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Chapter 1

Introduction

1.1 Optimization problems

Imagine that you are planning a weekend trip with friends. You have found a nice
city to visit, and now you have to make the travel plans. So, you take a road map
in order to decide which is the shortest route to the city of your choice.

This situation is a typical example of an optimization problem. Mathematically
speaking an optimization problem is a general description of a situation which re-
quires taking one or more decisions. These decisions together form a solution to the
problem, and one is interested in finding an optimal solution among all solutions.

A particular example of the problem is called an instance of the problem, and
contains relevant data specific to that particular instance. An objective function
determines the value one attaches to each solution, and the goal of an optimization
problem is to find a solution with either minimum or maximum objective value,
called an optimal solution. Formally we have the following definition.

Definition 1.1 (Optimization Problem). An optimization problem is a collec-
tion of the following:
- a set of instances;
- a set of solutions for each instance;
- an objective value for each solution;
- a goal which is to minimize or to maximize the value of the solution.
For each instance the answer to an optimization problem is a solution which satisfies
the goal of the problem, or the answer is that such a solution does not exist.

Typically, the set of instances of a problem is not given explicitly. Rather the
problem consists of a description of an instance which depends on a small set of
parameters. A particular instance is then defined as the representation of those
parameters. There is a similar compact representation for solutions.

In this thesis we only consider minimization problems. This does not restrict
our results, because any optimization problem can be formulated as a minimization
problem. Also, we assume that objective values are non-negative.

1



2 Introduction

The example we described above is an instance of the shortest path problem,
and the goal of this problem is to find the shortest path between two points in a
network. In this example shortest refers to the length of the route, and the network
is a road map. Relevant problem data are streets, street crossings, street lengths, a
start, and an end.

The shortest path problem is in fact a combinatorial optimization problem. A
combinatorial optimization problem is an optimization problem in which for each
decision there is a finite number of choices from which to choose. Even though the
number of decisions and choices is finite, there are many combinations of choices,
therefore the number of solutions is typically much larger than the number of choices
and decisions. E.g., in the shortest path example there are many more routes leading
to a city than there are streets on the map, although many of these routes are too
long to be considered in practice.

Mathematicians study a combinatorial optimization problem to find a method
that provides an answer to each instance of the problem. We call a formal description
of such a method an algorithm.

Definition 1.2 (Algorithm). An algorithm for a problem is a well-defined list of
instructions which results in an answer to each instance of the problem.

In theory, we can find the answer to a combinatorial optimization problem by
considering all solutions, and choosing an optimal solution. However, because the
number of solutions is typically large this so-called complete enumeration of solutions
can quickly become too time-consuming, even if we use a computer. Therefore, we
are interested in finding efficient algorithms.

1.2 Network problems

A network problem is a problem in which a network forms an important part of the
problem description. Many real life problems, such as the shortest path problem,
can be formulated as network problems. Another example is the traveling salesman
problem (TSP) in which one is interested in finding a shortest tour visiting all
points in a network exactly once. Throughout this chapter we use the shortest path
problem and TSP to illustrate the concepts that we introduce.

Mathematicians represent a network as a graph, i.e., a set of nodes and a set
of edges, which are connections between two nodes. The representation can also
include a length function, which attaches a value to each edge. A graph formulation
of a network problem typically describes the problem as finding a set of nodes
and/or edges under specified constraints minimizing some objective function. E.g.,
the graph formulation of the shortest path problem is to find an ordered set of edges
that represent a path of shortest length between two nodes.

Besides a graph formulation, network problems can also be modeled as linear
programming problems (LP) of the form min{cx|Ax ≤ b, x ≥ 0, x ∈ R

n}; in case
the variables x are constrained to the set of integers, we speak of an integer linear
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programming problem (ILP). The shortest path problem can be formulated as an
LP and TSP as an ILP.

Typical network problems consist of routing one or more entities over the net-
work. In this thesis we consider routing of data packets over wireless networks. In
particular, we are interested in problems where all data packets have to be sent to
a central node, the sink. We call such a problem a gathering problem.

Due to problem restrictions, not all packets can be routed simultaneously over
the network. Hence, time forms an important part of the problems that we consider.
In this case the solution consists of a schedule, a list of decisions taken over time. In
general such problems are called scheduling problems and a standard objective for
these problems is to minimize the makespan, which is the time required to execute
the schedule.

1.3 Complexity theory

Complexity theory classifies problems based on the existence of efficient algorithms
for these problems. We present a brief overview of complexity theory and give a
definition of efficiency. For a rigorous treatment of complexity theory see [64].

A formal definition of algorithm efficiency is based on the running time of an
algorithm. We measure the time of an algorithm in basic computer operations, and
we express the running time in the size of an instance; basic computer operations
are addition, multiplication, and comparison, and the size |I| of instance I is the
space required to store the instance data in a computer.

For an optimization problem Π the running time of an algorithm on a particular
instance I ∈ Π is the number of basic computer operations the algorithm needs
to provide an answer to this instance, expressed as a function of the size of the
instance, and denoted t(I). Let In = {I ∈ Π, |I| ≤ n}, the set of instances of
problem Π of size at most n. The running time of an algorithm is a function T that
maps size n to a function of the running time of that algorithm on instances in In,
i.e. T (n) = G({t(I), I ∈ In}).

For complexity theory we consider the worst-case running time of an algorithm,
which is a function that maps size n to the maximum running time of that al-
gorithm on an instance in In, i.e. Tmax(n) = maxI∈In

t(I). This yields the following
definition of efficiency.

Definition 1.3 (Efficiency). An algorithm is efficient if its worst-case running
time is bounded by a polynomial function of the size of the instance.

Informally, we also say that an efficient algorithm runs in polynomial time. The
definition of efficiency includes algorithms which may have very different running
times, e.g., O(n2) or O(n10) for an instance of size n. In practice, one would choose
from a set of efficient algorithms the algorithm whose running time is bounded by
a polynomial function of smallest degree.

There are several reasons for this definition of efficiency. First, worst-case ana-
lysis provides a guarantee on the running time of an algorithm, regardless of the
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instance. As such the definition of efficiency is as general as the definition of an
algorithm, which should provide an answer to any instance of the problem. Second,
polynomial functions have good scaling properties with respect to instance size. In
real life instances, the instance size is often large, hence we are interested in running
times for large instances. The amount of additional instances one can solve if one
assigns extra computer resources is much more for polynomially bounded functions
than for super-polynomial functions. E.g., consider two algorithms, one runs in n2

time, and the other runs in 2n time. If we increase the amount of computer re-
sources to four times the original amount, then the size of instances that we can
solve with the first algorithm doubles, but the size of instances that we can solve
with the second algorithm increases by two. Hence, even in case the value of some
super-polynomial function is less than that of a polynomial function on small in-
stances, the latter will have a smaller value for instances large enough. Third, this
definition of efficiency has proven to provide a very robust conceptual framework
to classify optimization problems. This framework is known as complexity theory,
and will be discussed below. And fourth, from a practical point of view efficient
algorithms have good running times on practical problems.

The main drawback of worst-case analysis is that it may be based on instances
which do not often occur in practice. Researchers have suggested other measures
of running time, such as average-case analysis, which is based on a distribution
function of problem instances. However, such an analysis only yields a valid answer
in case the distribution function is known, or can be approximated to a certain
degree. There are cases where the distribution function is not known, and obtaining
a good approximation of the distribution function is not possible or too costly. E.g.,
as economist Keynes remarked on the future: “[T]here is no scientific basis on which
to form any calculable probability whatever. We simply do not know!” (see [14]).
In such a case we face true uncertainty of the instance we are likely to encounter,
and worst-case analysis addresses the behavior of an algorithm in this case.

Probably the best known algorithm for which worst-case analysis provides a
much weaker bound than average-case analysis is the simplex algorithm for LP.
Many variants of the simplex algorithm have a worst-case running time which is
exponential in the instance size. However, there exists a simplex algorithm which
has a polynomially bounded average-case running time [2]. In practice simplex
algorithms are competitive with interior point method algorithms which have a
polynomially bounded worst-case running time [15, 16].

Consider again the shortest path problem. For this problem the size of an in-
stance depends on the number of streets m, and the number of crossings n. There
are many efficient algorithms for this problem, including Dijkstra’s algorithm, which
has a running time of O(n2) [74].

Complexity theory classifies problems based on the existence of efficient al-
gorithms for these problems. Formally the classes are defined for decision problems.
A decision problem is a problem for which the objective value is either ‘yes’ or ‘no’.
Optimization problems are closely related to decision problems. Given an instance I
of an optimization problem, a solution set S, objective to minimize f(x), and a para-
meter C, the naturally related decision problem is: is there a solution x ∈ S such
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that f(x) ≤ C? We call this the recognition version of the optimization problem.
Also, we call a solution which yields the answer ‘yes’ a certificate, and an instance
for which there exists a certificate, a yes-instance. Under general assumptions an
efficient algorithm for the recognition version of an optimization problem also yields
an efficient algorithm for the optimization problem itself.

The class P is the set of decision problems for which there exists an efficient
algorithm. E.g., the recognition versions of the shortest path problem and LP are
in class P. The class NP is the set of decision problems for which there exists
an algorithm which, given a yes-instance and a polynomial size certificate, gives in
polynomial time the answer ‘yes’. It is easy to see that P ⊆ NP, but the question
P = NP(?) remains one of the best known open problems in mathematics [64].

We can relate the complexity of decision problems through a reduction. We
say that a decision problem Π polynomially reduces to decision problem Π′, if each
instance I of Π can be transformed in polynomial time to an instance I ′ of Π′, the
size of I ′ is bounded by a polynomial in the size of I, and I ′ is a ‘yes’-instance if
and only if I is a ‘yes’-instance. If Π reduces to Π′ this means that the complexity
of Π is at most the complexity of Π′ times a polynomial function of the size of the
input. In particular, if Π′ ∈ P then also Π ∈ P.

A decision problem in the class NP is called NP-complete if for any problem in
NP there is a polynomial time reduction to this problem. Since Cook established
NP-completeness of the satisfiability problem in 1971, many problems have been
identified as NP-complete [37, 65]. An optimization problem is NP-hard if its
recognition version is NP-complete. E.g., TSP is NP-hard [37].

1.4 Approximation algorithms

For NP-hard problems there are no known efficient algorithms, and in case P 6= NP
such algorithms do not even exist for these problems. Hence, for such problems
mathematicians have studied several alternatives to finding the optimal solution
efficiently. One such approach is to find efficient algorithms for NP-hard optim-
ization problems which yield solutions that are approximately optimal. Given an
optimization problem Π let C∗(I) be the value of an optimal solution to instance
I ∈ Π, and let α ≥ 1.

Definition 1.4 (Approximation algorithm). An α-approximation algorithm for
problem Π is an efficient algorithm which yields a solution of value at most αC∗(I)
for each instance I ∈ Π for which the optimal solution exists.

The approximation ratio of problem Π is the infimum of those values α for
which there exist an α-approximation algorithm for problem Π. A 1-approximation
algorithm is an algorithm which yields an optimal solution; such an algorithm can
be called an exact algorithm to distinguish it from approximation algorithms. Usu-
ally the difference is clear from the context, and we refer to exact algorithms as
algorithms.
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Similar to complexity theory, we can classify optimization problems based on the
existence of approximation algorithms. The class APX is the set of optimization
problems for which there exists an efficient α-approximation algorithm for some
constant α, i.e. α does not depend on the size of the instance. E.g., TSP does not
belong to class APX, but Metric TSP a practical version of TSP, which holds
in case of two-way traffic, is in APX because there exists a 3/2-approximation
algorithm for this problem [24].

1.5 Information models

An algorithm bases its solution on information of the instance. Until now we have
assumed that the algorithm knows all information which describes the instance
completely. There are problems in which it is more natural that information of the
problem becomes known over time, or information is distributed over sources. In
this case the algorithm should take into account the limitations on the availability
of information when it makes decisions.

An information model is a model which defines in which way information of a
problem is or becomes available. We briefly discuss several information models, with
an emphasis on those that model limitations caused by time and location.

1.5.1 Online model

In an online model information on data becomes known over time. This model
reflects the uncertainty we have in general of future events. A main feature of
online problems is the release time of data. Each piece of data has a release time,
and information on the data becomes known at this release time.

An algorithm for an online model makes decisions over time and each time it
makes a decision, the decision is based on information which is available at that
time; we call such an algorithm an online algorithm.

To distinguish the online model from the original model where all problem in-
formation is known a priori we may refer to this model as the offline model. Typically
it depends on the nature of the problem whether an offline model or an online model
is more appropriate. Even for problems which are online by nature an analysis of
the offline model may help to gain an insight in the computational complexity of
the problem.

E.g., in case of TSP both models can be appropriate, depending on the situation;
offline TSP offers the possibility to find tours for recurring routing problems which
occur in planning problems. In online TSP the problem consists of finding a tour
of minimum makespan which visits a set of nodes whose locations become known
at their respective release times. Note that in this version the tour is in fact a
schedule and the objective depends on the time needed to execute the schedule; i.e.,
it includes both the time to visit all nodes as well as time spent waiting at nodes.
Online TSP is more appropriate for unscheduled traffic, such as taxi-routing.
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As in the case of approximation algorithms we can relate the value of a solution
of an online algorithm to the value of an optimal solution to the offline problem.
Again, let C∗(I) be the value of an optimal (offline) solution to instance I, and let
α ≥ 1.

Definition 1.5 (Competitive algorithm). An α-competitive algorithm for prob-
lem Π is an online algorithm which yields a solution of value at most αC∗(I) for
each instance I ∈ Π for which the optimal offline solution exists.

Competitive analysis of a problem is the study of finding α-competitive al-
gorithms for some value α. The competitive ratio of problem Π is the infimum
of those values α for which there exist an α-competitive algorithm for problem Π.

Note that an online algorithm need not be efficient. The reason for choosing this
definition of competitive ratio is that in this way the ratio reflects only the difference
in the solution value between online and offline algorithms. Hence, there can be a
difference between the approximation ratio of a problem and the competitive ratio of
a problem, and either of the two can be smaller than the other. E.g., Ausiello et al.
[5] presented a 2-competitive algorithm for online Metric TSP, and demonstrated
that the competitive ratio for this problem also equals 2. Their algorithm is not
efficient, unless P = NP, nevertheless the competitive ratio is strictly larger than
the approximation ratio of Metric TSP, which is at most 3/2. From a practical
point of view, one is typically interested in efficient online algorithms; in this thesis
we only consider efficient online algorithms.

Often, the competitive ratio is viewed as the outcome of a two-person game
between an online player and an offline player, called the adversary. The online
player chooses an online algorithm; next the adversary chooses an instance of the
problem based on the algorithm the online player has chosen. The cost of the
adversary is the value of an optimal offline solution, and the cost of the online
player is the value of the online solution the algorithm produces. The adversary
chooses the instance in such a way that the ratio of these costs is maximized.

Competitive analysis has the same disadvantage as complexity theory and ap-
proximation analysis, in the sense that it focuses on worst-case running times. How-
ever, in this case the effect of this disadvantage can be aggravated due to the fact
that the competitive ratio relates an online solution to an offline solution. For some
problems this yields an adversary which is so powerful that no algorithm can obtain
a ratio which is better than some trivial upper bound on the competitive ratio. As
such competitive analysis fails to differentiate between algorithms.

In the literature there exist several ways to compensate for the power of the
adversary in such cases. In this thesis we consider resource augmentation as a way
to compensate for the power of the adversary. In resource augmentation we give the
online algorithm more resources than the adversary; typical resources are speed and
size. In a σ-speed version of a problem we assume that the online player requires
1/σ units of time where the offline adversary requires 1 unit of time, for some σ > 1.
E.g., in σ-speed TSP the online player is σ times faster than the offline adversary.
In case of size augmentation, we assume the online player can use more resources
than the adversary; in case of TSP this would mean more salesmen. A moderate
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increase in the speed of algorithms may sometimes yield constant bounds on the
competitive ratio of algorithms, whereas the competitive ratio is not a constant
without resource augmentation [49, 67]. Basically, resource augmentation indicates
the effect of a future investment in extra or faster resources in relation to an offline
solution in the present. Note that resource augmentation may yield solutions with
a value which is better than the value of an optimal offline solution.

A more restricted online model is the oblivious online model. In an oblivious
model we assume that historical information cannot be used for future decisions.
An oblivious or memoryless algorithm can base its decisions on information present
at that time, not on information of previous decisions [20, 22].

There are numerous ways to restrict the information an algorithm can use in
order to make its decisions. Typically, we analyze the competitive ratio of a restric-
ted class of algorithms using the original definition of competitive ratio, hence the
ratio depends on the cost of an unrestricted offline solution. Another approach is
to compare classes of algorithms which correspond to different information models
directly. This is called comparative analysis [54]. Finally, we can also compare
the competitiveness of algorithms using the same information model. We call an
α-competitive algorithm best possible within an information model if there is no
α′-competitive algorithm with α′ < α, in the same information model.

1.5.2 Distributed model

In a distributed model information of the instance is spread over several sources. The
sources can be either processors, agents, or in case of a network nodes; we refer to the
sources as nodes. Each node possesses some information of the instance, and should
base its decisions on information it has available. Hence, in a distributed model
each node contains an algorithm, which we call a distributed algorithm. Without
further a priori knowledge of the problem instance, it is common to assume that
each node uses the same algorithm.

Most distributed models are online models by nature, where nodes can exchange
information with each other over time, and thus obtain more information. To distin-
guish the distributed model from the original model where all problem information
is known to a single source, we may refer to the original model as the centralized
model.

In distributed models a model of time becomes an important factor in the design
of algorithms. We distinguish two main time models, the synchronous time model
and the asynchronous time model. In a synchronous time model all nodes observe
the same absolute time, whereas in an asynchronous time model each node only
has a relative notion of time. A more precise description of time models specific to
wireless networks is discussed in Chapter 2.

A relaxation of the distributed model is the local or decentralized information
model. In this model we assume that a node can use information which is available
to the node, and to nodes which are close to this node, e.g., adjacent nodes.
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1.6 Outline of the thesis

We study optimization problems in wireless networks. We focus on deriving com-
plexity results, and on finding efficient algorithms for each of the problems that we
consider. We study the problems for various information models, and we assess the
quality of our algorithms using approximation theory and competitive analysis.

Chapter 2 gives a background on wireless networks, introducing definitions, con-
cepts and common problems in this field. These problems form the motivation for
the optimization problems which we describe and analyze in the succeeding chapters.

Chapters 3 and 4 discuss a data aggregation problem in wireless networks, with
constraints on packet latency.

In Chapter 3 we focus on the problem with arbitrary latency constraints which
are modeled as hard constraints. The objective is to minimize the maximum com-
munication costs of a node. We prove that the problem is NP-hard, and we provide
offline and online approximation algorithms. For the synchronous time model the
algorithm we present is best possible up to a multiplicative constant. For the asyn-
chronous time model we present an algorithm with competitive ratio at most O(δ)
times the competitive ratio of our synchronous algorithm, where δ is the maximum
communication cost of some packet to reach the sink. We show that our algorithms
are robust, in the sense that they have similar competitive ratios in case we choose
as objective to minimize the sum of communication costs, in case we assume the
cost function to be concave, or in case we limit the possibilities of aggregation.

In Chapter 4 we consider the same problem, but focus on constant latencies which
are modeled as soft constraints. We use bicriteria optimization to find solutions with
both low costs and small packet latencies. The main contributions of this chapter
are that we present a constant competitive online distributed algorithm for this
problem, in case the latency constraints are not too strict, and an analysis of the
almost synchronous time model, a new time model.

The results in these chapters are partially based on joint work with Luca Bec-
chetti, Alberto Marchetti-Spaccamela, Martin Skutella, Leen Stougie and Andrea
Vitaletti [10, 53].

Chapters 5 and 6 discuss a gathering problem in a wireless network with interference,
the wireless gathering problem.

In Chapter 5 we analyze the problem with objective to minimize completion
times. We focus on minimizing the maximum completion time. We prove that
this problem is NP-hard, in case communication radius equals interference radius,
even in case each node contains exactly one packet, solving an open problem. We
present a class of constant competitive online algorithms and we demonstrate that
a particular algorithm of this class is best possible within the class of algorithms
that send packets over shortest paths.

In Chapter 6 we consider the problem with objective to minimize flow times,
the time packets are in the network. In case of minimizing maximum flow times we
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present a proof of non-approximability, unless P = NP, and an online centralized
algorithm which is constant competitive, in case the algorithm can send packets a
constant factor faster than the adversary. In case of minimizing average flow times
we present an unconditional proof of non-approximability for a general class of dis-
tributed algorithms, and an online distributed algorithm which is near-optimal in
case the algorithm can send packets a factor a faster than the adversary, where a de-
pends on the logarithm of the network diameter and the logarithm of the maximum
node degree.

The results in these chapters are partially based on joint work with Vincenzo
Bonifaci, Alberto Marchetti-Spaccamela, and Leen Stougie [18, 17, 19].

1.7 Related literature

Literature on topics in combinatorial optimization is vast. We present an overview
of handbooks and papers which cover the aspects of combinatorial optimization
introduced in this chapter in more detail. This overview is by no means complete,
but merely offers a starting point for further reading.

General information on combinatorial optimization problems can be found in
Papadimitriou and Steiglitz [65]. Schrijver [74] provides extensive information on
classical network optimization problems, including the shortest path problem and
TSP. The book edited by Lawler et al. [57] provides a guided tour of TSP.

Complexity theory is treated rigorously in Papadimitriou [64]; [65] and Garey
and Johnson [37] provide introductions, and the latter contains an extensive list of
NP-complete problems. The books of Ausiello et al. [6], Hochbaum (ed.) [44],
Hromkovič [45] and Vazirani [79] focus on approximation theory and approxima-
tion algorithms. The first book also provides an extensive list of known results on
approximability of many optimization problems.

Borodin and El-Yaniv [20] provide an overview of online models and competitive
analysis. The distributed time models that we described are based on work of
Brito et al. [22]. Lynch [58] provides a more general overview of distributed time
models. Resource augmentation in the context of scheduling problems is introduced
by Kalyanasundaram and Pruhs [49] and Phillips et al. [67].



Chapter 2

Communication in wireless

networks

2.1 Introduction

In the last two decades there has been an enormous increase in the use of mobile
phones worldwide, from 11 million subscriptions in 1990 to over 2 billion in 2005.
The penetration of mobile phones is currently around 30% worldwide, and even over
100% in some European countries including the Netherlands [23, 48]. Similarly, the
use of notebooks, personal digital assistants and other wireless electronic devices has
increased rapidly. Also, in recent years there has been extensive research in the area
of sensor networks. Sensors are small electronic devices which operate automatically,
sensing their environment and collecting data. Scientists believe sensor networks to
become available for public use in the near future.

Main feature of these wireless devices is the availability of wireless communica-
tion between them. The communication devices, which we call nodes, can form a
wireless network which enables the exchange of information such as speech, e-mails,
and data files. A main challenge related to wireless networks is to establish efficient
communication. Here, efficiency is related to the objective value and can be meas-
ured in different criteria, e.g. time or energy usage. Recall from Chapter 1 that we
also use efficiency to characterize algorithms.

The study of efficient communication in wireless networks is a vast area which
has generated much research in both hardware and software design. In this chapter
we give a brief overview of wireless network architecture, and main problems related
to finding efficient algorithms for efficient communication. We do not pretend to
give a complete overview, instead our focus is to provide a sufficient background for
understanding the communication problems discussed in this thesis. As such the
overview focuses on the algorithmic aspects of wireless networks.

In Section 2.2 we describe architecture of wireless networks. In Section 2.3 we
describe communication problems in wireless networks, introducing several object-
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ive criteria. In Section 2.4 we introduce the communication problems in wireless
networks which we study in this thesis. In Section 2.5 we summarize the models
and problems discussed in this chapter. In Section 2.6 we give an overview of related
literature on wireless networks, for further reference.

2.2 Wireless network architecture

In the literature there exist many types of wireless networks to address a variety of
problems. We present a brief overview of a general network architecture common to
many wireless networks. Also, we outline the scope of network models considered
in this thesis.

The network architecture consists of hardware and software specifications. The
hardware specifications address the specifications of the nodes, in particular the wire-
less communication device of these nodes. The software specifications address the
algorithms used by the nodes. In practice the difference between software and hard-
ware specifications is not always clear, as software is often integrated into hardware
components. Nevertheless, we choose this model because the distinction between
hardware and software specifications provides a clear model to describe wireless
networks, at least from a theoretical point of view.

2.2.1 Hardware specifications

The hardware specifications of a wireless network architecture consist of the specific-
ation of the nodes, and of the network structure, i.e. the location of the nodes. The
nodes of a wireless network may range from notebooks, mobile phones and PDAs
to small sensor nodes. Each node is equipped with a data input device, a wireless
communication device, a processor, memory, and an energy supply. A node can also
be equipped with a clock.

The data input device enables a node to receive data from its environment. Data
input is either through human interaction, e.g. through a keyboard, an electronic
pen, or an USB-stick, or through automated sensing devices in sensor nodes. The
processor and memory capabilities are used to store and process data. The commu-
nication device enables a node to send and receive data. An energy supply provides
the energy to receive, process and communicate data. We consider batteries as the
main energy supply. Typically, nodes have limited processor capabilities, memory,
and battery power, except in notebooks. Especially sensor nodes are equipped with
few resources, as they are being deployed in networks of huge size, and typically are
not recharged [3]. A node can use a clock to attach a timestamp to the data, and
to synchronize communication with other nodes.

In the next paragraphs we discuss the hardware specifications in more detail.
First, we discuss wireless communication. Next, we discuss energy use in relation
to communication. And, finally we discuss the influence of the network structure
on network communication.
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Wireless communication
In wireless networks nodes communicate with each other using a wireless medium.
Typical wireless media are radio, infrared, and optical media. The last two media
require that there is a line of sight between two nodes in order for them to commu-
nicate. I.e. these media do not function if there is an obstacle in between the two
nodes. Although radio signals are also affected by obstacles between nodes, radio
communication is possible in the presence of obstacles. In this thesis we focus on
wireless radio networks.

Radio networks send data using a radio transmitter. The transmitter sends data
using radio signals at a certain radio frequency. Data that is transmitted is broad-
casted, which means that it is emitted to the region surrounding the transmitter.
Radio signals are transmitted at a certain frequency or within a range of frequencies,
and this range is called a broadcast channel.

There are two types of transmitters, based on the antenna being either unidirec-
tional or omnidirectional. In the omnidirectional case the signal is broadcasted in
any direction. In this case the broadcast region can be described as a ball centered
at the sender node. In the unidirectional case, the antenna is pointed in a specific
direction, hence the broadcast region can be described as a narrow cone centered at
the sender node. In this thesis we focus on nodes with omnidirectional antennas.

There are two models for radio communication. There is a half-duplex model,
in which at any time instant a node can either send or receive data, and there is a
full-duplex model in which a node can both send and receive data simultaneously.
In this thesis we focus on the half-duplex model. When two nodes communicate,
we assume that there is a sender node, which has data to send, and a receiver node
which wishes to receive the data. Data is communicated from the sender node to the
receiver node, but the receiver node may use acknowledgement messages (ACKs) to
confirm the data reception.

Radio signals have two important properties: fading and interference. Fading is
the effect of radio signal loss due to physical circumstances. These circumstances
are the composition of the space between the sender and receiver node, e.g. the
above mentioned obstacles, and the distance between the sender and receiver node.
The strength of a radio signal is a decreasing function of the distance d between the
sender node and the receiver node, and the function is in the order of d−2 to d−6

[3, 21, 69, 73]. In the literature signal loss due to distance is also known as path loss.
For a transmitter to receive data, the radio signal should be of a certain strength. As
a consequence of this minimum signal strength and fading, the reachable broadcast
region can be described as a closed ball, centered at the sender node. We call the
radius of this ball the communication radius.

Interference, also called collision, is the effect of radio signal loss, due to the fact
that multiple nodes communicate simultaneously on the same broadcast channel,
within the same geographical region. As with data communication, interference
occurs if the radio signal is strong enough. When a node broadcasts data, its radio
signal is propagated to a region surrounding this node. The interference region
is a closed ball, centered at the sender node. We call the radius of this ball the
interference radius. Note that if a node sends data at certain power the interference
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radius is at least as large as the communication radius, but may be larger [73]. A
typical assumption is that if a node receives signals from multiple nodes, all data is
lost.

The communication radius and interference radius depend on the power used
by a node to communicate. Basically there are two power schemes. In a simple
power scheme the signal strength is fixed, and in a power controlled scheme the
signal strength can be adjusted for each transmission. In this thesis we consider
simple power schemes with a fixed power, hence we assume fixed communication
and interference radii.

The properties of fading and interference highly influence the design of wireless
networks and communication algorithms. On the one hand fading makes communic-
ation over long distances costly, and interference limits the data throughput of the
network. On the other hand fading allows multiple nodes to use the same broadcast
channel simultaneously as long as the receiver nodes are sufficiently far apart. This
is known as spatial frequency reuse [68, 69].

Energy use
Wireless devices are typically battery operated, and these batteries can not always
be directly recharged. In case of sensor networks, batteries are not recharged at all
either because sensor nodes are deployed in inaccessible areas, or because the scale
of the network makes recollection too costly. As a consequence efficient energy use
is currently a key challenge in wireless networks. Also, we foresee energy use to
remain a key challenge in the future as technological advances in processing power
are much faster than advances in battery storage [26]. We briefly outline the cost
structure of a node’s energy use.

Energy consumption of a node can be divided into the following domains: re-
ceiving, communicating, and processing data. Here, the process of receiving data
exclusively refers to acquiring data through the input device; in case of sensor nodes
this is also called sensing. Nodes use most of their energy in data communication,
and for short-range communication the communication costs of sending and receiv-
ing are equivalent [3]. Also, smaller nodes such as sensors use a significant part of
energy when they are activated but idle, i.e. even if the node is not active in any
of the above mentioned domains [21]. A technique to reduce the energy use of idle
nodes is to switch them to a sleeping mode. A node that sleeps is in a standby mode,
and is activated occasionally for communication with other nodes. For an overview
of sleeping mode techniques see [36]. In this thesis we focus on communication costs
only.

The communication costs are divided into a fixed startup cost, and a variable
transmission cost. The transmission costs typically depend linearly on the size of
the data to be transmitted [43, 68]. Also, communication times have a similar de-
pendence on the data size.

