̂ = arg max
m∈{1,...,|M|}

q(φ(m),y). (2)

The metrics we consider are products of symbol decoding
metrics q(x, y), namely (with some abuse of notation)

q(x,y) =

N∏
k=1

q(xk, yk). (3)

For maximum a posteriori (MAP) decoders, the decoding
metric is given by q(x, y) = PY |X(y|x)PX(x). More gen-
erally, a decoder finds the most likely codeword as long as
the metric q(x, y) is a strictly increasing bijective function
of PY |X(y|x)PX(x). Instead, if the metric q(x, y) is not a
bijective function of PY |X(y|x)PX(x), we have a mismatched
decoder [8], [9].

A. Coded Modualtion
The random coding ensemble corresponding to CM has

channel inputs selected i.i.d. from X according to a probability
distribution PX(x). The CM decoder is MAP. The largest
information rate that can be achieved with CM under the
constraint x ∈ X is

Ccm = sup
PX(X)

I(X;Y ). (4)

Also, for any input distribution PX(X), the error probability
averaged over the random coding ensemble satisfies [10]

P̄e ≤ e−NEr(R) (5)



where Er(R) = sup
0≤ρ≤1

E0(ρ)− ρR and

E0(ρ)
∆
= − logE

[(∑
x′

PX(x′)

(
PY |X(Y |x′)
PY |X(Y |X)

) 1
1+ρ

)ρ]
.

(6)
The expectation is carried out according to the joint distribu-
tion PX,Y (x, y) = PY |X(y|x)PX(x).

B. Bit-Interleaved Coded Modulation

In practical CM schemes, since the codewords are selected
elements of XN and the alphabet X has typically more than
2 elements, the corresponding codes are non-binary. BICM is
a different construction where the underlying code is binary.
Originally analyzed in [3] under the assumption of infinite-
depth interleaving, this restriction was recently lifted in [4],
[11], where it was shown that BICM has a natural description
in terms of mismatched decoding.

The BICM encoder consists of a binary code C that gen-
erates a codeword of mN bits, b = (b1, . . . , bmN ). This
codeword is interleaved and mapped onto a vector of N
modulation symbols according to a labeling rule µ : Fm2 → X ,
such that

xk = µ
(
b(k−1)m+1, . . . , bkm

)
, k = 1, . . . , N. (7)

Thus, φ(m) =
(
µ(b1, . . . , bm), . . . , µ(b(N−1)m+1, . . . , bmN )

)
.

Analogously, we denote the inverse labeling function by bj ,
so that bj(x) is the j-th bit in the binary label of modulation
symbol x, for j = 1, . . . ,m. We define also the sets X jb as
those elements of X having bit b in the j-th label position, i.e.,
X jb

∆
= {x ∈ X : bj(x) = b}. By construction, the modulation

symbols x are used with probabilities

P bicm
X (x) =

m∏
j=1

PBj
(
bj(x)

)
(8)

where PBj
(
b
)

is the probability of the j-th bit. Fig. 1 shows
the random generation of the binary codebook of C. The label-
ing rule µ modulates the resulting binary codebook column-
wise. Note that the interleaver which gives the name to BICM
has been absorbed in the description of the random coding
ensemble. In practice [7], different bit-probability assignments
can easily be implemented by employing an interleaver that
independently scrambles the coded bits assigned to each of
position of the label. In other words, according to Fig. 1,
we would need m interleavers operating on a row basis. This
is similar to how coded bits are assigned to multiple fading
blocks in block-fading channels [12].

In addition to the different code construction, BICM also
differs from CM at the receiver side. The BICM symbol metric
treats the m bits in a symbol as if they were independent, and
is given by (see [4], [11] for more details)

qbicm(x, y) =

m∏
j=1

qj
(
bj(x), y

)
(9)

codeword length N

mbit

bit 1

randomly generate

entries according to 

PB1
(b1)

PB1
(bm)

randomly generate

entries according to 

Fig. 1. Binary andom coding ensemble for BICM with shaping.

where qj(bj , y) is the j-th bit metric given by

qj(bj(x) = b, y) =
∑
x′∈X jb

PY |X(y|x′)P bicm
X (x′). (10)

C. Multilevel Coding

Multilevel codes (MLC) combined with multistage decoding
(MSD) have been proposed [5], [6] as an efficient method to
attain the channel capacity by using binary codes. For BICM,
a single binary code C is used to generate a binary codeword,
which is used to select modulation symbols by means of a
binary labeling function µ. In MLC, the input binary code C
is the Cartesian product of m binary codes of length N , one
per modulation level, i. e. C = C1 × . . . × Cm, and the input
distribution for the symbol x(b1, . . . , bj) has the form

Pmlc
X (x) = PB1,...,BM (b1, . . . , bm) =

m∏
j=1

PBj (bj). (11)

For a fixed input distribution on the bits, MLC achieve the
mutual information [5], [6] both with MAP joint decoding and
with multistage decoding. The largest information rate that can
be achieved with MLC under the constraint x ∈ X is

Cmlc = sup
PB1

(B1),...,PBm (Bm)

I(X;Y ). (12)

The error exponents of MLC with multistage decoding were
derived in [13], [14], [4], [15], where it was also shown the
error exponent is upper bounded by one, making the MLC
exponent much worse than that of CM.