Network structure
The network structure consists of the network lay-out and the wireless communic-
ation properties of the nodes. The lay-out is based on the geographical position
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of the nodes. A typical lay-out is the uniform lay-out where nodes are deployed
randomly in a specified area. Other common lay-outs include grids and lines.

Based on the lay-out and node characteristics a communication network can be
established; two nodes in the network are said to be connected if direct communic-
ation between the nodes is possible. Such a connection is also called a link. The
connection depends on the network lay-out and the communication radius, as well
as obstacles in the area which may block communication between certain pairs of
nodes.

Over time the network structure may change due to several reasons. First, nodes
may enter the network, when they require services from the network, and leave the
network if they do not require network services anymore. Second, nodes may be
put in sleeping mode to save energy. Third, nodes may stop to operate, either due
to malfunction, or due to a depletion of their energy resources. And fourth, nodes
may be mobile devices and move within the network region. A common assumption
in the literature is to consider the graph structure fixed. If the amount of data that
is communicated between two topology changes is significant such an assumption is
reasonable. In this thesis we consider fixed wireless communication networks.

2.2.2 Software specifications

The software specifications of a wireless network architecture consist of specifications
for the algorithms of the nodes. As such the specifications address a huge range of
issues, and key issues include: error control, data flow control, channel allocation
to nodes, data routing, energy use of nodes, location management, security, and
information retrieval.

These examples of issues range from low level issues such as error control, which
focuses on errors in the radio signal at bit level, to top level issues such as information
retrieval, which focuses on presentation of the data to the end user.

Hence, for design purposes software architecture is organized in levels, also called
layers. Each layer addresses certain networking issues, and offers an interface to
communicate with adjacent layers. The layers are organized from communication
at bit level, in the bottom layer to an interface with the end user in the top layer.
We use the reference model of software layers given in Table 2.1. This model is also
known as the five layer OSI reference model or the TCP/IP reference model [3, 78].

Table 2.1: Reference model of software layers.

5. Application layer
4. Transport layer
3. Network layer
2. Data link layer
1. Physical layer

We briefly describe each layer, from bottom layer to top layer. The physical
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layer is concerned with communication of data at bit level. The data link layer is
concerned with providing error-free node to node communication. At this level data
is split into packets of similar size, and acknowledgement messages are used to ensure
reception. The medium access (MAC) layer is a sub-layer of the data link layer
which deals with access control to a shared broadcast channel. The network layer is
concerned with routing of data packets, e.g. source to destination communication,
and with addressing issues. The transport layer is an intermediate layer which is
concerned with data splitting. The application layer serves as an interface with
users.

Each layer contains a protocol. A protocol is an agreement to communicate in a
certain layer, and it can be considered as a set of algorithms. Examples of internet
protocols at the application level are the hypertext transfer protocol (HTTP) to
display web pages, the file transfer protocol (FTP) to transfer files and the simple
mail transfer protocol (SMTP) to send and receive emails. In the field of engineering,
problems which address multiple layers are called cross-layer optimization problems,
and protocols for such problems are called cross-layer protocols. An example of a
cross-layer protocol is the TCP/IP model used for communication over the internet.
This model consists of the transmission control protocol (TCP) for the transport
layer and the Internet protocol (IP) for the network layer. In this thesis we study
cross-layer optimization problems related to the data link layer and the network
layer. More specifically, we devise algorithms to schedule and route data packets
over a wireless network.

In the next paragraphs we consider in more detail the data link layer and the
network layer. We also give an overview of different time models, as a time model
greatly influences algorithm design. And we describe data aggregation, a technique
used to reduce energy in data communication.

Time models
Time has a major impact on wireless communication. If multiple nodes send data
at the same time to a single node, a collision occurs and data is lost. Also, data
communication requires time, and minimizing the communication times or delay
times is an important design issue in wireless networks. Thus, it is necessary to
have a model of time.

In this paragraph we present several time models known in the literature. There
are two main distinctions in time models, and these are the distinction between
continuous and discrete time, and the distinction between synchronous and asyn-
chronous time.

In a continuous time model nodes can start communication at any given time.
Such a model is used in case nodes do not have a clock, hence they do not have a
notion of time. But it can also be used in case nodes have a clock. In a discrete
time model time is divided into rounds or time slots. Such a model can be used
only in case nodes have a time clock, and nodes have a notion of the start time of
each round.

Time synchronization is an important issue in wireless networks. We assume the
existence of physical time, which is a reference time for the clocks of nodes in the
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network. This physical time can either be an internal time, defined in the network,
or an external time measure such as the Coordinated Universal Time (UTC), an
international time standard. This physical time can be considered as an absolute
measure; for which the length of a time unit is defined. Initially node clocks are
synchronized to this physical time, and the time unit is set to match the time unit of
physical time. However, due to inaccuracy the time unit cannot exactly match the
time unit of physical time. Hence, over time the relative clock time of a node drifts
from the physical time. Also, the length of a time unit, called clock frequency, may
drift over time. Time synchronization algorithms synchronize both clock time and
clock frequency to match physical time. We distinguish three such time models based
on the precision of the time synchronization technique used. These models are the
synchronous time mode, the almost synchronous time model, and the asynchronous
time model.

In the synchronous time model the node clocks are considered to be synchronous
to physical time, at any time. In the almost synchronous time model, the node
clocks are considered to be synchronous to physical time up to a small constant, at
any time. An upper bound on this constant is called the maximum drift. In the
asynchronous time model we assume the node clocks are not synchronized at all.
In this thesis we consider all three time models. However, we always assume that
the clock frequency of all clocks is identical, at any time. Because of this frequency
synchronization, all three time models are sometimes called partially synchronous
time models in the literature [58].

Typically, in centralized models it is common to assume nodes have access to
a single clock, which indicates physical time. In distributed models it is common
to assume that each node has access to a local clock, which indicates relative clock
time. Time synchronization enables nodes to coordinate their action in a distributed
setting, i.e. it allows nodes to decide when to communicate such as to minimize the
probability of collisions.

Data link layer
The data link layer addresses node to node communications. We consider a network
with a single broadcast channel, thus an important part of this communication is to
decide when a node has access to the channel. Protocols for this sub-problem are
called MAC protocols. From an algorithmic point of view MAC protocols can be
seen as scheduling algorithms.

We assume data is divided into packets of similar size. This is a common assump-
tion in the literature. Even if data consists of packets which vary in size, typically
the data link layer cuts data into smaller packets of more or less the same size. Also,
we assume that in a discrete time model the size of the packets is such that a packet
can be sent in a single round.

We distinguish two types of schemes for medium access and these are fixed
assignment schemes, and contention schemes.

In fixed assignment schemes nodes are given a fixed allocation of resources, which
are time, frequency or both. In time division nodes are allocated a time slot for radio
communication, and in frequency division nodes are allocated a frequency range
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for radio communication. Typically, there is a centralized node which allocates
these resources. This can be a base station such as a server, a satellite, or a node
which acts as a leader. Common fixed assignment schemes in the literature are the
time division medium access (TDMA) model, the frequency division medium access
(FDMA) model, and the code division medium access (CDMA) model which uses
both time and frequency as a resource [21, 63].

There are two ways to allocate time slots, and these are static allocation, and
dynamic allocation. In static allocation, an allocation scheme is based on the alloc-
ation of a single time slot to each node, and such an assignment can be considered a
single communication round. A scheme consists of multiple communication rounds,
i.e. a scheme consists of a cyclic assignment of the same time slots. Static alloca-
tion is an appropriate assignment model in case the data is uniform, i.e. each pair
of sender and receiver nodes occurs with the same frequency in the data. In case
data is not uniform, nodes may be assigned a slot, while they do not have data to
communicate, and hence such an assignment wastes time and network capacity. In
dynamic allocation the allocation of time slots is based on the demand of data com-
munication of the nodes. This model is more complicated than the static allocation
model, but is better suited to model non-uniform data communication flows. In this
thesis we focus on dynamic allocation models.

In contention schemes nodes compete for a resource by sending data. Contention
schemes are used in situations where there is no centralized control, i.e. in a dis-
tributed setting. A common contention scheme is the carrier sense multiple access
(CSMA) model. In a distributed setting interference free communication can not
be guaranteed. As a consequence nodes may have to send data multiple times, if
interference occurs.

There exist several techniques to minimize interference, and to minimize the loss
in time and energy associated with collisions. Two common techniques are backoff
strategies, and the use of control messages.

A backoff strategy determines the delay between sending data after a collision has
occurred. A node may notice a collision if it does not receive an acknowledgement
message from the receiver node. Backoff strategies have a random component to
avoid multiple nodes to choose the same delay.

In practice a backoff strategy works as follows. Each node with data to send
chooses the start time of communication uniformly from a time interval, called the
contention window. This model applies to both a continuous and a discrete time
model. In theory usually a slightly different model is studied. In the theoretical
model time is slotted, and each node with data to send, chooses to send in a round
with a certain probability. It is not proven that both models are equivalent, but it
is believed they yield similar results [41].

There are several classes of backoff strategies based on, respectively the length
of the contention window in the practical model, and the backoff probability in
the theoretical model. In a constant backoff strategy each node uses a constant
probability. In an exponential backoff strategy each node uses a probability, which
decreases exponentially if a collision occurs, and is reset to a constant if no collision
occurs; typically the probability is halved until it reaches a lower bound. One of
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the first backoff strategies is a constant backoff strategy used in the ALOHA model
[1]. The Ethernet, a network for local communication between computers, uses an
exponential backoff strategy [76].

A performance measure of backoff strategies is stability, which is defined as a
bounded average message delay. In [51] it is shown that most backoff strategies
are unstable, i.e. they lead to infinitely large delays, on problem instances with an
unbounded number of nodes. The authors of [41] demonstrated that a super linear
polynomial backoff strategy is stable if the number of nodes is bounded. Also, they
demonstrated that linear and exponential backoff strategies are not stable.

A disadvantage of the above backoff strategies is that the model is not fair, in the
sense that once a node sends data successfully, the probability increases that this
node sends data successfully. The authors of [7] describe a backoff strategy which
can be considered fair. This model is called a decay strategy and is as follows.
Time is divided into rounds, and rounds into phases. At the start of each phase, all
nodes that want to communicate, start communication. For each next round of the
phase the node chooses to communicate with probability a half, or it chooses not
to communicate for the rest of the phase with probability a half. In this model all
nodes have the same probability of communication with some node. However, this
implementation requires a known upper bound on the maximum number of nodes
that can communicate with a single node, in order to determine the length of the
phase. We use this backoff strategy in Chapter 6.

Control messages are data packets of small size. A node may use control mes-
sages to reduce the communication costs. A typical model of communication which
uses control messages is the two-way handshake protocol. In this protocol the sender
node sends a request-to-send (RTS) control message, and the receiver node responds
with a confirm-to-send (CTS) control message, after which data communication can
be established. In case the sender node does not receive a CTS message, it can as-
sume that the receiver node has not received the RTS message due to interference.
Control messages can also be used to confirm or acknowledge the reception of data.

Network layer
The network layer addresses end-to-end communication between nodes, i.e. from
the sender node to the receiver node. The main issues of the network layer are
to establish a routing network, and to route data over this network. From an
algorithmic point of view protocols which address the second issue can be seen as
routing algorithms.

The routing network is a subgraph of the communication network, i.e. it contains
a subset of all possible links. As mentioned before, we consider networks where nodes
have a fixed communication radius. Typically, the communication radius is chosen
such that each node can only communicate with nodes within its direct vicinity, in
order to decrease energy use, which increases more than quadratically with distance,
and to allow spatial frequency reuse.

As a consequence nodes can not always directly communicate data to the receiver
node, but instead the sender node has to send data over a path of nodes which ends
at the receiver node, i.e. each node on the path forwards the data to the next node
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on the path. This type of routing is called multi-hop routing, and in this case the
choice of the path becomes an important decision.

Note that in case of multi-hop routing we may refer to the sender and receiver
node as the pair of nodes which are the origin and destination of the data, as well
as two nodes on the multi-hop path which transfer the data. It will be clear from
the context to which nodes we refer.

Finding a routing network in a wireless network is an interesting problem on its
own, which we do not address here. In this thesis we are interested in routing over
a routing network, and we assume the routing network is known.

A sender node that wishes to send data to a receiver node using multi-hop rout-
ing, can use two modes of communicating data over the network: broadcasting, and
point-to-point communication. In broadcasting the sender node sends data to any
node within its communication radius, and these nodes in turn also broadcast the
data, until it reaches the destination; this is also known as flooding. The broad-
casting mode of communication is typical in problems without a routing network,
or in case the same data has to be sent to many nodes, see Section 2.3 for classes of
such problems. In point-to-point communication the sender node sends the data to a
specified node within its communication radius, and this node also sends the data to
a next node on a multi-hop routing path towards the receiver node. Point-to-point
communication is common in problems with personalized data. In this thesis we
only consider point-to-point communication.

We study communication in arbitrary networks, tree networks and line networks.
A tree network is a typical routing network, where each node sends data to a single
node only, called its parent. A tree is often used in data aggregation problems [3, 22].
The advantages of a tree include the fact that nodes do not have to choose to which
node to send, and the number of links depends linearly on the number of nodes,
thus reducing the possibility of collisions. Another reason to use a routing tree is
that a tree is a minimal size network which enables node to node communications,
without having to resort to broadcasting or flooding. Typically, a wireless network
is equipped with an algorithm to derive a routing network [66]. Trees can be used to
collect data at a central node, the root of the tree. This root node may process the
data, act as a gateway to other information networks, or it can be used to further
communicate the data in the network using a reverse routing tree; a reverse tree is
a tree where each node receives data from a single node. Lines are trees where each
node can communicate with at most two other nodes.

There are also other graph models which take into account the geometry of the
network, such as planar graph and unit disk graph models. In some cases, the
algorithmic performance significantly improves for these restricted graphs classes.
However, such graph model are in fact quite a restricted graph class, because such
graphs exclude the possibility that nodes which are close may not be able to com-
municate, due to obstacles. Hence, we choose to consider only the graph models
outlined above.

We observe that the choice of the routing network as outlined above is often
based on a priori assumptions regarding the objectives. A routing network is used
to simplify the problem, without making too much concessions regarding the ob-
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jective of the problem.

Data aggregation
Because most energy is used in data communication, and efficient energy use is
an important objective in wireless networks, there has been extensive research in
methods which decrease overall data communication. These methods include sleep-
ing of nodes, and data aggregation. In this thesis we consider data aggregation as
a technique to reduce energy.

Data aggregation consists of aggregating redundant or correlated data at a node
thus reducing the number of data packets sent, as well as the size of the data.
Especially in sensor networks, data which is sensed in the same region is often
correlated or even redundant [3, 36, 70]. E.g. multiple sensors may sense the same
activity, leading to highly correlated data, or even exact copies of the data. Data
aggregation is also possible if data can be described by a single value, e.g. when the
required data is an extreme value such as maximum temperature.

Data aggregation reduces the network traffic and hence directly reduces energy
use. Also, it may reduce energy use indirectly, because sending less data packets
reduces the possibilities of collisions, which leads to a reduction in energy use for
retransmissions [33].

Most literature on data aggregation assumes total aggregation. In total aggrega-
tion we assume packets have the same size, and aggregation of two or more packets
at a node results in a single packet of the same size being sent from this node. Even
if the assumption of total aggregation may be considered rather simplistic, it allows
us to derive an upper bound on the gains of data aggregation in terms of energy
use.

Under total aggregation any two messages can be aggregated into a single packet
regardless of their release times and release nodes. In practice total aggregation is
not always possible; whether messages can be aggregated depends on the data.

Two generalizations which model these limitations are partial aggregation and
geographically bounded aggregation. In partial aggregation the aggregation of pack-
ets reduces the data size to a certain extent. The function which models to what
extent packets can be aggregated is typically a concave non-decreasing function
[40]. In the geographically bounded total aggregation model we take into account
the position of the nodes from where the data originates. In practice, the aggrega-
tion of packets can be subject to geographical constraints. In particular, it may be
infeasible to aggregate two messages originating from sensors that are too far apart.

Data aggregation is usually performed in routing networks which are trees, be-
cause trees are natural structures to collect data at a single point.

2.3 Problems and objectives

The main purpose of wireless networks is to establish efficient communication between
nodes. In the literature there exist many classes of wireless communication prob-
lems, and many different measures of efficiency. In this paragraph we describe
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several problem classes, also called information dissemination processes, and we de-
scribe several objectives or quality of service (QoS) measures. The problems that we
consider focus on routing and scheduling of messages, hence the problems address
cross-layer issues from the data link layer and the network layer.

The information dissemination processes that we consider are broadcasting, gos-
siping, gathering and packet routing. A problem instance using one of these pro-
cesses typically uses the process name to describe the problem, e.g. we speak of a
gathering problem.

We give definitions of the information dissemination processes:
Broadcasting is the process of dissemination of data from a source node to all other
nodes in the network.
Gossiping is the process of dissemination of data from each node in the network to
every other node in the network.
Gathering is the process of dissemination of data from nodes in the network to a
sink node.
Packet routing is the process of dissemination of data between nodes.

Dissemination processes can be characterized in several ways depending on the
data characteristics. Common characterizations are data distribution and data des-
tination. The data distribution can be either uniform, if the amount of data which
is sent and/or received by each node is in the same order of magnitude, or non-
uniform otherwise. The data destination can be either a single node, or multiple
nodes. In case of personalized data there is a single receiver node, and in case of
non-personalized data there are multiple receiver nodes. Typically, broadcasting
and gossiping problems are related to uniform non-personalized data and employ
the broadcasting mode of communication. Gathering and packet routing problems
are related to non-uniform personalized data, and employ point-to-point commu-
nication. Note that gathering of non-personalized uniform data is equivalent to
broadcasting, except for the reverse role of sender and receiver nodes.

The main objective in wireless communication is to establish efficient commu-
nication, where efficiency can be measured in several QoS measures. We consider
the QoS measures time and energy use. There are also other QoS measures such
as throughout, connectivity, security, and network reliability but we do not discuss
these in this thesis.

In time efficient communication we are interested in minimizing the time between
sending and receiving data. The motivation of this objective lies in the fact that the
value of information degrades over time; especially in time-critical communication
such as video-streaming or phone calls we prefer no delay at all between sending
and receiving data. Therefore, in applications typically the delay of a message is
bounded. E.g., in the TCP model, there is a bound on the maximum allowed
message delay, called the time-to-live (TTL) [76].

We distinguish between the latency of a data packet, and the delay of a data
packet. The latency of a data packet is the difference between the time the data
becomes available at the sender node, and the time the data arrives at the receiver
node, hence it can be viewed as an absolute measure. The latency of a packet is
also called flow time; another related absolute time measure is the completion time
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of a packet, the time the packet arrives at the sink. The delay of a data packet is a
relative measure: we assume that each packet requires a certain amount of time to
be sent in ideal conditions. The delay is the extra time a data packet requires, due
to either the choice of algorithm or the information regime.

In energy efficient communication we are interested in minimizing the energy
used to establish communication. Especially in networks where the nodes are battery
operated, such as in sensor networks, energy efficiency is the main objective. This
is because in this case an inefficient use significantly reduces the network lifetime,
which is the time that all nodes in the network are active. We distinguish two energy
objectives: minimizing average energy costs per node, and minimizing maximum
energy costs per node. The first objective is more relevant in a setting where nodes
can be recharged, and we have an interest in minimizing overall energy use. The
second objective is more relevant in a setting where nodes can not be recharged,
such as in sensor networks. In this case minimizing the maximum energy costs, is
equivalent to maximizing the network lifetime.

The different QoS measures are in conflict with one another. Typically, faster
communication requires the use of extra data packets, or simply communication at a
higher speed which results in an increased energy use. It depends on the application
of the problem which of the measures is chosen as objective, and how the other
measures are modeled in the problem. Typically, the other measures are modeled as
constraints, although it is also possible to optimize several objectives simultaneously
using multicriteria optimization.

2.4 Problems covered in this thesis

In this thesis we focus on gathering problems with data aggregation, and with inter-
ference. In Chapters 3 and 4 we study a gathering problem using data aggregation.
We study to what extent data aggregation can be used to establish energy efficient
communication. In Chapter 3 the objective is to minimize energy use of the nodes,
and we consider both average energy use and maximum energy use. We impose
hard constraints on the message latencies. In Chapter 4 we study the same problem
in a bicriteria setting, with objectives to minimize energy use and latency costs. In
Chapters 5 and 6 we study a gathering problem under interference. We study how
we can obtain efficient communication within an interference model. In Chapter 5
we analyze the problem minimizing completion times. In Chapter 6 we analyze the
problem minimizing flow times.

2.5 Summary

Wireless networks have become an important means of communication, and the use
of wireless networks is likely to increase in future years. Main challenge in wireless
networks is to establish efficient communication between users. There are many
classes of wireless networks depending on network architecture, and the purpose of
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the network. In this thesis we study several combinatorial optimization problems in
classes of wireless networks.

We study problems in networks which use an omnidirectional radio antenna to
communicate data over a broadcast channel. We consider a class of problems, called
gathering problems. In gathering problems data has to be communicated from nodes
in the network to a central node, the sink. Data gathering is a fundamental problem
in communication networks, and also used as a sub-problem in other communication
problems.

The algorithms for data gathering address scheduling and routing of messages.
We assume that necessary information such as a communication network is provided
by other algorithms. The algorithms that we propose can be implemented in pro-
tocols for the data link layer, and the network layer, two design layers of the OSI
reference model, a standard model to organize software.

We consider gathering problems in a wireless network, under the assumption of
interference, and we use data aggregation as a technique to reduce data commu-
nication. We consider several quality of service measures to assess the efficiency of
out algorithms. These measures are message communication times and node energy
use.

2.6 Related literature

General information on wireless networks can be found in the handbooks of Bouker-
che [21], Ilyas and Mahgoub [47], and Pahlavan and Levesque [63], as well as in the
surveys on wireless sensor networks of Akyildiz et al. [3], and Ganesan et al. [36].
Schmid and Wattenhofer [73] give an overview of different models for wireless sensor
networks. The information dissemination processes that we described have previ-
ously been studied in wired networks. Overviews of these processes and algorithms
for these processes are given in Fraigniaud and Lazard [35], in Hedetniemi et al. [42],
and in Hromkovič et al. [46]. An early account of the issue of time synchronization
has been given in [56]. [61] describes the Network Time Protocol, a synchronization
model for distributed networks, and a standard model for time synchronization in
the Internet. General time synchronization methods are discussed in [30, 31, 58].
Time synchronization in ad hoc and sensor networks is addressed in [32] and [72, 77]
respectively. Data aggregation in sensor networks is discussed in [3, 36, 70].



Chapter 3

Data aggregation with hard

latency constraints

3.1 Introduction

In the following two chapters we study a gathering problem in a wireless network
where we use data aggregation to reduce the network energy use. We call this
problem the data aggregation problem (DAP).

In DAP we consider a wireless network where data is released over time at
the nodes, and the nodes should communicate all data to the sink using multi-
hop communication. Nodes may delay messages in order to aggregate multiple
messages into a single packet, and forward this packet to the sink. This aggregation
reduces the communication costs at the expense of an increased message latency.
The objective of DAP is to minimize both the message latencies, and the network
communication costs, i.e. the energy use of the nodes.

In this chapter we study the latency constrained data aggregation problem in
which the objective is to minimize the energy use, under constraints on the max-
imum message latency. In the next chapter we study the bicriteria data aggregation
problem in which we use bicriteria optimization to simultaneously minimize the two
objectives mentioned above. A motivation for the problems can be found in Chapter
2.

Mathematically, the latency constrained data aggregation problem (LDAP) is
the following. We are given a routing tree D = (V,A) of a wireless network rooted
at a sink node s ∈ V . Nodes represent stations and arcs represent the possibility of
communication between two stations. The arcs are oriented towards the sink.

Over time m messages arrive at nodes and have to be sent to the sink. Let
M = {1, . . . ,m} be the set of these messages. Message j arrives at its release node
vj at its release date rj and must arrive at the sink via the unique vj − s-path.
Message j must arrive at the sink before a specified time, its due date dj .

We assume messages to have the same size. This assumption is often made in
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models of wireless communication, as typically a wireless network protocol divides
all data into messages of similar size. To summarize, for LDAP a message j can
be characterized by the triple (vj , rj , dj). We use both the terms time and date to
refer to points in time.

A packet is a set of messages, that are sent simultaneously along an arc. Two
messages j and j′ can be aggregated at a node v. The resulting packet has due date
d = min{dj , dj′}. This definition naturally extends to the case when more messages
are aggregated into a single packet.

Communication of a message along an arc takes time and requires energy (cost).
For most part of this chapter we assume that the communication time τ : A → R>0

and communication cost c : A → R>0 are independent of packet size. In this case,
we often refer to the communication cost c(v) of a node v as the communication cost
of its unique outgoing arc. This models the situation in which all messages have
more or less the same size and where total aggregation is possible, as discussed in
Subsection 2.2.2. We assume that the communication time to send a packet over
an arc is identical for all arcs, and choose τ(a) = 1 for each arc a. This models the
situation, where the distance between any pair of nodes in the routing tree is more
or less equivalent. For v ∈ V , let τv be the total communication time on the path
from v to s, i.e. the sum of communication times of all arcs on this path.

The latency of a message is the difference between its arrival time at the sink and
its release time. Let Cj be the completion time of message j in a solution. We define
Lj := dj − rj as the maximum allowed latency of message j, and lj := Cj − rj as
the realized latency of message j. A message specific latency allows the modeling of
messages with different priorities. The delay of a message is the difference between
the latency of a message and the minimal required communication time to send
the message to the sink. I.e. the delay of message j is lj − τvj

. Note that in case
communication times are zero, the latency and the delay of a message are equal.

We consider as objective to minimize the maximum communication costs per
node. This is a natural objective in sensor networks because of limited and unre-
plenishable energy at nodes. The due dates provide message specific bounds on the
maximum allowed latency. In the next chapter we assume that these latency bounds
are not strict.

We introduce some extra notation to facilitate the exposition of this chapter.
The release and due date of message j define a time interval for this message to be
in the network, [rj , dj ]. They also define transit intervals and an arrival interval.
For message j and node u on the path from vj to s, we define transit interval
Ij(u) as the time interval during which message j can reside at node u: Ij(u) :=
[rj +τvj

−τu, dj −τu]. In particular, Ij(s) = [r′j , dj ], where r′j := rj +τvj
the earliest

possible arrival time of j at s. We abbreviate Ij(s) to Ij and call it the arrival
interval of message j. In order to satisfy the latency constraints message j should
arrive at the sink at some time in interval Ij . We write |I| for the length of interval I;
note that for each message j we have |Ij(u)| = |Ij | for all nodes u on the path from vj

to s. The length of this interval is the maximum allowed delay message j can incur
in the network. Finally, we define δ := maxv τv as the depth of the network in terms
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of the communication time. And let U :=
maxj |Ij |

max{1,minj |Ij |}
=

maxj(Lj−τvj
)

max{1,minj(Lj−τvj
)} , the

ratio between the minimum and maximum of the maximum allowed delay.

We use complexity theory to assess LDAP, and we use concepts from approx-
imation theory and competitive analysis to analyze the performance of algorithms
that we propose for LDAP. See Chapter 1 for an introduction to these concepts.

In Section 3.2 we study the complexity of LDAP. We show that the offline
version of LDAP is NP-hard. In Section 3.3 we present a 2-approximation for
the offline version of LDAP. In Section 3.4 we study online algorithms under
several information models. For the synchronous model we present an O(log U)-
competitive algorithm. We also show that no synchronous algorithm can be better
than Ω(log U)-competitive, hence our algorithm is best possible up to a multiplic-
ative constant. For the asynchronous model we present an O(δ log U)-competitive
memoryless algorithm, and we show that no memoryless algorithm can be better
than Ω(δ)-competitive. We end this section with an analysis of special instances of
LDAP. We show that for a constant latency of at least two times the maximum
communication time to the sink, our synchronous distributed algorithm is in fact
constant competitive. We introduce a centralized algorithm for LDAP, and demon-
strate that it is 2-competitive, in case of constant latency, and the network is a
half-line, a line with the sink at the end. In Section 3.5 we study variations and
generalizations of LDAP. We consider LDAP with objective minimizing the sum
of energy. We indicate which results for LDAP minimizing maximum energy also
hold for this objective. And we present a polynomial time algorithm which solves
the offline version of LDAP minimizing the sum of energy, on a half-line. We show
that our results also hold in case the energy use cost function is concave. And we
generalize our model to accommodate geographically bounded aggregation of mes-
sages, i.e. of messages which are released within the same region only.

Related work
In the literature several problems have been studied which are related to DAP. The
TCP acknowledgment problem is closely related to DAP. In this problem messages
have to be gathered at a sink using a routing network which is a tree. Commu-
nication costs can be decreased using total aggregation, at the expense of message
delays. The main difference with DAP is that in the TCP acknowledgment prob-
lem the single objective is to minimize both energy costs and message latencies.
We believe such a single objective does not properly reflect the problem objective,
because time and energy are measured in different metrics. A second difference is
that the problem focuses on minimization of total energy costs and minimization of
total message delays whereas the focus of DAP is on minimizing maximum energy
costs and maximum delays.

We give a brief overview of results for the TCP acknowledgment problem. Dooly
et al. [28] presented a distributed 2-competitive algorithm, in case the network is
a single edge, and communication times are zero. Karlin et al. [50] presented a
randomized distributed e

e−1 -algorithm for the same model. The general case on
a routing tree with communication times zero and communication costs c(v) ≥ 1
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has been studied by several authors. Let for this version δ be the diameter of a
graph. Khanna et al. [52] presented an O(δ

∑

v c(v))-competitive algorithm for the
synchronous distributed model. Brito et al. [22] presented an O(χ∗(D))-competitive
algorithm for the asynchronous distributed model on graph D. Here χ∗(D) ≤
maxp∈D

∑

v∈p c(v), where p is a path in D.
Albers et al. [4] considered the same model as Dooly et al., but instead of

minimizing the sum of delays they minimized the maximum delay, as in DAP.

They presented a π2

6 -competitive deterministic online algorithm in case the graph
is a single edge. In their algorithm the i-th packet sent incurs a delay which is iz
for some constant z, i.e. the delay of a packet increases linearly with the number of
packets. In our opinion it seems rather unrealistic that solutions, in which messages
incur delays which increase over time, are of interest from a practical point of view.

3.2 Complexity

In this section we analyze the complexity of LDAP. We prove that this problem is
NP-hard. But first we prove some properties of optimal offline solutions.

Lemma 3.1. There exists an optimal solution to LDAP such that:

(i) whenever two messages are present together at the same node, they stay to-
gether until they reach the sink;

(ii) a message never waits at an intermediate node, i.e., a node different from its
release node and the sink;

(iii) the time when a packet of messages arrives at the sink is the earliest due date
of any message in that packet.

Proof. (i): Repeatedly apply the argument that whenever two messages are together
at the same node but split up afterwards, keeping the one arriving later at the sink
with the other message does not increase cost.

(ii): Use (i) and repeatedly apply the following argument. Whenever a packet
of messages arrives at an intermediate node and waits there, changing the solution
by shifting this waiting time to the tail node of the incoming arc does not increase
cost.

(iii): Follows similarly as (ii) by interpreting the time between the arrival of a
packet at the sink and earliest due date as waiting time.

The lemma provides properties for some optimal offline solution. In fact, all
algorithms we present for LDAP in this chapter construct solutions which satisfy
property (i), and it seems reasonable to do so. It may also seem that if we construct
algorithms which produce solutions that satisfy all properties of Lemma 3.1, we
obtain algorithms with a good approximation ratio. However, this idea is false. In
Subsection 3.4.2 we present an algorithm for the asynchronous time model which
generates solutions that do not satisfy property (ii), and we demonstrate that the
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competitive ratio of this algorithm is strictly better than distributed asynchronous
algorithms which produce solutions that do satisfy property (ii).

Now, we turn to the complexity analysis of LDAP.

Theorem 3.2. LDAP is NP-hard.

Proof. We prove the theorem using a reduction from the satisfiability problem (SAT)
[37]. Given an instance of SAT with m Boolean variables X1, . . . ,Xm and k clauses
Y1, . . . , Yk, we construct the intree on m + 2 nodes depicted in Figure 3.1.

u1

u2

um

v
s

Figure 3.1: An example of a wireless network.

The nodes u1, . . . , um on the left correspond to variables X1, . . . ,Xm. There
is one intermediate node v and the sink s on the right. The communication costs
of the arcs are determined later. To facilitate the exposition we assume that the
communication times of all arcs are zero, whence the earliest arrival times of the
messages coincide with their release dates. The proof can also be made to hold for
arbitrary constant communication times.

For clause Yi we define a time interval T (Yi) = [3i(m + 1), 3(i + 1)(m + 1) − 1]
and a message yi = (v, ri, di) := (v, (3i + 1)(m + 1), (3i + 2)(m + 1)), i = 1, . . . , k.
Notice that the arrival interval Iyi

= [ri, di] ⊂ T (Yi). We also define two dummy
messages y0 := (v, 0, 0) and yk+1 := (v, 3(k + 1)(m + 1), 3(k + 1)(m + 1)). Notice
the crucial fact |Iy0

| = |Iyk+1
| = 0, leaving no choice in sending y0 and yk+1.

If variable Xj occurs unnegated in clause Yi, we create a message xj
i = (uj , r

j
i , d

j
i )

:= (uj , (3i+1)(m+1)+ j, (3i+2)(m+1)+ j). If Xj occurs negated in clause Yi, we

create message xj
i := (uj , 3i(m + 1) + j, (3i + 1)(m + 1) + j). If Xj does not occur

in Yi no message xj
i is created. Notice that in both cases the arrival time interval

Ixj
i
⊂ T (Yi). If Xj does not occur in Yi no message xj

i is created. An illustration is

given in Figure 3.2 on the next page.

The idea behind the reduction is the following: in an optimal solution, message
xj

i is either sent at its release or at its due date (the reason for this will become

clear later). Moreover, sending xj
i at its release (due) date means setting Xj to true

(false). Thus, message yi can join message xj
i at node v if and only if the value of

variable Xj makes clause Yi true.

We continue with the description of the instance. Let ij1 < · · · < ijkj
denote

the indices of the clauses in which variable Xj occurs. We create kj + 1 additional
messages released at node uj . The release and due dates of these messages are chosen
such that the 2kj + 1 arrival time intervals formed by the release and due dates of
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(3i + 2)(n + 1)

zi

xk
i

xj
i

(3i + 1)(n + 1) + j (3i + 2)(n + 1) + j
(3i + 1)(n + 1) + k3i(n + 1) + k

(3i + 1)(n + 1)3i(n + 1) 3(i + 1)(n + 1) − 1

Figure 3.2: Arrival intervals corresponding to clause Yi. In the depicted example,
the clause has the form Yi = (Xj ∨ ¬Xh).

all messages released at node uj form a partition of the interval [0, 3(k +1)(m+1)];
see Figure 3.3.

3(k + 1)(m + 1)

xj
i1

xj
i2

xj
i3

0 rj
i1

dj
i1

rj
i2

dj
i2

rj
i3

dj
i3

Figure 3.3: Arrival intervals of messages with release node uj . In the depicted
example, variable Xj occurs in three clauses Yi1 , Yi2 , and Yi3 . Arrival intervals of
the four auxiliary messages are represented by dashed arrows.

We will demonstrate that for appropriately chosen cost functions any instance
of SAT reduces to an instance of LDAP. We define the cost function by c(uj , v) =
(maxl kl + 1)/(kj + 1) for j = 1, . . . ,m, and c(v, s) = (maxl kl + 1)/(

∑m
l=1 kl + 2).

The proof is based on two claims.

Claim 1. Every optimal solution to the sub-instance obtained by ignoring messages
y1, . . . , yk has the following properties:

(a) The cost of each node is maxl kl + 1;

(b) A message with release node uj is either sent from uj at its release date or at
its due date, j = 1, . . . ,m;

(c) For each fixed j = 1, . . . ,m, either all messages xj
i (i = ij1, . . . , i

j
kj

) are sent at
their release dates or all of them are sent at their due dates.

Proof of Claim 1. Let us consider a solution which minimizes the cost of nodes uj .
Since the 2kj + 1 arrival time intervals of messages with release node uj form a

partition of [0, 3(k + 1)(m + 1)], at most one xj
i -message and one of the auxiliary
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messages can be aggregated into a packet, which then has to be sent at the single
intersection point of the two arrival time intervals. Thus the minimal number of
packets that have to be sent from node uj is kj+1, i.e. kj pair-packets and one packet
containing a single message. Hence the minimal cost of node uj is c(uj , v)(kj +1) =
maxl kl + 1 for all nodes uj .

Each pair-packet is sent at the common release and due date of its two messages
and by construction of these dates no two pair-packets emanating from different
nodes can be aggregated into a single packet at node v.

Also, note that as a consequence pair-packets are not delayed at node v. Thus,
there are

∑m
l=1 kl pair-packets passing v. And we have the two dummy messages y0

and yk+1, which are sent from node v at times 0 and 3(k + 1)(m + 1). Pair-packets
cannot be aggregated with these dummy messages but each single-message-packet
can be sent at time 0 or 3(k+1)(m+1) and hence it may join dummy message y0 or
yk+1 at node v. This gives a total of

∑m
l=1 kl + 2 packets passing v. Thus, the cost

of node v is c(v, s)(
∑m

l=1 kl + 2) = maxl kl + 1. Notice that a single-message-packet
contains either the first or the last auxiliary message released at node uj . If the
single-message-packet is the first auxiliary message then all pair-packets are sent on
the due date of the xj

i -message in the packet. Otherwise, all pair-packets are sent

on the release date of the xj
i -message in the packet.

Thus, we have constructed a solution which satisfies properties (a),(b) and (c).
As the cost of node uj is at least maxl kl + 1 the solution is an optimal solution.
From the construction of this solution it can easily be verified that any solution which
violates property (a),(b) or (c) has a node with a cost which exceeds maxl kl + 1.

This claim suffices to prove the following claim.

Claim 2. LDAP has a solution with maximum cost at most maxl kl + 1 if and only
if the underlying instance of SAT is satisfiable.

Proof of Claim 2. Given a satisfying assignment for the SAT instance, we can obtain
a feasible solution to LDAP as follows. Notice that in the construction of an optimal
solution in the proof of Claim 1, for each j, there is a choice for the set of messages
corresponding to Xj , to send either dummy message y0 separately at time 0 or the
dummy message yk+1 separately at time 3(k + 1)(m + 1). In both cases the cost of
sending all messages corresponding to the variables and y0 and yk+1 is maxl kl + 1
for each node. We make the choice now by sending yk+1 separately if Xj is true in
the satisfying assignment and y0 separately if Xj is false.

We claim that message yi corresponding to clause Yi, i = 1, . . . , k, can be ag-
gregated at v with one of the pair-packets corresponding to a variable in the clause.
Suppose that clause Yi is satisfied due to variable Xj . If Xj appears unnegated

in Yi (thus Xj is true), then the pair-packet containing message xj
i is sent at time

rj
i := (3i + 1)(m + 1) + j ∈ Iyi

, the arrival interval of message yi. Hence, message
yi can join this packet at no additional cost. Similarly, if Xj appears negated at Yi

(thus Xj is false) then xj
i is sent at dj

i := (3i + 1)(m + 1) + j ∈ Iyi
. This concludes

the proof of the “if” part.
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It follows from Claim 1 that any feasible solution with maximum cost maxl

kl + 1 yields an assignment of values to the Boolean variables X1, . . . ,Xm: variable
Xj is set to true (false), if all messages xj

i , i = ij1, . . . , i
j
kj

, are sent at their release

(due) dates. It also follows from Claim 1 that in an optimal solution message yi,
i = 1, . . . , k should not cause additional cost, therefore it must join one of the packets
starting at a node uj . Due to the construction of the instance, this is only possible
if the value of variable Xj causes clause Yi to be satisfied. This concludes the proof
of the “only if” part.

The theorem follows directly from Claim 2.

3.3 A constant approximation algorithm

We formulate LDAP as an integer linear programming problem. We design a novel
rounding technique for the LP-relaxation of this problem, and show that a solution
to this problem yields a 2-approximation for offline LDAP.

First, we derive the integer programming formulation. Assume message set M
is ordered by increasing due date, i.e. d1 ≤ . . . ≤ dm. For each message-node-pair
{i, v} we introduce a binary decision variable xiv, which is set to 1 if and only
if node v sends some message j which arrives at s in a packet with message i at
time di. We use the notation jmin for the smallest index i such that di ≥ r′j ; i.e.,
jmin := min{i : di ≥ r′j}. Similarly we use the notation jmax for the largest index i
such that di ≤ dj ; i.e., jmax := max{i : di ≤ dj}. The integer programming problem
formulation of LDAP is

min z
s.t. z ≥ c(v)

∑m
i=1 xiv ∀v ∈ V,

∑jmax

i=jmin
xivj

≥ 1 ∀ 1 ≤ j ≤ m,

xiv ≥ xiu ∀ 1 ≤ i ≤ m ∀ (u, v) ∈ A ,
xiv ∈ {0, 1} ∀ 1 ≤ i ≤ m ∀ v ∈ V.

(3.1)

The set of constraints
∑jmax

i=jmin
xivj

≥ 1 forces each message to leave its release
node in time to reach the sink before its due date. The set of constraints xiv ≥ xiu

is sufficient to ensure that a message does not have to wait at intermediate nodes.
In fact, the formulation also holds for arbitrary communication times τ(a).

The following lemma demonstrates the equivalence of the integer program and
LDAP. The lemma is based on the observation that a solution x to (3.1) can be
transformed to a feasible solution to LDAP.

Lemma 3.3. An optimal solution to (3.1) yields an optimal solution to LDAP.

Proof. Given is an instance of LDAP. Let S and S∗ be feasible solutions to LDAP

which satisfy the properties of Lemma 3.1. We prove the lemma by demonstrating
that each solution S of maximum energy cost Z, is equivalent to a feasible solution
(x, z) of (3.1) of value z = Z, and that each optimal solution (x∗, z∗) of (3.1) of
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value z∗ = Z is equivalent to a feasible solution S∗ of maximum energy cost Z.
The proof then follows from the fact that there exists an optimal solution to LDAP

which satisfies the properties of Lemma 3.1.
Suppose we are given a solution S of cost Z. Then, it follows from property (iii)

of Lemma 3.1 that each packet arrives at the due date of some message. Hence,
solution S directly corresponds to a binary solution vector x, where x is defined as
above. Because S has cost Z we must have maxv c(v)

∑m
i=1 xiv = Z thus z ≥ Z. As

S satisfies property (ii) of Lemma 3.1 we must have xiv ≥ xiu, and as each message

in LDAP is sent to the sink before its due date in S we have
∑jmax

i=jmin
xivj

≥ 1,
hence (x,Z) is a feasible solution to (3.1). This proves the first part of the claim.

Suppose we are given an optimal solution (x∗, z∗) of the integer program (3.1)
of cost z∗ = Z. Then, it follows from equations x∗

iv ≥ x∗
iu that each message which

is sent from its release node, can be forwarded to the sink, without being delayed at
other nodes. Also, from equations

∑jmax

i=jmin
x∗

ivj
≥ 1 it follows that the release node

of each message j sends a packet such that j can be aggregated and sent with this
packet, and arrives at the sink before its due date. We assume that a packet sent
contains all messages present at this node. Then, it follows from the observations
above that solution x∗ is equivalent to a feasible solution S∗ of cost Z. This proves
the second part of the claim.

We obtain the LP-relaxation of the integer program of (3.1) by replacing the
last set of constraints with 0 ≤ xiv ≤ 1 ∀ 1 ≤ i ≤ m ∀ v ∈ V . We use the following
technique to round fractional solutions to integral solutions.

Algorithm 1 GreedyRounding

Let α1, . . . , αm ∈ R>0 and β1, . . . , βm ∈ {0, 1} with

∑k
i=j αi ≥ 1 =⇒ ∑k

i=j βi ≥ 1 ∀1 ≤ k ≤ m ∀1 ≤ j ≤ k. (3.2)

Consider the βi’s in order of increasing index. If βi = 1, then round it down to 0,
unless this yields a violation of (3.2). Let the resulting vector be β̄1, . . . , β̄m.

It is straightforward to see that the rounding procedure GreedyRounding

requires time linear in the size of vectors, m.

Lemma 3.4. Given α and β GreedyRounding yields a resulting vector β̄ which
satisfies property (3.2) and the inequality

∑m
i=1 β̄i ≤ 2

∑m
i=1 αi (3.3)

Proof. We are given vectors α, β and a vector β̄ which results from GreedyRound-

ing. By definition of the rounding procedure β̄ satisfies property (3.2). It remains
to prove that inequality (3.3) holds for the resulting numbers β̄1, . . . , β̄m.

For h ∈ {1, . . . ,m}, let h̄ := min{i > h | β̄i = 1}; if β̄i = 0 for all i > h or h = m,
then h̄ := m + 1. Similarly, let h := max{i < h | β̄i = 1}; if β̄i = 0 for all i < h or
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h = 1, then h := 0. We prove the following generalization of (3.3):

h
∑

i=1

β̄i ≤ 2

h̄−1
∑

i=1

αi ∀ 1 ≤ h ≤ m. (3.4)

By contradiction, consider the smallest index h violating (3.4). Since h is chosen
minimally, it must hold that β̄h = 1; rounding β̄h down to 0 would yield a violation
of (3.2). In particular this would yield

h̄−1
∑

i=h+1

αi ≥ 1 (3.5)

while
∑h̄−1

i=h+1 β̄i = 0. Notice that h ≥ 1, i.e. there is an index i < h for which

β̄i = 1, since, by choice of h,

h
∑

i=1

β̄i > 2

h̄−1
∑

i=1

αi

(3.5)

≥ 2.

Thus, β̄h = β̄h = 1. We get a contradiction to the choice of h:

h
∑

i=1

β̄i =

h−1
∑

i=1

β̄i + 2
(3.4)

≤ 2

h−1
∑

i=1

αi + 2
(3.5)

≤ 2

h−1
∑

i=1

αi + 2

h̄−1
∑

i=h+1

αi ≤ 2

h̄−1
∑

i=1

αi .

The first inequality follows from (3.4) since (h − 1) = h.

Now, we are in position to present an algorithm for LDAP, which uses the LP-
relaxation derived from (3.1) and the GreedyRounding technique.

Algorithm 2 LPRounding

Solve the LP-relaxation of (3.1) to obtain fractional solution (x, z).
Consider the arcs in order of non-decreasing distance from s.
for each node u do

if (u, s) ∈ A then
set x̂iu := 1 ∀ i = 1, . . . ,m

else
set x̂iu := x̄iv ∀i = 1, . . . ,m, and unique node {v|(u, v) ∈ A}

end if
Use GreedyRounding on values x1u, . . . , xmu and x̂1u, . . . , x̂mu to obtain
x̄1u, . . . , x̄mu.

end for
Let z̄ := 2z. This results in integral solution (x̄, z̄).

Here, the distance function of a node v is defined as the cardinality of the unique
v − s path.
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Theorem 3.5. LPRounding is a polynomial time 2-approximation algorithm for
LDAP.

Proof. LPRounding first solves the LP-relaxation of (3.1) to obtain optimal frac-
tional solution (x, z). This can be done in polynomial time, see Chapter 1. Then,
LPRounding uses GreedyRounding to round down arcs to an integral solu-
tion (x̄, z̄), as follows. For each node u the α’s are x1u, . . . , xmu, and the β’s are
x̂1u, . . . , x̂mu. It is easy to see that premise (3.2) of Lemma 3.4 is satisfied for node
u adjacent to s. We use induction to show that premise (3.2) of Lemma 3.4 holds
for each node u. Suppose it holds for each node at distance at most d from the sink.
Consider a node u at distance d+1 from the sink. We have (u, v) ∈ A for some node
v at distance d from the sink. Using induction and Lemma 3.4 we have that (3.2)
holds for x1v, . . . , xmv and x̄1v, . . . , x̄mv. Then, since xiu ≤ xiv, the premise (3.2) of
Lemma 3.4 is also satisfied for x1u, . . . , xmu and x̂1u, . . . , x̂mu. Thus it follows from
Lemma 3.4 that

∑m
i=1 x̄iu ≤ 2

∑m
i=1 xiu for each node u, hence the final solution

(x̄, z̄) is feasible if z̄ ≥ 2z.

3.4 Online algorithms

In this section we analyze LDAP in an online distributed model using competitive
analysis. We consider both the synchronous time model, and the asynchronous time
model as defined in Subsection 2.2.2.

In both time models we assume that each node v knows its total communication
time τv to the sink. This assumption is not unreasonable in a latency constrained
model, because without this knowledge nodes can not even identify when messages
exceed their due dates.

3.4.1 A synchronous distributed algorithm

We present an algorithm for the synchronous distributed model, and we prove that
this algorithm is best possible, up to a multiplicative constant, among all determ-
inistic algorithms for LDAP, using this time model.

Lemma 3.6. Given any interval [a, b], a, b ∈ N, . Let i∗ = max{i ∈ N | ∃k ∈ N :
k2i ∈ [a, b]}, then k∗ for which k∗2i∗ ∈ [a, b] is odd and unique.

Proof. Assume that k12
i∗ ∈ [a, b] and k22

i∗ ∈ [a, b], with k1 < k2. We may assume
that k2 = k1 + 1, for if k2 > k1 + 1, then obviously also (k1 + 1)2i∗ ∈ [a, b]. This
means that either k1 or k2 is even. Suppose this is k1 (if k2 is even the arguments are
analogous). Then, k1/2 ∈ N and (k1/2)2i∗+1 ∈ [a, b], contradicting the definition of
i∗.

We use notation t(I) to represent the unique point in the interval I = [a, b] which
equals k∗2i∗ with i∗ and k∗ as defined in Lemma 3.6. The algorithm we present
sends messages j to the sink at time t(I) where interval I depends on message j and
its message characteristics. The following algorithm uses as interval for message j
its arrival interval Ij .
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Algorithm 3 CommonClock

Message j is sent from vj at time t(Ij)−τvj
to arrive at s at time t(Ij) unless some

other packet passes vj in the interval [rj , t(Ij)−τvj
], in which case j is aggregated

and the packet is forwarded directly.

For a competitive analysis of CommonClock we first derive a bound on the
competitive ratio of this algorithm for instances in which the arrival intervals Ij

differ by at most a factor 2 in length. Let Mi = {j ∈ M, 2i−1 < |Ij | ≤ 2i} for
some i ∈ N. Let I = {⌊log(max{1,minj |Ij |})⌋, . . . , ⌈log(maxj |Ij |)⌉}. Note that
⋃

i∈I Mi = M , and |I| = O(log U), where U =
maxj |Ij |

max{1,minj |Ij |}
.

Lemma 3.7. CommonClock is 3-competitive if Mi = M for some i ∈ I.

Proof. We will prove that the communication cost of each node in the Common-

Clock-solution is at most 3 times the communication cost of this node in the
optimal solution.

Assume that in an optimal solution packets arrive at s at times t1 < · · · < tℓ.
Let P ∗

h be the packet arriving at time th at s. Since th ∈ Ij ∀j ∈ P ∗
h and |Ij | ≤ 2i

∀j, we have Ij ⊂ [th − 2i, th + 2i] =: I ∀j ∈ P ∗
h , and |I| = 2 · 2i. If th = k2i

then in the CommonClock-solution all messages in P ∗
h may arrive at s at times

th − 2i or th. If th 6= k2i then I contains two different multiples of 2i, say k2i

and (k + 1)2i, such that k2i < th < (k + 1)2i. In this case, since |Ij | > 2i−1 ∀j,
we have ∀j ∈ P ∗

h that Ij ∩ {k2i, k2i + 2i−1, (k + 1)2i} 6= ∅. Lemma 3.6 implies
that in a CommonClock-solution every message j ∈ P ∗

h arrives at s at one of
{k2i, k2i + 2i−1, (k + 1)2i}.

Hence, ∀h = 1, . . . , ℓ, all messages in P ∗
h arrive at s at at most 3 distinct time

instants in the CommonClock-solution. CommonClock does not delay messages
at intermediate nodes. This implies that the nodes used by messages in P ∗

h are tra-
versed by these messages at most 3 times in the CommonClock-solution, proving
the lemma.

Theorem 3.8. CommonClock is Θ(log U)-competitive.

Proof. CommonClock sends the messages in Mi, i ∈ I, at a cost of no more than
3 times the optimum, by Lemma 3.7. Let M0 = {j ∈ M, |Ij | = 0} CommonClock

sends the messages j ∈ M0 at a cost equal to the optimal solution, because |Ij | = 0
for each j ∈ M0, hence there is no choice in sending these messages. As |I| =
O(log δ), and

⋃

i∈0∪I Mi = M this proves O(log U)-competitiveness.
To prove Ω(log U)-competitiveness, consider a half-line of 2m+1 nodes u1, . . . ,

u2m+1 = s for some m ∈ N. Take c(a) = 1 ∀a. An adversary releases messages j,
j = 1, . . . ,m, with vj = u2j , rj = 0, and dj = 2m+1−1. Hence r′j = 2m+1−2j = k2j

for some odd k ∈ N and |Ij | = 2j − 1. Therefore, CommonClock makes each
message j arrive at s at time r′j , no two messages are aggregated, whereas in an
optimal solution all messages are aggregated into a single packet arriving at s at
time 2m+1 − 1. Thus, the CommonClock solution has value m against an optimal
value of 1. Notice that U = 2m − 1 here.



3.4 Online algorithms 37

In fact, CommonClock also works in case of arbitrary communication times
τ(a), and with the same bound on the competitive ratio [9]. The following theorem
shows that CommonClock is best possible, up to a multiplicative constant.

Theorem 3.9. Any deterministic synchronous algorithm is Ω(log U)-competitive.

Proof. Consider an intree of depth δ = 2m+1 with m the number of messages, and
where each node, except the leaves, has indegree m. For any online algorithm we
will construct an adversarial sequence of m messages all with latency L = δ, such
that there exists a node at which the adversary can aggregate all messages in a
single packet, but at which none of them is aggregated by the online algorithm.
Using a similar argument as in the proof of Lemma 3.1 (i) the fact that all messages
can be aggregated in a single packet implies that there exists a solution such that
every node sends at most one packet, hence the cost of the adversarial solution is 1,
whereas the cost of the online algorithm is m.

Fix any online algorithm. Given an instance of the problem, let Wj(u) be the
time interval message j spends at node u by application of the algorithm. We call
this the waiting time interval of message j at node u, and we denote its length
by |Wj(u)|. Note that

∑

u |Wj(u)| ≤ |Ij | for each message j. We notice that the
waiting time of a message in a node can be influenced by the other messages that
are present at that node or have passed that node before. Because the algorithm is
distributed the waiting time of a message in a node is not influenced by any message
that will pass the node in the future.

The adversary chooses the source node vj with total communication time τvj
:=

δ − 2j from s, for j = 1, . . . ,m, so that |Ij | = 2j . Thus, U = 2m−1 = δ/4. The
choice of the exact position of vj and the release time rj is made sequentially and,
to facilitate the exposition, described in a backward way starting with message m.
The proof follows rather directly from the following claim.

Claim. For any set of messages {k, . . . ,m} the adversary can maintain the proper-
ties:
(i) all messages in {k, . . . ,m} pass a path pk with 2k nodes;
(ii) Ik(u) =

⋂

j≥k Ij(u) ∀u ∈ pk;
(iii) if k < m, then Wk+1(u)

⋂

Ik(u) = ∅ ∀u ∈ pk;
(iv) if k < m, then Wi(u)

⋂

Wj(u) = ∅ ∀u ∈ pk, i = k, . . . ,m, j > i.
We notice that for any message j and any node u on the path from vj to s,

Wj(u) may have length 0 but is never empty; it contains at least the departure time
of message j from node u.

Note that properties (i) and (ii) for k = 1 imply that all messages can indeed
be aggregated into one packet, hence as argued above, the adversarial solution has
a cost of 1. Properties (iv) and (i) for k = 1 imply that the algorithm sends all
messages separately over a common path with 2 nodes, yielding a cost of m. This
proves the theorem. See Figure 3.4 on the next page for a visualization of the transit
intervals and waiting time intervals for some node u ∈ pk as stated in the claim.

We prove the claim by induction. The basis of the induction, k = m, is trivially
verified. Suppose the claim holds for message set {k, . . . ,m} and pk is the path
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...

Im(u)
Im−1(u)

Ik(u)

t

Figure 3.4: Transit intervals (I) and waiting time intervals (W ) on some node u ∈ pk

of the claim. The waiting time interval of a message before reaching u is solid, the
waiting time interval of a message at u is dashed. In the depicted example messages
k and m incur less than half of its total waiting time before reaching u, and message
m−1 incurs more than half of its total waiting time before reaching u. The waiting
time intervals of messages at node u (dashed) do not intersect, i.e. the algorithm
cannot aggregate messages at u.

between nodes v and v̂. We partition pk into two sub-paths p and p̂ consisting of
2k−1 nodes each, such that v ∈ p and v̂ ∈ p̂. We denote the node of p adjacent to
p̂ by u and the node of p̂ adjacent to p by û. See Figure 3.5 for a visualization of
path pk.

p p̂v u û v̂

2k−1 2k−1

Figure 3.5: An example path pk of length 2k, as used in proof of the claim.

We distinguish two cases with respect to the waiting times the algorithm has
selected for message k in the nodes on pk.

Case a:
∑

u∈p |Wk(u)| ≥ (1/2)|Ik|. The adversary chooses vk−1 with total commu-

nication time τvk−1
= δ − 2k−1 such that its path to s traverses p̂ but not p. More

precisely, we ensure that the first node message k−1 has in common with any other
message is û. This is always possible, since the node degree is m. This choice imme-
diately makes that setting pk−1 = p̂ satisfies property (i). The release time of k − 1
is chosen so that Ik−1(û) and Ik(û) start at the same time, implying that Ik−1(u)
and Ik(u) start at the same time for every u ∈ p̂. Since |Ik−1(u)| = |Ik(u)|/2 we
have Ik−1(u) ⊂ Ik(u) for all u ∈ p̂, whence property (ii) follows by induction.

Note that, as we consider distributed algorithms, message k−1 does not influence
the waiting time of j, j > k − 1, on p as û is the first node which both j and k − 1
traverse. In particular, Wk(u),∀u ∈ p is not influenced by k − 1

Now, the equal starting times of Ik−1(û) and Ik(û) together with
∑

u∈p |Wk(u)| ≥
(1/2)|Ik| and |Ik−1(û)| = |Ik(û)|/2 imply that k will not reach û before interval
Ik−1(û) ends. This, together with the consideration above, implies property (iii).
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To prove (iv), note that by induction it is sufficient to prove that Wk−1(u) ∩
Wj(u) = ∅ ∀j > k − 1 ∀u ∈ p̂. Since, as just proved, Wk(u) ∩ Ik−1(u) = ∅ ∀u ∈ p̂
we have Wk−1(u) ∩ Wk(u) = ∅ ∀u ∈ p̂. We have by induction that, for j > k,
Wj(u)∩Ij−1(u) = ∅ ∀u ∈ p̂ and we just proved that Ik−1(u) ⊂ Ij−1(u) ⊂ Ij(u) ∀u ∈
p̂, which together imply Wk−1(u) ∩ Wj(u) = ∅ ∀j > k ∀u ∈ p̂.

Case b:
∑

u∈p |Wk(u)| < (1/2)|Ik|. As in the previous case, the adversary chooses

vk−1 with total communication time τvk−1
= δ − 2k−1 such that its path to s

traverses p (therefore also p̂) but does not intersect any of the paths used by messages
{k, . . . ,m} before it reaches p in v. Again, this is always possible since the indegree
of each node is m. Hence, choosing pk−1 = p satisfies property (i). The release time
of k − 1 is chosen so that Ik−1(v) and Ik(v) end at the same time, implying that
Ik−1(u) and Ik(u) end at the same time for every u ∈ p. Since |Ik−1(u)| = |Ik(u)|/2
we have Ik−1(u) ⊂ Ik(u) for all u ∈ p, whence property (ii) follows by induction.