III. ACHIEVABLE RATES WITH BICM

References [4], [11] show that the rate

Igmi = sup
s>0

Igmi(s), (13)

where

Igmi(s) = E

[
log

∏m
j=1 qj

(
bj(X), Y

)s
1
M

∑
x′
∏m
j=1 qj

(
bj(x′), Y

)s
]
, (14)

also named generalized mutual information (GMI), is achiev-
able for BICM with equiprobable bits, PBj (b) = 1

2 . The proof
is based on a simple extension of Gallager’s analysis of ML
decoding in terms of error exponents to mismatched decoding
[16], [4]. References [4], [11] also show that the above rate



may be decomposed as the sum of m bit GMI terms (with s
fixed), and that it coincides with the BICM capacity defined in
[3]. We next generalize this result for arbitrary bit probabilities.

Theorem 1: The GMI of the BICM mismatched decoder is
equal to Igmi = sup

s>0
Igmi(s), where

Igmi(s) =

m∑
j=1

E

log
qj(Bj , Y )s∑1

b′j=0 qj(b
′
j , Y )sPBj (b

′
j)

 . (15)

is the sum of the GMIs (with fixed s) of m binary-
input channels. The expectation is over the joint distribution
PBj (bj)Pj(y|bj), with

Pj(y|b)
∆
=
∑
x∈X jb

PY |X(y|x)P bicm
X (x)∑

x′∈X jb
P bicm
X (x′)

. (16)

An alternative expression is

Igmi(s) =

m∑
j=1

E

log
qj
(
bj(X), Y

)s∑1
b′j=0 qj(b

′
j , Y )sPBj (b

′
j)

 , (17)

where the expectation is over the joint distribution
P bicm
X (x)PY |X(y|x).

Proof: See Appendix.
In the remainder of the paper, for the sake of simplicity and

without loss of generality, we focus on the classical BICM
metric given in Eq. (10). Note that Theorem 1 generalizes to
other metrics, in which case, s should also be optimized.

Corollary 1: For the classical BICM decoder with metric
in Eq. (10) the supremum over s is achieved at s = 1, and
Igmi =

∑m
j=1 I(Bj ;Y ).

Proof: Since the metric qj(bj , y) is proportional to
Pj(y|bj), we can identify the quantity

E

log
qj
(
Bj , Y

)s∑1
b′j=0 qj(b

′
j , Y )sPBj (b

′
j)

 (18)

as the GMI of a matched binary-input channel with transitions
Pj(y|bj). Then, the supremum over s is achieved at s = 1 (that
is, the mutual information I(Bj ;Y )) and we get the result.

The above results suggest that we can chose the input
bit distribution that yields the largest GMI, i.e., effectively
implying shaping the bit probabilities in BICM as

Cbicm = sup
PB1

(B1),...,PBm (Bm)

m∑
j=1

I(Bj ;Y ). (19)

For i.i.d. codebooks, Cbicm is also the largest rate that can be
transmitted with vanishing error probability [17]. This capacity
should be compared with the equivalent quantities on CM and
MLC, given in Eqs. (4) and (12) respectively,

Ccm = sup
PX(X)

I(X;Y ), (20)

Cmlc = sup
PB1

(B1),...,PBm (Bm)

I(X;Y ). (21)

Recall that BICM differs from CM at the transmitter, where
the modulation symbol probabilities have the specific form
P bicm
X (x) =

∏m
j=1 PBj

(
bj(x)

)
, and at the receiver, where the

bit metrics in Eq. (10) are used for decoding.
In terms of the random coding error exponent, the analysis

in [4], [11] can be merged with the previous proof to show that
for any input distribution P bicm

X (X) =
∏m
j=1 PBj

(
bj(X)

)
, the

error probability averaged over the ensemble of random codes
is upper bounded by

P̄e ≤ e−NE
q
r (R) (22)

where Eqr (R) = sup
0≤ρ≤1
s>0

Eq0(ρ, s)− ρR, and

Eq0(ρ, s)
∆
= − logE

[(∑
x′

P bicm
X (x′)

(
qbicm(x′, Y )

qbicm(X,Y )

)s)ρ]
.