The equal ending times of Ik−1(u) and Ik(u) together with
∑

u∈p |Wk(u)| <
1/2|Ik| and |Ik−1(u)| = |Ik(u)|/2 implies that k has left u before Ik−1(u) begins,
implying property (iii). Indeed, this gives Wk−1(u) ∩ Wk(u) = ∅,∀u ∈ p. It also
implies that k − 1 could not influence the waiting time of k on p.

The proof of (iv) follows the very same lines as in Case a, with the difference
that we now refer to nodes in p instead of p̂.

Since in the proof U = δ/4 we also have the following lower bound on the
competitive ratio of any deterministic synchronous algorithm.

Corollary 3.10. Any deterministic synchronous algorithm is Ω(log δ)-competitive.

3.4.2 An asynchronous distributed algorithm

We present an algorithm for the asynchronous distributed model. We analyze its
competitive ratio, and we provide a lower bound on the competitive ratio for a broad
class of algorithms which includes this algorithm.

The introduction of the asynchronous time model requires a more careful look
at the concept of due dates and latency. Until now, we have assumed that each
message is characterized by a due date, which implies the maximum allowed latency
a message can incur before reaching the sink. The due date is an absolute time
measure, whereas the latency is a relative time measure, which is related to the
release time. In an asynchronous time model, nodes only have a notion of relative
time, hence we assume in this case messages are characterized by their latency,
rather than their due date. Because of the one-to-one relation between latency Lj

and due date dj , we can still refer to the due dates of messages in proofs, without
loss of generality.

We propose algorithm SpreadLatency, which divides the maximum allowed
latency minus communication time of each message j equally over the nodes on the
vj − s-path, except for the sink.
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Algorithm 4 SpreadLatency

Let the waiting time of message j be wj = (Lj − τvj
)/τvj

per node visited.
Each node sends a packet as soon as the waiting time of some message at that
node has elapsed. This packet contains all messages present at that node at that
time.

By definition of the algorithm no message j incurs a total waiting time which
exceeds Lj − τvj

, message j has latency at most Lj , and the solution is feasible.

Theorem 3.11. SpreadLatency is O(δ log U)-competitive.

Proof. We prove that for all v ∈ V the number of packets SpreadLatency sends
from v is at most O(δ log U) times that number in an optimal solution.

Let µ := max{1,minj(Lj − τvj
)}. Consider a packet P of messages sent by

an optimal solution from node v at time t. Without loss of generality we do not
consider messages for which minj(Lj − τvj

) = 0 as these messages have to be sent
upon release by both SpreadLatency and the optimal algorithm. To bound the
number of packets sent by SpreadLatency that contain at least one message from
P , define Pi := {j ∈ P | 2i−1µ ≤ Lj − τvj

< 2iµ}, for i = 1, . . . , ⌈log U⌉. We charge
any sent packet to the message that caused the packet to be sent due to its waiting
time being over. It suffices to prove that the number of packets charged to messages
in Pi is O(δ).

Since the waiting time of messages j ∈ Pi at node v is at least 2i−1µ/δ, the delay
between any two packets that are charged to messages in Pi is at least 2i−1µ/δ. Since
the optimal solution sends packet P at time t from v, we get t ∈ Ij(v) ∀j ∈ P and
thus Ij(v) ⊆ [t − 2iµ, t + 2iµ] ∀j ∈ Pi. Thus, the number of packets charged to
messages in Pi is at most 2 · 2iµ/(2i−1µ/δ) = 4δ.

In fact, the following theorem demonstrates that the competitive ratio of Spread-

Latency cannot be improved.

Theorem 3.12. SpreadLatency is Ω(δ log U)-competitive.

Proof. Consider a half-line with end nodes v and s, unit communication costs, and
δ ≥ 6. An adversary releases messages ji,k at node v for i = 1, . . . , δ/4 − 1 and

k = 0, . . . , log δ − 1. The release time of message ji,k is r(i, k) = δ + 2k+1

δ i − 2k and
the latency is L(i, k) = 2k + δ. It follows from the observations r(i, k) < r(i + 1, k)
and r(δ/4, k) < r(1, k − 1) that messages are released ordered by decreasing value
of k and then by increasing value of i. This induces the total order ≺ on pairs (i, k)
and (i′, k′). Formally, (i, k) ≺ (i′, k′) if either k > k′ or k = k′ and i < i′.

We have Iji,k
= [r(i, k) + δ, r(i, k) + L(i, k)]. As r(i, k) + δ ≤ 2δ and r(i, k) +

L(i, k) ≥ 2δ for each message ji,k, we have
⋂

j∈ji,k
Ij 6= ∅, hence the adversary may

aggregate all messages at their common release node v. Let Wj(u) be, as defined
before, the waiting time interval of message j on u determined by SpreadLatency.

We have Wji,k
(v) = [r(i, k), r(i, k) + L(i,k)−δ

δ ].
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It follows from simple arithmetics that r(i, k) + L(i,k)−δ
δ < r(i′, k′) for all pairs

(i, k), (i′, k′) such that (i, k) ≺ (i′, k′). This can be seen as follows. If i < i′ and
k = k′ then the claim follows trivially. Suppose k > k′. Then we should prove

δ + 2k+1

δ i − 2k + 2k

δ < δ + 2k′+1

δ i′ − 2k′

. This leads to the following:

2k(
2i

δ
− 1 +

1

δ
) < 2k′

(
2i′

δ
− 1) ⇒

2k(2i − δ + 1) < 2k′

(2i′ − δ) ⇒
δ − 2i′

δ − 2i − 1
<

2k

2k′
.

The last inequality holds because δ−2i′

δ−2i−1 < 2 and 2k

2k′ ≥ 2.

Hence, Wj(v)∩Wj′(v) = ∅ for any two messages j and j′ and SpreadLatency

sends all messages separately from v. As all messages can be aggregated at v, and
δ = Θ(U), this proves the theorem.

SpreadLatency is a memoryless algorithm, i.e. it bases decisions only on in-
formation which is available at the time of decision making, and not on information
of previous decisions, and packets which no longer reside at that node. The follow-
ing lower bound shows that the competitive ratio of SpreadLatency cannot be
beaten by more than a factor O(log U) by any other memoryless algorithm. In the
derivation of the lower bound we restrict to memoryless algorithms that employ the
same algorithm in nodes which have the same communication time to s, and the
same indegree. This is not a severe restriction, given that this is typically the only
information about the network that a node has.

Theorem 3.13. Any deterministic asynchronous memoryless algorithm is Ω(δ)-
competitive.

Proof. Consider an intree with root s, where each non-leaf node has indegree δ,
and all leaves have communication time δ to s. An adversary releases message 1
with latency L at time r1 in a leaf v1. There must be a node u where message 1
waits at most (L − τv1

)/δ. The adversary releases message j, j = 2, . . . , δ at time
r1 + j(L − τv1

)/δ. The adversary chooses the release nodes of these messages such
that all messages j are sent over node u, and no two messages traverse the same
node before reaching u. Because τvj

= δ ∀j and we assumed that any memoryless
algorithm applies the same algorithm in nodes which have the same communication
time to the sink, and the same degree, all messages are sent non-aggregated to and
from u, whereas they are aggregated as early as possible in an optimal solution, in
particular at u.

The lower bound does not hold for arbitrary algorithms as a node may adjust
the waiting time of subsequent messages that traverse that node. However, we note
that only if a node delays subsequent messages longer the competitive ratio may
improve. The following theorem formalizes this idea.
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Theorem 3.14. Any online algorithm for which the waiting time of message j at

its release node is at most
L−τvj

K is Ω(K)-competitive.

Proof. Consider a half-line which consists of two nodes v and s. We assume a
constant latency of L for each message. The adversary releases K−1 messages with
an interval of (L − τvj

)/(K − 1) at v. Since the waiting time of message j at v is
at most (L − τvj

)/K, none of these messages are aggregated in the online solution,
whereas they are all aggregated in one packet in an optimal solution.

For arbitrary asynchronous algorithms we do not have any better lower bound
than the bound of Theorem 3.9 for the synchronous case. Furthermore, notice that
for any memoryless algorithm to have a competitive ratio better than some constant
times the number of messages, it should delay messages at their release node.

We conclude this paragraph with a proof that asynchronous distributed al-
gorithms which produce solutions that satisfy property (ii) of Lemma 3.1 can not
have a competitive ratio which is better than proportional to the number of mes-
sages.

Theorem 3.15. Any distributed deterministic asynchronous algorithm which only
delays messages at their release node is Ω(m)-competitive.

Proof. Consider the graph of Figure 3.1, and assume a constant message latency
L ≥ m + δ = m + 2. For each j, j = 1, . . . ,m, an adversary releases one message j
at node uj . Because the algorithm of each node is deterministic, the adversary knows
in advance the waiting time of each message j at node uj . Moreover, because we
assume the algorithm to be asynchronous we may assume without loss of generality
that the waiting time of the first message released at a node does not depend on the
release time of this message. Hence, the algorithm knows in advance the waiting
time of each message j.

The adversary releases message 1; let t1 be the time message 1 is sent from u1.
Now, the adversary chooses the release times of message j such that it is sent from
its release node at time tj := tj−1+1. As no message is delayed after being sent from
its respective release node, messages j are sent from node v in packets containing a
single message, in a time interval of length m. As each message can be delayed for
time at least m the adversary can aggregate all messages at v, and send them in a
single packet.

The theorem demonstrates that enforcing structural properties of classes of op-
timal offline solutions are no guarantee for obtaining online solutions with a good
competitive ratio.

3.4.3 Special instances

So far, in this section we considered online distributed algorithms. Theorem 3.9
leaves open the possibility that there exist online centralized algorithms with a com-
petitive ratio strictly better than Ω(log U). It is interesting to investigate whether
such centralized algorithms exist in order to determine to what extent the lower
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bound of Theorem 3.9 can be attributed to the distributed nature of the model.
First, we present a lower bound on the competitive ratio for any algorithm.

Theorem 3.16. No online algorithm can have a competitive ratio less than 2, not
even on a half-line.

Proof. Consider a half-line consisting of nodes u2, u1, s with unit cost. Fix any
algorithm ALG. At some time t an adversary releases a message at u2. If ALG
sends the message at time t then at time t + 1 another message is released at u2.
This gives ALG a maximum node cost of at least 2 against a node cost of 1 for
the adversary. If ALG delays the message then the adversary releases a message at
u1 with due date t + 2. Again, this gives ALG a maximum node cost of at least 2
against a cost per node of 1 for the adversary.

However, we will outline in this paragraph that the gap in approximability
between centralized and distributed algorithms is not so much related to the in-
formation model, but more to the fact that the maximum allowed delay can differ
over messages. If we take a closer look at the lower bound proof of Theorem 3.9,
then we may observe that it is based on instances where the maximum ratio of the
length of two arrival intervals is O(log U).

We analyze CommonClock for instances where the latency is a constant L, and
L ≥ 2δ. In this case each message can be delayed for at least time δ. Hence, also U
is a constant and in this case CommonClock is in fact constant competitive.

Corollary 3.17. Under constant latency L ≥ 2δ CommonClock is 6-competitive.

Proof. Suppose we assume a constant latency L, L = kδ, k ≥ 2. Then for each
message j we have (k − 1)δ ≤ |Ij | ≤ kδ. Hence, U = 2 and the proof follows from
the proof of Theorem 3.8.

Note that if CommonClock knows the latency L, then using an adjusted time
function t∗(I) := max{kL|kL ∈ I, k ∈ N} instead of t(I), CommonClock is even 3-
competitive, in case of a constant latency L, and L ≥ 2δ. In this case the algorithm
CommonClock is in fact equivalent to a heartbeat algorithm which sends packets
at specific time intervals. Heartbeat algorithms are typical algorithms for the TCP
model; see Stevens [76].

We have not been able to devise centralized algorithms for general LDAP, with
competitive ratio strictly better than that of CommonClock. However, we present
a centralized algorithm which yields a constant competitive ratio in case the graph
is a half-line, and messages have a constant maximum allowed latency L, also called
the constant latency. The centralized algorithm is called EarliestDueDate, and
is described on the next page.

Note that a constant message latency assumes Lj ≥ δ for each message j, as
otherwise not all messages can be sent to the sink within the maximum allowed
latency. As such, this constraint is less strict than the Lj ≥ 2δ necessary to prove
the constant competitiveness of the distributed CommonClock-algorithm. Recall,
that without this condition CommonClock is Ω(log U)-competitive.
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Algorithm 5 EarliestDueDate

for each time t do
- Select any message with earliest due date, t∗, from the set of messages that
have not arrived at the sink, as the responsible message;
- Each node v which contains messages sends a packet containing all messages
present at this node if t + τv = t∗.

end for

Also note that in case of constant latency once a message is chosen as responsible
message, we may assume without loss of generality that it remains the responsible
message in the network until it reaches the sink. In case of arbitrary latencies, a
newly released message may become the responsible message if its due date precedes
the due date of the previous responsible message. It can easily be observed that any
EarliestDueDate-solution satisfies properties (i-iii) of Lemma 3.1, i.e. properties
of some optimal offline solution.

Theorem 3.18. EarliestDueDate is 2-competitive for LDAP on a half-line,
with a constant latency.

Proof. We will prove that the number of packets sent over a node v in the Earli-

estDueDate-solution is at most 2 times the number of packets sent over v in an
optimal solution, which satisfies property (i-iii) of Lemma 3.1.

Assume that in this optimal solution packets arrive at s at times t1 < · · · < tℓ.
Let P ∗

h be the packet arriving at time th at s. Observe that th ∈ Ij ∀j ∈ P ∗
h .

Suppose to the contrary that there is a node v such that the messages of P ∗
h , which

pass v, are sent from v in at least 3 packets, P1, P2, P3. Let the arrival times of
these packets be respectively t1, t2, and t3 and we assume t1 < t2 < t3.

As EarliestDueDate sends each packet of messages such that it arrives at
the due date of some message we must have for responsible message j of P2 that
j /∈ P ∗

h (note that it is not necessary that j ∈ P2). This can be seen as follows. All
messages in P ∗

h are sent simultaneously in the optimal solution to the sink. Hence
each message in P ∗

h can be sent such that it arrives at the sink at the due date
of some message in P ∗

h , if it has not been sent before. Now, if j ∈ P ∗
h , and P2 is

sent such that it arrives at the due date of j, then all messages in P ∗
h ∩ P3 would

have been aggregated with this packet because t2 < t3. But this contradicts our
assumption that messages of P ∗

h are sent from v in at least 3 packets.

Thus, j /∈ P ∗
h . Next, we must have t2 ∈ Ij , and t1 /∈ Ij as otherwise j ∈ P1 by

definition of EarliestDueDate. Also, because P ∗
h ∩ P3 6= ∅ we have t2 < th as

otherwise EarliestDueDate would have sent all messages in P ∗
h ∩ P3 at time t2.

Any message j1 ∈ P ∗
h ∩ P1 can be sent both at times t1 and th, hence |Ij1 | ≥

t2 − t1, and |Ij | < |Ij1 |. Thus, because we assume a constant latency we must have
τvj

> τvj1
, i.e. message j is sent further from the sink than j1 ∈ P ∗

h ∩ P1.

Now, consider the optimal solution. As message j has due date t2 < th it must
arrive at the sink before message j1; but as the network is a half-line message j
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would pass message j1, and it follows from property (i) in Lemma 3.1 that message
j1 is aggregated with j. But then j ∈ P ∗

h which contradicts our assumption.

The competitive ratio of EarliestDueDate can be arbitrarily close to 2. Con-
sider the half-line u2, u1, s with costs c(u2, u1) = l, c(u1, s) = 1, for some l, l ≥ 1.
Assume a latency of L ≥ 3 for each message. Message 1 is released at node u1 at
time r1 = 0. Message 2 is released at node u2 at time r2 = L − 2. Message 3 is
released at node u2 at time r2 = L − 1. EarliestDueDate aggregates messages
1 and 2 in a packet and sends message 3 separately, yielding a maximum cost of
2l. The optimal solution aggregates messages 2 and 3 and has a maximum cost
of l. Hence, EarliestDueDate is at best 2-competitive. As this example shows,
EarliestDueDate cannot be better than 2-competitive because it aggregates all
messages that can be aggregated with the responsible message in a single packet.
It does not consider the extra communication costs nodes have to make in order
to forward packets to the node where they can be aggregated with the responsible
message.

Using this insight we give an example which demonstrates that EarliestDueD-

ate is at least Ω(m)-competitive on a tree. Consider the tree of Figure 3.1; assume
that all leaf nodes u1, . . . , um−1 are connected to v with a path of length L− 1 and
let um be at distance 1 from v. The adversary releases 2(m−1) messages with some
constant latency L ≥ 2m. He releases message ji at node um at time ri = L + i
for i = 1, . . . ,m − 1. Further, he releases messages j′i at node ui at time ri = i for
i = 1, . . . ,m − 1. Thus Iji

= [L + i + 1, 2L + i] and Ij′

i
= [L + i + 1, L + i + 1].

EarliestDueDate aggregates each message ji with message j′i into a single packet,
regardless of the arc costs. As a result, no two packets can be aggregated at v. This
gives a cost of mc(um, v) for leaf um, a cost of c(ui, v) for leaf ui, i = 1, . . . ,m − 1,
and a cost of mc(v, s) for node v. If we choose as cost function c(um, v) ≥ (m + 1)
and c(a) = 1 for all a ∈ A\(um, v), then, for both objectives, the optimal solution
aggregates all messages at um into a single packet, thus (um, v) has to be traversed
only once. This gives a cost of c(um, v) for leaf um, a cost of c(ui, v) for leaf ui,
i = 1, . . . ,m − 1, and a cost of (m + 1)c(v, s) for node v. This proves that Earli-

estDueDate is Ω(m)-competitive on a tree. As a result the exposition of algorithm
EarliestDueDate is only useful from a theoretical point of view to gain a better
understanding of problem LDAP.

We conclude this section with a general lower bound on the competitive ratio of
any online algorithm on instances with constant latency. The theorem is a general-
ization of the proof that EarliestDueDate is at best 2-competitive, as described
above.

Theorem 3.19. No online algorithm can be better than
√

2-competitive for LDAP

with a constant latency L, L ≥ 2δ, not even on a half-line.

Proof. Consider the half-line u2, u1, s and costs c(u2, u1) = l, c(u1, s) = 1, for some
l,1 ≤ l ≤ 2. Assume a latency of L ≥ 4 for each message. Message 1 is released at
node u1 at time r1 = 0. Message 2 is released at node u2 at time r2 = L − 2. If
node u2 does not send message 2 immediately to be aggregated with message 1, then
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the algorithm incurs a maximum cost of max{2, l} = 2 whereas the optimal cost is
max{1, l} = l. If messages 1 and 2 are aggregated, then message 3 is released at
node u2 at time L. Hence, a maximum cost of 2max{l, 1} = 2l is incurred, whereas
the maximum cost of a node in the optimal solution is max{2, l} = 2. The theorem
follows if we choose l :=

√
2.

3.5 Variations and generalizations of the model

In this section we discuss a variant and generalizations to the LDAP model. We
consider a variant of LDAP where the objective is to minimize the total energy costs,
and we discuss two generalizations of the aggregation model. The first generalization
is to use an energy function which is non-decreasing in the number of messages in a
packet, instead of constant. The second generalization limits the possibility of total
aggregation of two messages.

3.5.1 Minimize total energy use

We consider LDAP with the objective to minimize total energy consumption. The
problem can be formulated as an integer program similar to formulation of the
original LDAP (3.1) but with objective to minimize

∑

a∈A c(a)
∑m

i=1 xia, instead of
z. The objective to minimize total energy use is common in networks where nodes
have access to a replenishable energy source.

For the offline problem, the rounding algorithm LPRounding also provides a
2-approximate solution, as can be observed from the proof of Theorem 3.5. Be-
sides, for this objective there exists a dynamic programming formulation, which
yields an optimal solution in polynomial time on a half-line. We give the dynamic
programming formulation.

Assume message set M is ordered by increasing due date, i.e. d1 ≤ . . . ≤ dm.
For 0 ≤ i ≤ k ≤ m+1, we denote by M(i, k) the set of messages in {i+1, . . . , k−1}
whose earliest arrival time is strictly later than i’s due date. More formally,

M(i, k) := {j ∈ M | i < jmin ≤ j < k} .

OPT (i, k) denotes the cost of an optimal solution to the partial instance defined by
the subset of messages in M(i, k). The dynamic programming formulation is based
on the following lemma.

Lemma 3.20. Let ℓ be a message in M(i, k) whose release node vℓ has maximum
communication time τvℓ

among all messages in M(i, k). Then,

OPT (i, k) = cvℓ
+ min

ℓmin≤j≤ℓ

(

OPT (i, j) + OPT (j, k)
)

. (3.6)

Proof. In an optimal solution to M(i, k), message ℓ arrives at the sink at time dj ,
for some j ∈ {ℓmin, . . . , ℓ}. Moreover, there exists an optimal solution to M(i, k) in
which all messages in Mi,k(j) := {h ∈ M(i, k) | hmin ≤ j ≤ h} arrive at the sink
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together with message ℓ at time dj because they can join ℓ on its way to the sink
at no additional cost. Notice that M(i, k) is the union of the disjoint sets M(i, j),
Mi,k(j), and M(j, k). Moreover, since no two messages in M(i, j) and M(j, k) can
ever reach the sink together in a feasible solution, the remaining problem can be
decomposed into two subproblems for messages in M(i, j) and M(j, k). This yields
the desired result.

Theorem 3.21. Off line LDAP minimizing total energy use can be solved in O(m3)
time, on a half-line.

Proof. Consider a dynamic program which computes values OPT (i, k), 0 ≤ i ≤
k ≤ m + 1, in order of non-decreasing k − i. It follows from Lemma 3.20, that the
algorithm can compute these O(m2) values and since it takes O(m) time to evaluate
(3.6) the algorithm needs a total time of O(m3). The value of an optimal solution
can be derived from OPT (0,m+1). Moreover, keeping track of the messages j that
minimize the right hand sides of (3.6), we may derive for each message in M the
time at which it is sent to s.

Next, we consider the objective minimizing total energy use for distributed in-
formation models. Because the proofs on the competitive ratio for the distributed
algorithms CommonClock and SpreadLatency (Theorems 3.8 and 3.11 and Co-
rollary 3.17) are based on bounding the energy use of each node these proofs also
hold for the objective to minimize the total energy use. However, the proofs of lower
bounds on the competitive ratio for the distributed models do not hold.

For the offline version of the problem, a minor adaptation makes the NP-
hardness proof hold also for LDAP with objective to minimize total energy use,
see [9].

3.5.2 Generalizations of aggregation models

We consider generalizations of the assumption of total aggregation. Under total
aggregation any two messages can be aggregated into a single packet regardless of
their release times and release nodes. In practice total aggregation is not always
possible; whether messages can be aggregated depends on the data. Generally
speaking, aggregation is more likely to be possible if messages are released within
the same region around the same time [36].

In this paragraph we consider two generalizations which model these limitations.
We analyze the consequences of partial aggregation by modeling the cost function
as a concave nondecreasing function, and we analyze the total aggregation model of
messages in a geographically bounded region.

Concave cost functions
In the concave cost function model the communication cost of a packet is a non-

decreasing concave function of data size. The reason to choose a concave cost
function is twofold. First, short-range communication costs are typically determined
by a (significant) start-up cost, and a communication cost which is linear in the data
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size [43, 68]. This can be modeled through a cost function which is affinely linear
for a positive number of packets and zero in case of no packets, i.e. a concave and
non-decreasing function. Second, aggregation typically results in a packet with data
size less than the sum of the original packets. This can also be modeled through
a concave non-decreasing function [40]. Thus a concave cost function reflects both
the economies of scale of sending an aggregate packet in case of start-up cost, and
the gain obtained by data compression.

Most results of the previous sections generalize to concave non-decreasing cost
functions. But first we consider a negative result. We observe that an optimal
solution does not always satisfy Lemma 3.1 (i), i.e. there are instances where a
better solution can be obtained if a node does not aggregate all messages into a
packet, but is allowed to delay one or more packets, and send these at a later time.
We illustrate this by an example. Consider a node v adjacent to s and messages
j, j = 1, . . . , 4, with release times r1 = r2 = 0, r3 = r4 = 1 . Message 1 has latency
1, the other messages have latency 2. Let the communication cost on arc (v, s) be
c(x) =

√
x. Message 1 and 2 are present together at node v at time 0. A solution

which consists of packets {1, 2} and {3, 4} has a cost of 2
√

2. However, the solution
which consists of packets {1} and {2, 3, 4} has a cost of

√
3 + 1 < 2

√
2.

Next, we consider the positive results. Since the constant cost function of the
total aggregation model is both concave and non-decreasing, all lower bounds derived
in this chapter hold for any such cost function. Thus, we focus on the upper bound
results. Consider the algorithms we presented for LDAP with constant energy use
function, CommonClock for the synchronous model and SpreadLatency for the
asynchronous model. The proofs of Theorem 3.8 and Theorem 3.11 are both based
on bounding the number of packets the algorithm sends for each packet that the
optimal solution sends. It follows from a straightforward analysis that these proofs
generalize to cost functions which are both concave and non-decreasing.

Geographically bounded aggregation
In practice, the aggregation of packets can be subject to geographical constraints.

In particular, it may be infeasible to aggregate two messages originating from nodes
that are too far apart. In order to model this kind of constraints we introduce the
geographically bounded total aggregation model, which is defined as follows. Messages
j and j′ can be aggregated into a single packet if both j and j′ can reach a common
ancestor node in time at most ρ; i.e., there is a node v on the intersection of the
path from vj to s and the path from vj′ to s, such that τvj

− τv ≤ ρ and τvj′
−

τv ≤ ρ. Otherwise, the messages can not be aggregated. Note that in this case
multiple packets may be sent from a node at a single time, in case the messages in
these packets can not be aggregated into a single packet. If two messages can be
aggregated they can be totally aggregated, i.e., the cost of a packet is independent
of the number of messages it contains. Note that it is possible that messages i and
j can be aggregated, and messages j and k can be aggregated, but messages i and k
cannot be aggregated. The total aggregation model studied before is a special case,
with ρ = δ.

For the synchronous model we propose the CommonClock algorithm again.



3.5 Variations and generalizations of the model 49

We briefly discuss the proof of the competitive ratio of CommonClock and we
discuss how the lower bound proof can be adapted.

CommonClock is O(log U)-competitive for any choice of ρ, because Lemma 3.7
remains valid. Also, Theorem 3.9, which gives a lower bound of Ω(log U) on any
deterministic synchronous algorithm, remains valid.

For the asynchronous model we present a generalization of the algorithm Spread-

Latency; the algorithms are identical if ρ = δ.

Algorithm 6 GeographicSpreadLatency

Let the waiting time of message j be wj = (Lj − τvj
)/ρ per node visited.

Each node sends a packet as soon as the waiting time of some message, called the
responsible message, at that node has elapsed. This packet contains all messages
present at that node at that time, which can be aggregated with the responsible
message.

Next, we prove upper and lower bounds similar to the proofs given in Theorems
3.11 and 3.13.

Theorem 3.22. GeographicSpreadLatency is O(ρ log U)-competitive.

Proof. We prove that for every node v ∈ V the number of packets Geograph-

icSpreadLatency sends from v is at most O(ρ log U) times that number in an
optimal solution.

Let µ := max{1,minj(Lj − τvj
)}. Consider a packet P of messages sent by

an optimal solution from node v at time t. Without loss of generality we do not
consider messages for which minj(Lj − τvj

) = 0 as these messages have to be sent
upon release by both GeographicSpreadLatency and the optimal algorithm. To
bound the number of packets sent by GeographicSpreadLatency that contain
at least one message from P , define Pi := {j ∈ P |2i−1µ ≤ Lj − τvj

< 2iµ}, for
i = 1, . . . , ⌈log U⌉. We charge any packet sent from node v to a message that caused
the packet to be sent due to its waiting time being over; ties are broken arbitrarily,
but if possible to some message which was charged a packet arriving at v. It suffices
to prove that the number of packets charged to messages in Pi is O(ρ).

Suppose, v is the first node where all messages in P can be aggregated. Then
we must have τvj

− τv ≤ ρ for all j ∈ P , hence each message j ∈ Pi has a waiting
time of at least 2i−1µ/ρ at node v. Thus, the delay between any two packets
that are charged to messages in Pi is at least 2i−1µ/ρ. Since the optimal solution
sends packet P at time t from node v, we get t ∈ Ij(v) ∀j ∈ P and thus Ij(v) ⊆
[t− 2iµ, t + 2iµ] ∀j ∈ Pi. Thus, the number of packets charged to messages in Pi is
at most 2 · 2iµ/(2i−1µ/ρ) = 4ρ. This proves the claim in this case.

Otherwise, let v′ be the first node where all messages in P can be aggregated. It
follows from the argument above, that at most 4ρ packets which contain a message
of P are charged to a message in Pi at node v′. GeographicSpreadLatency

only de-aggregates these packets if some message in this packet can be sent with
another responsible packet. Hence, the number of packets which contain a message



50 Data aggregation with hard latency constraints

of P and are charged to a message in Pi is at most 4ρ for any node on the path
v′ − s, in particular for node v.

Theorem 3.23. Any deterministic asynchronous memoryless algorithm is Ω(ρ)-
competitive.

Proof. Consider an intree with root s, where each non-leaf node has indegree ρ,
and all leaves have communication time ρ to s. An adversary releases message 1
with latency L at time r1 in a leaf v1. There must be a node u where message 1
waits at most (L − τv1

)/ρ. The adversary releases message j, j = 2, . . . , ρ at time
r1 + j(L − τv1

)/ρ. The adversary chooses the release nodes of these messages such
that all messages j are sent over node u, and no two messages traverse the same
node before reaching u. Because τvj

= ρ ∀j and we assumed that any memoryless
algorithm applies the same algorithm in nodes which have the same communication
time to the sink, and the same degree, all messages are sent non-aggregated to and
from u, whereas they are aggregated as early as possible in an optimal solution, in
particular at u.

3.6 Conclusion and open problems

In this chapter we studied the latency constrained data aggregation problem, LDAP.
The problem is to find a schedule to gather a set of packets at a central sink node.
Aggregation can be used to decrease energy use. The objective of the problem is to
find schedules which balance the energy costs of the nodes and the latency costs of
the messages.

Our main focus was to analyze the complexity of the problem, and to develop an
online distributed algorithm with good competitive ratio. We proved that LDAP

is NP-hard, and we presented an offline algorithm which yields a 2-approximation.
We also proved that no online algorithm can be better than 2-competitive.

Then we considered online distributed algorithms under two time models. For
the synchronous time model we considered the algorithm CommonClock, which
uses synchronous clocks to have nodes synchronize their communication, in a distrib-
uted setting. The algorithm is O(log U)-competitive, where U is the ratio between
minimum and maximum of the maximum allowed message delay. We demonstrated
that no deterministic algorithm can be better than Ω(log U)-competitive. Thus,
CommonClock is best possible up to a multiplicative constant. For the asyn-
chronous time model we considered the algorithm SpreadLatency, and proved
that it is O(δ log U)-competitive. The algorithm is memoryless, and for this class of
algorithms no algorithm can be better than Ω(δ)-competitive.

We also analyzed some variations of the problem. In case the latency is constant,
i.e. messages have more or less the same priority, and the latency is at least twice the
maximum network communication time, then CommonClock is in fact a constant
competitive algorithm. The algorithms we presented have the same approximation
ratio when minimizing the sum of energy costs; and for this problem we presented
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an exact polynomial time offline algorithm, in case the graph is a half-line. Our
main results are summarized in Table 3.1.

Model Graph max c(v)
∑

c(v)
ratio lower bound ratio lower bound

Offline tree 2 open 2 open
half − line open open 1 1

Online
−centralized tree O(log U) 2 O(log U) 2
−synchronous tree O(log U) Ω(log U) O(log U) 2
−asynchronous tree O(δ log U) Ω(log U) O(δ log U) 2

Table 3.1: Approximation and competitive ratio results on LDAP.

Finally, we studied two generalizations of the aggregation model, and demon-
strated that for these models our distributed algorithms give similar results in terms
of competitive ratio. In this sense our algorithms can be considered robust.

Our research yields some open problems related to the data aggregation problem.
For the offline problem the complexity on a half-line is an open problem when
minimizing maximum energy use; this contrasts with the problem with objective
minimizing sum of energy use, for which we presented a polynomial time algorithm.
For the online problem, we do not know whether there exists a constant competitive
online algorithm for LDAP with arbitrary message latencies. For the distributed
asynchronous time model there is a gap of O(log δ) between the competitive ratio of
the memoryless algorithm we proposed, and the lower bound on the competitiveness
of any memoryless asynchronous algorithm. Also, it is an open problem whether
there exists an algorithm for the asynchronous time model with competitive ratio
which is strictly better than that of any memoryless algorithm.

Another open problem is related to interference. The algorithms we proposed use
aggregation to reduce the number of times that a node has to communicate. This
aggregation also decreases the probability of interference between communicating
nodes. However, the LDAP problem does not explicitly consider interference. It
would be interesting to analyze the performance of our algorithms in a model which
takes interference into account as well.



52 Data aggregation with hard latency constraints



Chapter 4

Data aggregation with soft

latency constraints

4.1 Introduction

In this chapter we study the bicriteria data aggregation problem (BDAP), the
bicriteria formulation of DAP. Recall, that DAP is to gather a set of messages,
released in a wireless network, at some sink node. Nodes can delay messages in order
to aggregate multiple messages into a single packet, thus reducing communication
costs at the expense of an increased message latency. The objective is to minimize
the maximum communication costs and the maximum latency costs.

We formulate the data aggregation problem as a bicriteria problem. Bicriteria
problems are optimization problems with two objectives. Often, real life problems
have two or more objectives. In the literature such problems are typically modeled
as optimization problems with a single objective, which is a weighted sum of the
objectives.

This approach seems reasonable if we assume that the objectives can be measured
in the same unit, i.e. money or time. However, often the objectives have different
units. In this case the weights used to obtain a single objective strongly influence
the value of a solution, and there is no impartial way to choose these weights. In
the data aggregation problem the objectives are communication costs, which we
measure in energy usage, and latency costs, which we measure in time. Because the
objectives are measured in different units, we choose an explicit bicriteria problem
formulation.

In bicriteria optimization an optimal solution is called a Pareto optimal solu-
tion, which is a solution where none of the objectives can be decreased without an
increase in the value of the other objective. We have proven in the previous chapter,
that DAP is NP-hard when minimizing the maximum communication costs under
constraints on the maximum latency. Hence, BDAP is also NP-hard and we focus
on deriving approximately good solutions. For this purpose we need a definition of
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approximately good solutions for bicriteria problems.
We use a bicriteria formulation of approximation solutions as introduced in [60,

71]. In this formulation we minimize one of the objectives under a budget restriction
on the other objective. The difference with LDAP, is that in this case the budget
restriction is a soft constraint. Using soft constraints we analyze to what extent a
budget excess on the latency constraints affects the communication costs.

We consider a bicriteria problem with objective functions CA and CB . We call
a bicriteria problem a (B,A)-bicriteria problem if we minimize objective CA under
a budget B on objective CB . For a fixed budget B we define S∗

A(B) as a solution
with minimal value with respect to function CA, amongst all solutions S for which
we have CB(S) ≤ B.

We say a solution S is (β, α)-approximate if CA(S) ≤ αCA(S∗
A(B)) and CB(S) ≤

βB, for any value B for which there exists a solution. This formulation gives a rel-
ative guarantee, i.e. the value of the approximate solution is bounded with respect
to the best solution to one of the objectives, under a budget constraint on the other
objective. In the literature there also exists a definition of an approximate bicri-
teria solution, which provides an absolute guarantee, i.e. the cost of the solution is
bounded with respect to the best offline solutions to two single objective problems;
e.g., in [75] the authors minimize makespan and average completion time of a sched-
ule. Such an approach is not likely to yield good results for the data aggregation
problem. The reason is that a bound on the maximum latency has a strong influ-
ence on the communication costs; the latter are likely to decrease for each additive
increase in the bound on the maximum latency. In fact, it is intuitively clear that
the communication costs tend to 1 in case the maximum latency tends to infinity.
We have the following formal definition of a bicriteria approximation algorithm.

Definition 4.1 (Bicriteria approximation algorithm). A (β, α)-approximation
algorithm for a (B,A)-bicriteria problem Π is an efficient algorithm which yields a
(β, α)-approximate solution S for each instance I ∈ Π.

In case there are multiple Pareto optimal solutions, this formulation is general in
the sense that we may obtain similar results regardless which of the two objectives
is minimized, and which is budgeted [60].

As in approximation theory we want to associate an approximation ratio to
bicriteria problems. We call a pair (β, α) an approximation ratio pair if it is Pareto
optimal, i.e. if there is no (β′, α′)-approximation algorithm for β′ < β and α′ < α.
There may exist multiple approximation ratio pairs, and we could provide a set of
all approximation ratio pairs. An alternative to this approach is to determine the
maximum value γ such that there does not exist a (γ, γ)-approximation algorithm
[60]. We call a (γ, γ)-approximation algorithm a balanced algorithm. Balanced al-
gorithms can be viewed as algorithms which consider both criteria equally import-
ant, hence a (γ, γ)-approximation ratio provides a lower bound on the approximation
ratio of balanced approximation algorithms.

More information on bicriteria optimization can be found in Ehrgott and Gand-
ibleaux [29]; this paper provides a survey on multicriteria optimization, with an
emphasis on research focused on identifying the set of all Pareto optimal solutions.
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Bicriteria approximation models for network problems are described in Marathe et
al. [60] and Ravi et al. [71].

The algorithms we present are modifications of the algorithms we presented in
the previous chapter for LDAP. There we observed that in case message latencies
are constant, and not too small, the competitiveness of the algorithm can improve
significantly with respect to the general case. In this chapter we observe the same
improvement. Because the proofs of different variants of the algorithm are identical,
up to the necessary changes to accommodate for the latencies, we have chosen in
this chapter to give extensive proofs for BDAP with constant latencies, and more
briefly discuss BDAP with arbitrary latencies.

We use the same definitions and notation as in the previous chapter. We intro-
duce some extra notation which is specific to BDAP. In case of a constant latency
for each message j, let L denote this constant latency; because of feasibility we have
L ≥ δ. In a bicriteria setting a solution may exceed the allowed latency L. We call
a solution L-bounded if the realized latency lj of each message j does not exceed L.

We study the (B,A)-data aggregation problem in which objective A is to minim-
ize the maximum communication costs and objective B is to minimize the maximum
latency costs. Given a budget L on the latency and value β, β ≥ 1, we study the
communication cost of algorithms that provide a βL-bounded feasible solution: a
βL-bounded feasible solution is (β, α)-approximate if its communication cost is at
most α times the communication cost of the optimal L-bounded solution. In case α
or β depend on a parameter the notation is short for (O(β), O(α))-approximate.

In Section 4.2 we study online algorithms for BDAP under several time models.
For the synchronous model we present an algorithm which balances communication
and latency costs. The algorithm is (2, 2)-competitive. For the asynchronous model
we present an algorithm which balances communication and latency costs, up to a
multiplicative factor log U . The algorithm is (2δλ, 2δ1−λ log U)-competitive, for any
λ, 0 < λ ≤ 1. The algorithm is member of a class of memoryless algorithms for
which we show that no better competitiveness than (δλ, δ1−λ) exists.

We introduce the almost synchronous model for this problem. For this model
we present an algorithm which on instances with a clock drift of at most ∆ between
any two nodes and latency budget L is (1 + 3∆δ/L, log2 δ)-competitive. For con-
stant ∆, i.e. a drift which does not depend on the network diameter δ, the algorithm
has better competitive ratio than the algorithm for the asynchronous model, demon-
strating the fact that we may use approximately synchronized clocks to obtain better
performance. In Section 4.4 we present conclusions and open problems for BDAP.

In Chapter 3 we discussed related work of DAP. To the best of our knowledge
all existing models for DAP and related problems consider optimization of a single
criterion, often combining objectives related to communication and latency costs.

4.2 Online algorithms

In this section we analyze BDAP in an online distributed model. We consider the
synchronous time model, the asynchronous time model, and the almost synchronous
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time model as defined in Subsection 2.2.2.
Similar to the LDAP model we assume that each node v knows its total com-

munication time τv to the sink. The assumption is not necessary for the algorithm
to function as messages can be delayed longer than the allowed latency. However,
it is hard to imagine how to balance communication and latency costs without this
information.

4.2.1 A synchronous distributed algorithm

We present a variant of CommonClock which balances communication and latency
costs. For any time interval I,|I| ≥ L, we define t∗(I) := max{kL|kL ∈ I, k ∈ N}.
Let I∗j := [rj + τvj

, rj + τvj
+ L]. Recall, that the arrival time for message j to stay

within the allowed budget on the latency is Ij = [rj + τvj
, rj + L].

Algorithm 7 BalancedCommonClock

Message j is sent from vj at time t∗(I∗j )− τvj
to arrive at the sink at time t∗(I∗j )

unless some other packet passes vj in the interval [rj , t
∗(I∗j ) − τvj

], in which case
j is aggregated and the packet is forwarded directly.

The algorithm is basically equivalent to a heartbeat algorithm which sends data
packets at regular time intervals [28]. The difference is that in a heartbeat algorithm
messages are sent “at the first beat”, i.e. at time min{kL|kL ∈ I, k ∈ N}.

Theorem 4.2. BalancedCommonClock is (2, 2)-competitive.

Proof. Each message j arrives at the sink not later than rj +τvj
+L ≤ rj +2L, hence

its latency cost is at most 2L, i.e. at most 2 times the budget. It suffices to prove that
the communication cost of each node in the BalancedCommonClock-solution is
at most 2 times the communication cost of this node in an optimal L-bounded
solution.

Assume that in an optimal L-bounded solution packets arrive at s at times
t1 < · · · < tℓ. Let P ∗

h be the packet arriving at time th at s. Since th ∈ Ij ∀j ∈ P ∗
h ,

Ij ⊂ I∗j , and |I∗j | = L ∀j, we have I∗j ⊂ [th − L, th + L] =: I ∀j ∈ P ∗
h . If th = kL

for some k ∈ N then in the BalancedCommonClock-solution all messages in P ∗
h

arrive at s at time th or th +L. If th 6= kL then I contains two different multiples of
L, say kL and (k + 1)L, such that kL < th < (k + 1)L. In this case, since |I∗j | = L
∀j, we have I∗j ∩ {kL, (k + 1)L} 6= ∅ ∀j ∈ P ∗

h . By definition of the algorithm in
a BalancedCommonClock-solution every message j ∈ P ∗

h arrives at s at one of
the times in {kL, (k + 1)L}. Hence, ∀h = 1, . . . , ℓ, all messages in P ∗

h arrive at
s at at most 2 distinct time instants in the BalancedCommonClock-solution.
BalancedCommonClock does not delay messages at intermediate nodes. This
implies that the nodes used by messages in P ∗

h are traversed by these messages at
most 2 times in the BalancedCommonClock-solution.

BalancedCommonClock balances communication and latency costs in the
sense that if we allow for each message latency costs of at most twice the budgeted



4.2 Online algorithms 57

costs, we obtain a solution with communication costs at most twice the costs of an
optimal offline L-bounded solution.

Next, we demonstrate that the algorithm is best possible in the sense that there
is no online distributed algorithm with latency costs at most twice the budget which
has a better competitive ratio on the communication costs. We start with a simple
preliminary lemma.

Lemma 4.3. Any (2, α)-competitive distributed algorithm, α < 2, must delay the
first message j at leaf node vj for at least L−τvj

as long as no other message arrives
at this node.

Proof. Any algorithm that sends the first message j released at leaf node vj at time
t < rj +L−τvj

will be confronted with another message released at time rj +L−τvj

which the adversary can combine with j.

Theorem 4.4. There is no (2, α)-competitive distributed algorithm, for α < 2.

Proof. Consider a tree with three leaf nodes u1, u2, and u3 all at distance δ from
s. They are chosen such that u′, the first node in which the u1 − s-path and the
u2 − s-path meet is nearer to s than u′′, the first node in which the u1 − s-path and
the u3 − s-path meet. Choose L > 2δ. See Figure 4.1 for a visualization.

u1

u2

u3

u′

u′′
s

Figure 4.1: The instance of Theorem 4.4.

The adversary releases message 1 at node u1 at time r1. And, the adversary
either releases message 2 at node u2 at time r2 := r1 + L − δ, or it has released
message 3 at node u3 at time r3 := r1−L+δ. The choice depends on the description
of the algorithm, as we describe below.

Consider any distributed algorithm. Suppose it is (2, α)-competitive for α < 2.
Then it follows from Lemma 4.3 that the transit intervals of messages 1,2 and 3 at
any non-leaf node u that they pass are respectively:

I∗1 (u) = [r1 + L − τu, r1 + 2L − τu],

I∗2 (u) = [r1 + 2L − δ − τu, r1 + 3L − δ − τu],

I∗3 (u) = [r1 + δ − τu, r1 + L + δ − τu].

where we use notation I∗j (u) as before to refer to the transit interval of a 2L-bounded
solution.
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Notice that I∗1 (u′) ∩ I∗2 (u′) 6= ∅ and I∗1 (u′′) ∩ I∗3 (u′′) 6= ∅ but for any u I∗2 (u) ∩
I∗3 (u) = ∅, given L > 2δ.

If the algorithm allows for the possibility of combining messages 1 and 2 in u′

then the adversary gives message 3 and not message 2 and message 3 will have
passed u′′ before message 1 arrives there. Otherwise, if the algorithm allows for the
possibility of combining messages 1 and 3 in u′′ then the adversary gives message 2
and not message 3 and message 1 will have passed u′ before message 2 arrives there.
Thus, in both cases the algorithm incurs communication cost 2.

In both cases the adversary can combine the two messages since the transit
intervals of the messages for the adversary in a node u on their respective paths to
the sink are

I1(u) = [r1 + δ − τu, r1 + L − τu],

I2(u) = [r1 + L − τu, r1 + 2L − δ − τu],

I3(u) = [r1 − L + 2δ − τu, r1 + δ − τu].

whence I1(u
′) ∩ I2(u

′) 6= ∅ and I1(u
′′) ∩ I3(u

′′) 6= ∅.

Note that the theorem does not exclude the existence of a (β, 2)-competitive
algorithm for β < 2. Observe that CommonClock as proposed for LDAP is a
(1, log δ)-competitive algorithm for BDAP.

4.2.2 An asynchronous distributed algorithm

For the asynchronous model we present a modification of the algorithm Spread-

Latency.

Algorithm 8 BiSpreadLatency

Let the waiting time of message j be wj = 2(L − τvj
)/(τvj

)1−λ per node visited.
Each node sends a packet as soon as the waiting time of some message at that
node has elapsed. This packet contains all messages present at that node at that
time.

Theorem 4.5. Algorithm BiSpreadLatency is (2δλ, 2δ1−λ log U)-competitive for
λ, 0 ≤ λ ≤ 1.

Proof. Consider algorithm BiSpreadLatency for fixed λ, 0 ≤ λ ≤ 1. First note
that, because no message is delayed due to aggregation, the latency of each message
j is at most

τvj
2(L − τvj

)/τ1−λ
vj

+ τvj
≤ 2δλL.

We prove that for each node u the number of packets BiSpreadLatency sends
from u is at most 2δ1−λ log U times that number in an optimal L-bounded solution.
This proves the theorem.

Let µ := max{1,minj(L − τvj
)}. Consider a packet P of messages sent by an

optimal L-bounded solution from u at t. To bound the number of packets sent by
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BiSpreadLatency that contain at least one message from P , define Pi := {j ∈
P | 2i−1µ ≤ L − τvj

< 2iµ}, for i = 1, . . . , ⌈log U⌉. We charge any sent packet
to the message that caused the packet to be sent due to its waiting time being
over. It suffices to prove that the number of packets charged to messages in Pi is
at most 2δ1−λ. Since the waiting time of messages j ∈ Pi at node u is at least
2 · 2i−1µ/δ1−λ, the delay between any two packets that are charged to messages in
Pi is at least 2iµ/δ1−λ. Since the optimal solution sends packet P at t from u, we
get t ∈ Ij(u) ∀j ∈ P and hence Ij(u) ⊆ [t− 2iµ, t + 2iµ] ∀j ∈ Pi. Thus, the number
of packets charged to messages in Pi is at most 2 · 2iµ/(2iµ/δ1−λ) = 2δ1−λ.

BiSpreadLatency is a memoryless algorithm. The following lower bound
shows that the competitive ratio of BiSpreadLatency cannot be beaten by more
than a factor O(log U) by any other memoryless algorithm. To be precise, for every
choice on the excess of budget B on the latency, no other memoryless algorithm
can yield a solution where the competitive ratio on the communication costs is
more than a factor O(log U) less than that of BiSpreadLatency. Similar to the
proof of Theorem 3.9 we restrict to memoryless distributed algorithms that employ
the same algorithm in all nodes with the same communication time to s, in the
derivation of the lower bound.

Theorem 4.6. No deterministic asynchronous memoryless algorithm is better than
(δλ, δ1−λ)-competitive, for fixed λ, 0 ≤ λ ≤ 1.

Proof. Consider any deterministic asynchronous memoryless algorithm with latency
costs at most δλ times the budget on the latency costs for fixed λ, 0 ≤ λ ≤ 1. An
adversary chooses a tree with root s and all leaves at distance δ from s. The
adversary releases message 1 with latency L, L = 2δ, at time r1 in a leaf v1. There
must be a node u where message 1 waits at most (δλL− τv1

)/δ = δλ−1L− 1 < 2δλ.
The adversary releases message j, at time r1 + j(2δλ), j = 1, . . . , δ1−λ/2. The
release nodes of these messages are chosen such that they all pass node u, and
no two messages can be aggregated before reaching u. Note that the difference
between the release times of any two messages is at most L − δ, hence all messages
can be aggregated at u. Because τvj

= δ ∀j and we assumed that any memoryless
distributed algorithm applies the same algorithm in nodes at equal distance from s,
all messages are sent non-aggregated to and from u, whereas they are aggregated as
early as possible in an optimal solution, in particular at u.

If we assume that L ≥ 2δ, which in practice is not a severe restriction, essentially
the same analysis as in the proof of Theorem 4.5 gives (2δλ, 2δ1−λ)-competitiveness.
Thus, in this case BiSpreadLatency is a best possible on-line algorithm up to a
constant multiplicative factor.

Theorems 4.5 and 4.6 immediately imply the following corollary, choosing λ = 1
2 .

Corollary 4.7. There exists a deterministic asynchronous algorithm that is
(
√

δ,
√

δ log U)-competitive and no deterministic asynchronous memoryless algorithm
is better than (

√
δ,
√

δ)-competitive.
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4.2.3 An almost synchronous distributed algorithm

As indicated in Chapter 2 it is typical in wireless networks that clocks have a small
drift. I.e. there is a difference between the time indicated at different node clocks.
In this section we consider the almost synchronous time mode, where we assume
that the difference in times between any two internal node clocks is bounded by ∆.

The BalancedCommonClock-algorithm we presented for the synchronous
time model is not robust against clock drift in the sense that its competitive ra-
tio may be much worse if we assume existence of clock drifts. However, the idea
underlying the BalancedCommonClock-algorithm gives rise to algorithms which
have good competitive ratio even in the almost synchronous model.

Our algorithm for the almost synchronous time model delays messages at their
release nodes as in the CommonClock-algorithm, proposed in the previous chapter.
To compensate for the clock drift the algorithm delays messages some extra time,
linear in ∆.

For a description of the algorithm we divide nodes into classes; a node v is of
class p if p is the maximal integer such that τv = h2p + 1 for some integer h, and v
is of class 0 if τv = 1. Note that p ∈ {0, . . . , ⌈log δ⌉}. The algorithm is the following.

Algorithm 9 AlmostSynchronousClock

Message j incurs 3 kinds of delay:
1. at its release node vj a delay of t(Ij) − τvj

− rj ;
2. at each node it traverses a delay of ∆ ;
3. at the first node of class p, p > 0, it traverses a delay which together with the

delays of this kind incurred before sums to 2p+1∆ .
The waiting time of message j at node v is the sum of the delays at that node.
Message j is sent from node v once its waiting time is over, unless some other
message (packet) is sent from v earlier in which case j is aggregated with it.

Note that if ∆ = 0 the algorithm is identical to the CommonClock-algorithm.
To illustrate delay of the third kind we give an example: if a message traverses
nodes of classes 1-4 in order 1,2,3,4 then its delay of the third kind of these nodes is
respectively 4∆, 4∆, 8∆, 16∆. If the order is 4,1,2,3 then its delay of the third kind
is 32∆ at the node of class 4 and 0 elsewhere.

Now we analyze the competitive ratio of AlmostSynchronousClock. Let
Vk := {v|2k−1 < τv ≤ 2k}, for k = 1, . . . , ⌈log δ⌉. First, we analyze the behavior
of the algorithm for instances in which the release nodes of all messages are in Vk

for some k ∈ N. We compare the number of packets that an AlmostSynchron-

ousClock-solution sends in the almost synchronous time model to the number of
packets CommonClock would send if all clocks would be synchronized. Notice
that the competitive ratio is measured against an adversary that sees all the clocks
and hence can be assumed to work with synchronized clocks.

Lemma 4.8. Suppose vj ∈ Vk ∀j for some k. For each packet that CommonClock

would send from v if all clocks would be synchronized, in the AlmostSynchronous
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Clock-solution for the almost synchronous time model at most (k + 1) packets are
sent from v which contain a message of the CommonClock-packet.

Proof. Each packet, of CommonClock and AlmostSynchronousClock, con-
tains at least one message whose waiting time is completely over when the packet
is forwarded. Hence without loss of generality we only consider messages whose
waiting time is completely over when counting packets.

Consider a packet PCC sent by the CommonClock-solution from some node
v at time t if all clocks are synchronous. In the remainder of the proof we only
consider the messages in this packet. We analyze the number of AlmostSyn-

chronousClock-packets which contain a message of PCC. By definition of Com-

monClock the delays of messages in PCC are chosen such that all messages in this
packet which traverse v, i.e. for which v is not the release node, arrive at this node
at time t.

The delay of the first kind that a message incurs in the AlmostSynchron-

ousClock-algorithm is identical to the delay incurred by the CommonClock-
algorithm, if its release node does not have a clock drift. We focus on the deviation
from this time to analyze the number of packets AlmostSynchronousClock

sends. This deviation is caused by the clock drift, and the delays of kind 2 and 3.
If k = 0 the lemma trivially holds, because all messages which are sent over some

node v ∈ V0 have this node v as release node. Hence, if they are sent in a single
packet by the CommonClock-solution they are also sent in a single packet in the
AlmostSynchronousClock-solution.

For k ≥ 1 we introduce the following notation: Vp,k = {v ∈ Vk|v is of class p,
∀v′ ∈ Vk of class p, τv ≤ τv′} for p ∈ {0, . . . , k − 1}: Vp,k is the set of nodes in Vk of
class p with minimal communication time to the sink. Define τ(Vp,k) := τv for some
v ∈ Vp,k. The nodes of Vk are partitioned into layers Up,k for p ∈ {0, . . . , k − 1} as
follows:

Up,k := {v ∈ Vk|τ(Vp,k) ≤ τv < τ(Vp+1,k)} for p ∈ {0, . . . , k − 3},
Uk−2,k := {v ∈ Vk|τ(Vk−2,k) ≤ τv},
Uk−1,k := Vk−1,k.

Note that Vp,k ⊆ Up,k for all p. Further, each message j with vj ∈ Up,k traverses
some node in Vp,k. See Figure 4.2 on the next page for a sketch of the layer structure.

We characterize a set of nodes S by its depth, which is maxv∈S τv − minv∈S τv

and its class string. The class string is an ordered string representing the class of
nodes in S by increasing communication time to the sink. I.e. V3 has depth 4 and
class string {2010}. In general, set Vk has depth 2k−1. Node sets S and S′ are
equivalent if they have the same depth and class string.

We observe that all messages j with vj ∈ Vk are sent to a node in Vk−1 from
some node in Vk−1,k, i.e. a node of class k − 1. Also, there are no nodes of higher
class in Vk and this is the only node of class k−1 a node traverses in Vk. From these
observations we may derive that all messages j with vj ∈ Vk which are sent over
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Figure 4.2: Node set Vk and layers U0,k, . . . , Uk−1,k for k = 1, . . . , 5.

the same node v ∈ Vk−1,k are sent from this node in a single packet. This can be
seen as follows. The total accumulated delay of kind 2 and 3 that any message has
incurred when sent from v is at least 2k∆ + ∆ because v is of class k− 1. The total
accumulated delay of kind 2 and 3 that any message has incurred when it arrives
at v is at most 2k−1∆ + 2k−1∆, because the maximum class of any other node in
Vk is k − 2 and each message has traversed at most 2k−1 nodes. As the clock drift
between two nodes is bounded by ∆ and the difference between the minimum and
maximum delay of any two messages is at most (2k∆ + ∆)− (2k−1∆ + 2k−1∆) = ∆
all messages j with vj ∈ Vk which are sent over v in PCC must be sent from this
node in a single AlmostSynchronousClock-packet.

Now we are in position to prove our lemma using induction on k. Suppose the
lemma holds for V0, . . . , Vk. Consider set Vk+1; this set is partitioned into layers
U0,k+1, . . . , Uk,k+1. For ℓ = 0, . . . , k − 1 layer Uℓ,k+1 is equivalent to set Vℓ+1, hence
all messages j with vj ∈ Uℓ,k+1 which are sent from the same node in Uℓ,k+1 are
sent in a single packet. Thus there are at most k packets which arrive at any node
v ∈ Uk,k+1. As Uk,k+1 has depth 1, all messages which have v as their release node,
are sent from this node in a single packet. Hence, the total number of packets sent
from any node in Vk+1 is bounded by k + 1.

Theorem 4.9. AlmostSynchronousClock is (1 + 3∆δ/L, log2 δ)-competitive.

Proof. Consider a packet P sent by the optimal solution. Let PASC be the set
of packets sent by the AlmostSynchronousClock-algorithm which contain at
least one message from P . Let Ni,k = {j ∈ Ni|τvj

∈ Vk}, for i, k ∈ N, 1 ≤ i ≤
⌈log U⌉, 1 ≤ k ≤ ⌈log δ⌉. Observe that for any choice of budget on the latency L,
there are at most 2 log δ nonempty sets Ni,k. Using this, it follows from Lemma 3.7
and Lemma 4.8 that |PASC| = O(log2 δ). Hence, the communication costs of the
AlmostSynchronousClock-solution are at most O(log2 δ) times the cost of an
optimal L-bounded solution.

The latency of any message j is at most τvj
+ (L − τvj

) + ∆τvj
+ 2∆τvj

, where
the sum consists of the communication time, and the delays of kind 1,2,3. Thus, the
latency of message j is at most (1 + 3∆δ/L) times the budget on the latency.



4.3 Arbitrary latencies 63

For constant ∆, i.e. a drift which does not depend on the network diameter
δ, the algorithm has better (β, α)-competitive ratio than the BiSpreadLatency-
algorithm demonstrating the fact that we may use approximately synchronized
clocks to obtain better performance. If the drift is of the same order as the network
diameter, it is not plausible anymore to consider the clocks to be synchronized in
any sense.

4.3 Arbitrary latencies

In the previous section we considered distributed algorithms for BDAP. We as-
sumed a constant latency L for each message j. In this paragraph we analyze the
synchronous time model under arbitrary latency Lj for message j. We present a
variant of the CommonClock algorithm and give an upper bound on its compet-
itive ratio. The difference in competitive ratio between the constant latency model
and the arbitrary latency model is in order of log U , similar to the difference between
these two models in LDAP.

We present a version of the CommonClock algorithm which balances the com-
munication and delay costs. We define CommonClock(I(j)) as a CommonClock

algorithm with arrival interval I(j) for message j. The original algorithm is Com-

monClock(Ij) where Ij is the arrival interval such that each message arrives within
the allowed latency Lj .

We introduce the following notation. Let µ := max{1,minj(Lj − τvj
)}, and let

M∗
i = {j ∈ M |( log U

log log U )i−1µ ≤ |Ij | < ( log U
log log U )iµ} for i ∈ N. We choose as arrival

interval I∗j := [rj + τvj
, rj + τvj

+ ( log U
log log U )iµ] for message j ∈ M∗

i . We analyze the

competitiveness of CommonClock(I∗j ).
To give a competitive analysis of CommonClock(I∗j ) we first derive a bound

on the competitive ratio of this algorithm for instances in which the arrival intervals
I∗j have the same length. Let I∗ = {1, . . . , log U

log log U−log log log U }.