(23)
is the generalized Gallager function. The expectation is over
the joint distribution PY |X(y|x)P bicm

X (x).

IV. SHAPING FOR THE GAUSSIAN CHANNEL

A. Channel Model

We consider transmission using complex-plane signal sets
(X ⊂ C, Y = C) in the AWGN channel such that

Y =
√
snrX + Z (24)

where Z ∼ NC(0, 1) and snr is the signal-to-noise ratio (SNR).
We wish to solve the optimization problems in Eqs. (4), (12)
and (19) with the additional constraints that x ∈ X , E[X] = 0,
and E[|X|2] = 1.

B. Examples

In this section, we show some examples using binary
reflected Gray mapping2. For shaping, 2m-QAM signal sets
are of special interest; this constellation is the Cartesian
product of two 2

m
2 -PAM constellations, one for each of the

in-phase and quadrature components of the channel. Since the
optimum input distribution is known to be Gaussian, a good
input distribution over the set X should approach in some
sense a Gaussian density. Symmetry between the in-phase
and quadrature components and along the zero axis (positive
and negative planes have equal probability) dictates that the
optimization problems in Eqs. (4) and (12) respectively have
• 2

m
2 −1 − 1 free parameters for CM, and

• m
2 − 1 free parameters for BICM and MLC.

For BICM we used the symmetries of binary reflected Gray
mapping and the fact that the most significant bit selects the
positive or negative half-plane, and always has probability 1

2 .
Note that the CM optimization problem does not restrict

the input distribution to be PX(x) =
∏m
j=1 PBj (bj(x)), hence

2Recall that the binary reflected Gray mapping for m bits may be generated
recursively from the mapping for m − 1 bits by prefixing a binary 0 to the
mapping for m−1 bits, then prefixing a binary 1 to the reflected (i. e. listed in
reverse order) mapping for m−1 bits. For QAM modulations in the Gaussian
channel, the symbol mapping is the Cartesian product of Gray mappings over
the in-phase and quadrature PAM components.
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being able to achieve potentially larger rates. As we shall
see, the resulting difference in information rates is however
marginal. Moreover, note that there is an exponential relation-
ship between the number of free parameters for BICM and
CM, which can induce rather large computational savings for
large signal sets. For example, since for 16-QAM there is only
one free parameter for MLC and CM, the optimization will
result in the best performance, i.e., MLC is optimal and BICM,
as we shall see, is very close. However, for m > 4 this is
no longer true and the optimization over symbol probabilities
without restriction PX(x) to be the product of bit probabilities
could potentially yield larger rates.

Figure 2 shows the improvement in BICM capacity derived
from shaping for 16-QAM with binary reflected Gray map-
ping. As we observe Cbicm (dashed) is almost indistinguish-
able from Ccm or Cmlc (thin solid) or channel capacity itself
(thick solid). This shows that shaping for BICM can recover
the BICM capacity loss for equiprobable bits and effectively
close the gap with CM and MLC. Recall that shaping gains are
achieved with a one-shot non-iterative demodulator. In general,
the decoding complexity of BICM is larger than that of MLC,
since the codes of MLC are shorter. In practice, however, if the
decoding complexity grows linearly with the number of bits
in a codeword, e. g. with LDPC or turbo codes, the overall
complexity of BICM becomes comparable to that of MLC.

Figure 3 shows the error exponents for CM and BICM,
with and without shaping, for 16-QAM at snr = 8 dB. When
shaping is used, the input distribution is the corresponding
capacity-achieving distribution. We observe that when shaping
is used, in the region near capacity, the overall BICM error
exponent is very close to that of CM, while when equiprobable
bits are used, the exponent deviates from that of CM. Remark
that, according to [4], [11] the BICM error exponent cannot be
larger than that of CM, as opposed to that of the independent

2 2.2 2.4 2.6 2.8 3
0

0.05

0.1

0.15

0.2

0.25

R

E
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Fig. 3. Error exponent zoom at capacity for 16-QAM with and without
shaping for CM (solid) and BICM (dashed) at snr = 8 dB. The error exponent
of the BICM independent parallel channel model is shown for comparison
(dotted). When shaping is used, the input distribution is the corresponding
optimal capacity achieving distribution.

parallel channel model [3]. Note that the error exponent of
BICM is much larger than that of MLC (always being given
by the minimum of the error exponents of the various levels,
which results in an error exponent smaller than 1) [13], [14],
[4], [15]. Therefore, BICM outperforms MLC in terms of error
probability and yields nearly the same rates with shaping.