Lemma 4.10. CommonClock(I∗j ) is ( log U
log log U , 3)-competitive if M∗

i = M for some
i ∈ I∗.

Proof. First observe that ∀j ∈ M∗
i we have |I∗j | ≤ ( log U

log log U )|Ij |, hence the latency

costs of each message are at most ( log U
log log U ) times the allowed budget Lj . Also

Ij ⊂ I∗j .
We will prove that the communication cost of each node in the Common-

Clock(I∗j )-solution is at most 3 times the communication cost of this node in the
optimal solution.

Assume that in an optimal Lj-bounded solution packets arrive at s at times t1 <
· · · < tℓ. Let P ∗

h be a packet arriving at time th at s. Since th ∈ Ij ∀j ∈ P ∗
h , Ij ⊂ I∗j ,

and |I∗j | = ( log U
log log U )iµ ∀j, we have I∗j ⊂ [th − ( log U

log log U )iµ, th + ( log U
log log U )iµ] =: I

∀j ∈ P ∗
h . Let q = max{q ∈ N|∃k ∈ N : k2q ∈ I and (k + 1)2q ∈ I}. Note that

by definition of q and I we have ( log U
log log U )iµ = |I|/2 ≤ 2q ≤ |I|. If th = k2q then

in the CommonClock(I∗j )-solution all messages in P ∗
h may arrive at s at times th
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or th + 2q. If th 6= k2q then I contains two different multiples of 2q, say k2q and
(k + 1)2q, such that k2q < th < (k + 1)2q. In this case, since |I∗j | = |I|/2 ≥ 2q−1

∀j, we have ∀j ∈ P ∗
h that I∗j ∩ {k2q, k2q + 2q−1, (k + 1)2q} 6= ∅. Lemma 3.6

implies that in a CommonClock(I∗j )-solution every message j ∈ P ∗
h arrives at

s at one of {k2q, k2q + 2q−1, (k + 1)2q}. Hence, ∀h = 1, . . . , ℓ, all messages in P ∗
h

arrive at s at at most 3 distinct time instants in the CommonClock(I∗j )-solution.
CommonClock(I∗j ) does not delay messages at intermediate nodes. This implies
that the nodes used by messages in P ∗

h are traversed by these messages at most 3
times in the CommonClock(I∗j )-solution, proving the lemma.

This suffices to prove the next theorem.

Theorem 4.11. CommonClock(I∗j ) is ( log U
log log U , log U

log log U−log log log U )-competitive.

Proof. We observe that
⋃

i∈I M∗
i = M , and |I∗| = O( log U

log log U−log log log U ). This
can be seen as follows. It is easy to see that j ∈ M∗

i for some i ∈ N. Let k :=
log U

log log U−log log log U , the highest index in I∗. This gives log( log U
log log U )k = log U , hence

( log U
log log U )k = U . Thus each j ∈ M such that |Ij | < ( log U

log log U )k = U is contained in
M∗

1 , . . . ,M∗
k .

It follows from Lemma 4.10 that CommonClock(I∗j ) is ( log U
log log U , 3)-competitive

for all messages j ∈ M∗
i . The proof now follows from the observations that the set

of all messages is
⋃

i∈I M∗
i .

Recall from Theorem 3.8 that CommonClock is (1, log U)-competitive, thus an
excess in the budget on the latency costs of O(log log U) results in a decrease of the
competitive ratio on communication costs by factor O(log log U).

4.4 Conclusion and open problems

In this chapter we presented online distributed algorithms for the bicriteria data
aggregation problem with objectives to minimize communication and latency costs.
We focused on algorithms for instances with constant message latencies. We also
showed for one of our algorithms how it can be adapted to take into account arbitrary
messages latencies. We considered algorithms under three different time models.

For the synchronous time model we presented a (2, 2)-competitive algorithm,
i.e. it balances the communication and latency costs. We also showed that no
distributed algorithm can be (2, α)-competitive for α < 2.

For the asynchronous time model we presented an algorithm which balances the
communication and latency costs up to a factor log U , where U is the ratio between
maximum and minimum of the maximum allowed packet delay. We showed that
no memoryless algorithm can have a competitive ratio which is more than a factor
log U better than ours, and in case the latency budget is not too small our algorithm
is best possible within the class of memoryless algorithms.

For the almost synchronous time model we presented an algorithm which minim-
izes communication costs under a small excess of the latency budget which depends
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linearly on the clock drift. This is the first analysis of algorithms for this model,
which models actual wireless networks closer than known time models.

The competitive ratio of our asynchronous algorithm is almost balanced; it would
be interesting to find an algorithm with balanced ratios, equal to the lower bounds
we presented in this chapter. Another possibility of future research is to make a
more careful analysis of the almost synchronous time model, in order to determ-
ine the maximum clock drift for which almost synchronous algorithms have better
competitive ratio than asynchronous algorithms.
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Chapter 5

Data gathering with

interference minimizing

completion times

5.1 Introduction

In this chapter we study a gathering problem in a wireless network under interference
of radio signals, the wireless gathering problem (WGP). We consider a wireless net-
work where data is released over time at the nodes, and nodes should communicate
all data to the sink using multi-hop communication. Each node communicates using
a wireless transmitter which can send data packets to nodes within communication
radius dT , and causes interference at nodes within interference radius dI .

WGP consists of finding an interference free schedule, in which packets are
sent to the sink as fast as possible. We use completion times and flow times as
performance measures for the schedule. In this chapter we consider the objective
minimizing the completion time. In the next chapter we consider the objective
minimizing the flow time. A completion time model is appropriate for wireless
networks which partition data reception and data communication in two phases
[34, 39], a flow time model is appropriate for wireless networks where data reception
and communication occur simultaneously.

Mathematically, the wireless gathering problem is a generalization of the classic
packet radio network model [8, 13]. Given is a graph G = (V,E) with |V | = n,
sink s ∈ V , and a set of packets M = {1, 2, . . . ,m}. We assume that each edge has
unit length. For each pair of nodes u, v ∈ V we define the distance between u and
v, denoted by d(u, v), as the length of a shortest path from u to v in G. We have
integers dT and dI , for communication radius and interference radius and naturally
we have dI ≥ dT . Each packet j ∈ M has a release node vj ∈ V and a release date
rj ∈ Z+ at which it enters the network.

We assume that time is discrete; we call a time unit a round. The rounds are

67
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numbered 0, 1, . . .. During each round a node may either be sending a packet, be
receiving a packet or be inactive. If d(u, v) ≤ dT then u can send some packet j to v
during a round. If node u sends a packet j to v in some round, then the pair (u, v)
is called a call of packet j during that round. Two calls (u, v) and (u′, v′) interfere
if d(u′, v) ≤ dI or d(u, v′) ≤ dI ; otherwise the calls are compatible. We assume that
packets cannot be aggregated at nodes.

The solution to the WGP is a schedule of compatible calls such that all packets
are sent to the sink. Given a schedule, let vt

j be the node of packet j at time t. The
completion time of a packet j is Cj = min{t : vt

j = s}. To be precise, a packet j
can be sent for the first time in round rj , and vt

j is the position of the packet at the
start of round t. In this chapter we consider the minimization of maxj Cj , called
the makespan, and we denote this version of WGP as C-Wgp. In the next chapter
we consider minimizing the flow time.

We use complexity theory to assess WGP, and we use concepts from approx-
imation theory and competitive analysis to analyze the performance of algorithms
that we propose for WGP. See Chapter 1 for an introduction to these concepts.

In Section 5.2 we analyze the complexity of C-Wgp. We demonstrate that C-

Wgp is NP-hard in case dI = dT , even in case each node contains exactly one
packet. This settles an open problem, posed in [13]. In Section 5.3 we consider on-
line algorithms. We give lower bounds on the competitiveness of online algorithms,
and we present a class of greedy online algorithms, which send packets over shortest
paths. We prove that this class of algorithms is constant competitive, where the
constant depends on dT and dI . We demonstrate that a particular greedy algorithm
is 4-competitive for arbitrary dT and dI , and the algorithm is best possible within
the class of shortest paths following algorithms; in case dI = dT the algorithm is
3-competitive. We also discuss algorithms and current status of complexity in case
the network is a tree or a line. In Section 5.4 we summarize our results, and pose
some open problems related to the wireless gathering problem.

Related work
The wireless gathering problem was introduced by Bermond et al. [13], as Mim-

umGatheringTime in the context of providing wireless access to the internet in
rural areas. The authors proved that C-Wgp is NP-hard in case dI = dT , and in
case dI > dT the problem remains NP-hard even when we restrict to instances with
exactly one packet per node. They presented an algorithm which pipelines packets
in the network, and proved that this algorithm is 4-approximate, in an offline setting
without release dates.

Bermond et al. [11] considered the problem in which each node contains exactly
one packet. For this case they presented an optimal algorithm for a half-line, in case
dT = 1, and for a line with sink in the center, in case dT = 1 and dI ≤ 4.

Bar-Yehuda et al. [8] considered distributed algorithms for C-Wgp, in case
dT = dI = 1, and there are no release dates. In their model communication proceeds
in phases, and nodes compete for medium access during a phase using the backoff
strategy of [7], which is described in more detail in Subsection 2.2.2. The strategy
requires nodes to know an upper bound on the maximum graph degree.
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Florens et al. [34] studied minimization of the completion time of data gathering
in a setting with unidirectional antennas. The main difference with WGP is that
unidirectional antennas have a more relaxed notion of interference. E.g., if dT =
dI = 1 a node adjacent to a sender node, but positioned further away from the
sink than this sender node, may receive a packet in case of unidirectional antennas,
because sender nodes direct communication towards the sink. In our model such
a node would receive interfering signals from any adjacent sender node. In case of
unidirectional antennas, Florens et al. provided a 2-approximation algorithm for tree
networks and an optimal algorithm for line networks. Gargano and Rescigno [39]
studied the same problem under the restriction that each node contains exactly one
packet. For this model they gave a polynomial time algorithm for arbitrary graphs.
This model with one packet per node represents instances with a uniform data
distribution, i.e. where the number of packets per node is more or less equivalent.

The gathering problem can be seen as a special case of the packet routing problem
in which packets have to be sent from origin node to destination node. Packet
routing under interference has been considered using the distance-2 interference
model. In this model, the distance between the nodes of two calls should be at
least 2. We observe the following relation between distance-2 interference models
and WGP interference models: each feasible distance-2 interference schedule is a
feasible WGP schedule for dT = 1 and dI = 1, and each feasible WGP schedule for
dT = 1 and dI = 2 is a feasible distance-2 interference schedule.

Kumar et al. [55] presented a decentralized algorithm for packet routing under
the distance-2 interference model. The authors presented an O(∆ log2 n)- approx-
imation algorithm, where ∆ is the maximum graph degree, and n is the number of
nodes. Their algorithm assumes each node knows upper bounds on maximum num-
ber of packets per node, and the network diameter. Especially the first assumption
seems restrictive from a practical point of view, where packets arrive continuously.
The algorithm proceeds in phases, and at the start of each phases nodes communic-
ate with nodes up to a distance 3 to determine interference free schedules for the
round in the next phase. As such the algorithm is decentralized, but not distributed
in the sense that nodes use information of neighboring nodes. Hence, this model is
more restrictive than the distributed model of Bar-Yehuda et al. [8].

There is a large amount of literature on packet routing, in case interference is
not taken into account. Most related to our work on WGP is the work of Cidon et
al. [25] and of Mansour and Patt-Shamir [59]. Both articles consider shortest path
packet routing using greedy algorithms, under arbitrary release times. Note that in
the absence of interference and with fixed paths, the distinction between centralized
and distributed algorithms does not seem to be of importance, when designing
algorithms. The authors of [59] prove that for any greedy algorithm which uses
shortest paths the flow time of a packet is at most the distance to the sink plus the
number of packets in the network. However, we observe that they do not consider
interferences.
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5.2 Complexity

In this section we analyze the complexity of C-Wgp. We prove that C-Wgp is
NP-hard, in case dI = dT = 1, in case each node contains exactly one packet. This
settles an open problem.

In an earlier work, Bermond et al. [13] demonstrated NP-hardness of C-Wgp in
case dI = dT , using a reduction from the satisfiability problem (SAT). Also, Gargano
[38] outlined an NP-hardness proof using a reduction from Chromatic Number,
which she attributed to [27]; however, the final version of [27] does not contain
the proof. Chromatic Number provides a natural framework for a reduction of
network routing problems under interference. Also, [55] used a reduction based
on Chromatic Number, to demonstrate NP-hardness of packet routing under a
distance-2 interference model.

The authors of [13] also considered C-Wgp, for the case where all nodes contain
exactly one packet. They posed the following problem: is C-Wgp NP-hard in case
dI = dT = 1 and each node contains exactly one packet? We present an affirmative
answer to this question. First, we describe the problem Chromatic Number:

Chromatic Number

Instance: a graph G and a number k.
Question: does G have chromatic number at most k?

The chromatic number of a graph is the minimum number of colors needed to
color all nodes of the graph such that no two adjacent nodes have the same color.
Given a graph G we denote the chromatic number of G as χ(G). The problem is
known to be NP-complete [37]. We use this fact to derive NP-hardness for C-Wgp.

Theorem 5.1. C-Wgp is NP-hard, in case dI = dT = 1 and each node contains
exactly one packet.

Proof. Given is an instance of Chromatic Number, on graph G, with V (G) =
{u1, . . . , un}. Let K be a complete graph with V (K) = {v1, . . . , vn}. We construct
a graph H with V (H) = V (G) ∪ V (K) ∪ {s} and E(H) = E(K) ∪ {(s, v), v ∈
V (K)}∪{(ui, vj),∀i, j s.t.(ui, uj) ∈ E(G)}∪{(ui, vi), i = 1 . . . , n}. We are given an
instance of C-Wgp on graph H with dI = dT = 1, sink s, and one packet released
at each node, except the sink. See Figure 5.1.

H
ui

vi

s

K

Figure 5.1: The construction in the proof of Theorem 5.1, with dT = dI = 1.
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We prove the theorem by showing that if G has chromatic number at most k,
then there is a schedule for the C-Wgp instance on H with makespan at most k+2n,
while if G has chromatic number at least k + 1, then every schedule for the C-Wgp

instance on H has makespan at least k + 2n + 1. The theorem then follows from
NP-completeness of Chromatic Number.

Suppose G has chromatic number at most k. Then k rounds suffice to send each
packet released at ui to vi, i = 1, . . . , n. This can be seen as follows. Consider
a coloring of G of at most k colors. Two nodes ui and uj are in the same color
class only if (ui, uj) /∈ E(G), hence only if {(ui, vj), (uj , vi)} ∩ E(H) = ∅. Hence all
nodes u of the same color can send a packet in the same round to some node v, in
particular ui can send a packet to vi. Next, another 2n rounds suffice to gather all
2n packets at s. Hence, the makespan is at most k + 2n.

Suppose G has chromatic number at least k + 1. Then, again relating colors
to rounds, any algorithm requires at least k + 1 rounds to send all n packets from
a node u to some node v. Also, any algorithm requires 2n rounds to send all 2n
packets from a node v to s, and if a packet is sent from some node v ∈ V (K),
then no node of V (K) can receive a packet because the component K is a complete
graph. Hence, the makespan is at least k + 2n + 1.

The complexity of C-Wgp on special instances, e.g. in case the network is a
line or a tree, is still an open problem. In the next section we present some partial
results.

5.3 Online algorithms

In this section we provide lower bounds on the competitiveness of online algorithms
for C-Wgp, we present a class of online deterministic algorithms, called shortest
paths following algorithms, and we analyze the competitive ratio of algorithms in this
class. Most important result is that we present a shortest paths following algorithm
with a competitive ratio which is best possible within this class of algorithms.

5.3.1 Lower bounds

First, we provide a general lower bound on the competitive ratio of any online
algorithm for C-Wgp.

Lemma 5.2. No deterministic algorithm is better than 4/3-competitive for dI = dT .
No randomized algorithm is better than 7/6-competitive for dI = dT .

Proof. See Figure 5.2 on the next page. The adversary releases packet 1 at u at time
0. Observe that for any algorithm that does not send packet 1 in the first round the
lemma trivially holds.

First, consider the class of deterministic algorithms. If a deterministic algorithm
chooses to send packet 1 to u1 (u2) the adversary releases a second packet at u3 (u4)
at time 1 and hence the algorithm incurs a makespan of at least 4. In the optimal
schedule packet 1 is sent to u2 (u1) in the first round which yields a makespan of 3.
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Consider the class of randomized algorithms. We apply Yao’s minimax principle
(see [62]). The adversary releases a second packet in round 1 either at u3 or u4,
both with probability 1/2. Now, the expected number of rounds for any algorithm
that sends a packet in the first round is 1/2 ∗ 4 + 1/2 ∗ 3. In the optimal schedule
packet 1 is send to u2 (u1) in the first round if the adversary releases a packet at u3

(u4) which yields a makespan of 3.

u s

u1

u2

u3

u4

Figure 5.2: No deterministic algorithm is better than 4/3 competitive for dI = dT .

We can obtain similar results for arbitrary dT and dI . The example of Lemma
5.2 contains three packets, and we do not see a way to generalize the example to
an instance with more than three packets, without decreasing the lower bound. As
such the lower bound is mainly of theoretical use, because the lower bound does not
exclude algorithms which are asymptotically near-optimal.

Next, we present a lower bound on the competitiveness of algorithms which
send packets along shortest paths. We call such algorithms shortest paths following
algorithms.

The motivation to study shortest paths following algorithms, is that they form
a natural class of routing algorithms. In Chapter 2 we outlined some advantages
regarding network design which stimulate the use of a shortest paths routing tree.
Another motivation comes from work of Cidon et al. [25]; the authors demonstrated
that for some well known greedy algorithms there is a gap between the completion
times of routing over arbitrary paths, and over shortest paths, in favor of routing
over shortest paths. The gap depends on the root of the number of packets.

We show that no algorithm which sends each packet j over a shortest path from
vj to s can be better than 3-competitive if dI = dT , or better than 4-competitive
if dI > dT , asymptotically. To be precise the lower bounds are 3 − 9/(m + 3) and
4 − 16/(m + 4). As can be observed the lower bounds also hold for offline shortest
paths following algorithms, i.e. the bounds are lower bounds on the approximability
as well.

First, consider the example of Figure 5.3 with dI = dT = 1, on the next page.
Nodes u1, u2, u3 have m/3 packets each. Any shortest paths following algorithm
sends all packets via u, yielding maxj Cj = 3m. On the other hand there is a
solution with no packet passing u that implies maxj C∗

j ≤ 3 + m. The example
can easily be extended for arbitrary dI = dT such that any shortest paths following
algorithm is 3-competitive.



5.3 Online algorithms 73

su
u1

u2

u3

Figure 5.3: No shortest paths following algorithm is better than 3-competitive for
dI = dT = 1.

In case dI > dT consider Figure 5.4. The nodes u1, . . . , um each have 1 packet.
Let dI = 2 and dT = 1. Any shortest paths following algorithm sends all packets via
u, yielding maxj Cj = 4m. There is a solution with no packet passing u that implies
maxj C∗

j ≤ 4 + m. The example can easily be extended for arbitrary dI = 2dT such
that any shortest paths following algorithm is at least 4-competitive.

u s
u1

. . .

um

Figure 5.4: No shortest paths following algorithm is better than 4-competitive for
dI = 2, dT = 1.

In the lower bound examples we presented above, the optimal schedule sends
each packet over a path whose length exceeds the shortest path length by at most
1. This may suggest to consider algorithms which send packets over paths whose
length does not exceed their shortest path length by some constant k. However, as
can easily be verified, for each constant k we could change the length of the paths in
the examples above, such that the optimal schedule sends each packet over a path
whose length exceeds the shortest path length by k + 1.

The examples indicate that if there exist algorithms which have a competitive
ratio that is lower than the lower bound of shortest paths following algorithms, then
these algorithms should balance the number of packets sent over paths towards the
sink. One idea for such an algorithm is to balance the number of packets over paths
is to use not only the shortest path but the k shortest paths, whichever of them
is least congested. However, by adapting the example of Figure 5.3, we obtain the
example in Figure 5.5 with the same packets; see the next page. This example shows
that for k = 2, even if we choose the 2 shortest internally vertex disjoint paths, the
lower bound on the competitive ratio for dI = dT remains unchanged. The example
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can be extended to any fixed k. Similarly the example of Figure 5.4 can be adapted.

s
u1

u2

u3

Figure 5.5: Any shortest paths following algorithm using 2 internally vertex disjoint
shortest paths is no better than a 3-competitive for dI = dT = 1.

5.3.2 A greedy class of algorithms

We present a class of online algorithms for C-Wgp. Each algorithm of this class
orders packets according to some priority rule. This priority rule can be any ar-
bitrary but fixed ordering of packets. Then, in each round the algorithm creates a
schedule of interference free calls. The algorithm is a type of greedy algorithm. A
greedy algorithm makes decisions sequentially, and each decision is the solution to
an auxiliary optimization problem, whose input data depend on previous decisions.

Algorithm 10 Priority Greedy

Order packets according to some priority rule.
while not all packets have reached s do

- Consider next round t;
- Consider packets by non-increasing priority; send each next packet j as far
as possible along a shortest vt

j − s path, without creating interference with any
higher-priority packet.

end while

Priority Greedy is an online, polynomial-time algorithm. In each round the
algorithm sequentially minimizes the distance to the sink of packets, under the
condition that each packet must be sent over some shortest path.

We analyze the competitive ratio of Priority Greedy algorithms. First, we

introduce some extra notation. Let δj =
⌈d(vj ,s)

dT

⌉

, the minimum number of calls
required for packet j to reach s. We define the critical radius R∗ as the greatest
integer R such that no two nodes at distance at most R from s can receive a packet
in the same round. The critical region is the set of nodes at distance at most R∗ from
s. We define γ = 1 +

⌈

dI+1
dT

⌉

, and γ∗ =
⌈

R∗+1
dT

⌉

where R∗,
⌊

dI−dT

2

⌋

≤ R∗ ≤ dI + 1,
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depends on graph G. We will use the ratio γ/γ∗ in our analyses. This ratio depends
on dT , dI , and R∗. The following lemma provides a useful upper bound on γ/γ∗.

Lemma 5.3. γ
γ∗

≤ 2 + 4
l+1 if ldT ≤ dI ≤ (l + 2)dT − 1,∀ odd l ∈ N. And γ

γ∗
≤ 3 if

dI ≤ 2dT − 1.

Proof. Given are dT , dI ∈ N, dI ≥ dT . Note that γ∗ =
⌈

R∗+1
dT

⌉

≥ 1. Let l be an
odd integer such that ldT ≤ dI ≤ (l + 2)dT − 1. Then this yields γ ≤ l + 3 and
as R∗ ≥ ⌊dI−dT

2 ⌋ it follows that γ∗ ≥ (l + 1)/2 which proves the first part of the
lemma. If dI ≤ 2dT − 1 then γ = 3, which proves the second part of the lemma.

We say that packet j is blocked in round t if, in round t, j is not sent over a
shortest path towards s over distance dT (or it is not sent to s if d(vt−1

j , s) ≤ dT ).
We define the following blocking relation on a Priority Greedy schedule: k ≺ j
if in the last round in which j is blocked, k is the packet closest to j that is sent in
that round and has a priority higher than j (ties broken arbitrarily). The blocking
relation induces a directed graph F = (M,A) on the packet set M with an arc
(k, j) for each k, j ∈ M such that k ≺ j. Observe that for any Priority Greedy

schedule F is a directed forest and the root of each tree of F is a packet which is
never blocked. For each j let T (j) ⊆ F be the tree of F containing j, b(j) ∈ M be
the root of T (j), and P (j) the path in F from b(j) to j. Let πj = min{δj , γ

∗}, and
Rj = rj + δj − πj .

To analyze the competitive ratio of Priority Greedy we derive an upper
bound on the completion time Cj of each packet j in a Priority Greedy schedule,
and a lower bound on the maximum completion time of an optimal schedule.

Lemma 5.4. For each packet j ∈ M ,

Cj ≤ Rb(j) +
∑

i∈P (j)

min{δi, γ}.

Proof. The proof is by induction on the length of P (j). Any packet j with |P (j)| = 1
is never blocked, hence b(j) = j, and the lemma is obviously true.

Otherwise, let t be the last round in which j is blocked and let k be the packet
such that k ≺ j. By definition of the blocking relation we have d(vt

j , v
t
k) ≤ dT + dI

and if d(vt
j , v

t
k) > dI +1 then j, although blocked, is sent to vt+1

j with d(vt+1
j , vt

k) =

dI +1. Also, d(vt
k, s) ≤ (Ck − t)dT , otherwise k would not reach s by time Ck. From

time t + 1 on, j is forwarded to s over distance dT each round, reaching s at

Cj ≤ t + 1 +

⌈

d(vt
k, s) + d(vt+1

j , vt
k)

dT

⌉

≤ t + 1 + Ck − t +

⌈

dI + 1

dT

⌉

= Ck + 1 +

⌈

dI + 1

dT

⌉

= Ck + γ.

Also, Cj ≤ Ck + δj , since after k reaches s, j will need no more than δj rounds
to reach s. Thus Cj ≤ Ck + min{δj , γ} and the lemma follows by applying the
induction hypothesis to Ck.



76 Data gathering with interference minimizing completion times

Let C∗
j denote the completion time of packet j in an optimal solution.

Lemma 5.5. Let S ⊆ M be a nonempty set of packets. Then there is k ∈ S such
that

max
j∈S

C∗
j ≥ Rk +

∑

j∈S

πj .

Proof. Since in every round at most one packet can move inside the critical region,
any feasible solution to WGP gives a feasible solution to a preemptive single machine
scheduling problem in which the release time of job j (corresponding to packet j) is
Rj and its processing time is πj . By ignoring interference outside the critical region
we can only decrease the optimum cost, thus a lower bound on the scheduling cost
is also a lower bound on the gathering cost.

Now let k be the first packet in S entering or being released in the critical region
in the optimal schedule. In the scheduling relaxation, the makespan is at least the
time at which the first job starts processing plus the sum of the processing times
which is precisely what is stated in the lemma.

Lemma 5.4 and Lemma 5.5 suffice to provide an upper bound on the competitive
ratio of any Priority Greedy algorithm.

Theorem 5.6. For any priority function Priority Greedy is (γ/γ∗+1)-competitive.

Proof. Let j be the packet having maximum Cj , and consider T (j), the tree con-
taining j in the forest induced by the blocking relation. We can apply Lemma 5.5
with S = T (j) to obtain

max
i∈T (j)

C∗
i ≥ Rk +

∑

i∈T (j)

πi = rk + δk +
∑

i∈T (j),i 6=k

min{δi, γ
∗}

where k is some packet in T (j). Also, we have maxi∈T (j) C∗
i ≥ rb(j) + δb(j). On the

other hand, by using Lemma 5.4,

Cj ≤ rb(j) + δb(j) − min{δb(j), γ
∗} +

γ

γ∗
min{δk, γ∗} +

γ

γ∗

∑

i∈P (j),i 6=k

min{δi, γ
∗}

≤ rb(j) + δb(j) +
γ

γ∗
[(rk + δk) +

∑

i∈T (j),i 6=k

min{δi, γ
∗}]

≤ (1 + γ/γ∗) max
i∈T (j)

C∗
i .

where we used the fact that min{δk, γ∗} ≤ (rk + δk).

The theorem demonstrates that a class of greedy algorithms with a fixed priority
ordering on the packets is constant competitive. The property that the ordering is
fixed is necessary to obtain this constant competitive ratio. This can be seen as
follows. Consider a line graph of length δ with end nodes v and s, and n packets
with release node v. We consider a packet ordering which in each round is based on
the distance of a packet to the sink. Note that this ordering may change over time.
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An algorithm which sends the furthest packet first yields a schedule with makespan
O(δ/dT n). By Theorem 5.6 any Priority Greedy algorithm yields a makespan of
at most δ +γ/γ∗n, hence the gap between the competitive ratio of these two classes
of algorithms is O(δ), which depends on the network size.

Next, we consider two Priority Greedy algorithms with a specific priority,
which we call LIS and RPG.

The LIS algorithm

Algorithm LIS is a Priority Greedy algorithm with priority ordering based on
release times rj : if rj < rk then j will have higher priority than k, ties broken
arbitrarily. We call this algorithm LIS (longest in system), because in each round
it sends the packet which is longest in the system first.

The following theorem demonstrates that LIS can be strictly worse than γ/γ∗

competitive.

Theorem 5.7. LIS is strictly worse than γ/γ∗-competitive.

Proof. We are given an instance on a graph as depicted in Figure 5.6, with dT =
1, dI = 2.

uvj1vji
vj30 s

u1

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

u113

Figure 5.6: LIS is strictly worse than a γ/γ∗-approximation for dI = 2, dT = 1.

The instance consists of 30 packets ji, i = 1 . . . , 30, with δ(ji) = 5i − 1, rji
= 0.

There are also 113 packets j′k with release node uk, k = 1, . . . , 113, δ(j′k) = 4, rj′

k
= 1.

We assume that LIS has fixed the paths of all packets, such that all packets
pass node u. The optimal algorithm can send each packet ji from its release node
over path of length δ(ji) towards the sink, and each packet j′k over a path of length
δ(j′k) + 1, such that any two of these paths are internally vertex disjoint.

In the LIS solution packets ji are sent without any delay. Packets j′k are delayed
by all packets ji, hence j′k ∈ T (j30) for each packet j′k. Because all packets j′k are sent
over the same u−s path the last packet has completion time rj30 +δ(j30)+113 ·4 =
601.

Consider the following solution: all packets j′k with release node uk are sent
to the node on the uk − s path adjacent to s simultaneously. Because all packets
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j′k have release time 1 this is possible, and hence in round 5 all 113 packets j are
adjacent to the sink. Moreover, in rounds 0 to 4 the packets ji are sent towards
the sink over the vji

− s path that does not pass u. Also these packets can be sent
simultaneously, hence in round 5 packet ji is at distance δ(ji) − 5 = 5i − 6 from
the sink for i ∈ {2, . . . , 30}, and j1 is at the sink. In rounds 5 to 117 the packets j′k
are sent to the sink, and packets ji are forwarded to a node at distance 2 from the
sink. Note that this is feasible, because packets ji do not interfere with each other
or with a packet j′k which is sent to the sink. Thus, in round 118 all packets j′k are
at the sink, packets j2, . . . , j24 are at distance 2 from the sink, and packet ji is at
distance 5i−119 for i ∈ {25, . . . , 30}. In round 118 all packets at distance 2 are sent
simultaneously to a node adjacent to the sink; also all packets j can be forwarded.
Thus, in round 119 packets j2, . . . , j24 are adjacent to the sink, and packet ji is at
distance 5i−120 for i ∈ {25, . . . , 30}. In rounds 119 to 141 the packets {j2, . . . , j24}
are sent to the sink, and packets {j25, . . . , j30} are forwarded towards a node at
distance 2 from the sink. Hence, in round 142 packets j25, . . . , j29 are at distance 2
from the sink, and packet j30 is at distance 7 from the sink. In round 142 all packets
at distance 2 are sent simultaneously to a node adjacent to the sink; also packet j30
can be forwarded. In rounds 143 to 147 packets j25, . . . , j29 are sent to the sink,
and after this packet j30 needs two more rounds to arrive at the sink. Hence the
completion time of this schedule is 150 rounds.

This proves the theorem because 601/150 > 4 = γ/γ∗.

We study LIS in more detail in the next chapter when minimizing flow time.

The RPG algorithm

Algorithm RPG is a Priority Greedy algorithm with priority ordering based on
Rj : if Rj < Rk then j will have higher priority than k, ties broken arbitrarily. The
following theorem provides an upper bound on the competitive ratio of RPG, that
improves upon the bound of Theorem 5.6.

Theorem 5.8. RPG is γ/γ∗-competitive.

Proof. Let j be the packet having maximum Cj , and consider T (j), the tree con-
taining j in the forest induced by the blocking relation. We can apply Lemma 5.5
with S = T (j) to obtain

max
i∈T (j)

C∗
i ≥ Rk +

∑

i∈T (j)

πi (5.1)

where k is some packet in T (j). On the other hand, by using Lemma 5.4,

Cj ≤ Rb(j) +
∑

i∈P (j)

min{δi, γ} ≤ Rb(j) +
γ

γ∗

∑

i∈P (j)

πi ≤ Rk +
γ

γ∗

∑

i∈P (j)

πi (5.2)

where we use that b(j), being the root of T (j), has minimum Ri-value amongst the
nodes in T (j). The theorem follows by direct comparison of (5.1) and (5.2).
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Corollary 5.9. RPG is 3-competitive if dI = dT and 4-competitive in general for
WGP.

Proof. Directly from Lemma 5.3 and Theorem 5.8.

It follows from the lower bounds on shortest paths following algorithms and the
corollary above that RPG is best possible in the class of shortest paths following
algorithms. Also, it follows from Theorem 5.7 and Theorem 5.8 that not all Pri-

ority Greedy algorithms have the same competitive ratio. Finally, there may be
algorithms which have a competitive ratio which is lower than that of RPG. But,
as we observed above such an algorithm should diverge packets from their shortest
path to the sink if this path becomes congested, and analyzing such an algorithm
may not be straightforward.

5.3.3 Special instances

We briefly discuss algorithms for special networks which are trees or lines. Bermond
et al. [11] presented an algorithm, and demonstrated it is optimal on a half-line, in
case dT = 1. In a subsequent paper [12] near-optimal algorithms for lines and other
special graph instances are claimed, but proofs are omitted.

We show that RPG is optimal in a special case on a line network, similar to
the result in [11]. And we demonstrate that RPG can be non-optimal on arbitrary
trees. As such, the existence of a polynomial time optimal algorithm for C-Wgp

remains an open problem.

Corollary 5.10. RPG is optimal if G is a half-line and dT = 1.

Proof. If G is a half-line, then s is an endpoint of the line. In this case the critical
radius is dI + 1. Thus, for dT = 1 we have γ∗ = dI + 2. The claim follows since
γ = dI + 2 for dT = 1.

The corollary demonstrates optimality of a rather restrictive class of instances.
In fact, the corollary does not hold if we relax either the assumption that the graph
is a half-line, or the assumption that communication radius is unit. We present
examples which demonstrate that in either case RPG is not necessarily optimal.

RPG can be non-optimal on a line if the sink is not at an extreme node of
the line. Consider the instance given by the graph in Figure 5.7. Let dT = 1 and
dI = 2 and assume packets are released in u1, u2 and u3 at time zero. RPG would
first send the packet in u1 to the sink, and then send the packet in u2 to the sink,
resulting in a makespan of 7, while in an optimal solution the packets in u2 and u3

are forwarded until the packet of u2 reaches the sink at time 2, then the packets of
u3 and u1 are forwarded simultaneously, yielding a cost of 6. Note that if the third
packet would have been released at node u′

3 instead of at node u3 then RPG would
have been optimal. This shows that any optimal algorithm for the problem on a
line should take into account the position of the other packets when deciding which
of the two packets nearest to the sink to send first.
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s u1u2u3 u′
3

Figure 5.7: RPG is not optimal on a line if the sink is not at an endpoint.

RPG can be non-optimal on a half-line if dT > 1. Given a line with extreme
s. Let dT = 3, dI = 6 and consider packets 1,2,3 which are released at distance,
respectively, 8,9 and 27 from the sink. See Figure 5.8. In this case packets 8 and 9
have the same priority. We consider the case when RPG chooses to send the closest
packet, first. If RPG sends packet 1 before packet 2, then packet 1 is sent in rounds
1,2 and 3 and packet 2 is sent in rounds 4,5 and 6. packet 3 is sent in rounds 1
to 10. packet 2 blocks packet 3 in round 4, hence packet 3 needs 10 rounds. In an
optimal schedule packet 2 is sent before packet 1. As no packet blocks packet 3 in
round 4, this packet needs 9 rounds. The example demonstrates that RPG may be
non-optimal if it does not break priority ordering ties properly.

sv1v2v3

Figure 5.8: RPG is not optimal on a line with extreme s for dT = 3, dI = 6.

Finally, the results in this chapter are based on examples on arbitrary graphs,
which provide a very general model for wireless networks. As described in Chapter
2 there exist other, more restricted, graph models, e.g. unit disk graphs or planar
graphs. However, we note that an example similar to that of Figure 5.3 easily leads
to a lower bound of 2 on these restricted classes of algorithms: simply consider
a network with a shortest path and two other disjoint paths with a length which
exceeds the shortest path length by a small constant. A third path with longer
length can be added to achieve lower bounds which approach 3, hence the study of
these restricted graph classes does not seem to improve the competitive ratio of the
algorithms significantly.

5.4 Conclusion and open problems

In this chapter we studied gathering of data packets in a wireless network under
interference of radio signals, the wireless gathering problem. In particular, we con-
sidered the problem of minimizing the maximum packet completion time, called
C-Wgp. We proved that C-Wgp is NP-hard, in case the communication radius
and interference radius are equal, even when we restrict to the class of instances
where each node contains exactly one packet.

We presented a lower bound of 7/6 on the competitive ratio of any algorithm.
This lower bound is based on an instance with 3 packets, and increasing the number
of packets decreases this value. Therefore, it remains an open problem to determ-
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ine whether there exists a constant lower bound for an instance with an arbitrary
number of packets. We also presented a lower bound on shortest paths following al-
gorithms, which depends on the communication and interference radius, and ranges
between 2 and 4.

We analyzed a class of online greedy algorithms, called Priority Greedy,
that send packets over a shortest path to the sink. We showed that all Priority

Greedy algorithms are constant competitive, with the constant depending on the
communication and interference radius. We introduced two Priority Greedy

algorithms, called LIS and RPG. We use LIS extensively in the next chapter when
we analyze WGP minimizing flow times.

We showed that RPG is 4-competitive in general, and 3-competitive in case
communication radius equals interference radius. In fact, for dI = dT and dI = 2dT

the competitiveness of RPG matches the lower bounds on the competitive ratio of
any shortest paths following algorithm, demonstrating that RPG is best possible
within this class of algorithms.

The gap between the competitive ratio of RPG and the general lower bound
of 7/6 leaves open the possibility that there are algorithms with competitive ratio
which is strictly better than that of RPG or any shortest paths following algorithm.

We briefly discussed design implications of algorithms which do not follow shortest
paths, and presented an example which demonstrates that finding algorithms with
an improved competitive ratio is not straightforward.

We considered C-Wgp in special graphs, such as trees and lines. In case the
graph is a line, with sink at one end, and unit communication radius, RPG is in fact
an optimal algorithm. However, in general it is not known if there exist algorithms
for tree graphs which have a competitive ratio strictly better than the competitive
ratio of RPG, and also the complexity of C-Wgp on a tree is an open problem.
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Chapter 6

Data gathering with

interference minimizing flow

times

6.1 Introduction

In this chapter we consider a wireless gathering problem under interference of radio
signals, minimizing packet flow times. We call the problem with objective minimiz-
ing maximum flow times F-Wgp; this problem is closely related to C-Wgp which
we considered in the previous chapter. The difference between these two problems
lies in the objective; minimizing flow times is the more natural objective in case
packets are released over time, and receiving and communicating data occurs sim-
ultaneously; see also Chapter 5. We consider both the objective minimizing the
maximum flow time, as well as minimizing the average flow time. The first object-
ive provides a quality of service measure for any data packet, the second objective
provides a quality of service measure for a packet on average.

We use the same notation as in the previous chapter, in particular an instance
of the problem is defined by a graph G, a packet set M , communication radius dT ,
and interference radius dI . We introduce some extra notation specific to the flow
version of WGP. Given a schedule of WGP with completion time Cj for packet j,
we define the flow time of j as Fj := Cj − rj . Let δ = maxj∈M δj , the maximum
number of calls required to send a packet to the sink, and let ∆ be the maximum
node degree.

We use complexity theory to assess WGP, and we use concepts from approx-
imation theory and competitive analysis to analyze the performance of algorithms
that we propose for WGP. In particular we use resource augmentation to assess
the competitiveness of our algorithms. See Chapter 1 for an introduction to these
concepts.

In Section 6.2 we analyze the complexity of F-Wgp. We prove that F-Wgp

83
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on m packets cannot be approximated within Ω(m
1−ǫ
2 ), for any ǫ, 0 < ǫ < 1/2,

unless P = NP. We also show that any algorithm using shortest paths in order to
route the packets to the sink is no better than an Ω(m)-approximation. In Section
6.3 we present a polynomial time resource augmented online algorithm for F-Wgp.
The algorithm is σ-speed optimal for F-Wgp, for σ ≥ 5. In Section 6.4 we study
simple distributed algorithms for WGP minimizing flow times. We prove that F-

Wgp on m packets cannot be approximated within Ω(log m) by a general class of
distributed algorithms, called simple distributed algorithms. Also, we argue that
we need an augmented speed of factor Ω(log m) to obtain a constant competitive
simple distributed algorithm, contrasting with the resource augmentation results
for centralized algorithms. Then, we present a simple distributed algorithm, and
we show that using an augmented speed of factor O(log δ log ∆) times the speed of
an offline algorithm the algorithm is in expectation near optimal with respect to
average flow times. In Section 6.5 we summarize our results and pose some open
problems related to F-Wgp.

6.2 Complexity

In this section we analyze the complexity of F-Wgp. We use a reduction similar
to the reduction of Theorem 5.1. In case of flow times, this yields an even stronger
result, namely non-approximability. I.e., we present a lower bound on the approx-
imation ratio which is a polynomial function of the number of messages.

Given a graph G let the chromatic number be χ(G), and let the size of the
maximum independent set in G be α(G). Zuckerman [80] proved that it is NP-
complete to approximate Chromatic Number within n1−ǫ. The proof follows
from the following reduction.

Theorem 6.1 (Zuckerman [80]). For all ǫ > 0, there is a polynomial time reduc-
tion from an NP-complete language L to Chromatic Number with the following
properties. On input x, the (reduction) algorithm outputs a graph G on n vertices
such that:
if x ∈ L, then χ(G) ≤ (1 + log n)nǫ;
if x /∈ L, then α(G) ≤ nǫ, so χ(G) ≥ n1−ǫ.

We use this theorem to give a lower bound on the approximability of F-Wgp,
using the instance on the graph of Figure 5.1.

Theorem 6.2. Unless P = NP, no polynomial time algorithm can approximate

F-Wgp within ratio Ω(m
1−ǫ
2 ). for any ǫ, 0 < ǫ < 1/2.

Proof. Given is an instance of Chromatic Number, on graph G derived from
Theorem 6.1. We construct the same graph H as in the proof of Theorem 5.1, and
depicted in Figure 5.1

Our F-Wgp instance consists of m = n2 packets released at some node ui. The
packets are divided into n groups of size n. Fix any ǫ, 0 < ǫ < 1/2. Each group
contains exactly one packet which is released at node ui, for i = 1, . . . , n. The
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release date of each packet in group h is ((1 + log n)nǫ + n)h, h = 0, . . . , n − 1.
Rounds ((1 + log n)nǫ + n)h till ((1 + log n)nǫ + n)(h + 1)− 1 together are a phase.

We prove the theorem by showing that if G has chromatic number at most
(1+ log n)nǫ, then there is a schedule for the F-Wgp instance on H with maximum
flow time n+(1+log n)nǫ, while if G has a maximum independent set of at most nǫ

then every schedule for the F-Wgp instance on H has maximum flow time Ω(n2−ǫ).
The theorem then follows from Theorem 6.1, and the observation that the ratio of
these maximum flow times is:

Ω(
n2−ǫ

n + (1 + log n)nǫ
) = Ω(n1−ǫ) = Ω(m

1−ǫ
2 ).

Suppose χ(G) ≤ (1 + log n)nǫ. Then (1 + log n)nǫ rounds suffice to send each
packet from ui to vi. Next, another n rounds suffice to gather all packets at s.
Thus, all packets released in phase h, can reach the sink before phase h + 1 starts.
Therefore, the maximum flow time of any packet in this schedule is at most the
length of a phase, i.e. at most n + (1 + log n)nǫ.

Suppose α(G) ≤ nǫ. Then, any algorithm requires at least n2/nǫ rounds to send
all n2 packets from a node ui to vi. Also, any algorithm requires n2 rounds to send
all packets from a node vi to s, and if a packet is sent from some node v ∈ V (K), then
no node of V (K) can receive a packet because the component K is a complete graph.
Therefore, any schedule requires at least n2 + n2−ǫ rounds to gather all packets. As
all packets are released before round ((1+log n)nǫ +n)(n−1) ≤ (1+log n)n1+ǫ +n2

the maximum flow time is Ω(n2−ǫ), for any ǫ < 1/2.

In case the packets are routed via shortest paths to the sink, the result of The-
orem 6.2 can be strengthened further.

Theorem 6.3. No shortest paths following algorithm can approximate F-Wgp

within a ratio better than Ω(m).

Proof. Consider the instance in Figure 6.1. The adversary releases a packet at each
of the nodes u1, u2, u3 at times 5i, i = 0, . . . ,m/3. Any shortest paths following
algorithm sends all packets via u, yielding maxj Cj ≥ 3m. As rj ≤ 5m/3 for each
packet j, we have maxj Fj ≥ 3m − 5m/3 = 4m/3.

su
u1

u2

u3

Figure 6.1: No shortest path based algorithm is better than Ω(m)-competitive for
dT = dI = 1.
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The adversary sends each packet over the path which does not contain u. We
claim that it is possible to do this such that all packets released at time 5i have
completion time at most 5(i + 1) + 1. If the claim holds, then we have maxj F ∗

j ≤
5(i + 1) + 1 − 5i = 6. This proves the theorem, since then maxj Fj/maxj F ∗

j ≥
(4m/3)/6 = 2m/9.

We prove the claim by induction. Suppose the claim holds for packets released
in round 5(i − 1). Then, the last packet released at time 5(i − 1) latest is sent to
the sink in round 5i. This packet does not block any packet released in round 5i.
Now, the adversary sends the packets released in round 5i to a node adjacent to s
in 3 rounds, i.e. in the rounds 5i, 5i + 1 and 5i + 2. Then, it requires another 3
rounds to send all 3 packets to the sink, i.e. the rounds 5i + 3, 5i + 4, and 5(i + 1),
which proves the claim.

Note that the theorem also provides a lower bound on the competitive ratio of
shortest paths following algorithms, because the proof holds for any shortest paths
following algorithm.

6.3 An online algorithm

In this section we analyze the Priority Greedy algorithm LIS which sends packets
over some shortest path to the sink using a priority order based on increasing release
dates rj . LIS was introduced in Subsection 5.3.2, and we showed that LIS is 5-
competitive for C-Wgp. Theorem 6.2 implies that it is rather unlikely that there
exists a polynomial time algorithm for F-Wgp, with a constant competitive ratio.
We prove that LIS is O(m)-competitive. Then we analyze LIS using speed resource
augmentation; we prove that LIS is a σ-speed optimal algorithm, for any σ ≥ 5.

Theorem 6.4. LIS is O(m)-competitive for F-Wgp.

Proof. Since every packet must be gathered at the sink, clearly maxj F ∗
j ≥ maxj δj ≥

maxj πj . Now let j be the packet incurring the maximum flow time in the schedule
obtained by LIS. Since rj ≥ rb(j) (by definition of LIS), we have

Rb(j) − rj = rb(j) + δb(j) − πb(j) − rj ≤ δb(j) (6.1)

Using Lemma 5.4 and (6.1), we get

Fj = Cj − rj ≤ Rb(j) − rj +
γ

γ∗

∑

i∈P (j)

min{δj , γ}

≤ δb(j) +
γ

γ∗

∑

i∈P (j)

πi

≤ max
i

F ∗
i +

γ

γ∗
· |P (j)| · max

i
F ∗

i

≤
(

1 +
γ

γ∗
m

)

max
i

F ∗
i .
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Hence, it follows from the theorem above and Theorem 6.3 that LIS is best
possible among the class of shortest paths following algorithms. Next, we consider
the σ-speed augmented version of LIS.

Algorithm 11 σ-LIS

1. Create a new instance I ′ by multiplying release dates: r′j := σrj ;
2. Run LIS on I ′;
3. Speed up the schedule thus obtained by a factor of σ.

Note that the algorithm can be implemented online as a LIS algorithm using
adjusted release dates r′j .

The schedule constructed by σ-LIS is a feasible σ-speed solution to the original
problem because of step 1. We will show that σ-LIS is optimal for both C-Wgp

and F-Wgp, if σ ≥ γ/γ∗ + 1. The following lemma is crucial.

Lemma 6.5. If σ-LIS is a σ-speed optimal algorithm for C-Wgp, then it is also a
σ-speed optimal algorithm for F-Wgp.

Proof. Let F ∗
j and Fj,σ be the flow time of data packet j in an optimal solution and

in a σ-LIS solution, respectively, to F-Wgp and let C∗
j and Cj,σ be the completion

time of data packet j in the same solutions. Suppose σ-LIS is a σ-speed optimal
algorithm for C-Wgp, hence we have maxj∈M Cj,σ ≤ maxj∈M C∗

j . We show that
this inequality implies, for any time t,

max
j∈M, rj=t

Cj,σ ≤ max
j∈M, rj≤t

C∗
j . (6.2)

We prove inequality (6.2) by contradiction. Suppose it is false, then there is an
instance I of minimum size (number of data packets) for which it is false. Also, let
t0 be the first round in such an instance for which it is false. By definition, σ-LIS

schedules each data packet j definitively in round rj ; no data packet is rescheduled
in a later round. I.e., the algorithm determines the completion time Cj,σ of data
packet j in round rj . If the inequality is false, then we must have

Ci,σ > max
j∈M, rj≤t0

C∗
j , (6.3)

for some data packet i with ri = t0, and because I is a minimum size instance the
instance does not contain any data packets released after round t0. But then (6.3)
contradicts maxj∈M Cj,σ ≤ maxj∈M C∗

j . Using (6.2) we have

max
j∈M

Fj,σ = max
t

(

max
j∈M, rj=t

Cj,σ − t

)

≤ max
t

(

max
j∈M, rj≤t

C∗
j − t

)

≤ max
t

(

max
j∈M, rj≤t

F ∗
j

)

= max
j∈M

F ∗
j .
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Theorem 6.6. For σ ≥ γ/γ∗ + 1, σ-LIS is a σ-speed optimal algorithm for both
C-Wgp and F-Wgp.

Proof. By Lemma 6.5, it suffices to prove that σ-LIS is σ-speed optimal for C-Wgp.
Let Cj be the completion time of any data packet j in the σ-LIS solution on

instance I, and let C ′
j be the completion time of j in the LIS solution on the instance

I ′ (see Step 1 of σ-LIS). By construction Cj = C ′
j/σ. Let R′

j := σrj + δj − πj .
Then the upper bound of Lemma 5.4 applied to instance I ′ implies C ′

j ≤ R′
b(j) +

(σ − 1)
∑

i∈P (j) πi. Hence,

Cj = C ′
j/σ ≤ 1

σ
R′

b(j) +
σ − 1

σ

∑

i∈P (j)

πi ≤ rb(j) +
1

σ
δb(j) +

σ − 1

σ

∑

i∈P (j)

πi.(6.4)

Since in any solution b(j) has to reach the sink we clearly have

max
i∈P (j)

C∗
i ≥ C∗

b(j) ≥ rb(j) + δb(j). (6.5)

Also, by Lemma 5.5, for some k ∈ P (j),

max
i∈P (j)

C∗
i ≥ Rk +

∑

i∈P (j)

πi ≥ rk +
∑

i∈P (j)

πi ≥ rb(j) +
∑

i∈P (j)

πi, (6.6)

where the last inequality follows from b(j) having lowest release time in P (j), by
definition of LIS. Combining (6.4), (6.5) and (6.6), we obtain

max
i∈P (j)

C∗
i =

1

σ
max

i∈P (j)
C∗

i +
σ − 1

σ
max

i∈P (j)
C∗

i

≥ 1

σ

(

rb(j) + δb(j)

)

+
σ − 1

σ

(

rb(j) +
∑

i∈P (j)

πi

)

= rb(j) +
1

σ
δb(j) +

σ − 1

σ

∑

i∈P (j)

πi ≥ Cj .

Corollary 6.7. 5-LIS is a 5-speed optimal algorithm for C-Wgp and F-Wgp.

Proof. Directly from Lemma 5.3 and Theorem 6.6.

6.4 Distributed algorithms

In this section we consider distributed algorithms for WGP, minimizing flow times.
We introduce a class of distributed algorithms, and we give a lower bound on the
approximability of F-Wgp for this class of algorithms. Next, we analyze the average
flow time of a distributed algorithm from this class. For ease of presentation, we
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assume throughout this section that dT = dI = 1. At the end of the section we
outline how our results can be extended to the case with arbitrary dT and dI .

Our main interest is to study a class of simple distributed algorithms. We con-
sider a class of distributed algorithms which only use distance to the sink, a random
number generator, and a synchronous clock, to determine whether or not to send a
packet. If a node decides to send a packet, it can send any packet present at that
node at that time. We call this the class of simple distributed algorithms. This class
of algorithms has been studied in the context of wireless gathering by Bar-Yehuda
et al. [8]. We use the distance of a node to the sink to assign nodes to different time
slots; this decreases the possibility of interference. Note that even in this case not
all interference can be avoided a priori. A coloring of nodes at the same distance
from the sink may further reduce the possibility of interference; however, such an
approach typically requires some local communication between nodes to choose the
colors [55], resulting in decentralized algorithms, rather than distributed algorithms.
We only consider simple distributed algorithms in this section.

6.4.1 Lower bounds

We are interested to derive a lower bound on the approximability of the class of
simple distributed algorithms. In case a node receives signals from multiple nodes
in a round, no packet can be received by this node. We describe two relaxation
models of this notion of interference. For both interference relaxation models, we
assume a receiver node only receives signals from sender nodes which try to send
a packet to that node, and in this case one packet may be received during this round.

Relaxation interference models

- The random selection model : in each round, in case the schedule contains
interfering calls, randomly remove interfering calls until the schedule is inter-
ference free;

- The adversarial selection model : in each round, in case the schedule contains
interfering calls, an adversary removes interfering calls until the schedule is
interference free.

The relaxation interference models replace the interference constraints with a
restriction on the choice of the packet that advances. The random selection model
seems a reasonable relaxation model for simple distributed algorithms, given the
fact that such an algorithm may only use a random number generator to choose
when to send, and it has no information on the packets at other nodes.

In Section 6.2 we showed that F-Wgp cannot be approximated within a factor
of O(m(1−ǫ)/2), unless P = NP. Here, we give an unconditional lower bound on
the approximability of F-Wgp for simple distributed algorithms.
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Theorem 6.8. In the random selection model, the approximation ratio of any al-
gorithm is at least Ω(log m) for F-Wgp.

Proof. Consider a constant k ≥ 1. An adversary releases m = 2h2 packets, for h
some integer power of 2. In round i · k · h it releases 2 packets, and in each round in
interval [ikh + 1, ikh + h − 2] it releases one packet, for i = 1, . . . , 2h. The only use
of k in this setting is provision of a control over the average arrival rate of packets.

We use a star network with three rays, with the sink as the center of the star.
Pairs of packets released in the same round are released on two different rays of the
star, say ray 1 and ray 2; all the other packets are released on ray 3.

Both the algorithm and the adversary can send only one of the packets released
at time ikh in that round, and have to send the other packet in a later round. We
call the packet which is released but not sent in round ikh the target packet. We
prove the theorem by demonstrating that the expected flow time of one of the 2h
target packets exceeds log h + 1 for any algorithm, whereas the maximum flow time
of the adversary is at most 2.

The adversary sends one of the packets, released at time ikh, in that same round,
and the target packet in the next round. The adversary can send all other packets
one round after their release dates, hence the maximum flow time of the adversary
is at most 2.

Consider any algorithm in the random selection model. Clearly the algorithm
can forward at most one packet to the sink each round. Because of the random
selection rule, for f ≥ 1, we have

Pr[Fj = f + 1 | j is a target packet] = 1/2f .

So, if p is the probability that the flow time of a target packet is at most log h + 1,
we have p =

∑log h
f=1 (1/2)f = 1 − 1/h. Consider the set of 2h target packets.

For ℓ = 1, . . . , 2h, let Xℓ = 1 be the event that target packet ℓ has flow time
exceeding log h + 1. Otherwise Xℓ = 0. Then E[Xℓ] = 1/h for all ℓ = 1, . . . , 2h and
therefore the expected number of target packets with flow time exceeding log h + 1
is E[

∑2h
ℓ=1 Xℓ] =

∑2h
ℓ=1 E[Xℓ] = 2. Hence, in expectation at least one target packet

has flow time at least log h + 1.

The result of Theorem 6.8 is unconditional, i.e. it does not depend on the
assumption P 6= NP, as in Theorem 6.2. In Section 6.3 we showed that allowing
a constant increase in speed one can obtain a solution with maximum flow time
which is less than that of the optimal solution to the original instance. The proof of
Theorem 6.8 indicates that an increase in speed of Ω(log m) is required to offset the
adversarial selection. The reason is that in the random selection model distributed
algorithms have no control on which packet to advance; and the probability of
obtaining such an adversarial selection depends on the number of packets, and not
on the speed of the algorithm.

In the next section we will analyze a simple distributed algorithm. It cannot
determine which packet is advanced from each layer to the next. Theorem 6.8 and
the observations above should thus explain why we focus on the analysis of the
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expected average flow time, as opposed to maximum flow time, and why we need
to use resource augmentation. Finally, we remark the intuitive fact that, if conflicts
are solved adversarially as opposed to randomly, Theorem 6.8 can be strengthened
further.

Theorem 6.9. In the adversarial selection model, the approximation ratio of any
deterministic algorithm is at least Ω(m) for F-Wgp.

Proof. Consider the instance in the proof of Theorem 6.8. The maximum flow
time of the adversary is two. In the adversarial selection model, no deterministic
algorithm can send the target packet to the sink before sending the h − 2 packets
released at ray 3. Hence, each of the 2h target packets incurs a flow time of h =
√

m/2; this yields a lower bound of Ω(
√

m). We can improve this bound to Ω(m)
on an instance with m packets, if we consider a sub-instance which only contains h
packets released in [ikh, ikh + h − 2], for some i.

6.4.2 A synchronous distributed algorithm

We consider a distributed algorithm for WGP first introduced by Bar-Yehuda et
al. in the context of minimizing the maximum completion time for the gathering
problem without release dates [8]. We focus on flow times.

To reduce interference between nodes, the algorithm partitions nodes into layers,
and assigns a label to nodes in a layer. A layer is as a set of all nodes at a distance
d from the sink. A node at distance d from the sink is assigned label d mod 3. Each
node can be either active during a round or inactive; only active nodes will transmit
a packet. A node will not be active if its packet buffer is empty.

Before we describe the algorithm, we give a formal description of the decay
procedure described in Subsection 2.2.2. The procedure, first introduced and studied
by Bar-Yehuda, Goldreich and Itai [7], is called Decay and requires 2 log ∆ rounds;
the time needed for a single execution of the procedure is called a phase. Decay

enables communication from a set of active nodes.

Algorithm 12 Decay(u, v)

for j = 1, 2, . . . , 2 log ∆ do
u sends to v the oldest packet from its buffer;
u deactivates itself for the rest of the phase with probability 1/2.

end for

We can now state a distributed algorithm for WGP.

Algorithm 13 DistributedGreedy (DG) [8]

for each next phase k = 1, 2, . . . do
Activate each node with label k mod 3 having a nonempty packet buffer;
Execute Decay(u,parent(u)) in parallel for each active node u.

end for
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We assume the existence of a communication tree T for forwarding packets.
Although the algorithm does not model acknowledgement of packets explicitly, it is
easy to include them, e.g. by doubling the number of rounds, having communication
in odd rounds and acknowledgements in even rounds, as in [8]. Using this, we can
assume that successful receipt of a packet (by the parent of the sending node in
the communication tree) is acknowledged immediately. Only at that time it gets
removed from the sender’s buffer.

By the transmission protocol in DG, where in phase k only nodes of layer k
mod 3 transmit, if two nodes transmit, then either they are at the same layer or
they are at least distance 3 apart. Hence, in DG two nodes can only interfere if
both sender nodes are in the same layer.

A super-phase consists of three consecutive phases. Another important ingredi-
ent in the analysis of DG is the following.