C. Wideband Regime

The gain from shaping in BICM is especially significant at
low snr. In this wideband regime [18] one considers a Taylor
series in terms of snr,

R(snr) = c1snr + c2snr
2 + o

(
snr2

)
. (25)

where the A scheme is said to be first- and second-order
optimal if c1 = 1 and c2 = − 1

2 [18]. In those conditions, such
a system is both power- and bandwidth-efficient. For instance,
it is well known that for low snr, QPSK is both first- and
second-order optimal [18].

The low-snr performance of BICM was studied in [19],
where general expressions for the coefficients c1 and c2 were
given for general mapping rules and equiprobable signaling.
For the particular case of binary reflected Gray mapping with
squared QAM constellations, it was found that BICM was
suboptimal, in the sense that it did not achieve the optimum
c1 and c2. References [20], [21] proposed first-order optimal
mapping rules for BICM that achieve c1 = 1, or equivalently
Eb

N0 lim

∆
= log 2

c1
= −1.59 dB, with equiprobable signaling.

Theorem 2: Shaping makes BICM transmission over QAM
modulations with binary reflected Gray mapping first- and
second-order optimal, i.e., c1 = 1 and c2 = − 1

2 .
The key fact is that at low snr the bit probabilities are such

that a QPSK constellation is effectively selected. To see how,
note that for m = 2 we have QPSK with Gray mapping.
Limiting ourselves to one dimension, the binary reflected Gray



mapping for m
2 + 1 bits is constructed from the mapping for

m
2 bits by prefixing a binary 0 to the mapping for m

2 − 1 bits,
then prefixing a binary 1 to the reflected (i. e. listed in reverse
order) mapping for m

2 − 1 bits. With shaping, one has the
flexibility to fix the probabilities of each of the additional bits
to a given value, say, to 0, so that one is effectively transmitting
over a BPSK constellation (QPSK over the two axis) when the
resulting constellation is normalized in mean and energy. This
is property does not necessarily hold for other mapping rules.

APPENDIX: PROOF OF THEOREM 1

For fixed s and probabilities P bicm
X (x) =

∏m
j=1 PBj

(
bj(x)

)
the GMI can be written as

Igmi(s) = E
[
log

qbicm(X,Y )s∑
x′ qbicm(x′, Y )sP bicm

X (x′)

]
(26)

= E

[
log

∏m
j=1 qj

(
bj(X), Y

)s∑
x′
∏m
j=1 qj

(
bj(x′), Y

)s
PBj

(
bj(x′)

)] ,
(27)

where the expectation is carried out according to
P bicm
X (x)PY |X(y|x).
We now have a closer look at the denominator in the

logarithm of (27). The key observation is that the sum over
the constellation points (x′ ∈ X ) of the product of a function
f
(
bj(x

′)
)

evaluated at all the binary label positions admits an
alternative expression, namely∑

x′∈X

(
m∏
j=1

f
(
bj(x

′)
))

=

m∏
j=1

( ∑
bj∈{0,1}

f(bj)

)
. (28)

Indeed, after carrying out the product in the right-hand side,
we obtain the desired sum over all 2m binary m-tuples
(b1, . . . , bm) of summands of the form f(b1) · · · f(bm).

Therefore, for the specific choice f
(
bj(x

′)
)

=

qj
(
bj(x

′), Y
)s
PBj

(
bj(x

′)
)

we have the product over all
label positions of the sum of the probabilities of the bit bj
being zero and one, i.e.,

∑
x′∈X

 m∏
j=1

qj
(
bj(x

′), Y
)s
PBj (bj(x))

 (29)

=

m∏
j=1

 ∑
b′j∈{0,1}

qj(bj , Y )sPBj (b
′
j)

 . (30)

Next, going back to (27), we obtain

Igmi(s) = E

log

 m∏
j=1

qj
(
bj(X), Y

)s∑1
b′j=0 qj(b

′
j , Y )sPBj (b

′
j)

 , (31)

=

m∑
j=1

E

log
qj
(
bj(X), Y

)s∑1
b′j=0 qj(b

′
j , Y )sPBj (b

′
j)

 , (32)

where the expectation is over the joint distribution
P bicm
X (x)PY |X(y|x). This gives Eq. (17) since the GMI is the

supremum over all s [8], [9]. As for Eq. (15), we derive it by

noting that, for each j, the summation over x in the expectation
can be split into two parts and rearranged as follows,∑

x

f(x) =
∑

bj∈{0,1}

∑
x∈X jb

f(x) (33)

=
∑

bj∈{0,1}

PBj (bj)
∑
x∈X jb

f(x)

PBj (bj)
. (34)

As PBj (bj) =
∑
x′∈X jb

P bicm
X (x′) by construction, recovering

the expression of f(x) we obtain Pj(y|bj) in Eq. (16).
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