Theorem 6.10 ([8]). Let i be a layer of the tree containing some packet at the
beginning of a super-phase. There is probability at least µ := e−1(1 − e−1) that
during this super-phase DG sends a packet from a node u in layer i successfully to
the parent node of u in the communication tree.

This theorem shows that, during a super-phase, each nonempty layer forwards
a packet with probability µ to the following layer. Notice however that there is
no guarantee on which particular packet is advanced. The use of super-phases and
labels, i.e. a synchronous model, is essential to the proof of Theorem 6.10. In case
the Decay procedure would be applied in an asynchronous model it is not clear
whether a similar constant probability µ is a attainable.

For our analysis we define three algorithm classes. For a given instance I of
WGP, we construct relations between the completion times of packets in these
three classes. This approach is similar to the approach of [7].

- In Class 1 each layer sends with probability at least µ at least one packet every
super-phase;

- In Class 2 each layer sends with probability p := 1−(1−µ)a one packet in one
of the three last rounds of every a super-phases, a ∈ N, and with probability
(1 − µ)a no packet;

- In Class 3 each layer sends with probability p one packet in each round, and
with probability 1 − p no packet.

Note that the probabilities stated above refer to the case in which the layer contains
a packet at the start of the period considered (a single super-phase in Class 1, a
super-phases in Class 2, and a single round in Class 3). This restriction is similar to
the restriction on the Decay procedure. Thus, it follows from Theorem 6.10 that
DG is an algorithm which fits into Class 1. We define the completion time and

the flow time of a packet j in a Class k-schedule, respectively, as C
(k)
j and F

(k)
j ,

k = 1, 2, 3.
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Motivated by the negative results of Theorem 6.8 we focus on deriving a bound
on the expected average flow time of DG. We use resource augmentation to analyze
the performance of DG. A σ-speed algorithm sends data packets at a speed that
is σ times faster than an offline algorithm. In particular a σ-speed DG schedule
is a σ-speed Class 1-schedule, i.e. each layer sends with probability at least µ at
least one packet every t rounds, where t is 1/σ times the number of rounds in a
super-phase.

Through a sequence of steps we relate the expected flow times of Class 1 to
those of Class 2. Subsequently, we demonstrate that the expected flow time of σ-
speed DG is bounded by the expected flow time of a Class 3-schedule. Finally, we
relate the expected flow times of a Class 3-schedule to the expected flow times of
an optimal offline schedule.

Our analysis extends proof techniques of Bar-Yehuda et al. [7] to derive a bound
on the sum of completion times for instances where packets may have release dates.
For the proofs we have to introduce some notation. We define a distribution vector
d, a move vector m and an arrival vector a of dimension δ + 1. We use these three
types of vectors to characterize schedules in a specific round. For a given round, di

is the number of packets in layer i, mi is the number of packets which are sent from
layer i to layer i− 1, and ai is the number of packets which arrive at a node in layer
i. We assume there exists a layer 0 which contains all packets which have been sent
to the sink; by definition a0 = 0,m0 = 0 for each round. Note that we must have
mi ≤ di + ai for each layer i and each round.

The initial distribution vector and all arrival vectors are input data of the in-
stance. The move vectors can be derived from the algorithm. Given vectors dt, mt

and at for round t the distribution vector of round t + 1 can be calculated as follows:

dt+1
i = dt

i + at
i − mt

i+1 − mt
i, i = 0, . . . , δ − 1,

dt+1
δ = dt

δ + at
δ − mt

δ.

We denote this operation as dt+1 = Move(dt,mt, at).
Given vectors d,m and a for a round, we may define an abstract move vector m̄

as follows. For each layer i ∈ 0, . . . , δ:

m̄i = mi if di + ai > mi;

m̄i ∈ [di + ai,∞) if di + ai = mi.

Similarly, given vectors d, m̄ and a we can calculate m. Due to this many-to-one
relation we can define Move(d, m̄, a) := Move(d,m, a).

We define an ordering ¹ on n-dimensional vectors. We say a ¹ a′ if there exists
a k ∈ {1, . . . , n} such that either ak < a′

k and aj ≤ a′
j for j = 1, . . . , k−1 or aj ≤ a′

j

for j = 1, . . . , n. Next, we cite a useful lemma, which holds for any (abstract) move
vector m.

Lemma 6.11. [7] If m′ ¹ m and d ¹ d′ then Move(d,m, a) ¹ Move(d′,m′, a).

This lemma suffices to relate Class 1 and Class 2.
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Lemma 6.12. The expected sum of completion times of a Class 1-schedule is at most
the expected sum of completion times of some Class 2-schedule, for every WGP-
instance.

Proof. Suppose we are given an instance of WGP, with arrival vectors a0, . . . , aT−1,
and a Class 1-schedule. This solution defines distribution vectors d1, . . . , dT and
move vectors m1, . . . ,mT−1, where T is the completion time of the solution. We
define abstract move vectors m̄1, . . . , m̄T−1 as follows. For each round t ∈ 1, . . . , T −
1, and layer i ∈ 0, . . . , δ:

m̄t
i := mt

i if dt
i + at

i > 0;

m̄t
i := 1 if dt

i + at
i = 0.

It is straightforward to see that m̄t is indeed an abstract move vector with respect
to mt. Next, we define move vector m̃ as follows. Let p := P (m̄t

i ≥ 1); by definition
of Class 1 we have p ≥ µ/K.

m̃t
i := 1 with probability µ/Kp if m̄t

i ≥ 1;

m̃t
i := 0 with probability 1 − µ/Kp if m̄t

i ≥ 1;

m̃t
i := 0 if m̄t

i = 0.

As a consequence P (m̃t
i = 0) = P (m̄t

i = 0) + (1 − µ/Kp) · P (m̄t
i ≥ 1) =

(1 − P (m̄t
i ≥ 1)) + (1 − µ/Kp) · P (m̄t

i ≥ 1) = (1 − p) + (p − µ/K) = 1 − µ/K.
Also, m̃t ≤ m̄t. Hence, by construction m̃ is a realization on the same instance of a
schedule where each layer sends with probability exactly µ a packet from each layer
in each super-phase, and with probability 1 − µ no packet. We call this a Class
2’-schedule. Also, from move vector m̃ we can identify distribution vectors d̃.

Now, we prove the lemma by analyzing the distribution vectors d and d̃. We
prove by induction that dt ¹ d̃t for each round t. Initially we have d0 = d̃0, i.e.
d0 ¹ d̃0. Suppose the claim holds for round t. Then we have

dt+1 = Move(dt,mt, at) = Move(dt, m̄t, at) ¹ Move(d̃t, m̃t, at) = d̃t+1,

where the second equality follows from definition of the abstract vector, and the
ordering follows from Lemma 6.11, and the orderings dt ¹ d̃t, and m̃t ¹ m̄t.

Because dt ¹ d̃t for each round t, the completion time of the i-th packet to arrive
at the sink in the Class 1-schedule is at most the completion time of the i-th packet
to arrive at the sink in the Class 2’-schedule.

Consider this Class 2’-schedule. For each layer, the probability that after aK
super-phases no packet is sent is (1 − µ)a. Hence, with probability 1 − (1 − µ)a at
least one packet has been sent from each layer after each aK super-phases. Using
the same argument as above to relate Class 1 and Class 2’ we can prove that the
sum of completion times of a Class 2’-schedule is at most the sum of completion
times of a Class 3-schedule. The lemma follows by taking expectations.

Lemma 6.13. The expected sum of flow times of σ-speed DG is at most the expected
sum of flow times of a Class 3-schedule, for σ ≥ 6a log ∆.
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Proof. Consider instance I. Let Fj (Cj) be the flow time (completion time) of
packet j in a DG schedule, and let Fj,σ (Cj,σ) be the flow time (completion time)
of packet j in a σ-speed DG schedule of I.

It follows from Lemma 6.12 and the fact that DG is a Class 1-algorithm that

E[
∑

j Cj ] ≤ E[
∑

j C
(2)
j ]. This implies E[

∑

j Fj ] = E[
∑

j Cj ]−
∑

j rj ≤ E[
∑

j C
(2)
j ]−

∑

j rj = E[
∑

j F
(2)
j ].

Consider a Class 2-schedule. If we speed up this schedule with factor 6a log ∆,
then each layer sends with probability p a packet every t rounds, where t is a/(6a log ∆)
times the number of rounds in a super-phase, i.e. in each single round. Hence, such
a schedule is equivalent to a Class 3-schedule, i.e. the sum of flow times of this
schedule is at most the sum of flow times of a Class 3-schedule. Applying a higher
speedup factor to the Class 2-schedule can only improve the flow times of the Class

2-schedule. Hence, for σ ≥ 6a log ∆, E[
∑

j Fj,σ] = E[
∑

j Fj/σ] ≤ E[
∑

j F
(2)
j /σ] ≤

E[
∑

j F
(2)
j /(6a log ∆)] = E[

∑

j F
(3)
j ].

A deterministic tandem queue with unit processing times is a network which
consists of a sink M0, and a set of machines Mi, i = 1, . . . , δ, which are positioned
in sequence. I.e. a job which has been processed on machine Mi is sent to machine
Mi−1, i = 1, . . . , δ. The processing time of a job is 1 on each machine. Jobs arrive
on some machine. We relate the expected flow time of a Class 3-schedule to the flow
time of a tandem queue, in which the layers are the machines.

Lemma 6.14. The expected sum of flow times of a Class 3-schedule is at most 1/pδ

times the sum of flow times of a schedule of a deterministic tandem queue with unit
processing times.

Proof. Consider a Class 3-schedule S for instance I. First, assume that when in a
round some layer fails to communicate, then all layers fail in that round. In this
case, the probability of having no communication in a round is 1−pδ. The schedule
S′ that remains after removing rounds without communication is equivalent to a
schedule of a deterministic tandem queue with unit processing times, where each
packet j of the Class 3-schedule is equivalent to a job arriving at machine Md(vj ,s).
Consider any set of k rounds of a schedule of a deterministic tandem queue with
unit processing times. The expected number of rounds required to schedule these
k rounds in schedule S′ is kpδ · ∑∞

i=0 (1 − pδ)i · (i + 1) = k/pδ. Let F ′
j be the flow

time of packet j in S′. Then we have E[F
(3)
j ] = F ′

j/pδ, for each packet j. Flow times
are not increased if only some layers fail, but others forward a packet.

Lemma 6.15. The sum of flow times of a deterministic tandem queue with unit
processing times is at most the sum of flow times of an optimal off line WGP sched-
ule.

Proof. Let S be a deterministic tandem queue schedule, and let S∗ be a schedule
where in each round each layer, except layer 1, can forward any number of packets,
and layer 1 can forward at most one packet.
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Consider schedule S∗. Let M∗
t be the set of packets which have not arrived at

the sink in round t. Because the schedule can forward any number of packets over
an edge, we have that if no packet is sent to the sink in S∗ in round t, then no
packet in M∗

t can arrive at the sink before or at round t, i.e. rj + δj > t for each
j ∈ M∗

t . We prove the lemma by demonstrating that if some packet is sent to the
sink in S∗ in round t, then also some packet is sent to the sink in S in round t. This
suffices to prove the lemma, because an offline optimal WGP schedule can not send
packets faster than in schedule S∗.

Suppose to the contrary that there is a first round t in which some packet is
sent to the sink in S∗, but no packet is sent to the sink in S. Let t′, t′ < t, be
the last round before t′ in which no packet is sent to the sink in S∗. Then, there
is a set of t − t′ packets in S∗ which arrive at the sink in rounds (t′, t]. Hence, it
follows from this and the observation above that there are t− t′ packets j such that
t′ < rj + δj ≤ t. Now consider schedule S; in this schedule t − t′ − 1 packets are
sent to the sink in rounds (t′, t − 1], hence there is a packet j with t′ < rj + δj ≤ t
which has not arrived at the sink in round t. But then, j must have been in layer
1 + i or higher in rounds t− i, i = 1, . . . , δj . I.e. j must have been in layer 1 + δj or
higher in round rj ≤ t − δj which gives a contradiction.

Theorem 6.16. Let ǫ > 0 and σ = 6µ−1 · log ∆ · ln(δ/ǫ). Then σ-speed DG is in
expectation eǫ-competitive for the objective of minimizing the average flow time.

Proof. It follows from Lemmas 6.12, 6.13, 6.14 and 6.15 that the expected sum of
flow times of σ-speed DG is at most 1/pδ times the sum of flow times of an optimal
offline schedule, for σ = 6a log ∆. As σ-speed DG is an online algorithm, DG

is σ-speed p−δ-competitive when minimizing average flow times. The probability
p = 1 − (1 − µ)a depends on the choice of the speedup a. We set a := µ−1 ln(δ/ǫ),
which gives

p = 1 − (1 − µ)µ−1 ln(δ/ǫ)

≥ 1 − e− ln(δ/ǫ) = 1 − ǫ

δ

so that

p−δ ≤
(

1 − ǫ

δ

)−δ

≤ eǫ.

It follows from the theorem that the competitive ratio of DG can be made
arbitrarily close to 1 with an appropriate increase in speed. I.e. DG yields in
expectation an average flow time close to the optimal offline solution in case it can
send packets at a higher speed.

Algorithm DG can be extended to the case of arbitrary dT and dI . This can be
seen as follows. We assign to a node in layer d the label d mod dI + dT + 1 and we
use super-phases consisting of dI + dT + 1 phases each. In this way one can avoid
interference between nodes from different layers of the tree. It is easy to see that
Theorem 6.10 can be extended to this setting.

Using this fact, we can extend our analysis to prove the following result.
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Theorem 6.17. Let ǫ > 0 and σ = Θ(d2
I · log ∆ · ln(δ/ǫ)). Then σ-speed DG is in

expectation eǫ-competitive for the objective of minimizing the average flow time.

We notice that one dI factor is due to the longer super-phases, and another one
is due to Decay having to cope with larger neighborhoods (of size ∆dI ).

6.5 Conclusion and open problems

We considered the wireless gathering problem under interference of radio signals,
with the objective of minimizing the flow time of data packets, and we denote
this problem F-Wgp when minimizing the maximum flow time. We showed that

no polynomial time algorithm can approximate F-Wgp within O(m
1−ǫ
2 ), unless

P = NP. Also no shortest paths following algorithm can approximate F-Wgp

within O(m). Next, we analyzed LIS, a greedy shortest paths following algorithm
which we introduced in Chapter 5. We showed that LIS is O(m)-competitive, and
a resource augmented version of LIS is optimal for an augmented speed of factor 5
or more. Finally, we considered distributed algorithms. We presented lower bounds
for a general class of distributed algorithms, called simple distributed algorithms.
We showed that no simple distributed algorithm can approximate F-Wgp within
O(log m), and simple distributed algorithms which use an extra speed of factor less
than O(log m) do not have a constant competitive ratio. We analyzed a simple
distributed algorithm, and proved that it is near optimal in case the algorithm is
allowed to send packets a factor O(log ∆ log δ) faster than an offline algorithm, in
case dT = dI = 1. This result can be extended to the case dI ≥ dT at the expense
of a multiplicative extra factor O(d2

I). The main results are summarized in Table
6.1.

Objective Model Ratio Augmentation Lower bound Condition

max Fj centralized 1 σ ≥ 5 O(m
1−ǫ
2 ) NP 6= P

max Fj distributed, simple open − Ω(log m) −
∑

Fj distributed, simple E[eǫ] σ = O(d2

I open −

log ∆ ln(δ/ǫ))

Table 6.1: Competitive ratio results on WGP minimizing flow times.

There remain some interesting open problems. For the centralized online problem
we do not know whether optimality can be achieved by augmenting the communic-
ation rate by a factor smaller than 5, and whether an efficient algorithm exists that
matches the lower bound on the approximability of F-Wgp. Another interesting set
of questions concerns resource augmentation by allowing the algorithms to use extra
frequencies, meaning that more than one data packet can be sent simultaneously
over the same channel. For instance, it is an open problem whether there exists a
5-frequency optimal algorithm using LIS. For the distributed problem we presented
a simple algorithm, under a synchronous clock model. The algorithm uses extra
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resources of O(log ∆ log δ); it is interesting to obtain an algorithm with constant
competitive ratio for a smaller amount of extra resources. Also, the synchronous
model is essential for the distributed algorithm that we analyzed; it is interesting to
find efficient simple distributed algorithms under the asynchronous time model.
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[32] J. Elson and K. Römer. Wireless sensor networks: a new regime for time
synchronization. Computer Communication Review, 33(1):149–154, 2003.

[33] G. Even. Personal communication, 2007.

[34] C. Florens, M. Franceschetti, and R. J. McEliece. Lower bounds on data col-
lection time in sensory networks. IEEE Journal on Selected Areas in Commu-
nications, 22:1110– 1120, 2004.

[35] P. Fraigniaud and E. Lazard. Methods and problems of communication in usual
networks. Discrete Applied Mathematics, 53:79–133, 1994.

[36] D. Ganesan, A. Cerpa, W. Ye, Y. Yu, J. Zhao, and D. Estrin. Networking issues
in wireless sensor networks. Journal of Parallel and Distributed Computing,
64(7):799–814, 2004.

[37] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness. W.H. Freeman and Co., 1979.

[38] L. Gargano. “Time Optimal Gathering in Sensor Networks”, invited lecture at
the 14th International Colloquium on Structural Information and Communic-
ation Complexity (SIROCCO), 2007.



102 BIBLIOGRAPHY

[39] L. Gargano and A. A. Rescigno. Optimally fast data gathering in sensor net-
works. In Proceedings of the 31st Symposium on Mathematical Foundations of
Computer Science (MFCS), pages 399–411, 2006.

[40] A. Goel and D. Estrin. Simultaneous optimization for concave costs: single
sink aggregation or single source buy-at-bulk. In Proceedings of the 14th annual
ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 499–505, 2003.

[41] J. H̊astad, F. T. Leighton, and B. Rogoff. Analysis of backoff protocols for
multiple access channels. In Proceedings of the Nineteenth Annual ACM Sym-
posium on Theory of Computing (STOC), pages 241–253, 1987.

[42] S. M. Hedetniemi, T. Hedetniemi, and A. L. Liestman. A survey of gossiping
and broadcasting in communication networks. Networks, 18:319–349, 1988.

[43] W. Heinzelman, A. Chandrakasan, and H. Balakrishnan. Energy efficient com-
munication protocols for wireless microsensor networks. In Proceedings of the
33rd Hawaiian International Conference on Systems Sciences (HICCS), pages
3005–3014, 2000.

[44] D. Hochbaum, editor. Approximation Algorithms for NP-hard Problems. PWS
Publishing Company, 1997.
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Summary

Online Gathering Algorithms for Wireless Networks

This thesis addresses optimization problems in wireless communication networks.

An optimization problem describes a situation in which one wants to find an optimal
solution among all solutions. Mathematicians study an optimization problem to find
a general method that provides an answer to each instance of the problem. We call
such a method an algorithm. In particular we are interested in finding an efficient
algorithm, an algorithm that provides an answer fast.

We use complexity theory to classify a problem based on the existence of an
efficient algorithm for this problem. Complexity theory focuses on a worst-case
analysis, which reflects the uncertainty we have on future instances of the problem.
There is a class of optimization problems, called NP-hard problems, for which
mathematicians do not know whether there exists an efficient algorithm, and it is
widely believed that such an algorithm does not even exist. Therefore, for this class
of problems we are interested in finding efficient approximation algorithms that
provide an approximate optimal solution.

Wireless networks have become an important means of communication, and the
use of wireless networks is likely to increase in future years. A main optimization
problem in these wireless networks is to communicate data over the network to a
central node. This is called data gathering. The quality of a solution depends on
multiple criteria, which include the energy costs of communication, and the delay
in communication.

In this thesis we formulate mathematical models for several gathering problems
in wireless networks. The problems we consider are online and distributed by nature;
i.e. problem information becomes known over time, and the problem information is
distributed over the network. Therefore we focus on online distributed algorithms,
which take these restrictions into account. An online approximation algorithm that
provides a good approximate solution is also called competitive.

For each of the problems we consider, we analyze the theoretical complexity of
the problem, we devise online algorithms, and we analyze the quality of the solutions
of these algorithms.
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In Chapter 1 we introduce general concepts and definitions related to optimiza-
tion problems, and their mathematical formulation. Also, we outline the wireless
communication problems addressed in this thesis, and our results.

In Chapter 2 we give a background on wireless networks, introducing definitions,
concepts and common problems in this field. These problems form the motivation for
the optimization problems which we describe and analyze in the following chapters.

Chapters 3 and 4 discuss a gathering problem in a wireless network, with con-
straints on packet latency, and the possibility of data aggregation. Nodes may delay
messages in order to aggregate multiple messages into a single packet, and forward
this packet to the sink. This aggregation reduces the communication costs at the ex-
pense of an increased message latency. We are interested in finding online algorithms
that minimize both the message latencies, and the network communication costs,
i.e. the energy use of the nodes.

In Chapter 3 we focus on the problem with arbitrary latency constraints which
are modeled as hard constraints. The objective is to minimize the maximum com-
munication costs of a node. Our main results are the following. We prove that the
problem is NP-hard, and we provide offline and online approximation algorithms.
We show that our algorithms are robust, in the sense that they have similar com-
petitive ratios in case we choose as objective to minimize the sum of communication
costs, in case we assume the cost function to be concave, or in case we limit the
possibilities of aggregation.

In Chapter 4 we consider the same problem, but focus on constant latencies which
are modeled as soft constraints. We use bicriteria optimization to find solutions with
both low costs and small packet latencies. The main contributions of this chapter
are that we present a constant competitive online distributed algorithm for this
problem, in case the latency constraints are not too strict, and an analysis of the
almost synchronous time model, a new time model.

Chapters 5 and 6 discuss a gathering problem in a wireless network with inter-
ference. Interference influences the design of communication algorithms, because it
prevents nodes within the same region to communicate simultaneously. We are in-
terested in finding online algorithms that send packets to the sink as fast as possible,
explicitly taking into account interference constraints. We use completion times and
flow times as performance measures for the solution.

In Chapter 5 we analyze the problem with objective to minimize completion
times. We focus on minimizing the maximum completion time. We prove that this
problem is NP-hard, even in a special case, solving an open problem. We present a
class of constant competitive online algorithms.

In Chapter 6 we consider the wireless gathering problem with objective to min-
imize flow times, the time packets are in the network. We classify the problem with
objective minimizing maximum flow times, and with objective minimizing average
flow times; our results indicate that it is unlikely to find efficient algorithms for these
problems. Then we present an online distributed algorithm which is near-optimal
in case the algorithm can send packets at a faster speed than currently available;
the speed factor gives an indication of the effect of faster communication devices on
the quality of the solution.



Samenvatting

Dit proefschrift behandelt optimaliseringsproblemen in draadloze netwerken.

Een optimaliseringsprobleem beschrijft een situatie waar we gëınteresseerd zijn in
het vinden van een optimale oplossing uit een verzameling van oplossingen. Wiskun-
digen bestuderen een optimaliseringsprobleem om algemene methoden te vinden
voor het oplossen van een dergelijk probleem. We noemen zo’n methode een al-
goritme. Ter illustratie, een bekend optimaliseringsprobleem is het kortste-padpro-
bleem waar we de kortste route van A naar B willen bepalen. Een algoritme stelt
ons in staat deze route te bepalen voor willekeurige bestemmingen. In het bijzonder
zijn we gëınteresseerd in het vinden van een efficiënt algoritme, een algoritme dat
de oplossing snel vindt.

We gebruiken complexiteitstheorie om problemen te classificeren op basis van
het feit of er een efficiënt algoritme bestaat voor dit probleem. Complexiteitstheorie
is gebaseerd op een worst-case analyse, waarin we er vanuit gaan dat de minst gun-
stige situatie zich voordoet. De reden voor deze analyse schuilt in de onzekerheid
die we hebben over welke situatie van het probleem zich in de toekomst voordoet.
Er bestaat een klasse van optimaliseringsproblemen, genaamd NP-moeilijke proble-
men, waarvan wiskundigen niet weten of er een efficiënt algoritme voor bestaat, en
er wordt algemeen aangenomen dat een dergelijk algoritme voor deze klasse niet be-
staat. Om die reden zijn we bij de klasse van NP-moeilijke problemen gëınteresseerd
in het vinden van efficiënte algoritmen die een oplossing geven die bij benadering
optimaal is. We noemen zo’n algoritme een benaderingsalgoritme.

Draadloze netwerken, zoals mobiele-telefoonnetwerken, vormen een belangrijk
communicatiemiddel, en het gebruik van draadloze netwerken zal in de toekomst
waarschijnlijk nog toenemen. Een belangrijk optimaliseringsprobleem in draadloze
netwerken bestaat uit het communiceren van data naar een centraal punt in het
netwerk; we noemen deze problemen verzamelproblemen. De kwaliteit van een
oplossing voor dit probleem hangt af van meerdere criteria, zoals de energiekosten
van communicatie en de tijd die nodig is om data te verzamelen.

In dit proefschrift formuleren we wiskundige modellen voor verschillende verza-
melproblemen in draadloze netwerken. De problemen die we bestuderen zijn online
en gedistribueerd; een online probleem is een problem waar de gebruiker gaandeweg
nieuwe informatie krijgt die van belang is voor het oplossen van het probleem;
een gedistribueerd probleem is een probleem waar informatie verspreid is over het
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netwerk, en een algoritme alleen lokale informatie mag gebruiken voor het maken
van een oplossing. Ter onderscheid noemen we een probleem waarbij alle informatie
vooraf bekend is een offline probleem. We richten ons op online gedistribueerde
algoritmen, die rekening houden met bovengenoemde restricties. Een online be-
naderingsalgoritme waarvan de oplossingen een goede benadering van de optimale
oplossing geven noemen we ook wel een competitief algoritme.

Voor elk probleem dat we bestuderen doen we het volgende: we analyseren de
complexiteit van het probleem, we ontwikkelen online algoritmen, en we analyseren
de kwaliteit van de oplossingen die deze algoritmen geven.

In hoofdstuk 1 introduceren we concepten en definities die gerelateerd zijn aan
optimaliseringsproblemen. Daarnaast geven we een overzicht van de draadloze com-
municatieproblemen die we in dit proefschrift bestuderen, en een overzicht van onze
resultaten.

In hoofdstuk 2 geven we een algemene beschrijving van draadloze netwerken, we
introduceren definities, concepten en enkele bekende problemen uit dit onderzoeks-
gebied. Deze problemen vormen de motivatie voor de optimaliseringsproblemen die
we in de volgende hoofdstukken beschrijven en analyseren.

In hoofdstukken 3 en 4 bespreken we een verzamelprobleem waarbij voorwaarden
zijn gesteld aan de maximale vertraging van een datapakket. We gebruiken hier
de techniek van data-aggregatie. Dit komt erop neer dat de communicatiepunten,
knopen genaamd, de mogelijkheid hebben om data te vertragen om zodoende ver-
schillende data te aggregeren in een enkel pakket, en deze vervolgens te versturen.
Data-aggregatie vermindert de communicatiekosten, maar levert wel extra vertra-
ging op voor data. We zijn gëınteresseerd in het vinden van online algoritmen die
zowel de vertraging als de communicatiekosten minimaliseren.

In hoofdstuk 3 richten we ons op het probleem met willekeurige beperkingen op
de maximale vertraging; we modelleren deze beperkingen als harde voorwaarden.
Het doel is om de maximale communicatiekosten van een knoop te minimaliseren.
Onze belangrijkste resultaten zijn als volgt. We bewijzen dat dit probleem NP-
moeilijk is, en we geven offline en online benaderingsalgoritmen. We tonen aan
dat onze algoritmes robuust zijn, in die zin dat we dezelfde competitieve resultaten
vinden als we als doel kiezen het minimaliseren van de totale communicatiekos-
ten, als we kiezen voor een concave kostenfunctie, of als we de mogelijkheden tot
aggregatie beperken.

In hoofdstuk 4 beschouwen we hetzelfde probleem, maar hier richten we ons op
een constante maximale vertraging voor alle data; we modelleren deze beperking
als een zachte voorwaarde, dat wil zeggen dat we er niet aan hoeven te voldoen.
We gebruiken concepten uit bicriteria optimalisering voor de analyse van onze algo-
ritmen. Onze belangrijkste resultaten zijn een online gedistribueerd algoritme dat,
in het geval de voorwaarde op de maximale vertraging niet te strikt is, constant
competitief is. Dit wil zeggen dat zowel de communicatiekosten als de berichtver-
tragingen niet veel afwijken van de beste offline oplossing. Daarnaast geven we een
analyse van de kwaliteit van ons algoritme voor het bijna-synchrone tijdsmodel, een
nieuw tijdsmodel.
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In hoofdstukken 5 en 6 behandelen we een verzamelprobleem op een draadloos
netwerk waarbij we expliciet interferentie van radiosignalen modelleren. Interferentie
bëınvloedt het ontwerp van algoritmen voor draadloze netwerken, omdat het een
beperking oplegt aan het aantal knopen dat tegelijk kan communiceren. We zijn
gëınteresseerd in het vinden van online algoritmen voor dit probleem die data zo
snel mogelijk verzamelen. We gebruiken de completeringstijd en de doorlooptijd als
maten om de kwaliteit van een oplossing te meten.

In hoofdstuk 5 analyseren we het probleem met als doel het minimaliseren van
de completeringstijden. We richten ons op het minimaliseren van de maximale
completeringstijd, dat wil zeggen de tijd die nodig is om alle data te verzamelen.
We bewijzen dat dit probleem NP-moeilijk is, zelfs in het speciale geval dat elke
knoop precies één bericht te versturen heeft. Hiermee geven we antwoord op een
openstaand probleem. Daarnaast presenteren we een klasse van competitieve online
algoritmen.

In hoofdstuk 6 behandelen we het verzamelprobleem met als doel het minimalise-
ren van de doorlooptijden, de tijd dat berichten in het netwerk zijn. We classificeren
het probleem voor maximale en gemiddelde doorlooptijden; onze resultaten duiden
erop dat het onwaarschijnlijk is dat er een efficiënt algoritme bestaat voor deze
problemen. Vervolgens presenteren we een online gedistribueerd algoritme dat bijna
optimale oplossingen geeft, als het algoritme berichten sneller kan versturen dan
momenteel mogelijk is. Dit resultaat geeft aan welke kwaliteit het algoritme kan
leveren na de aanschaf van snellere communicatiemiddelen.
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